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基於可疑行為及類神經網路之 

惡意軟體偵測機制 

 

學生：蔡薰儀     指導教授：王國禎 博士 

 

國立交通大學網路工程研究所 

 

摘 要 

惡意軟體在近幾年非常地盛行，已嚴重危害到電腦及網際網路的

安全。雖然惡意軟體可被些微的修改來躲過傳統字串比對方法的偵測，

但變形過後的惡意軟體仍然與原本的版本有著相同的行為，而這些行

為同時也是其他惡意軟體經常會做的。為了偵測未知的惡意軟體及已

知惡意軟體之變形，在本論文裡我們提出了一個基於可疑行為及類神

經網路之惡意軟體偵測機制，簡稱 ANN-MD。藉著在三個砂盒系統底

下觀察多個已知惡意軟體樣本，我們蒐集並列出了 13 個惡意軟體常

做之可疑行為。利用這 13 個可疑行為，我們提出一個惡意程度表示

式。藉由這個惡意程度表示式，我們可計算出一個未知軟體的惡意程

度值，並根據這個惡意程度值去判定該軟體是否為惡意的。實驗結果
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顯示，在測試階段，使用與訓練階段相同的樣本空間的情況下，我們

提出的 ANN-MD 能以 98.1%的正確率辨識出惡意軟體與正常軟體，而

ANN-MD 的誤判率(漏判率) 0.8% (3.0%) 也比 MBF 的誤判率 5.6% 

(17.0%)及 RADUX的誤判率 14.2% (3.4%)小很多。此外，為了進一步

驗證 ANN-MD 的有效性，我們在測試階段使用與訓練階段不相同的樣

本空間來做測試。實驗結果顯示，即使使用與訓練階段不相同的樣本

空間，ANN-MD的正確率(誤判率)仍可達到 97.0% (5.0%)；然而，MBF

與 RADUX 的正確率(誤判率)卻下降到 77.5% (44.0%)以及 66.0% 

(68.0%)。此證明我們所提的 ANN-MD 是一個有效的惡意軟體偵測機

制。 

 

關鍵詞：類神經網路、基於行為比對、惡意軟體偵測、砂盒。 
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Suspicious Behavior-based Malware 

Detection Using Artificial Neural Network 

Student：Hsun-Yi Tsai    Advisor：Dr. Kuochen Wang 

Department of Computer Science 

National Chiao Tung University 

Abstract 

In the recent years, malware has been widely spread and has caused severe 

threats against cyber security. Although malware may be made some changes to evade 

the traditional signature-based detection, the malware and its variations still have 

some similar behaviors, which most of the malware also intent to do. In order to 

detect unknown malware and variations of known ones, we propose a behavioral 

artificial neural network-based malware detection (ANN-MD) system. By observing 

runtime behaviors of some known malware samples using three sandboxes, we listed 

13 suspicious behaviors that malware frequently did. Then based on these 13 

suspicious behaviors, we constructed a malicious degree (MD) expression. By using 

the MD expression, we can calculate an unknown sample’s MD value and judge 

whether the sample is a malware according to its MD value. Experimental results 

indicate that, under the same sample space in the testing phase as well as the training 

phase, the proposed ANN-MD can correctly discriminate malware from benign 

software with the accuracy rate of 98.1%. In addition, the false positive rate (false 

negative rate) of ANN-MD is 0.8% (3.0%), which is much smaller than the false 

positive rate (false negative rate) of 5.6% (17.0%) of MBF and the false positive rate 

(false negative rate) of 14.2% (3.4%) of RADUX. To further verify the feasibility of 
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the proposed ANN-MD, we conducted another experiment by using a different 

sample space in the testing phase from the sample space used in the training phase. 

Experimental results show that ANN-MD still has a high accuracy rate of 97.0%, 

even though the testing sample space is different from the training sample space. 

However, MBF and RADUX only have the accuracy rates of 77.5% and 66.0%, 

respectively. In addition, the false positive rate of ANN-MD is 5.0%, which is much 

smaller than the false positive rate of 44.0% of MBF and the false positive rate of 

68.0% of RADUX. This is due to that MBF and RADUX use fixed weights in the 

training phase. The experimental results support that ANN-MD is a very promising 

algorithm for malware detection. 

 

Keywords: artificial neural network, behavior-based, malware detection, sandbox. 
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Chapter 1  

Introduction 

Malware has become one of the most serious security threats to cyber security in 

recent years. It results in the damage of financial and human resources. To resolve this 

kind of security problems, many anti-malware (or anti-virus) solutions have been 

proposed. Existing solutions can be classified into two major categories: i.e., 

signature-based and behavior-based. The signature-based solutions, like [1] [2], first 

extract unique digests of the malware to construct the databases of signatures. Next, 

they use these signatures to check whether unknown binary codes are malicious or not. 

Therefore, this kind of solutions has a low false positive rate (FPR). However, since 

the signature-based solutions cannot obtain the signatures of zero-day malware and 

metamorphic ones at the very first time they emerged, the signature-based solutions 

may fail to detect them and thus result in high false negative rates (FNR).  

In order to detect the zero-day malware or metamorphic malware and decrease 

FNR, some behavior-based solutions have been proposed [3] [4] [5] [6] [7] [8]. Since 

malware has some common suspicious behaviors [5], we can use these behaviors to 

judge whether an unknown sample is malicious. Thus, behavior-based solutions are 

more effective to detect metamorphic or zero-day malware than signature-based 

solutions. In addition, behavior-based solutions do not need to update the signatures 

of malware frequently since suspicious behaviors are almost the same. However, due 

to benign software might have some behaviors which also appear in malware, it may 

result in high FPR. Therefore, behavior-based solutions must discover some specific 

behaviors to distinguish malicious samples from benign ones. 
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Based on the above observations, we contribute the following two respects in this 

thesis. Firstly, we collect suspicious behaviors which can be used to recognize 

malicious samples from benign ones. Secondly, we propose an artificial neural 

network-based malware detection system (ANN-MD), which uses an artificial neural 

network (ANN) [12] [13] to adjust the weight of each suspicious behavior so as to 

detect malware effectively. In addition, it can also reduce FPR of malware detection.  

Besides, we have implemented a tool chain system, Honey Inspector [14], to 

actively collect, detect, and analyze malware from Internet. However, the analysis 

component uses the technology of snapshots to identify malware by checking whether 

system files are modified. If the characteristics captured by two snapshots before and 

after executing a sample are different, the sample will be identified as malware. But 

this method is not effective and not precise enough since it does not consider 

suspicious behaviors of malware. Thus, one purpose of our work is to improve the 

performance of the analysis component in the Honey Inspector by using ANN-MD.  

In summary, the main objective of our work is to collect distinguishable suspicious 

behaviors to construct a malicious degree (MD) expression, and then use the MD to 

identify metamorphic or zero-day malware effectively. We first collect some common 

suspicious host behaviors, like deleting host files, modifying registry keys, creating 

files, and so on. These behaviors are mainly inspected by sandboxes [9] [10] [11]. 

Next, we pick up the most frequent behaviors that appear in malware during runtime 

and eliminate the behaviors that often appear in normal software during runtime. Then, 

we train and adjust the weight of each suspicious behavior in the MD expression 

using an ANN. Finally, we judge whether an unknown sample is a malware using its 

MD value. 

The rest of this thesis is organized as follows. In Chapter 2, we review some 

related work and discuss the differences among our scheme and related work. In 
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Chapter 3, we give a brief introduction to the Honey Inspector, sandboxes, and ANNs. 

In Chapter 4, we illustrate the framework of our scheme and describe some 

implementation issues. In Chapter 5, experimental results are presented to validate the 

functionality and the performance of the proposed scheme. Finally, some concluding 

remarks and future work are given in Chapter 6. 
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Chapter 2  

Related Work 

In recent years, many behavior-based malware detection methods have been 

proposed to overcome the drawbacks of signature-based ones and decrease the FPR of 

malware detection at the same time. Most of these schemes focus on how to precisely 

collect the correct and useful behavior information of malware when it is executed [3] 

[4] [6] [8]. As we illustrate in the previous chapter, our scheme focuses on how to 

collect common suspicious behaviors and use them to identify malware.  

Liu et al. [5] proposed a Malicious Behavior Feature (MBF) based malware 

detection algorithm to identify malware. An MBF includes three-tuple data: 

<Feature_id, Mal_level, Bool_expression>. Feature_id is a string identifier which is 

used to uniquely represent an MBF; Mal_level is an integer weight which divides an 

MBF into three malicious levels: high, warning, and low; Bool_expression is a 

Boolean expression which specifically define the behavior of an MBF. A collected 

MBF is used to calculate an unknown sample’s malicious degree. A sample obtains 

higher malicious degree if it conforms to more MBFs. MBFs can be used to detect 

newly out-broken unknown malware. However, since MBFs are divided into three 

levels, the accuracy rate is relatively low and the FNR is high. 

Wang et al. [7] proposed an API-calls-based malware detection prototype, called 

Reverse Analysis for Detecting Unsafe eXecutable (RADUX). This scheme includes 

nine suspicious behaviors which are formed by the corresponding API function calls 

sequences. By using Bayes’ Theorem, they constructed a Bayes expression: 

 ( | )  
∏  (  | )  ( ) 

   

∏  (  | )  ( ) 
    ∏  (  | ̅)  ( ̅) 

   

, where C denotes the set of malicious 
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samples and  ̅ denotes the set of benign samples. ω is the set of those nine malicious 

behaviors. The appearance probability of a certain behavior   (          ) is: 

P(  |C) = the appearance frequency of    in set C / the number of malicious samples 

in C; P(  | ̅) = the appearance frequency of    in set  ̅ / the number of benign 

samples in  ̅. Each sample’s suspicious degree (SD) can be calculated by using this 

Bayes’ expression. By setting a threshold, the SD value can be used to distinguish 

malware from benign software. However, the SD expression involves the 

multiplication of the appearance probability of each suspicious behavior together. The 

SD expression may results in high FPR, since not all behaviors are inter-dependent. 

The main disadvantage of these two schemes [5] [7] is that the malicious level of 

each suspicious behavior defined is not precise enough. In [5], only three levels are 

not enough to represent the malicious level of MBF. In [7], the malware detection 

method may be evaded by using different API call sequences to achieve the same 

purpose. In order to precisely define the malicious level of each suspicious behavior 

for detecting malware, we use ANN to train and adjust the weight of each suspicious 

behavior in our proposed ANN-MD. The details of the proposed ANN-MD are 

described in Chapter 4. Finally, the Table 1 summarizes the comparison of the 

proposed ANN-MD with the other two schemes qualitatively. 
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Table 1. Comparison of different behavior-based malware detection algorithms. 

Approach 

ANN-MD 

(proposed) 

MBF [5] RADUX [7] 

Main idea 
Analyze suspicious 

behaviors 

Analyze malicious 

behavior features 

(MBF) 

Analyze API call 

sequences 

Number of 

suspicious 

behaviors 

13 

(Only host 

behaviors) 

16 

(Host behaviors + 

network behaviors) 

9 

(Only host behaviors) 

Weights of 

suspicious 

behaviors 

Weights are 

initialized by 

function initnw and 

adjust by ANN 

Malicious levels: 

high, warning, and 

low 

Appearance frequency 

of each suspicious 

behavior 

Calculating 

of malicious 

degree 

Using ANN 

Summation of the 

mal_level of each 

MBF 

Bayes’ theorem 

Pros 

 Set different 

weights for 

different 

behaviors 

 Consider each 

suspicious 

behavior 

individually 

 Consider the 

malicious level of 

each malicious 

behavior 

 Set weights for 

different behaviors 

according to their 

appearance 

probabilities 

Cons 

 Not considered 

network 

behaviors 

 Only used high, 

warning, and low 

to represent the 

malicious level of 

each MBF 

 Combine the 

appearance 

probability of each 

behavior all together 

not individually 

(results in high FPR) 

 Not considered 

network behaviors 
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Chapter 3  

Background 

3.1 Honey-inspector [14] 

 

Figure 1. Architecture of Honey-Inspector [14]. 

Honey-Inspector [14] is a tool chain system which can actively collect, detect and 

analyze malware. Figure 1 shows the architecture of Honey-Inspector. It can be 

divided into three parts: Collection Subsystem, Detection Subsystem, and Analysis 

Subsystem. In the Collection Subsystem, there are two ways that Honey-Inspector 

uses to collect suspicious samples. One is the Web Module that includes a URL 

blacklist and the other is from the P2P Module that includes P2P-download software. 

We update the keyword which is used in the P2P Module to search the samples we 

want via a Keyword Controller in the User Interface. In the Detection Subsystem, 

Honey-Inspector uses 15 anti-virus software to scan suspicious samples which are 
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collected by the Collection Subsystem. If there are more than 11 of the anti-virus 

software alarms that the sample is malware, this sample will be sent to the Analysis 

Subsystem. The Analysis Subsystem will judge whether the suspicious sample is 

malware by checking the snapshots of system files. Then, it will store the judgment 

result into the malware library database. Users can obtain samples’ judgment results 

through Malware Query in the User Interface. As mentioned in Chapter 1, the analysis 

technology used in the Analysis Subsystem is not effective and not precise enough. 

Therefore, we aim to improve the malware detection accuracy of the Honey-Inspector 

by using ANN-MD. 

3.2 Sandbox 

A sandbox is a virtual machine like testing system which can isolate unknown 

samples from making changes to the outside system. Since it can perform interactions 

with malware, malware which is executed under the sandbox can do whatever it wants, 

e.g. modifying or deleting system files, duplicating several children to conquer the 

system, connecting to remote servers, or even downloading new update files. But 

these modifications will not affect the operation of the outside system. And the 

runtime behaviors of the sample will be recorded and summarized into a report by 

sandboxes. It is a popular and effective means to gather and analyze the behaviors of 

malware. There are several malware detection schemes which are based on sandboxes 

[15] [16] [17] [18]. They used sandboxes to investigate the runtime behaviors of 

malware. By using their malware detection algorithms, they analyze the reports the 

sandboxes generated to detect malware. In this thesis, we collect and summarize 

samples’ behaviors by executing malware in sandboxes. We select three sandboxes, 

i.e., GFI sandbox [9], Norman sandbox [10], and Anubis sandbox [11] as our analysis 

platforms to avoid that some sandboxes may be detected by the malware [15] [17]. 
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These sandboxes are popular web-based sandboxes, which are also used by some 

sandbox-based schemes [15] [16] [17] [18]. We first submit a sample to a sandbox 

web sites. After executing the sample within a limited duration, the sandbox will 

summarize the malware’s runtime behaviors into a behavior-based report and send it 

back. According to the report, we can analyze the sample’s behaviors.  

3.3 Artificial neural network 

An artificial neural network (ANN) is a kind of machine learning algorithms. It is a 

calculating system which can mimic the neural network systems of creatures to solve 

complex problems. An ANN is composed of several interconnected artificial neurons. 

Each neuron has an I/O characteristic and implements a local computation. The output 

of a neuron is determined by its I/O characteristic, the interconnecting structure with 

other neurons, and external inputs [19]. By using simple mathematical techniques and 

training a plenty of data, the ANN will have the ability of inference and judgment to 

solve problems [20]. Since the ANN has the ability of fault tolerance and optimization, 

it can solve extremely complex problems which other algorithms cannot solve. Thus, 

the ANN is widely used in the computer science fields, e.g. data mining, clustering, 

classification, prediction, pattern matching, and so on. There are several malware 

detection schemes which also used the ANN to match the binary code patterns of the 

malware [21] [22]. In this thesis, use an ANN to classify unknown samples into 

malware and benign software. 
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Chapter 4  

Artificial Neural Network-based 

Behavioral Malware Detection 

Sandboxes

Suspicious 

Behavior 

Database

Adjusting the 

Weight of Each 

Behavior by ANN

Sandboxes

Calculating 

MD Value

> MD Threshold?

Yes

No

Malicious

Benign

Training Phase Testing Phase

Training 

Samples

Training 

Samples' 

Behaviors

Unknown 

Testing

Samples

Testing 

Samples' 

Behaviors

MD Expression 

& 

MD Threshold

 

Figure 2. The architecture of the proposed ANN-MD. 

Figure 2 shows the architecture of the proposed ANN-MD. There are two phases in 

the ANN-MD: training phase and testing phase. The training phase is responsible to 

train abundant samples, adjust the weights of each behavior using ANN, and then 

construct an MD expression. First, we collect some common suspicious behaviors 

identified from three sandboxes [9] [10] [11] and store them in the suspicious 
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behavior database. Next, we submit the training samples including malicious and 

benign ones to the sandbox web sites for collecting the runtime behaviors of them. By 

comparing each sample’s runtime behaviors with the behaviors in the suspicious 

behavior database, we can train and adjust the weights of each behavior by using 

ANN. At the end of the training phase, we construct an MD expression. According to 

the MD values of the training samples, we can set an optimum MD threshold, as 

shown in Figure 3. The quantities of samples at the two ends of the double-headed 

arrows line are relatively large. There are a few ambiguous samples at the middle of 

the line. The optimum MD threshold can discriminate malicious samples from benign 

samples located at the ambiguous area. The testing phase is responsible to test and 

judge whether an unknown sample is malicious or not. We first submit the unknown 

sample to the sandboxes for collecting its runtime behaviors. By using the MD 

expression which was constructed at the end of training phase, we can calculate the 

MD value of the unknown sample. If the unknown sample’s MD value is larger than 

the MD threshold, the unknown sample is identified as malware. Otherwise, it is 

identified as benign software. 

 

Figure 3. Distribution of malicious and benign samples. 

0    1    
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4.1 Suspicious behaviors 

As mentioned above, we used three sandboxes [9] [10] [11] to collect 13 common 

suspicious behaviors. We submit samples to these three sandboxes to calculate the 

appearance frequency of each behavior. We first choose the behaviors in the 

intersection of the suspicious behaviors identified by these sandboxes and store them 

to the suspicious behavior database. We eliminate the behaviors which have low 

appearance frequency or even do not appear (appearance frequency < 15%). Next, we 

store the behaviors which are not in the intersection but have comparatively high 

appearance frequency into our database (appearance frequency ≥ 15%), too. The 

names and descriptions of these 13 suspicious behaviors are listed in the following: 

1. Creates Mutex 

- Obtains the exclusive access to system recourses [17]. 

2. Creates Hidden File 

- Creates file without the notification of the user. 

3. Starts EXE in System 

- Executes EXE without the permission of the user. 

4. Checks for Debugger 

- Checks whether there is any anti-virus systems under the environment. 

5. Starts EXE in Documents 

- Documents execute EXE automatically without the permission of the user. 

6. Windows/Run Registry Key Set 

- Creation, modification, or deletion of Windows registry key. 

7. Hooks Keyboard 

- Checks keyboard values. 

8. Modifies File in System 
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- Modifies files in the system permanently. 

9. Deletes Original Sample 

- Deletes the original sample. 

10. More than 5 Processes 

- Creates more than 5processes. 

11. Opens Physical Memory 

- Accesses physical memory. 

12. Delete File in System 

- Deletes a file in the system without permission of the user. 

13. Auto Start 

- Starts automatically when the system reboots. 

Table 2 shows the appearance frequencies of malicious and benign samples. Note 

that the suspicious behaviors we chose all have much higher appearance frequencies 

in malicious samples than that in benign samples.  
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Table 2. The appearance frequencies of malicious and benign samples. 

No. Behavior 

Appearance 

frequency of a 

malicious sample 

Appearance 

frequency of a 

benign sample 

1 Creates Mutex 53.8% 2.4% 

2 Creates Hidden File 65.4% 8.0% 

3 Starts EXE in System 54.4% 11.0% 

4 Checks for Debugger 37.1% 9.0% 

5 Starts EXE in Documents 34.0% 1.4% 

6 Windows/Run Registry Key Set 72.0% 3.2% 

7 Hooks Keyboard 25.4% 2.0% 

8 Modifies File in System 28.6% 3.4% 

9 Deletes Original Sample 16.0% 0.6% 

10 More than 5 Processes 16.7% 2.4% 

11 Opens Physical Memory 34.8% 6.0% 

12 Delete File in System 15.4% 3.0% 

13 Auto Start 35.6% 0.0% 
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4.2 ANN topology 

. . .
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Figure 4. Topology of our artificial neural network. 

Figure 4 shows the topology of our ANN. It is a FeedForward Neural Network 

model. The model can be divided into three layers: input layer, hidden layer, and 

output layer. The input layer consists of the suspicious behaviors of an input sample. 

The hidden layer and output layer contain several neurons which are marked as the 

dotted line area. If there is more than one hidden layer between the input layer and the 

output layer, the neural network model will be called as a multi-layer neural network. 

The major functionality of the hidden layer is to increase the complexity of a neural 

network. Thus, a multi-layer neural network can resolve more complicated non-linear 

problems than a single-layer one. The more the number of hidden layers in a neural 

network is the more complex the neural network will be. However, if there are too 

many hidden layers in a neural network, it will become an over complex neural 

network model and may results in over fitting [23]. Thus, it is important to choose the 
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optimum number of the hidden layers and the neurons in them. However, it is 

regarded as a difficult work to obtain the optimum number of hidden layers and their 

neurons. At least for now, there is no certain mathematical approach to achieve this 

goal yet [24]. In the proposed ANN-MD, a two-layer ANN with one hidden layers is 

founded. In the hidden layer and output layer, we set the number of neurons as 10 and 

1, respectively. The operational details of each neuron will be described in the 

following. 

. . . 
b1

a1

n1

Behaviors1

x1

x2

x3

x12

x13

ω1,1

ω2,1

ω3,1

ω12,1

ω13,1

Behaviors2

Behaviors3

Behaviors12

Behaviors13

 

Figure 5. A neuron in the hidden layer. 

Figure 5 illustrates the operational details of a neuron (the first one) in the hidden 

layer. The inputs are 13 suspicious behaviors of a sample, i.e. Behaviors1 – 

Behaviors13. The input value will be marked as 1 if a sample has the corresponding 

suspicious behavior. For example, a sample has No.1, No. 2, No. 6, No. 8 suspicious 

behaviors, the input data of this sample will be [1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0]. 

Multiply these inputs by their corresponding weights in the neuron and do the 

summation. Then add the neuron’s bias to the summation value. Substitute the result 

into the transfer function  ( )( ) to get the output value of this neuron.  
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Figure 6. A neuron in the output layer [25]. 

Figure 6 illustrates the details of a neuron in the output layer. The input values of 

this neuron are a1 – a10, which are the output values of the ten neurons in the hidden 

layer. Multiply them by the corresponding weights of each neuron and do the 

summation. Then add the neuron’s bias to the summation value. Substitute the result 

into transfer function  ( )( )  to get the final output value. We chose the 

tangent-sigmoid function: 
      

       as the transfer functions of our ANN, i.e.  ( )( ) 

and  ( )( ), since it is often used to resolve the classification problems. 
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4.3 MD expression 

According to the neural network model mentioned above, we can construct an MD 

expression. Define set      |         be a sample’s suspicious behaviors.    

represents the i
th

 suspicious behavior. Define set   {    |           

       
 |        as the weights of suspicious behaviors and the weights of 

neurons.      represents the i
th

 suspicious behavior’s weight in the j
th

 neuron and   
  

represents the weight of the k
th

 neuron. Define set      |              as the 

bias value of each neuron, where    represents the bias value of j
th

 neuron in the 

hidden layer and    represents the bias value of the neuron in the output layer. The 

MD expression can be represented as follows:  

    ( ) (∑  
   ( ) (∑         

  

   

)    

  

   

) 

Both the weight for each behavior and neuron are adjusted through the delta 

learning process. Define the mean square error:   
 

 
(   ) , where   denotes 

the target value we gave previously. If a sample is malicious, the target value   will 

be set to 1. On the contrary,   will be set to 0.   denotes the final output value of 

the ANN.            η
  

  
 , whereη represents a learning factor and   

represents a set of input values. The value ofη is between 0 and 1. The larger the η 

is the larger the    is; however, under these circumstances, the ANN will be more 

unstable. As a tradeoff, in our scheme, we setη to 0.5. The new weights can be 

calculated according to the following formula:             . The more close 

to zero the mean square error is, the more convergent and more stable the ANN is. 
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Chapter 5  

Evaluation 

5.1 Experimental settings 

We utilized Matlab 7.11.0 to implement the ANN of our scheme. The architecture 

of the ANN from Matlab is shown in Figure 7, which is corresponds to that in Figure 

4. We take tangent-sigmoid as the transfer functions in both the hidden layer and the 

output layer. The 13 possible suspicious behaviors of a sample are the input values of 

the ANN. By serial calculation of the ANN, there will be an output value, which is the 

sample’s MD value. In order to distribute the weight of each neuron in the layer 

evenly, the initial values of the weights and the bias are chosen by a built-in function, 

initnw, according to the Nguyen-Widrow initialization algorithm [26]. 

W

b

+

W

b

+

Input

13

Hidden Layer Output Layer

Output

10 1

1

 

Figure 7. Architecture of our ANN (from Matlab). 

The numbers of malicious and benign samples we used for experiments are shown 

in Table 3. The size of the sample space is 2200, which is divided into benign samples 

and malicious samples. We selected 1000 portable execution files which originally 

exist under the Windows directories after the installation of Windows XP SP2 at the 

first time as the benign samples. The 1000 malware samples we used were 
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downloaded from Blast’s Security [27] and VX Heaven [28] websites. Among 1000 

malicious (benign) samples, 500 (500) samples were used in the training phase and 

the other 500 (500) samples were used in the testing phase, as shown in Table 3. 

Besides, to further verifying the feasibility of the proposed ANN-MD, we chose 

another 200 samples (100 malicious samples and 100 benign samples), which are 

different from the training sample space. The 100 malicious samples were from the 

database of National Communications Commission, NCC, of Taiwan (collected by 

five Internet Service Providers (ISPs) in Taiwan) and the 100 benign samples were 

downloaded from the CNET.com [29] website.  

Table 3. Numbers of benign and malicious samples. 

Phase Malicious Benign Total 

Training 500 500 1000 

Testing 

(same sample space 

as training) 

500 500 1000 

Testing 

(different sample 

space from training) 

100 100 200 

We use 9 matrices to evaluate the proposed ANN-MD and the related schemes, as 

follows: 

- True Positive (TP) 

- False Negative (FN) 

- False Positive (FP) 

- True Negative (TN) 

- True Positive Rate (TPR) = TP / (TP + FN) 

- False Negative Rate (FNR) = FN / (TP + FN) 
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- False Positive Rate (FPR) = FP / (FP + TN) 

- True Negative Rate (TNR) = TN / (FP + TN) 

- Accuracy Rate = (TP + TN) / (TP + FN + FP + TN) 

5.2 MD threshold selection in the training phase 

The distribution of the numbers of training samples is shown as Figure 8. 

According to this distribution, we can set a possible range of the MD threshold. For 

benign samples, we choose the largest MD value such that the number of benign 

samples at this MD value is larger than 10 as the lower bound of the possible range of 

the MD threshold. For malicious samples, we choose the smallest MD value such that 

the number of malicious samples at this MD value is larger than 10 as the upper 

bound of the possible range of the MD threshold. In Figure 8, the possible range of 

the MD threshold is between 0.19 and 0.87. 

 

Figure 8. Distribution of the numbers of training samples under different MDs. 

We calculate the accuracy rate, FPR, and FNR under different MDs from 0.19 to 

0.87, as shown in Figure 9. First, we narrow down the MD range to MD value =0.5 

and MD value=0.59 since the accuracy rates in this range are the highest one, i.e. 98.3 
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%. Then we narrow down the range with the lowest FPR and FNR. Finally, we set the 

MD threshold as the lowest MD value in this range, i.e. 0.5. 

 

Figure 9. The accuracy rate, FPR, and FNR under different MDs. 

5.3 Performance of ANN-MD 

5.3.1 Using the same testing and training sample space 

In this experiment, we used the same testing sample space as the training sample 

space to evaluate the performance of the proposed ANN-MD. The experimental 

results with MD threshold = 0.5 using the proposed ANN-MD are shown in Table 4. 

It shows that there are only 4 false positive testing samples among the 500 benign 

testing samples. And the false negative testing samples are 15 among the 500 

malicious testing samples. The FPR and the FNR are 0.8% and 3.0%, respectively, 

which are relatively low compared to two existing schemes [5] [7] which will be 

shown in Table 7. The accuracy rate of the ANN-MD is 98.1%. Figure 10 illustrates 

the distribution of the number of testing samples. It shows that ANN-MD can 

distinguish malicious samples from benign samples with high accuracy. 
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Table 4. Experimental results using the proposed ANN-MD under the same sample 

space. 

TP TN FP FN FPR FNR Accuracy rate 

485 496 4 15 0.8% 3.0% 98.1% 

 

Figure 10. Distribution of the numbers of testing samples under different MDs. 

We conducted an experiment to evaluate the effects of different initial weights to 

the proposed ANN-MD. The results are shown in Table 5. It shows that FPR, FNR 

and accuracy rate for the initial weights chosen by function initnw are the best. And 

the FPR, FNR and accuracy rate for the initial weights of the hidden layer chosen by 

the appearance frequency of each behavior are second worse. The worst one is the one 

without using ANN, where the appearance frequency of each behavior is used to set 

its corresponding weight. Since this case does not use ANN to train and adjust the 

weights of each behavior, its accuracy rate is only 93.7%. 
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Table 5. The FPR, FNR, and accuracy rate under different initial weights. 

Weights 

FPR FNR 

Accuracy 

rate 
Adjustment 

of weights 

Weights in 

hidden layer 

Weights in 

output layer 

With ANN 

Chosen by 

initnw 

Chosen by 

initnw 
0.8% 3.0% 98.1% 

Chosen by 

appearance 

frequency 

Chosen by 

initnw 
1.2% 2.8% 98.0% 

Without 

ANN 

Chosen by appearance 

frequency 
7.8% 4.8% 93.7% 

5.3.2 Using different testing sample space from the training 

sample space 

In order to verify the feasibility of the proposed ANN-MD, we conducted 

another experiment by using a sample space in the testing phase which is different 

from the sample space in the training phase.  

The experimental results with MD threshold = 0.5 using the proposed ANN-MD 

are shown in Table 6. It shows that there are 5 false positive samples among the 100 

benign samples. The FPR is 5.0%. And there is 1 false negative sample among the 

100 malicious samples. The FNR is 1.0%. The accuracy rate of the ANN-MD is 

97.0%, which means that the proposed ANN-MD still has a high accuracy rate even 

using different testing sample space from the training sample space. Figure 11 

illustrates the distribution of the numbers of samples under different MDs. It shows 

that ANN-MD can distinguish malicious samples from benign samples with high 

accuracy.  
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Table 6. Experimental results using the proposed ANN-MD under different sample 

space. 

TP TN FP FN FPR FNR Accuracy rate 

99 95 5 1 5.0% 1.0% 97.0% 

 

Figure 11. Distribution of the numbers of samples under different MDs. 

5.4 Compared with existing schemes 

5.4.1 Using the same testing and training sample space 

Table 7 shows the comparisons among the proposed ANN-MD and two related 

schemes, MBF [5] and RADUX [7]. We implemented these two schemes and tested 

them with the same samples used in the experiment in section 5.3.1. In Table 7, the 

FPR of ANN-MD is 0.8%; however, the FPR of MBF is 5.6% and the FPR of 

RADUX is 14.2%. In Table 7, the accuracy rate of ANN-MD is 98.1%; however, the 

accuracy rate of MBF is only 88.7% and the accuracy rate of RADUX is 91.2%. 

Table 7 indicates that the proposed ANN-MD is better than MBF and RADUX on 

unknown malware detection.  
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Table 7. Comparison of the proposed ANN-MD with two related schemes by using 

the same testing and training sample space). 

Approach 

TPR FNR Accuracy 

rate 
FPR TNR 

ANN-MD 

(proposed) 

97% 3.0% 

98.1% 

0.8% 99.2% 

MBF [5] 

83.0% 17.0% 

88.7% 

5.6% 94.4% 

RADUX [7] 

96.6% 3.4% 

91.2% 

14.2% 85.8% 

5.4.2 Using different testing sample space from the training 

sample space 

Table 8 shows the comparison among the proposed ANN-MD and two related 

schemes, MBF [5] and RADUX [7] by using different testing sample space from 

training sample space). The FPR of ANN-MD is 5.0%; however, the FPR of MBF is 

44.0% and the FPR of RADUX is 68.0%. The accuracy rate of ANN-MD is 97.0%; 

however, the accuracy rate of MBF is only 77.5% and the accuracy rate of RADUX is 

only 66.0%. Table 8 indicates that the proposed ANN-MD is much better than MBF 

and RADUX even when using different testing sample space from training sample 

space. This is due to that MBF and RADUX use static weights in the training phase. 
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Table 8. Comparison of the proposed ANN-MD with two related schemes by using 

different testing sample space from the training sample space). 

Approach 

TPR FNR Accuracy 

rate 
FPR TNR 

ANN-MD 

(proposed) 

99.0% 1.0% 

97.0% 

5.0% 95.0% 

MBF [5] 

99.0% 1.0% 

77.5% 

44.0% 56.0% 

RADUX [7] 

100.0% 0.0% 

66.0% 

68.0% 32.0% 
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Chapter 6  

Conclusions and Future Work 

6.1 Concluding remarks 

In this thesis, we have proposed an artificial neural network-based behavioral 

malware detection (ANN-MD). By observing and analyzing known malware’s 

behaviors obtained from sandboxes, we construct a malicious degree (MD) expression. 

We have collected 13 common suspicious behaviors. We utilized ANN to train and 

adjust the weight of each behavior to obtain an optimum MD expression. With the 

MD expression, we can calculate unknown software’s MD value and judge whether 

the software is malicious or not according to its MD value. Experimental results have 

shown that the proposed ANN-MD has a high accuracy rate of 98.1% (using the same 

sample spaces as the training sample spaces), which is better than the accuracy rate of 

88.7% in MBF [5] and the accuracy rate of 91.2% in RADUX [7]. In addition, the 

FPR (FNR) of the proposed ANN-MD is 0.8% (3.0%) (using the same sample spaces 

as the training sample spaces), which is much smaller than FPR (FNR) of 5.6% 

(17.0%) in MBF and FPR (FNR) of 14.2% (3.4%) in RADUX. In order to further 

verify the feasibility of the proposed ANN-MD, we conducted another experiment by 

using a different sample space in the testing phase from the training phase. 

Experimental results show that ANN-MD still has a high accuracy rate of 97.0%, 

even though the testing sample space is different from the training sample space. 

However, MBF and RADUX only have the accuracy rates of 77.5% and 66.0%, 

respectively. In addition, the false positive rate of ANN-MD is 5.0%, which is much 
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smaller than the false positive rate of 44.0% of MBF and the false positive rate of 

68.0% of RADUX. This is due to that MBF and RADUX use fixed weights in the 

training phase. The experimental results have supported that the proposed ANN-MD 

is a promising methodology in detecting unknown malware and the variations of 

known malware. 

6.2 Future work 

In the proposed ANN-MD scheme, we only consider the host behaviors of 

malware. In addition, the malware detection system we have implemented is 

semi-automatic, which is time-consuming. Our future work will focus on adding some 

network suspicious behaviors to our scheme and automating the malware detection 

system to achieve higher accuracy rate, lower FPR, lower FNR, and faster alarm. 
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