

國 立 交 通 大 學

網路工程研究所

碩 士 論 文

基於可疑行為及類神經網路之惡意軟體偵測機制

Suspicious Behavior-based Malware Detection

Using Artificial Neural Network

研 究 生：蔡薰儀

指導教授：王國禎 教授

中 華 民 國 １０１ 年 ６ 月

基於可疑行為及類神經網路之惡意軟體偵測機制

Suspicious Behavior-based Malware Detection

Using Artificial Neural Network

研 究 生：蔡薰儀 Student：Hsun-Yi Tsai

指導教授：王國禎 Advisor：Kuochen Wang

國 立 交 通 大 學

網 路 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Network Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2012

Hsinchu, Taiwan, Republic of China

中華民國 101 年 6 月

i

基於可疑行為及類神經網路之

惡意軟體偵測機制

學生：蔡薰儀 指導教授：王國禎 博士

國立交通大學網路工程研究所

摘 要

惡意軟體在近幾年非常地盛行，已嚴重危害到電腦及網際網路的

安全。雖然惡意軟體可被些微的修改來躲過傳統字串比對方法的偵測，

但變形過後的惡意軟體仍然與原本的版本有著相同的行為，而這些行

為同時也是其他惡意軟體經常會做的。為了偵測未知的惡意軟體及已

知惡意軟體之變形，在本論文裡我們提出了一個基於可疑行為及類神

經網路之惡意軟體偵測機制，簡稱 ANN-MD。藉著在三個砂盒系統底

下觀察多個已知惡意軟體樣本，我們蒐集並列出了 13 個惡意軟體常

做之可疑行為。利用這 13 個可疑行為，我們提出一個惡意程度表示

式。藉由這個惡意程度表示式，我們可計算出一個未知軟體的惡意程

度值，並根據這個惡意程度值去判定該軟體是否為惡意的。實驗結果

ii

顯示，在測試階段，使用與訓練階段相同的樣本空間的情況下，我們

提出的 ANN-MD 能以 98.1%的正確率辨識出惡意軟體與正常軟體，而

ANN-MD 的誤判率(漏判率) 0.8% (3.0%) 也比 MBF 的誤判率 5.6%

(17.0%)及 RADUX 的誤判率 14.2% (3.4%)小很多。此外，為了進一步

驗證 ANN-MD 的有效性，我們在測試階段使用與訓練階段不相同的樣

本空間來做測試。實驗結果顯示，即使使用與訓練階段不相同的樣本

空間，ANN-MD 的正確率(誤判率)仍可達到 97.0% (5.0%)；然而，MBF

與 RADUX 的正確率(誤判率)卻下降到 77.5% (44.0%)以及 66.0%

(68.0%)。此證明我們所提的 ANN-MD 是一個有效的惡意軟體偵測機

制。

關鍵詞：類神經網路、基於行為比對、惡意軟體偵測、砂盒。

iii

Suspicious Behavior-based Malware

Detection Using Artificial Neural Network

Student：Hsun-Yi Tsai Advisor：Dr. Kuochen Wang

Department of Computer Science

National Chiao Tung University

Abstract

In the recent years, malware has been widely spread and has caused severe

threats against cyber security. Although malware may be made some changes to evade

the traditional signature-based detection, the malware and its variations still have

some similar behaviors, which most of the malware also intent to do. In order to

detect unknown malware and variations of known ones, we propose a behavioral

artificial neural network-based malware detection (ANN-MD) system. By observing

runtime behaviors of some known malware samples using three sandboxes, we listed

13 suspicious behaviors that malware frequently did. Then based on these 13

suspicious behaviors, we constructed a malicious degree (MD) expression. By using

the MD expression, we can calculate an unknown sample’s MD value and judge

whether the sample is a malware according to its MD value. Experimental results

indicate that, under the same sample space in the testing phase as well as the training

phase, the proposed ANN-MD can correctly discriminate malware from benign

software with the accuracy rate of 98.1%. In addition, the false positive rate (false

negative rate) of ANN-MD is 0.8% (3.0%), which is much smaller than the false

positive rate (false negative rate) of 5.6% (17.0%) of MBF and the false positive rate

(false negative rate) of 14.2% (3.4%) of RADUX. To further verify the feasibility of

iv

the proposed ANN-MD, we conducted another experiment by using a different

sample space in the testing phase from the sample space used in the training phase.

Experimental results show that ANN-MD still has a high accuracy rate of 97.0%,

even though the testing sample space is different from the training sample space.

However, MBF and RADUX only have the accuracy rates of 77.5% and 66.0%,

respectively. In addition, the false positive rate of ANN-MD is 5.0%, which is much

smaller than the false positive rate of 44.0% of MBF and the false positive rate of

68.0% of RADUX. This is due to that MBF and RADUX use fixed weights in the

training phase. The experimental results support that ANN-MD is a very promising

algorithm for malware detection.

Keywords: artificial neural network, behavior-based, malware detection, sandbox.

v

Acknowledgements

Many people have helped me with this thesis. I deeply appreciate my thesis

advisor, Dr. Kuochen Wang, for his intensive advice and guidance. I would like to

thank all the members of the Mobile Computing and Broadband Networking

Laboratory (MBL) for their invaluable assistance and suggestions. I also want to

thank the postdoctoral research fellow of NCTU, Dr. Chia-Yin Lee and Dr.

Hao-Chuan Tsai, and Yung-Chi Chang, the engineer of the Network Benchmarking

Lab (NBL), NCTU, for helping me with this thesis. Finally, I thank my family for

their endless love and support.

vi

Contents
Abstract (Chinese) .. i

Abstract ... iii

Contents ... vi

List of Figures ... viii

List of Tables .. ix

Chapter 1 Introduction .. 1

Chapter 2 Related Work ... 4

Chapter 3 Background .. 7

3.1 Honey-inspector [14]... 7

3.2 Sandbox ... 8

3.3 Artificial neural network ... 9

Chapter 4 Artificial Neural Network-based Behavioral Malware Detection 10

4.1 Suspicious behaviors ... 12

4.2 ANN topology ... 15

4.3 MD expression .. 18

Chapter 5 Evaluation ... 19

5.1 Experimental settings .. 19

5.2 MD threshold selection in the training phase .. 21

5.3 Performance of ANN-MD ... 22

5.3.1 Using the same testing and training sample space ... 22

5.3.2 Using different testing sample space from the training sample space 24

5.4 Compared with existing schemes .. 25

5.4.1 Using the same testing and training sample space ... 25

5.4.2 Using different testing sample space from the training sample space 26

vii

Chapter 6 Conclusions and Future Work .. 28

6.1 Concluding remarks .. 28

6.2 Future work ... 29

References ... 30

viii

List of Figures

Figure 1. Architecture of Honey-Inspector [14]. ... 7

Figure 2. The architecture of the proposed ANN-MD. .. 10

Figure 3. Distribution of malicious and benign samples. .. 11

Figure 4. Topology of our artificial neural network... 15

Figure 5. A neuron in the hidden layer. .. 16

Figure 6. A neuron in the output layer [25]. ... 17

Figure 7. Architecture of our ANN (from Matlab). ... 19

Figure 8. Distribution of the numbers of training samples under different MDs. 21

Figure 9. The accuracy rate, FPR, and FNR under different MDs. 22

Figure 10. Distribution of the numbers of testing samples under different MDs. 23

Figure 11. Distribution of the numbers of samples under different MDs. 25

ix

List of Tables

Table 1. Comparison of different behavior-based malware detection algorithms. 6

Table 2. The appearance frequencies of malicious and benign samples. 14

Table 3. Numbers of benign and malicious samples. ... 20

Table 4. Experimental results using the proposed ANN-MD under the same sample

space. .. 23

Table 5. The FPR, FNR, and accuracy rate under different initial weights. 24

Table 6. Experimental results using the proposed ANN-MD under different sample

space. .. 25

Table 7. Comparison of the proposed ANN-MD with two related schemes by using

the same testing and training sample space). ... 26

Table 8. Comparison of the proposed ANN-MD with two related schemes by using

different testing sample space from the training sample space). 27

1

Chapter 1

Introduction

Malware has become one of the most serious security threats to cyber security in

recent years. It results in the damage of financial and human resources. To resolve this

kind of security problems, many anti-malware (or anti-virus) solutions have been

proposed. Existing solutions can be classified into two major categories: i.e.,

signature-based and behavior-based. The signature-based solutions, like [1] [2], first

extract unique digests of the malware to construct the databases of signatures. Next,

they use these signatures to check whether unknown binary codes are malicious or not.

Therefore, this kind of solutions has a low false positive rate (FPR). However, since

the signature-based solutions cannot obtain the signatures of zero-day malware and

metamorphic ones at the very first time they emerged, the signature-based solutions

may fail to detect them and thus result in high false negative rates (FNR).

In order to detect the zero-day malware or metamorphic malware and decrease

FNR, some behavior-based solutions have been proposed [3] [4] [5] [6] [7] [8]. Since

malware has some common suspicious behaviors [5], we can use these behaviors to

judge whether an unknown sample is malicious. Thus, behavior-based solutions are

more effective to detect metamorphic or zero-day malware than signature-based

solutions. In addition, behavior-based solutions do not need to update the signatures

of malware frequently since suspicious behaviors are almost the same. However, due

to benign software might have some behaviors which also appear in malware, it may

result in high FPR. Therefore, behavior-based solutions must discover some specific

behaviors to distinguish malicious samples from benign ones.

2

Based on the above observations, we contribute the following two respects in this

thesis. Firstly, we collect suspicious behaviors which can be used to recognize

malicious samples from benign ones. Secondly, we propose an artificial neural

network-based malware detection system (ANN-MD), which uses an artificial neural

network (ANN) [12] [13] to adjust the weight of each suspicious behavior so as to

detect malware effectively. In addition, it can also reduce FPR of malware detection.

Besides, we have implemented a tool chain system, Honey Inspector [14], to

actively collect, detect, and analyze malware from Internet. However, the analysis

component uses the technology of snapshots to identify malware by checking whether

system files are modified. If the characteristics captured by two snapshots before and

after executing a sample are different, the sample will be identified as malware. But

this method is not effective and not precise enough since it does not consider

suspicious behaviors of malware. Thus, one purpose of our work is to improve the

performance of the analysis component in the Honey Inspector by using ANN-MD.

In summary, the main objective of our work is to collect distinguishable suspicious

behaviors to construct a malicious degree (MD) expression, and then use the MD to

identify metamorphic or zero-day malware effectively. We first collect some common

suspicious host behaviors, like deleting host files, modifying registry keys, creating

files, and so on. These behaviors are mainly inspected by sandboxes [9] [10] [11].

Next, we pick up the most frequent behaviors that appear in malware during runtime

and eliminate the behaviors that often appear in normal software during runtime. Then,

we train and adjust the weight of each suspicious behavior in the MD expression

using an ANN. Finally, we judge whether an unknown sample is a malware using its

MD value.

The rest of this thesis is organized as follows. In Chapter 2, we review some

related work and discuss the differences among our scheme and related work. In

3

Chapter 3, we give a brief introduction to the Honey Inspector, sandboxes, and ANNs.

In Chapter 4, we illustrate the framework of our scheme and describe some

implementation issues. In Chapter 5, experimental results are presented to validate the

functionality and the performance of the proposed scheme. Finally, some concluding

remarks and future work are given in Chapter 6.

4

Chapter 2

Related Work

In recent years, many behavior-based malware detection methods have been

proposed to overcome the drawbacks of signature-based ones and decrease the FPR of

malware detection at the same time. Most of these schemes focus on how to precisely

collect the correct and useful behavior information of malware when it is executed [3]

[4] [6] [8]. As we illustrate in the previous chapter, our scheme focuses on how to

collect common suspicious behaviors and use them to identify malware.

Liu et al. [5] proposed a Malicious Behavior Feature (MBF) based malware

detection algorithm to identify malware. An MBF includes three-tuple data:

<Feature_id, Mal_level, Bool_expression>. Feature_id is a string identifier which is

used to uniquely represent an MBF; Mal_level is an integer weight which divides an

MBF into three malicious levels: high, warning, and low; Bool_expression is a

Boolean expression which specifically define the behavior of an MBF. A collected

MBF is used to calculate an unknown sample’s malicious degree. A sample obtains

higher malicious degree if it conforms to more MBFs. MBFs can be used to detect

newly out-broken unknown malware. However, since MBFs are divided into three

levels, the accuracy rate is relatively low and the FNR is high.

Wang et al. [7] proposed an API-calls-based malware detection prototype, called

Reverse Analysis for Detecting Unsafe eXecutable (RADUX). This scheme includes

nine suspicious behaviors which are formed by the corresponding API function calls

sequences. By using Bayes’ Theorem, they constructed a Bayes expression:

 (|)
∏ (|) ()

∏ (|) ()
 ∏ (| ̅) (̅)

, where C denotes the set of malicious

5

samples and ̅ denotes the set of benign samples. ω is the set of those nine malicious

behaviors. The appearance probability of a certain behavior () is:

P(|C) = the appearance frequency of in set C / the number of malicious samples

in C; P(| ̅) = the appearance frequency of in set ̅ / the number of benign

samples in ̅. Each sample’s suspicious degree (SD) can be calculated by using this

Bayes’ expression. By setting a threshold, the SD value can be used to distinguish

malware from benign software. However, the SD expression involves the

multiplication of the appearance probability of each suspicious behavior together. The

SD expression may results in high FPR, since not all behaviors are inter-dependent.

The main disadvantage of these two schemes [5] [7] is that the malicious level of

each suspicious behavior defined is not precise enough. In [5], only three levels are

not enough to represent the malicious level of MBF. In [7], the malware detection

method may be evaded by using different API call sequences to achieve the same

purpose. In order to precisely define the malicious level of each suspicious behavior

for detecting malware, we use ANN to train and adjust the weight of each suspicious

behavior in our proposed ANN-MD. The details of the proposed ANN-MD are

described in Chapter 4. Finally, the Table 1 summarizes the comparison of the

proposed ANN-MD with the other two schemes qualitatively.

6

Table 1. Comparison of different behavior-based malware detection algorithms.

Approach

ANN-MD

(proposed)

MBF [5] RADUX [7]

Main idea
Analyze suspicious

behaviors

Analyze malicious

behavior features

(MBF)

Analyze API call

sequences

Number of

suspicious

behaviors

13

(Only host

behaviors)

16

(Host behaviors +

network behaviors)

9

(Only host behaviors)

Weights of

suspicious

behaviors

Weights are

initialized by

function initnw and

adjust by ANN

Malicious levels:

high, warning, and

low

Appearance frequency

of each suspicious

behavior

Calculating

of malicious

degree

Using ANN

Summation of the

mal_level of each

MBF

Bayes’ theorem

Pros

 Set different

weights for

different

behaviors

 Consider each

suspicious

behavior

individually

 Consider the

malicious level of

each malicious

behavior

 Set weights for

different behaviors

according to their

appearance

probabilities

Cons

 Not considered

network

behaviors

 Only used high,

warning, and low

to represent the

malicious level of

each MBF

 Combine the

appearance

probability of each

behavior all together

not individually

(results in high FPR)

 Not considered

network behaviors

7

Chapter 3

Background

3.1 Honey-inspector [14]

Figure 1. Architecture of Honey-Inspector [14].

Honey-Inspector [14] is a tool chain system which can actively collect, detect and

analyze malware. Figure 1 shows the architecture of Honey-Inspector. It can be

divided into three parts: Collection Subsystem, Detection Subsystem, and Analysis

Subsystem. In the Collection Subsystem, there are two ways that Honey-Inspector

uses to collect suspicious samples. One is the Web Module that includes a URL

blacklist and the other is from the P2P Module that includes P2P-download software.

We update the keyword which is used in the P2P Module to search the samples we

want via a Keyword Controller in the User Interface. In the Detection Subsystem,

Honey-Inspector uses 15 anti-virus software to scan suspicious samples which are

8

collected by the Collection Subsystem. If there are more than 11 of the anti-virus

software alarms that the sample is malware, this sample will be sent to the Analysis

Subsystem. The Analysis Subsystem will judge whether the suspicious sample is

malware by checking the snapshots of system files. Then, it will store the judgment

result into the malware library database. Users can obtain samples’ judgment results

through Malware Query in the User Interface. As mentioned in Chapter 1, the analysis

technology used in the Analysis Subsystem is not effective and not precise enough.

Therefore, we aim to improve the malware detection accuracy of the Honey-Inspector

by using ANN-MD.

3.2 Sandbox

A sandbox is a virtual machine like testing system which can isolate unknown

samples from making changes to the outside system. Since it can perform interactions

with malware, malware which is executed under the sandbox can do whatever it wants,

e.g. modifying or deleting system files, duplicating several children to conquer the

system, connecting to remote servers, or even downloading new update files. But

these modifications will not affect the operation of the outside system. And the

runtime behaviors of the sample will be recorded and summarized into a report by

sandboxes. It is a popular and effective means to gather and analyze the behaviors of

malware. There are several malware detection schemes which are based on sandboxes

[15] [16] [17] [18]. They used sandboxes to investigate the runtime behaviors of

malware. By using their malware detection algorithms, they analyze the reports the

sandboxes generated to detect malware. In this thesis, we collect and summarize

samples’ behaviors by executing malware in sandboxes. We select three sandboxes,

i.e., GFI sandbox [9], Norman sandbox [10], and Anubis sandbox [11] as our analysis

platforms to avoid that some sandboxes may be detected by the malware [15] [17].

9

These sandboxes are popular web-based sandboxes, which are also used by some

sandbox-based schemes [15] [16] [17] [18]. We first submit a sample to a sandbox

web sites. After executing the sample within a limited duration, the sandbox will

summarize the malware’s runtime behaviors into a behavior-based report and send it

back. According to the report, we can analyze the sample’s behaviors.

3.3 Artificial neural network

An artificial neural network (ANN) is a kind of machine learning algorithms. It is a

calculating system which can mimic the neural network systems of creatures to solve

complex problems. An ANN is composed of several interconnected artificial neurons.

Each neuron has an I/O characteristic and implements a local computation. The output

of a neuron is determined by its I/O characteristic, the interconnecting structure with

other neurons, and external inputs [19]. By using simple mathematical techniques and

training a plenty of data, the ANN will have the ability of inference and judgment to

solve problems [20]. Since the ANN has the ability of fault tolerance and optimization,

it can solve extremely complex problems which other algorithms cannot solve. Thus,

the ANN is widely used in the computer science fields, e.g. data mining, clustering,

classification, prediction, pattern matching, and so on. There are several malware

detection schemes which also used the ANN to match the binary code patterns of the

malware [21] [22]. In this thesis, use an ANN to classify unknown samples into

malware and benign software.

10

Chapter 4

Artificial Neural Network-based

Behavioral Malware Detection

Sandboxes

Suspicious

Behavior

Database

Adjusting the

Weight of Each

Behavior by ANN

Sandboxes

Calculating

MD Value

> MD Threshold?

Yes

No

Malicious

Benign

Training Phase Testing Phase

Training

Samples

Training

Samples'

Behaviors

Unknown

Testing

Samples

Testing

Samples'

Behaviors

MD Expression

&

MD Threshold

Figure 2. The architecture of the proposed ANN-MD.

Figure 2 shows the architecture of the proposed ANN-MD. There are two phases in

the ANN-MD: training phase and testing phase. The training phase is responsible to

train abundant samples, adjust the weights of each behavior using ANN, and then

construct an MD expression. First, we collect some common suspicious behaviors

identified from three sandboxes [9] [10] [11] and store them in the suspicious

11

behavior database. Next, we submit the training samples including malicious and

benign ones to the sandbox web sites for collecting the runtime behaviors of them. By

comparing each sample’s runtime behaviors with the behaviors in the suspicious

behavior database, we can train and adjust the weights of each behavior by using

ANN. At the end of the training phase, we construct an MD expression. According to

the MD values of the training samples, we can set an optimum MD threshold, as

shown in Figure 3. The quantities of samples at the two ends of the double-headed

arrows line are relatively large. There are a few ambiguous samples at the middle of

the line. The optimum MD threshold can discriminate malicious samples from benign

samples located at the ambiguous area. The testing phase is responsible to test and

judge whether an unknown sample is malicious or not. We first submit the unknown

sample to the sandboxes for collecting its runtime behaviors. By using the MD

expression which was constructed at the end of training phase, we can calculate the

MD value of the unknown sample. If the unknown sample’s MD value is larger than

the MD threshold, the unknown sample is identified as malware. Otherwise, it is

identified as benign software.

Figure 3. Distribution of malicious and benign samples.

0 1

12

4.1 Suspicious behaviors

As mentioned above, we used three sandboxes [9] [10] [11] to collect 13 common

suspicious behaviors. We submit samples to these three sandboxes to calculate the

appearance frequency of each behavior. We first choose the behaviors in the

intersection of the suspicious behaviors identified by these sandboxes and store them

to the suspicious behavior database. We eliminate the behaviors which have low

appearance frequency or even do not appear (appearance frequency < 15%). Next, we

store the behaviors which are not in the intersection but have comparatively high

appearance frequency into our database (appearance frequency ≥ 15%), too. The

names and descriptions of these 13 suspicious behaviors are listed in the following:

1. Creates Mutex

- Obtains the exclusive access to system recourses [17].

2. Creates Hidden File

- Creates file without the notification of the user.

3. Starts EXE in System

- Executes EXE without the permission of the user.

4. Checks for Debugger

- Checks whether there is any anti-virus systems under the environment.

5. Starts EXE in Documents

- Documents execute EXE automatically without the permission of the user.

6. Windows/Run Registry Key Set

- Creation, modification, or deletion of Windows registry key.

7. Hooks Keyboard

- Checks keyboard values.

8. Modifies File in System

13

- Modifies files in the system permanently.

9. Deletes Original Sample

- Deletes the original sample.

10. More than 5 Processes

- Creates more than 5processes.

11. Opens Physical Memory

- Accesses physical memory.

12. Delete File in System

- Deletes a file in the system without permission of the user.

13. Auto Start

- Starts automatically when the system reboots.

Table 2 shows the appearance frequencies of malicious and benign samples. Note

that the suspicious behaviors we chose all have much higher appearance frequencies

in malicious samples than that in benign samples.

14

Table 2. The appearance frequencies of malicious and benign samples.

No. Behavior

Appearance

frequency of a

malicious sample

Appearance

frequency of a

benign sample

1 Creates Mutex 53.8% 2.4%

2 Creates Hidden File 65.4% 8.0%

3 Starts EXE in System 54.4% 11.0%

4 Checks for Debugger 37.1% 9.0%

5 Starts EXE in Documents 34.0% 1.4%

6 Windows/Run Registry Key Set 72.0% 3.2%

7 Hooks Keyboard 25.4% 2.0%

8 Modifies File in System 28.6% 3.4%

9 Deletes Original Sample 16.0% 0.6%

10 More than 5 Processes 16.7% 2.4%

11 Opens Physical Memory 34.8% 6.0%

12 Delete File in System 15.4% 3.0%

13 Auto Start 35.6% 0.0%

15

4.2 ANN topology

. . .

. . .

b1

b2

b3

b10

. . .

b’

Output (O)

Input Layer Hidden Layer Output Layer

 ƒ (1)∑

∑

∑

∑

 ƒ (1)

 ƒ (1)

 ƒ (1)

∑ ƒ (2)

a1

ω1'

ω1,1
Behaviors 1

Behaviors 2

Behaviors 3

Behaviors 12

Behaviors 13

n1

n'

Figure 4. Topology of our artificial neural network.

Figure 4 shows the topology of our ANN. It is a FeedForward Neural Network

model. The model can be divided into three layers: input layer, hidden layer, and

output layer. The input layer consists of the suspicious behaviors of an input sample.

The hidden layer and output layer contain several neurons which are marked as the

dotted line area. If there is more than one hidden layer between the input layer and the

output layer, the neural network model will be called as a multi-layer neural network.

The major functionality of the hidden layer is to increase the complexity of a neural

network. Thus, a multi-layer neural network can resolve more complicated non-linear

problems than a single-layer one. The more the number of hidden layers in a neural

network is the more complex the neural network will be. However, if there are too

many hidden layers in a neural network, it will become an over complex neural

network model and may results in over fitting [23]. Thus, it is important to choose the

16

optimum number of the hidden layers and the neurons in them. However, it is

regarded as a difficult work to obtain the optimum number of hidden layers and their

neurons. At least for now, there is no certain mathematical approach to achieve this

goal yet [24]. In the proposed ANN-MD, a two-layer ANN with one hidden layers is

founded. In the hidden layer and output layer, we set the number of neurons as 10 and

1, respectively. The operational details of each neuron will be described in the

following.

. . .
b1

a1

n1

Behaviors1

x1

x2

x3

x12

x13

ω1,1

ω2,1

ω3,1

ω12,1

ω13,1

Behaviors2

Behaviors3

Behaviors12

Behaviors13

Figure 5. A neuron in the hidden layer.

Figure 5 illustrates the operational details of a neuron (the first one) in the hidden

layer. The inputs are 13 suspicious behaviors of a sample, i.e. Behaviors1 –

Behaviors13. The input value will be marked as 1 if a sample has the corresponding

suspicious behavior. For example, a sample has No.1, No. 2, No. 6, No. 8 suspicious

behaviors, the input data of this sample will be [1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0].

Multiply these inputs by their corresponding weights in the neuron and do the

summation. Then add the neuron’s bias to the summation value. Substitute the result

into the transfer function ()() to get the output value of this neuron.

17

. . .

a1

a2

a3

a10

ω1'

n’ O

b’

ω2'

ω3'

ω10'

Figure 6. A neuron in the output layer [25].

Figure 6 illustrates the details of a neuron in the output layer. The input values of

this neuron are a1 – a10, which are the output values of the ten neurons in the hidden

layer. Multiply them by the corresponding weights of each neuron and do the

summation. Then add the neuron’s bias to the summation value. Substitute the result

into transfer function ()() to get the final output value. We chose the

tangent-sigmoid function:

 as the transfer functions of our ANN, i.e. ()()

and ()(), since it is often used to resolve the classification problems.

18

4.3 MD expression

According to the neural network model mentioned above, we can construct an MD

expression. Define set | be a sample’s suspicious behaviors.

represents the i
th

 suspicious behavior. Define set { |

 | as the weights of suspicious behaviors and the weights of

neurons. represents the i
th

 suspicious behavior’s weight in the j
th

 neuron and

represents the weight of the k
th

 neuron. Define set | as the

bias value of each neuron, where represents the bias value of j
th

 neuron in the

hidden layer and represents the bias value of the neuron in the output layer. The

MD expression can be represented as follows:

 () (∑
 () (∑

)

)

Both the weight for each behavior and neuron are adjusted through the delta

learning process. Define the mean square error:

() , where denotes

the target value we gave previously. If a sample is malicious, the target value will

be set to 1. On the contrary, will be set to 0. denotes the final output value of

the ANN. η

 , whereη represents a learning factor and

represents a set of input values. The value ofη is between 0 and 1. The larger the η

is the larger the is; however, under these circumstances, the ANN will be more

unstable. As a tradeoff, in our scheme, we setη to 0.5. The new weights can be

calculated according to the following formula: . The more close

to zero the mean square error is, the more convergent and more stable the ANN is.

19

Chapter 5

Evaluation

5.1 Experimental settings

We utilized Matlab 7.11.0 to implement the ANN of our scheme. The architecture

of the ANN from Matlab is shown in Figure 7, which is corresponds to that in Figure

4. We take tangent-sigmoid as the transfer functions in both the hidden layer and the

output layer. The 13 possible suspicious behaviors of a sample are the input values of

the ANN. By serial calculation of the ANN, there will be an output value, which is the

sample’s MD value. In order to distribute the weight of each neuron in the layer

evenly, the initial values of the weights and the bias are chosen by a built-in function,

initnw, according to the Nguyen-Widrow initialization algorithm [26].

W

b

+

W

b

+

Input

13

Hidden Layer Output Layer

Output

10 1

1

Figure 7. Architecture of our ANN (from Matlab).

The numbers of malicious and benign samples we used for experiments are shown

in Table 3. The size of the sample space is 2200, which is divided into benign samples

and malicious samples. We selected 1000 portable execution files which originally

exist under the Windows directories after the installation of Windows XP SP2 at the

first time as the benign samples. The 1000 malware samples we used were

20

downloaded from Blast’s Security [27] and VX Heaven [28] websites. Among 1000

malicious (benign) samples, 500 (500) samples were used in the training phase and

the other 500 (500) samples were used in the testing phase, as shown in Table 3.

Besides, to further verifying the feasibility of the proposed ANN-MD, we chose

another 200 samples (100 malicious samples and 100 benign samples), which are

different from the training sample space. The 100 malicious samples were from the

database of National Communications Commission, NCC, of Taiwan (collected by

five Internet Service Providers (ISPs) in Taiwan) and the 100 benign samples were

downloaded from the CNET.com [29] website.

Table 3. Numbers of benign and malicious samples.

Phase Malicious Benign Total

Training 500 500 1000

Testing

(same sample space

as training)

500 500 1000

Testing

(different sample

space from training)

100 100 200

We use 9 matrices to evaluate the proposed ANN-MD and the related schemes, as

follows:

- True Positive (TP)

- False Negative (FN)

- False Positive (FP)

- True Negative (TN)

- True Positive Rate (TPR) = TP / (TP + FN)

- False Negative Rate (FNR) = FN / (TP + FN)

21

- False Positive Rate (FPR) = FP / (FP + TN)

- True Negative Rate (TNR) = TN / (FP + TN)

- Accuracy Rate = (TP + TN) / (TP + FN + FP + TN)

5.2 MD threshold selection in the training phase

The distribution of the numbers of training samples is shown as Figure 8.

According to this distribution, we can set a possible range of the MD threshold. For

benign samples, we choose the largest MD value such that the number of benign

samples at this MD value is larger than 10 as the lower bound of the possible range of

the MD threshold. For malicious samples, we choose the smallest MD value such that

the number of malicious samples at this MD value is larger than 10 as the upper

bound of the possible range of the MD threshold. In Figure 8, the possible range of

the MD threshold is between 0.19 and 0.87.

Figure 8. Distribution of the numbers of training samples under different MDs.

We calculate the accuracy rate, FPR, and FNR under different MDs from 0.19 to

0.87, as shown in Figure 9. First, we narrow down the MD range to MD value =0.5

and MD value=0.59 since the accuracy rates in this range are the highest one, i.e. 98.3

22

%. Then we narrow down the range with the lowest FPR and FNR. Finally, we set the

MD threshold as the lowest MD value in this range, i.e. 0.5.

Figure 9. The accuracy rate, FPR, and FNR under different MDs.

5.3 Performance of ANN-MD

5.3.1 Using the same testing and training sample space

In this experiment, we used the same testing sample space as the training sample

space to evaluate the performance of the proposed ANN-MD. The experimental

results with MD threshold = 0.5 using the proposed ANN-MD are shown in Table 4.

It shows that there are only 4 false positive testing samples among the 500 benign

testing samples. And the false negative testing samples are 15 among the 500

malicious testing samples. The FPR and the FNR are 0.8% and 3.0%, respectively,

which are relatively low compared to two existing schemes [5] [7] which will be

shown in Table 7. The accuracy rate of the ANN-MD is 98.1%. Figure 10 illustrates

the distribution of the number of testing samples. It shows that ANN-MD can

distinguish malicious samples from benign samples with high accuracy.

23

Table 4. Experimental results using the proposed ANN-MD under the same sample

space.

TP TN FP FN FPR FNR Accuracy rate

485 496 4 15 0.8% 3.0% 98.1%

Figure 10. Distribution of the numbers of testing samples under different MDs.

We conducted an experiment to evaluate the effects of different initial weights to

the proposed ANN-MD. The results are shown in Table 5. It shows that FPR, FNR

and accuracy rate for the initial weights chosen by function initnw are the best. And

the FPR, FNR and accuracy rate for the initial weights of the hidden layer chosen by

the appearance frequency of each behavior are second worse. The worst one is the one

without using ANN, where the appearance frequency of each behavior is used to set

its corresponding weight. Since this case does not use ANN to train and adjust the

weights of each behavior, its accuracy rate is only 93.7%.

24

Table 5. The FPR, FNR, and accuracy rate under different initial weights.

Weights

FPR FNR

Accuracy

rate
Adjustment

of weights

Weights in

hidden layer

Weights in

output layer

With ANN

Chosen by

initnw

Chosen by

initnw
0.8% 3.0% 98.1%

Chosen by

appearance

frequency

Chosen by

initnw
1.2% 2.8% 98.0%

Without

ANN

Chosen by appearance

frequency
7.8% 4.8% 93.7%

5.3.2 Using different testing sample space from the training

sample space

In order to verify the feasibility of the proposed ANN-MD, we conducted

another experiment by using a sample space in the testing phase which is different

from the sample space in the training phase.

The experimental results with MD threshold = 0.5 using the proposed ANN-MD

are shown in Table 6. It shows that there are 5 false positive samples among the 100

benign samples. The FPR is 5.0%. And there is 1 false negative sample among the

100 malicious samples. The FNR is 1.0%. The accuracy rate of the ANN-MD is

97.0%, which means that the proposed ANN-MD still has a high accuracy rate even

using different testing sample space from the training sample space. Figure 11

illustrates the distribution of the numbers of samples under different MDs. It shows

that ANN-MD can distinguish malicious samples from benign samples with high

accuracy.

25

Table 6. Experimental results using the proposed ANN-MD under different sample

space.

TP TN FP FN FPR FNR Accuracy rate

99 95 5 1 5.0% 1.0% 97.0%

Figure 11. Distribution of the numbers of samples under different MDs.

5.4 Compared with existing schemes

5.4.1 Using the same testing and training sample space

Table 7 shows the comparisons among the proposed ANN-MD and two related

schemes, MBF [5] and RADUX [7]. We implemented these two schemes and tested

them with the same samples used in the experiment in section 5.3.1. In Table 7, the

FPR of ANN-MD is 0.8%; however, the FPR of MBF is 5.6% and the FPR of

RADUX is 14.2%. In Table 7, the accuracy rate of ANN-MD is 98.1%; however, the

accuracy rate of MBF is only 88.7% and the accuracy rate of RADUX is 91.2%.

Table 7 indicates that the proposed ANN-MD is better than MBF and RADUX on

unknown malware detection.

26

Table 7. Comparison of the proposed ANN-MD with two related schemes by using

the same testing and training sample space).

Approach

TPR FNR Accuracy

rate
FPR TNR

ANN-MD

(proposed)

97% 3.0%

98.1%

0.8% 99.2%

MBF [5]

83.0% 17.0%

88.7%

5.6% 94.4%

RADUX [7]

96.6% 3.4%

91.2%

14.2% 85.8%

5.4.2 Using different testing sample space from the training

sample space

Table 8 shows the comparison among the proposed ANN-MD and two related

schemes, MBF [5] and RADUX [7] by using different testing sample space from

training sample space). The FPR of ANN-MD is 5.0%; however, the FPR of MBF is

44.0% and the FPR of RADUX is 68.0%. The accuracy rate of ANN-MD is 97.0%;

however, the accuracy rate of MBF is only 77.5% and the accuracy rate of RADUX is

only 66.0%. Table 8 indicates that the proposed ANN-MD is much better than MBF

and RADUX even when using different testing sample space from training sample

space. This is due to that MBF and RADUX use static weights in the training phase.

27

Table 8. Comparison of the proposed ANN-MD with two related schemes by using

different testing sample space from the training sample space).

Approach

TPR FNR Accuracy

rate
FPR TNR

ANN-MD

(proposed)

99.0% 1.0%

97.0%

5.0% 95.0%

MBF [5]

99.0% 1.0%

77.5%

44.0% 56.0%

RADUX [7]

100.0% 0.0%

66.0%

68.0% 32.0%

28

Chapter 6

Conclusions and Future Work

6.1 Concluding remarks

In this thesis, we have proposed an artificial neural network-based behavioral

malware detection (ANN-MD). By observing and analyzing known malware’s

behaviors obtained from sandboxes, we construct a malicious degree (MD) expression.

We have collected 13 common suspicious behaviors. We utilized ANN to train and

adjust the weight of each behavior to obtain an optimum MD expression. With the

MD expression, we can calculate unknown software’s MD value and judge whether

the software is malicious or not according to its MD value. Experimental results have

shown that the proposed ANN-MD has a high accuracy rate of 98.1% (using the same

sample spaces as the training sample spaces), which is better than the accuracy rate of

88.7% in MBF [5] and the accuracy rate of 91.2% in RADUX [7]. In addition, the

FPR (FNR) of the proposed ANN-MD is 0.8% (3.0%) (using the same sample spaces

as the training sample spaces), which is much smaller than FPR (FNR) of 5.6%

(17.0%) in MBF and FPR (FNR) of 14.2% (3.4%) in RADUX. In order to further

verify the feasibility of the proposed ANN-MD, we conducted another experiment by

using a different sample space in the testing phase from the training phase.

Experimental results show that ANN-MD still has a high accuracy rate of 97.0%,

even though the testing sample space is different from the training sample space.

However, MBF and RADUX only have the accuracy rates of 77.5% and 66.0%,

respectively. In addition, the false positive rate of ANN-MD is 5.0%, which is much

29

smaller than the false positive rate of 44.0% of MBF and the false positive rate of

68.0% of RADUX. This is due to that MBF and RADUX use fixed weights in the

training phase. The experimental results have supported that the proposed ANN-MD

is a promising methodology in detecting unknown malware and the variations of

known malware.

6.2 Future work

In the proposed ANN-MD scheme, we only consider the host behaviors of

malware. In addition, the malware detection system we have implemented is

semi-automatic, which is time-consuming. Our future work will focus on adding some

network suspicious behaviors to our scheme and automating the malware detection

system to achieve higher accuracy rate, lower FPR, lower FNR, and faster alarm.

30

References

[1] C. Mihai and J. Somesh, “Static analysis of executables to detect malicious

patterns,” in Proceedings of the 12th conference on USENIX Security Symposium,

Vol. 12, pp. 169 - 186, Dec. 2006.

[2] J. Rabek, R. Khazan, S. Lewandowskia, and R. Cunningham, “Detection of

injected, dynamically generated, and obfuscated malicious code,” in Proceedings

of the 2003 ACM workshop on Rapid malcode, pp. 76 - 82, Oct. 2003.

[3] U. Bayer, C. Kruegel, and E. Kirda, “TTAnalyze: a tool for analyzing malware,”

in Proceedings of 15th European Institute for Computer Antivirus Research, Apr.

2006.

[4] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song, “Dynamic spyware analysis,”

in Proceedings of USENIX Annual Technical Conference, pp. 233 - 246, Jun.

2007.

[5] W. Liu, P. Ren, K. Liu, and H. X. Duan, “Behavior-based malware analysis and

detection,” in Proceedings of Complexity and Data Mining (IWCDM), pp. 39 - 42,

Sep. 2011.

[6] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths for

malware analysis,” in Proceedings of 2007 IEEE Symposium on Security and

Privacy, pp. 231 - 245, May 2007.

[7] C. Wang, J. Pang, R. Zhao, W. Fu, and X. Liu, “Malware detection based on

suspicious behavior identification,” in Proceedings of Education Technology and

Computer Science, Vol. 2, pp. 198 - 202, Mar. 2009.

31

[8] C. Willems, T. Holz, and F. Freiling. “Toward automated dynamic malware

analysis using CWSandbox,” IEEE Security and Privacy, Vol. 5, No. 2, pp. 32 -

39, May 2007.

[9] “GFI Sandbox,” [Online]. Available: http://www.gfi.com/malware-analysis-tool.

[10] “Norman Sandbox,” [Online]. Available:

http://www.norman.com/security_center/security_tools.

[11] “Anubis Sandbox,” [Online]. Available: http://anubis.iseclab.org/.

[12] A. Browne, “Neural network analysis, architectures, and applications,” Institute

of Physics Pub., 1997.

[13] T. M. Mitchell, “Artificial neural network,” Machine learning, The McGraw-Hill

Companies, Inc. , pp. 81-127, 1997.

[14] “A malware tool chain: active collection, detection, and analysis,” NBL, National

Chiao Tung University.

[15] U. Bayer, I. Habibi, D. Balzarotti, E. Krida, and C. Kruege, “A view on current

malware behaviors,” in Proceedings of the 2nd USENIX Workshop on

Large-Scale Exploits and Emergent Threats : botnets, spyware, worms, and more,

pp. 1 - 11, Apr. 2009.

[16] H. J. Li, C. W. Tien, C. W. Tien, C. H. Lin, H. M. Lee, and A. B. Jeng, "AOS:

An optimized sandbox method used in behavior-based malware detection," in

Proceedings of Machine Learning and Cybernetics (ICMLC), Vol. 1, pp. 404-409,

Jul. 2011.

[17] K. Rieck, T. Holz, C. Willems, P. Dussel, and P. Laskov, “Learning and

classification of malware behavior,” in Detection of Intrusions and Malware, and

Vulnerability Assessment, Vol. 5137, pp. 108-125, Oct. 2008.

[18] I. Firdausi, C. Lim, A. Erwin, and A. S. Nugroho, "Analysis of machine learning

techniques used in behavior-based malware detection," in Proceedings of the

32

Second International Conference on Advances in Computing, Control and

Telecommunication Technologies (ACT), , pp. 201-203, Dec. 2010.

[19] “Prof. Lily Li-Hua Li, CYUT, chapter 1 introduction, artificial neural network

(ANN),” [Online]. Available:

http://www.cyut.edu.tw/~lhli/ANN/C01-Introduction.pdf.

[20] “ 類 神 經 網 路 基 礎 篇 ,” [Online]. Available:

http://mogerwu.blogspot.com/2008/09/blog-post.html.

[21] V. Golovko, S. Bezobrazov, V. Melianchuk, and M. Komar, "Evolution of

immune detectors in intelligent security system for malware detection," in

Proceedings of Intelligent Data Acquisition and Advanced Computing Systems

(IDAACS), 2011 IEEE 6th International Conference, Vol. 2, pp. 722-726, Sep.

2011.

[22] Y. Zhang, J. Pang, F. Yue, and J. Cui, "Fuzzy neural network for malware

detect," in Proceedings of Intelligent System Design and Engineering Application

(ISDEA), 2010 International Conference, Vol. 1, pp. 780-783, Oct. 2010.

[23] “Delight Press, chapter 6, neural network,” [Online]. Available:

http://www.delightpress.com.tw/bookRead/skud00013_read.pdf.

[24] Y. Zhang, J. Pang, R. Zhao, and Z. Guo,"Artificial neural network for decision of

software maliciousness," in Proceedings of Intelligent Computing and Intelligent

Systems (ICIS), Vol. 2, pp. 622 - 625, Oct. 2010.

[25] C. Weng and K. Wang, “Dynamic resource allocation for MMOG in cloud

computing environments,” in Proceedings of IEEE International Wireless

Communications and Mobile Computing Conference (IWCMC), Aug. 2012 (to

appear).

[26] “Neural Network Toolbox,” [Online]. Available:

http://dali.feld.cvut.cz/ucebna/matlab/toolbox/nnet/initnw.html.

33

[27] “Blast's Security,” [Online]. Available: http://www.sacour.cn.

[28] “VX heaven,” [Online]. Available: http://vx.netlux.org/vl.php.

[29] “CNET,” [Online]. Available: http://www.cnet.com.

