

國 立 交 通 大 學

網路工程研究所

碩 士 論 文

一個兼具安全與彈性的雲端資料加密系統

A Secure and Elastic Cloud Data Encryption

System

研 究 生：黃冠穎

指導教授：袁賢銘 教授

中 華 民 國 一０一 年 六 月

一個兼具安全與彈性的雲端資料加密系統

A Secure and Elastic Cloud Data Encryption System

研 究 生：黃冠穎 Student：Kuan-Ying Huang

指導教授：袁賢銘 Advisor：Shyan-Ming Yuan

國 立 交 通 大 學

網 路 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Network Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2012

Hsinchu, Taiwan, Republic of China

中華民國 一 0 一 年 六 月

I

一 個 兼 具 安 全 與 彈 性 的 雲 端 資 料 加 密 系 統

學生：黃冠穎 指導教授：袁賢銘

國立交通大學網路工程研究所

摘要

近幾年”雲端運算”一詞在 IT產業掀起一股熱潮，越來越多服務商推出以”雲端”為名的相

關的服務，其中最熱門的雲端服務莫過於”雲端儲存”。”雲端儲存”帶給使用者許多方便

性，資料可以上傳到網路儲存空間而毋須再隨身攜帶如 USB 或隨身硬碟等儲存裝置；

在任何時間和地點只要有網路即可透過電腦或行動裝置來存取資料；上傳後的資料透過

特殊技術進行備份，因此使用者比較不用擔心檔案的遺失，即使不小心誤刪檔案仍有很

大的機率可以將檔案拯救回來。然而，選擇使用雲端空間作為資料儲存或備份其最令人

擔心的莫過於資料安全性的問題。

在此講到的安全性問題是指在資料上傳中或者是存在網路空間時，都有可能會被從中竊

取資料或滲透伺服器來取得檔案。現今雲端儲存空間大多都是上傳檔案到伺服器後再進

行加密儲存，不過這類的加密方式令使用者產生不安心感，因此使用者大多會搭配其他

第三方資料加密程式自行加密檔案後再上傳。然而我們發現這類的加密系統其解密金鑰

大多儲存在電腦上，這樣的後果可能導致解密金鑰會被竊取之外，在使用上也會變得很

不彈性，因為當我們要存取檔案時我們必須使用同一台電腦或者我們必須在另外一台電

腦上產生同樣一把解密鑰匙才可解密檔案。因此如何改善解密金鑰使用上的彈性也是另

一個待需解決的問題。

在本論文中，我們提出完整一套包含加密應用程式以及雲端儲存的服務並取名為

SSTreasury+。在資料安全性方面，我們讓使用者在上傳檔案前先透過應用程式進行加密

以防止資料在傳輸過程中以及儲存在雲端空間時被有心人士竊取。此外我們也提出解密

金鑰讓使用者隨身攜帶以增加使用上的彈性，以改進目前大部分的加密系統的解密金鑰

只能存在使用者電腦的不方便性。並在後端儲存方面提出搭配現有的雲端儲存空間作為

資料備份以降低建置成本。藉由以上提出的做法以期望達到一個安全、彈性的雲端儲存

服務。

關鍵詞：Cloud storage、Security、Cloud service、Cryptography、Encryption system

II

A Secure and Elastic Cloud Data Encryption System

Student: Kuan-Ying Huang Advisor: Shyan-Ming Yuan

Institute of Network Engineering

National Chiao Tung University

Abstract

“Cloud computing” is quite popular in recent years, more and more service provider

proposed cloud services especially cloud storage service. The cloud storage service brought

many conveniences, for instance, users do not have to carry flash storage drives. The file

could be accessed by using the computers or mobile devices via network at anytime and

anywhere. Users do not need to care about the uploaded file that could be lost, because the

service provider provides special techniques to backup. However, the most worrying problem

that we care is security.

The security which we mentioned here is that the file may be eavesdropped during

transmission, and the file which stored in the storage server may be stolen by some bad guys.

Nowadays, most of the cloud storage to let user upload the file to the server and then encrypt

file by server, but in this way makes so many people feel uneasy. Some users usually use

other third-party encryption system to encrypt the file before uploading. We found that most

of the encryption systems save the decryption key could only in the computer, this leads

inconvenience of using and it also could be stolen if the computer is public. So how to

improve the flexible of storing decryption key is another issue we concern about.

In this thesis, we proposed an integrated service which named SSTreasury+. It includes

encryption application and storage service, user could encrypt files before uploading to the

cloud to prevent being stolen during transmission or in the cloud storage. In addition, the

decryption key which generated by application can be carried to increase flexibility and

convenience. In the back-end storages we use existing cloud storage as a backup storage in

order to reduce construction costs. We expected to achieve a safe and flexible cloud storage

service by the above methods.

Keywords：Cloud storage、Security、Cloud service、Cryptography、Encryption system

III

Acknowledgements

 這兩年的碩士班生涯是我人生最重要的過程之一，我非常高興能夠來到分散式系統

實驗室這個大家庭。

首先非常感謝指導教授袁賢銘老師這兩年的諄諄教誨，老師開明又自由的研究學風

讓我這兩年來學到不少專業知識、研究方法以及學術倫理；老師不論在研究計畫或是論

文方向等都會耐心的聽取學生想法並適時的提供專業的意見和寶貴的建議。此外，也感

謝口試當天的三位口試委員張玉山老師、王尉任老師以及洪振偉老師抽空蒞臨我的口試

發表，並提供許多指導及意見，讓我的碩士論文能夠更完整、更豐富。

 研究室方面，感謝羅國亨學長在這兩年來的幫助，其耐心不倦的指導方式讓我在研

究計畫和論文方面都能夠順利的完成；感謝高永威學長在我初期的論文想法提供極為寶

貴的意見和建議，讓我能夠決定論文方向並順利完成；也感謝林家鋒學長、江川彥學長

在其他專業知識上提供的指導。感謝同學們紘維、聖凱、珮瑜在這兩年的陪伴，不論在

課業上、研究上甚至是找工作的過程中都能提供我相當寶貴的意見，能和你們當碩士班

的同學是我最大的榮幸。廣新、先博、柏志、振庭、丞訓以及其他 DCSLAB的成員們，

感謝你們，讓我在這兩年中充滿歡笑。

 另外，我也非常感謝研究計畫中的合作夥伴：教育所的欣渝學姐，台科大的若璿、

惠方、恬敏以及奕鈞等，你們讓我學習到何謂團隊合作，這不但讓我在履歷上有加分的

作用，在將來工作職場上也受益匪淺，謝謝你們。

 最後，感謝我的父母和哥哥，因為有你們才能有今天的我；感謝我的女友，有妳的

支持讓我人生充滿了目標和衝勁。

IV

Table of Contents

摘要…………………………………………………………………I

Abstract……………………………………………………………II

Acknowledgements .. III

Table of Contents .. IV

List of Figures .. VII

List of Tables .. IX

1 Introduction .. 1

1.1 Motivation ... 1

1.2 Objective .. 2

1.3 Outline of the Thesis .. 3

2 Background ... 4

2.1 QR Code .. 4

2.1.1 QR Code Standard .. 4

2.1.2 QR Code Data Capacity ... 4

2.1.3 QR Code Error Correction Functionality 5

2.2 RSA Overview ... 6

2.2.1 Public-Key Cryptographic.. 6

2.2.2 RSA Algorithm ... 7

2.2.3 RSA Security Issue ... 7

2.3 AES Overview ... 9

2.3.1 Description of the AES ... 9

2.3.2 Security of the AES .. 10

2.4 Related Work ... 11

2.4.1 Cloud Storage ... 11

2.4.2 SecretSync .. 12

3 System Architecture ... 15

3.1 Overview of SSTreasury+ ... 16

3.2 Storage Policies ... 17

3.2.1 Storage Server with Backup Storage 17

3.2.2 Storage Server with One Cloud Storage 18

3.2.3 Storage Server with Cloud Storages 19

3.3 Functionality .. 20

3.3.1 Registration Phase .. 21

V

3.3.2 Encryption & Upload Phase ... 22

3.3.3 Download & Decryption Phase .. 24

3.3.4 Sharing Phase ... 25

3.3.4.1 One-to-one Sharing... 26

3.3.4.2 Group Sharing .. 27

3.3.5 SSManager Agent Encryption .. 28

4 Implementation Details .. 30

4.1 Development Environment .. 30

4.1.1 SSGuard ... 30

4.1.2 SSManager ... 31

4.1.3 SSCoffers ... 32

4.2 Choosing of QR Code Mode ... 33

4.3 Security Issue ... 33

5 System Demonstration & Comparison 34

5.1 Registration Demonstration ... 34

5.2 Encryption Demonstration ... 35

5.3 Decryption Demonstration .. 37

5.4 Sharing Demonstration .. 39

5.4.1 One-to-one sharing ... 39

5.4.2 Group Sharing .. 41

5.5 Other Demonstration ... 43

5.6 Experiments and Results ... 45

5.6.1 Experiment on SSGusrd ... 45

5.6.1.1 Encryption and Upload time ... 45

5.6.1.2 Download and Decryption time 46

5.6.2 Experiment on SSManager... 47

5.6.2.1 SQL Insert ... 48

5.6.2.2 SQL Select .. 48

5.6.3 Experiment on SSCoffers ... 48

5.6.3.1 Local LAN .. 49

5.6.3.2 Cross LAN .. 51

5.7 System Usability Scale .. 52

5.7.1 Introduction ... 52

5.7.2 Evaluation criteria.. 53

5.7.3 Experiment result ... 53

5.7.4 Comparison .. 55

6 Conclusion and Future Works .. 57

6.1 Conclusion ... 57

6.2 Discussion .. 57

VI

6.3 Future Works ... 58

References .. 60

Appendix A System Usability Scale ... 64

VII

List of Figures

Figure 2-1 QR Code Example ... 4

Figure 2-2 QR Code Data Capacity ... 5

Figure 2-3 Error Correction Modes ... 5

Figure 2-4 Damaged QR Code .. 6

Figure 2-5 Public-key Cryptographic System ... 6

Figure 2-6 Advanced Encryption Standards .. 9

Figure 2-7 SecretSync Encryption System .. 13

Figure 3-1 Overview of SSTreasury+ ... 16

Figure 3-2 Overview of Storage Server with Backup Storage 17

Figure 3-3 Overview of Storage Server with One Cloud Storage 18

Figure 3-4 Overview of Storage Server with Cloud Storages 19

Figure 3-5 Registration .. 21

Figure 3-6 Encryption & Upload ... 23

Figure 3-7 Download & Decryption .. 24

Figure 3-8 One-to-one Sharing .. 26

Figure 3-9 Check Integrity of Public key .. 27

Figure 3-10 Group Sharing .. 27

Figure 3-11 SSManager Agent Encryption.. 29

Figure 5-1 Registration Interface ... 34

Figure 5-2 Decryption Key Interface .. 34

Figure 5-3 Alert Window of Exiting Decryption Key Interface 35

Figure 5-4 the Interface of Option ... 35

Figure 5-5 File Management Interface .. 36

Figure 5-6 Encryption .. 36

Figure 5-7 Uploading .. 36

Figure 5-8 Alert Window of File Size Limitation 37

Figure 5-9 Downloading .. 37

Figure 5-10 Two Ways to Decode QR Code ... 38

Figure 5-11 Decoding by Using Webcam .. 38

Figure 5-12 Decrypting ... 39

Figure 5-13 Interface of Typing Sharer ... 39

Figure 5-14 New Folders with Sharer ... 40

Figure 5-15 Encrypting the Original File to Receiver 40

Figure 5-16 Uploading the Encrypted File to Receiver 40

VIII

Figure 5-17 the Same File exists between Sender and Receiver 41

Figure 5-18 the Interface of Creating a Shared Group 41

Figure 5-19 the Screenshot of Different Clients Sharing a Folder 42

Figure 5-20 Uploading the Files Concurrently .. 43

Figure 5-21 the Screenshot of Sharing a file(s) between Group Members . 43

Figure 5-22 the File Chooser ... 44

Figure 5-23 Copying Public Link .. 44

Figure 5-24 The Interface of Web_upload .. 44

Figure 5-25 Chart of Encryption and Upload time 46

Figure 5-26 Chart of Download and Decryption time (Webcam) 46

Figure 5-27 Chart of Download and Decryption time (Image) 47

Figure 5-28 Local LAN ... 49

Figure 5-29 Cross LAN ... 49

Figure 5-30 Chart of Upload Average Time (Local LAN) 50

Figure 5-31 Chart of Download Average Time (Local LAN) 50

Figure 5-32 Chart of Upload Average Time (Cross-LAN) 51

Figure 5-33 Chart of Download Average Time (Cross-LAN) 52

Figure 5-34 A Comparison of the SUS score .. 53

IX

List of Tables

Table 2-1 Relation between Key Length and Break Time 8

Table 2-2 Recommended Key length in each Level 8

Table 5-1 Encryption and Upload with Different File Size 45

Table 5-2 Download and Decryption with Different File Size (Webcam) .. 46

Table 5-3 Download and Decryption with Different File Size (Image) 47

Table 5-4 SQL Insert with Different Concurrency Users 48

Table 5-5 SQL Select with Different Concurrency Users 48

Table 5-6 Local LAN Upload Test .. 50

Table 5-7 Local LAN Download Test ... 50

Table 5-8 Cross-LAN Upload Test .. 51

Table 5-9 Cross-LAN Download Test ... 52

Table 5-10 Comparison between SSTreasury+ and SecretSync I 55

Table 5-11 Comparison between SSTreasury+ and SecretSync II 55

1

Chapter 1 Introduction

1.1 Motivation

In recent years, the term "cloud computing" had been intensive discussed many times,

more and more cloud services were launched especially cloud storage services. The

cloud storage brought convenience and reliability, and most of them are cross-devices,

we can upload files without having to carry extra storage devices such as flash storage

drives. The files which we stored in the cloud storage are no longer accessible via

computer, through the Internet, smartphone and tablet can also access it anytime

anywhere. Furthermore, most of the cloud storage providers provide special

techniques to backup files. We can still recover the deleted file if we delete the file

carelessly. However, there are some problems if we use the cloud storage to store

files.

One of the most worrying issues that we use cloud storage is data security [1][2][3][4].

The security which we mentioned here is that the files may be stolen by somebody

during transmission or when they are already stored in the cloud. Either some cloud

service providers declared that they use strong encryption methods to protect the files;

in fact, we have no evidences to confirm it. Even so, it is hard to prevent the

employees who are in the service provider may watch our data contents because they

can decrypt it.

Some terms of service which proposed by cloud provider may adverse to the users.

For example, the term of service released by Google Drive [5] said that:

“When you upload or otherwise submit content to our Services, you give Google (and those we work with) a

worldwide license to use, host, store, reproduce, modify, create derivative works (such as those resulting from

2

translations, adaptations or other changes we make so that your content works better with our Services),

communicate, publish, publicly perform, publicly display and distribute such content.”

This represents that the user lose the right of the uploaded files and it may lost

confidentiality if it is a sensitive file.

Most of users use third-party encryption systems to encrypt files before uploading,

decrypt or check integrity the file through the agents [6][7][8]. We found that most of

the third-party encryption system’s decryption key could only save in the computer

[9][10][11], these consequences may increase the risk of being stolen if the decryption

key stored in the public computer. It is also very inelastic because user had to use

same computer to decrypt the file or install the same decryption key if he/she wants to

access the file on different computers. Hence, how to reduce the risk of the decryption

key being stolen and increase the flexibility are the problems we want to solve in this

thesis.

1.2 Objective

In this thesis, we proposed an integrated service named SSTreasury+ (Double S

means Secure and Shareable, notation + means Scalable) which included encryption

system and storage service. The focus of the encryption is that it prevented the file

being eavesdropped by the attacker during transmission and avoided be stolen by the

hacker or unscrupulous employees who were in the cloud service provider. Hence, the

user who uses our service not only has to register an account but also has to take care

of the decryption key. Our application made the decryption key into the form of QR

code so that it can take a photograph by smart phone or store in the flash drive as an

image. In such a manner, it could increase flexibility and that the decryption key no

3

longer only can save in the computer. The application also provides an interface to let

the users manage their uploaded file, it can easy upload and download files without

occupying the local disk space.

In the back-end storage server, we created many virtual machines as a data node to

reach bandwidth distribution, and every node uses the existing cloud storage to

backup files for increasing data reliability. Moreover, we also provide file sharing

services for sharing file securely. When the user wants to share the file with friends

secretly, he/she uses the other side encryption key to encrypt the file and then sends to

their storage space. After receiving the encrypted file, the receiver can use his/her own

decryption key to decrypt the file without asking sender to send a key, in this way,

they can share secret files in easy and secure way.

1.3 Outline of the Thesis

In chapter 2 we will discuss the background of related knowledge about the

techniques that we used and some related works about the service providers and

encryption systems. In chapter 3, we will introduce our whole service design. In

chapter 4, each parts of our service will be described in detail. We will demonstrate

our system in chapter 5 and provide some experimental results. Finally, we give the

conclusion and future work in last chapter.

4

Chapter 2 Background

2.1 QR Code

QR Code [12] is the abbreviation of the Quick Response Code, it also called matrix

code or two-dimension barcode and created by Japanese corporation Denso-Wave in

1994.

It could be encrypted or decrypted in a quick way. We show an example of the QR

Code in figure 2-1 which stores the “A Secure and Elastic Cloud Data Encryption

System” message in it. You can retrieve the message from this picture easily by using

QR Code decoder.

Figure 2-1 QR Code Example

2.1.1 QR Code Standard

QR Code is a standard of AIM, JEIDA-55, JIS X 0510 and ISO/IEC 18004. Everyone

who wants to develop an application can get a document from them. QR Code is also

already defined and published as ISO standard and the use of the QR Code is free for

any license, so it makes the QR Code become more widespread.

2.1.2 QR Code Data Capacity

QR Code can store the message in easy way. The contents can be a URL, phone

number, e-mail address, or just simple texts. We list the limitation of the message size

in different message format in the figure 2-2.

5

In numeric format, the max size of QR code message can up to 7089 characters. Even

using Chinese (UTF-8) as the message format, the QR code still can store max 984

characters.

Figure 2-2 QR Code Data Capacity

2.1.3 QR Code Error Correction Functionality

QR Code supports error correction, we can control the different mode depends on the

requirement. Level L mode represents the 7% error correction rate and highest error

correction can be up to 30%.

Figure 2-3 Error Correction Modes

•7089 characters Numeric

•4296 characters Alphanumeric

•2953 bytes Binary(8 bits)

•1817 characters Kanji/Kana

•1800 characters Chinese(Big-5)

•984 characters Chinese(UTF-8)

• 7% of code words
can be restored Level L

• 15% of code words
can be restored Level M

• 25% of code words
can be restored Level Q

• 30% of code words
can be restored Level H

6

We try to damage the QR code intentionally like figure 2-4, but you can still decode

successfully and get the contents “QR Code Example”.

Figure 2-4 Damaged QR Code

2.2 RSA Overview

2.2.1 Public-Key Cryptographic

Unlike symmetric-key cryptosystem, public-key cryptographic is an asymmetric key

algorithm. In public key cryptosystem, it generated a key pair which called public key

and private key, and the key pair is processed by complicated mathematics which

makes the private key cannot be feasible derived from the public key so that the

public key can be published everywhere.

The figure 2-5 shows the procedure of public key cryptosystem. If the sender wants to

deliver some information to the receiver, the receiver can publish his public key so

that sender can encrypt the information by using receiver’s public key. When the

receiver gets the encrypted information, he/she can use his/her private key to decrypt

it and get the original contents.

Figure 2-5 Public-key Cryptographic System

7

2.2.2 RSA Algorithm

Nowadays, the most popular public-key cryptosystem is RSA algorithm [13]. It was

published by Ron Rivest, Adi Shamir, and Leonard Adleman at MIT in 1978. RSA is

widely trusted and used in electronic commerce protocols; it is based on complicated

mathematical theory and is sufficient to protect the secure information of both sender

and receiver.

The RSA public key cryptography for encryption and decryption process was

introduced from following mathematical theory:

1. Randomly select two distinct large prime number p and q

2. Compute n = p * q

3. Choose encoding key e which is satisfied

GCD(e, φ(n)) = 1

φ is an Eculer’s Totient function and φ(n) is defined to be the number of

positive integers less than or equal to n, we know that φ(n) = φ(pq) = (p-1)(q-1)

4. Derive decryption key d by computing

5. Publish <e, n> as encryption key

6. The sender can encrypt plaintext M to ciphertext C by

7. The receiver can decrypt ciphertext C to plaintext M by

2.2.3 RSA Security Issue

If some bad guys want to know the secret information and they gets ciphertext and

knows n and e. In order to get decryption key d, they have to know the number of

φ(n). In order to acquire φ(n), they have to decomposition n to retrieve two prime

number p and q. Nowadays, there is no polynomial time algorithm to solve the

8

problems of decomposition a large number n into two prime number p and q.

Therefore, the required time to decomposition n is depends on the length of n if

someone wants to factor it by brute-force method.

This table 2-1 lists the relations of key length and break time [14]

Key length Break time of 100 million

100MIPS, 8MB Pentium

428 14.5 seconds

512 22 minutes

700 153 days

1024 280000 years

Table 2-1 Relation between Key Length and Break Time

The following table 2-2 shows the relationships of key length and the recommend key

length on different standards [14]

Year Low standard Average standard High standard

1995 405 579 1341

2000 425 619 1451

2005 447 661 1567

2010 469 705 1689

2015 493 751 1815

2020 515 799 1947

Table 2-2 Recommended Key Length in each Level

9

2.3 AES Overview

2.3.1 Description of the AES

Advanced Encryption Standard (AES) [15] is a specification for the encryption of

electronic data. It has been adopted by the U.S. governmentand and now used

worldwide. AES is a symmetric-key algorithm, meaning the same key is used for both

encrypting and decrypting the data.

AES was announced by National Institute of Standards and Technology (NIST) as

U.S. FIPS PUB 197 (FIPS 197) on November 26, 2001. It also became effective as a

Federal government standard on May 26, 2002 after approval by the Secretary of

Commerce. AES is the first publicly accessible and open cipher approved by

the National Security Agency (NSA) for top secret information.

Figure 2-6 Advanced Encryption Standard

AES is based on a design principle known as a substitution-permutation network. It is

fast in both software and hardware. AES has a fixed block size of 128 bits and a key

size of 128, 192, or 256 bits.

http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Federal_government_of_the_United_States
http://en.wikipedia.org/wiki/Symmetric-key_algorithm
http://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
http://en.wikipedia.org/wiki/Federal_Information_Processing_Standard
http://en.wikipedia.org/wiki/United_States_Secretary_of_Commerce
http://en.wikipedia.org/wiki/United_States_Secretary_of_Commerce
http://en.wikipedia.org/wiki/Cipher
http://en.wikipedia.org/wiki/National_Security_Agency
http://en.wikipedia.org/wiki/Classified_information
http://en.wikipedia.org/wiki/Substitution-permutation_network
http://en.wikipedia.org/wiki/Block_size_(cryptography)
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Key_size
http://en.wikipedia.org/wiki/Key_size

10

The AES cipher is specified as a number of repetitions of transformation rounds that

convert the input plaintext into the final output of ciphertext. The numbers of cycles

of repetition are as follows:

10 cycles of repetition for 128 bit keys.

12 cycles of repetition for 192 bit keys.

14 cycles of repetition for 256 bit keys.

Each round consists of several processing steps, including one that depends on the

encryption key. A set of reverse rounds are applied to transform ciphertext back into

the original plaintext using the same encryption key.

2.3.2 Security of the AES

The U.S. Government announced that AES may be used to protect classified

information in June 2003 [16]:

“The design and strength of all key lengths of the AES algorithm (i.e., 128, 192 and

256) are sufficient to protect classified information up to the SECRET level. TOP

SECRET information will require use of either the 192 or 256 key lengths. The

implementation of AES in products intended to protect national security systems

and/or information must be reviewed and certified by NSA prior to their acquisition

and use."

http://en.wikipedia.org/wiki/Classified_information
http://en.wikipedia.org/wiki/Classified_information

11

2.4 Related Work

Nowadays most of cloud storage practices are to let user upload the file to the server

and then encrypt it through server, but it makes so many people feel not peace of mind.

Some user may use third-party encryption system to encrypt the data before uploading.

In this section, we divided the related work into two parts. The first part we will

introduce the security of some famous cloud storage services. Second, we choose an

encryption system which called SecretSync to introduce, this encryption system for

user to encrypt data before uploading to the cloud storage.

2.4.1 Cloud storage

In this phase, we choose three famous cloud storage services to describe the security

in their storage space. These cloud storage services we choose in this phase are

Dropbox, Sugarsync and ASUS Webstorage.

Dropbox [17] is the most famous cloud storage service and it uses Amazon S3 for

data storage. They encrypted the files by using AES 256 bits after files are uploaded,

and the encryption keys are managed by them. Dropbox also against network security

issues such as Distributed Denial of Service attacks (DDoS)[18], Man-in-the-Middle

attacks (MITM)[19], and sniffing [20]. The user sends files from client to server are

using 256 bits SSL encryption. Most employees in the Dropbox are prohibited from

viewing the contents of the files, they are only permitted to view file metadata, only a

small number of employees could access the file for the reason which stated in their

privacy policy.

Sugarsync [21] is the support of the most complete cloud storage because it supports

12

many mobile devices for using. The file sends between client and server are using

TLS (Transport Layer Security) encryption. TLS is the successor to SSL v3.0 and

both industry standard cryptographic protocols for secure Web communications. The

file which storage in the SugarSync is encrypted with AES 128 bits encryption. They

not only just provide backup the file but also sync the file between the different

devices, and they also use Amazon S3 for data storage.

The file which stored in ASUS WebStorage [22] encrypted with AES to protect the

file, and they also provide SSL encryption to protect user’s information. In addition,

they use One-Time-Password (OTP) [23] mechanism for paid user to strengthen of

logging. The user who is eligible to use OTP authentication could download the

application in mobile phone. The OTP authentication is activated through mobile

phone without the need of a computer. It randomly generated 6-digit dynamic security

code every 30 seconds and can only be used once making it impossible for hackers to

steal any personal data stored within the cloud service.

Unfortunately, some of the cloud storage service do not proposed any encryption way

to protect the file, so it could produce significant harm of data security. What we can

do is to encrypt data with third-party encryption system.

2.4.2 SecretSync

The SecretSync [24] is a third-party encryption system to encrypt data before upload

to the cloud. It encrypted the file with AES 256 bits, the encryption key mixed the

password which the user inputs when installing the system.

13

The figure 2.4.2 shows the procedure.

Figure 2-7 SecretSync Encryption System

1. When installation processing, it asks the user to provide the cloud storage path to

sync the encrypted data and also ask for a password to create the AES key which

only for user.

2. After installing the SecretSync system then the computer creates a SecretSync

folder to let user put the file into this folder.

3. The file which stored into SecretSync folder would be encrypted with AES

encryption algorithm, and then it syncs the encrypted file to the specific storage

path which is cloud storage path such as Dropbox. So if the user accesses the file

in cloud storage folder directly, then the file contents is garbled. Only the files

which stored in SecretSync are original.

4. If the user wants to access the file on another computer, he/she has to install the

system again and produce the same AES key to decrypt the file. Then the

encrypted file would sync to the SecretSync folder and decrypt it for user to

access the original contents.

14

In this section we focus on the famous cloud storage and introduce each one of

security. We found that most of the cloud storage encrypted the file in the server after

the user uploading; this way represents the decryption keys are managed by the

service provider. Although the service provider states that prohibits their employees

viewing the file in the privacy policy, we could not ensure it in some special situation.

All we can protect is using third-party encryption system to encrypt the file before

uploading to the cloud storage, but we found that most of encryption system such as

SecretSync can only store the decryption key in the computer. It is so inconvenience

if we want to access the encrypted files on different computer because we have to

install the application again and create the same decryption key as like original

computer. The key also could be stole by someone if the computer is public.

15

Chapter 3 System Architecture

In this thesis, we propose an integrated service to let user can protect their file and

store in the reliable storage space. In order to protect the files to be secure, we provide

an encryption system to encrypt files before uploading and manage uploaded files in

convenient way; the application encodes the decryption key into a QR Code for

flexible and portable, it can be a photograph stored in smartphone or an image stored

in flash drive; the back-end storage server which store the uploaded files combines

other cloud storage as backup storage to let our service be reliable.

Our system is composed of three parts: client-side application named SSGuard,

processing server named SSManager and many storage servers named SSCoffers. The

SSGuard provides the functionalities for users to encrypt file before uploading,

manage their uploaded files and share secure files with other users or groups. The

SSManager is in charge of storing user’s information which included user account,

public key and uploaded file’s information (timestamp, stored storage IP and

encrypted AES key), and also processes the requests which send by the users. It also

can encrypt file before uploading to the Storage server, it will describe in 3.3.5. The

SSCoffers are in charge of storing encrypted files, the way how the files are stored

will describe in 3.2.

16

3.1 Overview of SSTreasury+

Figure 3-1 Overview of SSTreasury+

Figure 3-1 shows an overview of our service. The user can use SSGuard to encrypt

files before uploading and decrypt it after downloading to get the original contents.

Each file is encrypted by using random file encryption key and then random stored in

the one of the SSCoffers, the file encryption key is also encrypted by user’s public

key and stored it to the SSManager. The user can store their private key in smart

phone or flash drive because it encodes into a QR Code; user shows QR Code to

SSGuard for decrypting the file encryption key, and then the key can decrypt file to

get original contents.

In the following sections, we will introduce each part of our system include the role

they play and functions they provide.

17

3.2 Storage Policies

In this section, we introduced how to construct SSCoffers and how the files be stored

into storage servers.

In order to construct the back-end storage server we have to consider many factors

such as the cost and network bandwidth. We couldn’t just use only one storage server

to service every user because it has the limitation of the storage spaces and network

bandwidth. We have to do is to construct many storage servers and let our

construction way could be scalable, so that it can provide infinite storage spaces and

service many concurrency users at the same time to avoid network congestion. Before

deciding the way to design our SSCoffers, we proposed three policies to consider how

we could construct the back-end storage servers.

3.2.1 Storage Server with Backup Storage

Figure 3-2 Overview of Storage Server with Backup Storage

The first idea is that the service provider uses the Storage server as network storage

and the application would random choose one of the servers to upload the file. This is

an easy way to store a file and it can construct a new storage server rapidly. But the

disadvantage of this way is that it needs more storage server to backup the file. The

18

service provider needs more cost to construct new machines or virtual machine and it

also complicated to maintain. Most of the cloud storage services use this way to reach

reliability, for example, Dropbox uses Amazon S3 [25] to store and backup user files.

3.2.2 Storage Server with One Cloud Storage

Figure 3-3 Overview of Storage Server with One Cloud Storage

The second way we think is that using other cloud storage as backup storage. Every

data node that the service provider builds could choose more powerful and large

storage space machine, so that it can hold many files to prevent the frequently

insufficient capacity. In addition, service provider also needs to purchase the backup

storage space in order to achieve enough space. In this way, each node could

withstand more users to storage and access files. But the cost may be very high

because use the powerful machine and purchase the cloud storage to maintain the

reliability. The provider may unable to pay so much cost in beginning, it more suitable

if the provider has sufficient funds.

19

3.2.3 Storage Server with Cloud Storages

Figure 3-4 Overview of Storage Server with Cloud Storages

In this way, we proposed each storage server combined with cloud storages, the

different between policy2 is cost. As we mentioned before, the cost of adding a virtual

machine such as Amazon EC2 is still expensive, so the providers may only have

fewer funds to purchase virtual machines which have low power and small storage

space, they have no extra funds to purchase extra cloud storages for backup. The

solution that we proposed is using all cloud storage free space and combining all of

them to reach a big free space. For example, the Dropbox provides 2 GB for free and

Sugarsync provides 5GB for free, combine these two storages we can get 7GB space

for free, so it could reduce the cost at the initial stage. When providers have sufficient

funds in future then they could purchase the powerful machines and extra cloud

storage spaces for backup.

The disadvantage of this policy is that the machine has only small space for user to

store their files, so it has to face the storage will be full in rapidly and need to

construct a new machine constantly. The other challenge is the constructing time

because the provider has to install cloud storage desktop software and it will consume

much time. The advantages of this policy are it could cost-down in the initial stage of

services and many virtual machines could increase transmission bandwidth to reduce

network congestion.

20

In this thesis, we use policy3 to construct our SSCoffers. Each storage server we use

three cloud storages (Dropbox, Webstorage and Sugarsync) to backup the files which

stored in SSCoffers.

3.3 Functionality

In this section, we introduce the functions of SSGuard application and we divided it

into phase1 to phase5. The phase1 is to register an account and create pair of

public/private key; the phase2 is to introduce how the user uses SSGuard to encrypt

and upload the file. The goal of the phase3 is how to download and decrypts the

encrypted file to get original contents, and the phase4 is to share the file with another

users or groups in secure way. In final phase, we introduce how the SSManager help

user to encrypt the file so that the user can access the file without using SSGuard.

Before introducing the functions, the notations are summarized as following:

U: User

Pid: User account

Pwd: User password

Eu: Public key of user

Du: Private key of the user

Rx : Random number

ax: Random AES key to encrypt file

MD5(m): Message digest to hash message m

Ae(f, ax): AES encrypting processing function to encrypt file f by key ax

Ad(f, ax): AES decrypting processing function to decrypt file f by key ax

Re(ax ,x): RSA encrypting processing function to encrypt AES key ax by key x

Rd(ax ,x): RSA decrypting processing function to decrypt AES key ax by key x

21

Qe(m): QR Code Encoding processing function to encode message m

Qd(i): QR Code Decoding processing function to decode a QR Code image i to a text

3.3.1 Registration Phase

Figure 3-5 Registration

In this phase, we introduce how to register an account for service and create the

public/private key for user. The private key will be encoded into QR Code to store in

other storage devices such as smartphone or flash drive. Furthermore, we assumed

that the computer which is in the registration phase must be a trusted computer and a

safe environment (e.g. at home) to prevent someone who try to capture the QR Code.

After the users getting the QR Code, they can access the file everywhere and do not

have to worry about the computer which is trusted or not.

The graph showing at figure 3-5 gives the main structure of this phase:

1. The user has to download the SSGuard application to register an account.

2. The user types account and password to register.

3. The account would be sends to the SSManager server for checking to prevent the

same account.

22

4. If the account is eligible then application uses RSA algorithm to generate

public key Eu and private key Du.

5. After creating two keys, the SSGuard sends the public key Eu and registration

information to the SSManager database and sends the request to inform all of the

Storage servers to create user’s dedicated folder. At the same time, SSGuard

provides an interface to show a QR Code Qe(Du) which encoded the private key

for user to save.

6. The interface shows two methods to let user store the QR Code. The first method

is that the user can use his/her smart phone to take photograph of QR Code for

storing it as a photo, another method is that the user can click the button to

download the QR Code image then stores in the computer or flash drives. After

the user downloading the QR Code which includes private key and closing the

interface, the private key would be deleted by application so that only the

registration user has the private key. Every user have to protect their own private

key (QR Code), if the user lose the private key, no one or even the server can not

recreate it.

3.3.2 Encryption & Upload Phase

In this phase we introduced how to use SSGuard to encrypt file before uploading to

the SSCoffers, and also described how the SSGuard choose one of storage servers to

store the file. The user’s dedicated folder in every SSCoffers contains two child

folders: “secret_upload” and “web_upoad”. The file which stored in the

“secret_upload” or child folder which under “secret_upload” created by user will be

encrypted before uploading, so we mainly focus on this folder in this part, how to

process the file store in “web_upload” will be introduced in 3.3.5.

23

Figure 3-6 Encryption & Upload

The graph showing at figure 3-6 gives the main structure of this phase:

1. User chooses a file to upload and decides the path.

2. The application random generates the encryption AES key ai.

3. SSGuard uses AES key ai to encrypt the file by computing Ae(f, ai).

4. The application sends a request to the SSManager for checking whether the same

file had been saved. If yes, then the SSManager would return the IP address that

the file stored in which one of the storage server. Otherwise, the SSManager

sends back “null” message and then SSGuard random chooses one of SSCoffers

IP address to upload the file.

5. Before sending the file to the SSCoffers, the SSGuard uses user’s public key Eu

to encrypt the AES key ai by computing Re(ai, Eu).

6. The SSGuard sends encrypted file to the SSCoffers according to IP address by

step (4), and then sends the encrypted AES key and file information to insert or

update the record in SSManager database.

24

The file record will be insert included timestamp, creator, storage IP and encrypted

AES key into database server if the file is first uploaded. Otherwise, it will only

update the encrypted AES key and timestamp according to the file id which received

form SSManager according by step (4).

3.3.3 Download & Decryption Phase

The goal of this phase is to introduce how to download encrypted file and decrypt it to

get the original contents.

Figure 3-7 Download & Decryption

The graph showing at figure 3-7 gives the main structure of this phase:

1. Choose file to download and decide the path to save.

2. According to the file name and path, SSGuard sends a request to SSManager for

asking the IP address in which SSCoffers and the encrypted AES key Re(ai, Eu).

3. SSGuard downloads the encrypted file Ae(f, ai) by explicit IP.

4. After downloading the encrypted file, the application SSGuard asks the user to

upload the decryption private key. There are two ways to upload the decryption

25

private key: using webcam to scan QR Code or uploading QR Code image.


 If user chooses using webcam to scan the QR Code, SSGuard would open

the webcam to detect and then the user has to show the QR Code in front of

the webcam to retrieve Du by computing Qd(Qe(Du)).


 If the user chooses upload QR Code image, SSGuard asks the storage path

which the QR Code had been deposited and then uploads image to retrieve

Du by computing Qd(Qe(Du))

SSGuard gets the decryption private key Du then computes Rd(Re(ai, Eu), Du) to

get AES key ai.

5. SSGuard uses ai to decrypt file to get original contents by computing Ad(Ae(f, ai),

ai) and then delete the encrypted file Ae(f, ai).

6. SSGuard sends a request to SSManager to updates the file timestamp record in

database.

The purpose of deleting encrypted file is to avoid potential risk, if the file owner only

deletes the original file and forgets to delete the decrypted file then the bad guy can

retrieve and try to decrypt it [26]. It usually occurs in public computer occasion, our

system help user to prevent this to happen.

3.3.4 Sharing Phase

In this phase, we divided into two stages: one-to-one sharing and group sharing.

One-to-one sharing adds the folder which named by other side username under the

“secret_upload” folder, after the user uploading the file into this folder and then the

SSGuard will encrypt the same file and upload to other side dedicated folder. Group

sharing adds a folder which named by creator under the "secret_upload" folder to all

26

group members. The encrypted file will be encrypted again and send to all member at

the same time.

3.3.4.1 One-to-one Sharing

Figure 3-8 One-to-one Sharing

1. The user choose file to save into the folder which named user B’s account.

2. SSGuard first encrypts file and send to Storage server as same way as 3.3.2.

3. The application sends the request to the SSManager for asking user B’s public

key EuB.

4. After receiving EuB, SSGuard random generates another AES key aj to encrypt

same original file by computing Ae(f, aj) and sends encrypted file into user B’s

folder.

5. Sends file information and encrypted AES key Re(aj, EuB) to SSManager

database for recording.

The important thing we concerned about in this phase is step3. According to step3,

SSGuard had to ask SSManager to get the other side user's public key. We have to

prevent from the public key being swapped by bad guys during transmission, so we

provide a mechanism to authenticate whether the key had been swapped.

27

Figure 3-9 Check Integrity of Public key

The authentication graph showing at figure 3-9

1. SSGuard random generates number Ri and sends it to SSManager.

2. First, SSManager retrieves MD5(A’s Pwd) which is A’s password encoded by

MD5 algorithm and the user B’s public key EuB in database. Then it computes

MD5(Ri, MD 5(A’s Pwd), EuB) as a digest for authentication and returns it with

EuB to the SSGuard.

3. After SSGuard receiving EuB and digest, it uses the same way to compute digest’

to check whether digest and digest’ are the same. If yes, it stands the EuB is

correct, otherwise, the public key EuB was swapped during transmission.

3.3.4.2 Group Sharing

Figure 3-10 Group Sharing

1. The user A creates a group which named “Dcslab” and invites friends to join.

2. User A and group member which agreed to join the sharing group will add a new

28

folder named by group name under “secret_upload” folder in every Storage

servers.

3. One of the group members who want to share a file will send an encrypted file to

every member’s folder. It is worth mentioning that the SSGuard encrypts and

uploads file to all members simultaneously and sender can do other things at the

same time without wait it complete. The process of encryption is as same way as

3.3.4.1.

According to use our sharing way in this phase, the user could share their file with

friends and group members in easy and secure way. Receivers can use their own

decryption private key to decrypt the file to get the original contents. They do not

have to ask the sender or server for decryption private key [27][28][29], the server

also does not have to process for sharing. All of this is done by sender in SSGuard, so

it could reduce SSManager overloading.

3.3.5 SSManager Agent Encryption

The implementation SSManager agent encryption is to let user access the file

conveniently without needing to consider it security. The user will not have to carry

additional devices such as flash drives or portable hard disk and also does not have to

download SSGuard to decrypt the file because it is encrypted by SSManager. The user

through the website can upload and download the files and it also could access it

through SSGuard.

The graph showing at figure 3-11 gives the main structure of this phase.

29

Figure 3-11 SSManager Agent Encryption

The files is saved under “web_upload” folder were encrypted by SSManager and then

random sends to the Storage server if it is the first time upload. In contrast, the

encrypted file would decrypt by SSManager before downloading. The main difference

between 3.3.3 is the user hasn’t to show the QR Code to decrypt the file because the

SSManager would decrypt it first. In this method, the encryption algorithm which

SSManager uses is AES algorithm with 256 bits key length to protect the file.

30

Chapter 4 Implementation Details

In chapter3, we showed some functionality of our service. We proposed three policies

to construct SSCoffers and explain which policy we used in our system and why. We

also introduced what functions the application SSGuard provides, user can encrypt the

file before uploading to prevent from stealing by someone, we also described two

ways to decrypt the encrypted file after downloading. In the last two phases we

illustrate how to share a secure file with friends and group members, and let

SSManager help user encrypt the file. In this chapter, we will describe our system

implementation in detail.

4.1 Development Environment

In this section, we will introduce the specifications, software and hardware

equipments of the system. We also divided the system into three parts and each part of

the specification is described as following.

4.1.1 SSGuard

SSGuard is the application which the name stands for secure, shared and protect. It

provides the user to encrypt the file before uploading, an interface to manage their

uploaded file and share the file securely and easily. The functions of this application

are divided into four parts: registration, upload/download files and sharing (for

one-to-one and group). The user who uses our service not only has to remember the

account & password but also has to take care of the QR Code which hides private key.

The application random generate a file encryption key which uses AES algorithm with

256 bits key length in order to encrypt file, so that each file is encrypted by different

31

key. Each file encryption key is also encrypted by user’s public key which uses RSA

algorithm with 1024 bits key length and sends it to the processing server named

SSManager. After downloading the encrypted file, user has to show the QR Code for

decrypting the file encryption key. Before the file sending to other user, each file

encryption key would be random created a new one and then it was encrypted by

receivers’ public key, so receiver could use their own private key to decrypt it, they do

not have to ask for the sender an encryption key.

 Software

 JAVA: JDK 6 with JAVA EE

 JDBC: mysql-connector-java-5.1.10, sqlite-jdbc-3.7.2

 JMF: Java Media Framework API [30], jmf-2_1_1e-windows-i586

 FTP: org.apache.commons.net.ftp, commons-net-1.4.1

 QR Code: ZXing-2.0. Zxing [31] is a google open source project and the library

which is designed for decoding and encoding QR code.

4.1.2 SSManager

SSManager processes every user’s requests and sends back the results, it also

combines with MySQL which is a relational database to store the users and uploaded

files information; records each storage server capacity to alert user which one of the

storage servers will full; provides the agent encryption function to help the user

encrypt the file. Such files the user may not need to consider the security, but our

system also help user encrypt it before uploading to the storage server. These file can

be accessed using application or a website, the website which developed in PHP can

let the user access the file without using SSGuard when they in the outdoors.

 Hardware

 PC: Intel(R) Core™2 Quad CPU Q8300, 2.50GHz with 4GB RAM

32

 Software

 APACHE: Apache2.2.21

 MySQL: mysql5.5.16

 FTP: FileZilla_Server-0_9_41

4.1.3 SSCoffers

SSCoffers combines with many storage servers and each server is a virtual machine

using VMWARE [32], it uses policy2 which we proposed in 3.2.3 to store the

encrypted file. In our system, we use FTP to transport files because it is an easy way

to construct and rapid transmission. In addition, each storage server combines with

other cloud storages to backup file and there are three cloud storages we used to

backup. The way we use to backup the encrypted file is that we install the desktop

software which published by cloud storage provider in each storage server, so the file

is easy to synchronize to the cloud storage without any setting. The disadvantage is

that it consumes many times to add a new storage server because each new server

needs to install the software manually. So how to install the software automatically

when create a new storage server is our future goal.

 Hardware

 PC: Intel(R) Core™2 Quad CPU Q6600, 2.40GHz with 2GB RAM

 Software

 FTP: FileZilla_Server-0_9_41

 Cloud storage

 Dropbox: Dropbox 1.4.7

 Sugaysync: SecretSync-setup-1.358

 Webstorage: ASUSWebStorageSync1.1.0.89

33

4.2 Choosing of QR Code Mode

QR Code with a variety of modes (L, M, Q, H) are available to suit a variety of

conditions. In our systems, QR code is encoded for the digital image and it could

display on the smartphone directly, while the screen is usually very low rate of

damage, and consider that the higher the fault-tolerant mode represents the higher the

complexity of QR code image. So we use L model, with 7% of the fault-tolerant rate

on our systems.

4.3 Security Issue

In this system, we use two encryption algorithms to protect file and key. The file

should be encrypted before uploading, so the application random generates a key

which uses AES symmetric-key algorithm to encrypt file, because use of the

symmetric-key algorithm to encrypt/decrypt files is faster than use of asymmetric-key

algorithm. We use 256 bits key length to encrypt the file because it satisfies the

security issue we mentioned in 2.3.2. Consider the asymmetric-key algorithm which is

used to encrypt the file encryption key, the public key length at least has to over 1024

bits for security issue. So in our system, SSGuard generated 1024 bits public key

length for user to encrypt the file encryption key. In addition, the QR Code which

hides 1024 bits length private key works in decoding is also very well.

34

Chapter 5 System Demonstration

5.1 Registration Demonstration

The figure 5-1 shows a registration interface for user to register our service in

SSGuard, user only has to input account and password for registration. When user

clicks submit button, the application will send account to the SSManager for

checking.

Figure 5-1 Registration Interface

After SSManager checking the account is feasible and then SSGuard random

generates pair of public/private key for user. The public key and user’s information

will be recorded into SSManager database and the private key is encoded into the QR

Code and application provides an interface for user to save it. The figure 5-2 shows

the QR Code interface for user to save secret.

Figure 5-2 Decryption Key Interface

35

There are two ways for user to save QR Code. The first way is that the user could use

smart phone to take a photograph on the left side QR Code image. Another way is

clicking the right side button to download QR Code image and save it into flash

drives or portable drives. After user saving the secret and clicking close button to exit,

the interface will notify again to ensure whether the QR Code is saved or not. The

figure 5-3 shows below.

Figure 5-3 Alert Window of Exiting Decryption Key Interface

5.2 Encryption Demonstration

When the user logs in SSGuard, there are three buttons in the option menu. User can

click the first button “File Access” to enter the file management interface. The figure

5-4 shows three button after the user logging.

Figure 5-4 the Interface of Option

The file management interface shows all of the files under user's dedicated folder.

According to the figure 5-5, there are two folders under the main folder:

36

“secret_upload” and “web_upload”. In this phase, we only discuss the files which are

saved under the “secret_upload”.

Figure 5-5 File Management Interface

First, the user chooses the folder “secret_upload” or the child folder which under

“secret_upload” and then clicks the “Upload” button which is under the interface.

After choosing the file that the user wants to upload then SSGuard would random

generate a file encryption key to encrypted file and then use user’s public key to

encrypt the file encryption key. These steps will be done automatically, the figure 5-6

and figure 5-7 shows the progress of the uploading file.

Figure 5-6 Encryption Figure 5-7 Uploading

We limit the size of the upload file 15 MB for the basic user in our system, so if the

file size exceeds the limitation then it would emerge an alert window (figure 5-8).

37

Figure 5-8 Alert Window of File Size Limitation

5.3 Decryption Demonstration

The user chooses file which under “secret_upload” folder and clicks “Download

“ button to download, then SSGuard first sends a request to processing server for

requiring the file encryption key and the IP address. After SSGuard receiving the IP

address and file decryption key then it downloads the file by using FTP method in the

first step. The figure 5-9 shows the progress of the downloading file.

Figure 5-9 Downloading

As shows in figure 5-10, the application would emerge an interface to allow the user

to choose the decryption methods.

38

Figure 5-10 Two Ways to Decode QR Code

There are two ways to upload the private key. The first method is using webcam to

scan the QR Code, and then SSGuard open the computer’s webcam if the user clicks

the left button “QR Code”, and then user shows the QR Code in front of the webcam

to scan and decrypt it to let SSGuard retrieve the hidden decryption private key. The

figure 5-11 shows the QR Code on smart phone screen and put it in front of the

webcam. Another way is clicking right button “QR Code Image” to upload QR Code

image by file chooser from the disk or flash drive, and then SSGuard decrypt the QR

Code to retrieve hidden information.

Figure 5-11 Decoding by Using Webcam

After using webcam or file chooser to get the user’s private key, the SSGuard uses it

to decrypt the encrypted file encryption key and then decrypt the encrypted file by

using file encryption key automatically.

39

The figure 5-12 shows the process of the decryption file.

Figure 5-12 Decrypting

5.4 Sharing Demonstration

5.4.1 One-to-one Sharing

User chooses the “Create One-to-one sharing” button which is in the option menu to

invite friends to share files.

Figure 5-13 Interface of Typing Sharer

The figure 5-13 shows an interface to input account which the user wants to share

with and figure 5-14 shows that a folder which named by other side account under the

user’s dedicated folder.

40

Figure 5-14 New Folders with Sharer

If the sender wants to share a secret file with friends, sender has to put files under the

folder which named receiver’s account. First, SSGuard encrypt the file and upload to

the sender’s designated folder. After that, SSGuard then random regenerates AES key

to re-encrypts original file and sends the new encrypted file to receiver’s dedicated

folder (shows in figure 5-15, 5-16).

Figure 5-15 Encrypting the Original File to Receiver

Figure 5-16 Uploading the Encrypted File to Receiver

41

According to the figure 5-17, we can find that sender and receiver have the same file

which with the same file name. The different is that the files are encrypted by

different file encryption key, so that receiver can use his/her private key to decrypt the

file and needn't to ask the sender to send the decryption key.

Figure 5-17 the Same File exists between Sender and Receiver

5.4.2 Group Sharing

The creator clicks “Create Group Sharing” button which is in optional menu will

emerge an interface to ask creator to create a sharing group. The figure 5-18 shows

the interface to create group sharing.

Figure 5-18 the Interface of Creating a Shared Group

42

First, the creator has to make a name of this group and then inputs the member’s

accounts for sharing. When each member agree to share files, a new folder will be

created under their dedicated folder; the folder named by group name which creator

gives. The figure 5-19 shows that a folder was added in every group member.

Figure 5-19 the Screenshot of Different Clients Sharing a Folder

When anyone wants to share a file to other group members, SSGuard would random

generate file decryption keys and encrypt the original file individually, each encrypted

file would be random chose and send to one of SSCoffers simultaneously. In addition,

sender can do other operations when the files are being sent, he/she doesn’t have to

wait for complete transmission. The figure 5-20 shows the application processes each

encrypted files simultaneously and figure 5-21 shows the encrypted file would be

saved in each member’s folder individually, each member can use their own

decryption key to decrypt the file to get original contents.

43

Figure 5-20 Uploading the Files Concurrently

Figure 5-21 the Screenshot of Sharing a file between Group Members

5.5 Other Demonstration

The goal of this service is that it helps the user access the file conveniently. The user

can go to the SSTreasury+ website and access the file (shows in figure 5-22). It is

worth to mention that the “link” function in this website. The file link will be created

when the user click the “link” button (shows in figure 5-23), then user can copy this

address then paste the link and files will be downloaded immediately even user does

not log into the website.

44

Figure 5-22 the File Chooser

Figure 5-23 Copying Public Link

It also can use SSGuard application to access file (shows in figure 5-24), the file are

saved under the “web_upload” folder. After the file downloading, the user needn't to

show the QR Code.

Figure 5-24 the Interface of Web_upload

45

5.6 Experiments and Results

In this section, we designed three experiments for each part of our system. The first

experiment measures the performance of encryption and decryption by using SSGuard.

Second, we tested a short period of time that a large number of users to insert and

select SQL instructions in SSManager. Finally, we also tested a large number of users

to upload and download from different sources to SSCoffers at the same time.

5.6.1 Experiment on SSGuard

In this phase, we measured the execution time of using SSGuard to encrypt (decrypt)

and upload (download) files. The purpose of these experiments is to observe the

execution time of accessing files with different file size by using our system. The test

file sizes ranged from 1 MB to 15MB because of the limitation of the system we

mentioned in section 5.2. We also measure the case of 100 MB, 500MB and 1000MB

file sizes if we will upgrade our services in future.

Testing environment:

We installed the SSGuard in the client PC and sent the encrypted file to server PC

through FTP.

 Hardware:

 Client PC: Intel(R) Core™2 Quad CPU Q8300, 2.50GHz with 4GB RAM

 Server PC: Intel(R) Core™2 Quad CPU Q6600, 2.40GHz with 2GB RAM

 Network: 100Mbps

5.6.1.1 Encryption and Upload time

File size 1MB 5MB 10MB 15MB 100MB 500MB 1000MB

Encry. Time 0.8 2.33 6.33 9.33 64 359.67 636

Upload time 0.41 1 3 5.33 35.67 173.33 333

Total time 1.21 3.33 9.33 14.66 99.67 533 969

Avg. (MB/s) 0.83 1.50 1.07 1.02 1.00 0.94 1.03

Table 5-1 Encryption and Upload with Different File Size

46

Figure 5-25 Chart of Encryption and Upload time

5.6.1.2 Download and Decryption time

1. Upload private key using webcam

File size 1MB 5MB 10MB 15MB 100MB 500MB 1000MB

Decry. Time

(Webcam)

0.91 3 7.33 12.33 73 364.5 722

Download

time

0.26 0.68 1 1.33 10.67 61 125.25

Total time 1.17 3.68 8.33 13.66 83.67 425.5 847.25

Avg. (MB/s) 0.85 1.36 1.20 1.10 1.20 1.18 1.18

Table 5-2 Download and Decryption with Different File Size (Webcam)

Figure 5-26 Chart of Download and Decryption time (Webcam)

1MB 5MB 10MB 15MB

Encrypt
time

0.8 2.33 6.33 9.33

Upload
time

0.41 1 3 5.33

Total
time

1.21 3.33 9.33 14.66

0
2
4
6
8

10
12
14
16

(S
e

c.
)

100MB 500MB 1000MB

Encryption
time

64 359.67 636

Upload time 35.67 173.33 533

Total
time(Sec.)

99.67 533 969

0

200

400

600

800

1000

1200

(S
e

c.
)

1MB 5MB 10MB 15MB

(Webcam)
Decrypt

time
0.91 3 7.33 12.33

Download
time

0.26 0.68 1 1.33

Total time 1.17 3.68 8.33 13.66

0
2
4
6
8

10
12
14
16

(S
e

c.
)

100MB 500MB 1000MB

(Webcam)
Decrypt

time
73 364.5 722

Download
time

10.67 61 125.25

Total time 83.67 425.5 847.25

0
100
200
300
400
500
600
700
800
900

(S
e

c.
)

47

2. Uploading private key by using file chooser

File size 1MB 5MB 10MB 15MB 100MB 500MB 1000MB

Decry. time

(Image)

0.91 3 7.67 11 70.33 369.5 739.5

Download

time

0.26 0.63 1 1 10 55 128.5

Total time 1.17 3.63 8.67 12.33 80.33 424.5 868

Avg. (MB/s) 0.85 1.38 1.15 1.22 1.24 1.18 1.15

Table 5-3 Download and Decryption with Different File Size (Image)

Figure 5-27 Chart of Download and Decryption time (Image)

In these two experiments, we found that using SSGuard to access file could reach 1

MB/s for encryption/upload and download/decryption approximately.

5.6.2 Experiment on SSManager

In this phase, we tested a large of users to insert or select SQL instructions within ten

seconds in SSManager database for observing the error rate and finish time. In this

experiment, we used a measurement tool “jmeter” to measure the performance of

SSManager processing server. We used HTTP types with the multithreading method

that allows concurrent sampling by many threads for testing and observed how many

users that SSManager can support at a time.

Testing environment:

 Hardware:

 PC: Intel(R) Core™2 Quad CPU Q8300, 2.50GHz with 4GB RAM

1MB 5MB 10MB 15MB

(Webcam)
Decrypt

time
0.91 3 7.67 11

Download
time

0.26 0.63 1 1.33

Total time 1.17 3.63 8.67 12.33

0
2
4
6
8

10
12
14

(S
e

c.
)

100MB 500MB 1000MB

(Webcam)
Decrypt

time
70.33 369.5 739.5

Download
time

10 55 128.5

Total time 80.33 424.5 868

0
100
200
300
400
500
600
700
800
900

1000

(S
e

c.
)

48

 Software:

 MySQL: version 5.5.16

 Tool: jakarta-jmeter-2.5.1 [33]

5.6.2.1 SQL Insert

Concurrent user 500 1000 1500 2000 2500

Error rate 0% 0% 0% 0% 1.76%

Total time 10.37 10.72 10.03 11.81 10.44

Table 5-4 SQL Insert with Different Concurrency Users

According to the results, we found our SSManager could services approximate fewer

than 2500 users to insert the SQL instructions at the same, after that the users have to

wait or the service provider needs to add new SSManager servers to service the

requests.

5.6.2.2 SQL Select

Concurrent user 1000 3000 6000 6500

Error rate 0% 0% 0% 0%

Total time 10.32 11.43 16.08 16.15

Table 5-5 SQL Select with Different Concurrency Users

There are some errors if we test the concurrent user after 6500. So that according to

the results, we found our SSManager could services approximate 6500 users to select

the SQL instructions at the same.

5.6.3 Experiment on SSCoffers

In this phase, we tested two experiments for Storage server. The first we used two

clients which are in local LAN (figure 5-28) to test multi-user to upload and download

files. Second, we use four clients which separate them differ from two switches

49

(figure 5-29). The file size for each thread we tested for uploading and downloading is

10MB in this case.

Figure 5-28 Local LAN

Figure 5-29 Cross LAN

For each experiment, we tested multithreads to access the files and each thread

processed with same file size, we recorded the total time of all threads processing

their job and calculated the average mega-byte per second of each experiment.

5.6.3.1 Local LAN

Testing environment:

 Server:

 PC: Intel(R) Core™2 Quad CPU Q6600, 2.40GHz with 2GB RAM

 Client:

 PC 1: Intel(R) Core™2 Quad CPU Q8300, 2.50GHz with 4GB RAM

 PC 2: Intel(R) Core™ i7 CPU 860, 2.80GHz with 6GB RAM

 Network: 100Mbps

50

1. Upload:

Concurrent

thread

160

(80+80)

170

(85+85)

180

(90+90)

190

(95+95)

200

(100+100)

Total file size

(MB)

1600 1700 1800 1900 2000

Total time (s) 175 172 193 221 252

Average (MB/s) 9.14 9.55 9.32 8.59 7.94

Table 5-6 Local LAN Upload Test

Figure 5-30 Chart of Upload Average Time (Local LAN)

2. Download:

Concurrency

Users

160

(80+80)

170

(85+85)

180

(90+90)

190

(95+95)

200

(100+100)

Total file size

(MB)

1600 1700 1800 1900 2000

Total time (s) 159 165 179 196 229

Average (MB/s) 10.06 10.3 10.06 9.69 8.73

Table 5-7 Local LAN Download Test

Figure 5-31 Chart of Download Average Time (Local LAN)

160 Threads 170 Threads 180 Threads 190 Threads 200 Threads

Average 9.14 9.55 9.32 8.59 7.94

0

2

4

6

8

10

12

(S
e

c.
)

Average (MB/s)

160 Threads 170 Threads 180 Threads 190 Threads 200 Threads

Average 10.06 10.3 10.06 9.69 8.73

7.5

8

8.5

9

9.5

10

10.5

(S
e

c.
)

Average (MB/s)

51

According to the results on upload and download, the best bandwidth on upload are

approximate 9.55 (MB/s) and download are approximate 10.3 (MB/s). We found that

the best numbers of each storage server to service approximate 170 users, after that,

the bandwidth of storage server beginning to decline.

5.6.3.2 Cross LAN

 Server:

 PC: Intel(R) Core™2 Quad CPU Q6600, 2.40GHz with 2GB RAM

 Client:

 Switch 1

 PC 1: Intel(R) Core™2 Quad CPU Q8300, 2.50GHz with 4GB RAM

 PC 2: Intel(R) Core™ i7 CPU 860, 2.80GHz with 6GB RAM

 Switch 2

 PC 3 and 4: Intel(R) Xeon (R) CPU E5504, 2.00GHz with 2GB RAM

 Network: 100Mbps

1. Upload:

Concurrency

Users

160

(40*4)

172

(43*4)

180

(45*4)

192

(48*4)

200

(50*4)

Total file size

(MB)

1600 1720 1800 1920 2000

Total time (s) 164 171 190 229 262

Average (MB/s) 9.76 10.06 9.47 8.38 7.63

Table 5-8 Cross-LAN Upload Test

Figure 5-32 Chart of Upload Average Time (Cross-LAN)

160 Threads 172 Threads 180 Threads 192 Threads 200 Threads

Average 9.76 10.06 9.47 8.38 7.63

0

2

4

6

8

10

12

(S
e

c.
)

Average (MB/s)

52

2. Download:

Concurrency

Users

160

(40*4)

172

(43*4)

180

(45*4)

192

(48*4)

200

(50*4)

Total file size

(MB)

1600 1720 1800 1920 2000

Total time (s) 159 170 190 215 232

Average (MB/s) 10.06 10.12 9.47 8.93 8.62

Table 5-9 Cross-LAN Download Test

Figure 5-33 Chart of Download Average Time (Cross-LAN)

According to the results in cross-LAN, we also realized that the best numbers is still

approximate 170.

5.7 System Usability Test

5.7.1 Introduce

The “System Usability Scale (SUS)” which was developed by Brooke (1996) as a

“quick and dirty” survey scale to quick and easy assess the usability of a given

product or service [34], it is a Likert scale which is simply one based on forced-choice

questions, where a statement is made and the respondent then indicates the degree of

agreement or disagreement with the statement on a 5 point scale.

160 Threads 170 Threads 180 Threads 190 Threads 200 Threads

Average 10.06 10.12 9.47 8.93 8.62

7.5

8

8.5

9

9.5

10

10.5

(S
e

c.
)

Average (MB/s)

53

5.7.2 Evaluation criteria

All of these questions are shown in the appendix A, each question has 5 levels for

choosing (5: Strongly agree, 4: Agree, 3: No comment, 2: Disagree, 1: Strongly

disagree) and the score of this scale is calculated as follows [35]:

1. For question 1, 3, 5, 7, and 9: (level of the relative question) – 1

2. For question 2, 4, 6, 8, and 10: 5 – (level of relative question)

3. Sum the total scores in each question and finally multiplied by 2.5

SUS scores have a range of 0 to 100. Figure 5-32 shows a comparison of acceptability

score, quartile ranges, and the adjective rating scale.

Figure 5-34 A Comparison of the SUS score

5.7.3 Experiment result

In this section, we use a well-known scale named “system usability scale” [36] to

evaluate our system. In this scale, there are total of 10 questions, we will give this

scale to 17 people who had used our system for measuring the usability of the system.

1. I think that I would like to use this SSTreasury+ system frequently: mean of 5

point scale is 4, standard deviation is 0.79. This result represents most of people

are willing to use our system.

54

2. I found the SSTreasury+ system unnecessarily complex: mean of 5 point scale is

2.47, standard deviation is 1.01. Most of users think our system not too complex

to operate.

3. I thought the SSTreasury+ system was easy to use: mean of 5 point scale is 3.82,

standard deviation is 0.88.

4. I think that I would need the support of a technical person to be able to use this

SSTreasury+ system: mean of 5 point scale is 2.53, standard deviation is 1.17.

The standard deviation seems a little high. It means relatively different divergence

of opinion but the result is acceptable.

5. I found the various functions in this SSTreasury+ system were well integrated:

mean of 5 point scale is 4.11, standard deviation is 0.60.

6. I thought there was too much inconsistency in this SSTreasury+ system: mean

of 5 point scale is 1.76, standard deviation is 0.75.

7. I would imagine that most people would learn to use this SSTreasury+ system

very quickly: mean of 5 point scale is 4, standard deviation is 0.79.

8. I found the SSTreasury+ system very cumbersome to use: mean of 5 point scale

is 1.88, standard deviation is 0.70.

9. I felt very confident using the SSTreasury+ system: mean of 5 point scale is 4.47,

standard deviation is 0.87.

10. I needed to learn a lot of things before I could get going with this SSTreasury+

system: mean of 5 point scale is 2.41, standard deviation is 1.28.

According to the previous paragraph, we found that most of questions had good

response and it means our system is acceptable. The average score which we get in

our system is 73.38, through the figure 5-32, it represents to be close to a good system

so it proves the high usability of our system.

55

5.7.4 Comparison

In this section, we compared our system with SecretSync which we mentioned in

2.4.2. We also selected 17 people to do the SUS questionnaires with 10 questions. The

result of SecretSync with our SSTreasury+ system are shown in the below table.

Question

Num.

1 2 3 4 5

Mean SD. Mean SD. Mean SD. Mean SD. Mean SD.

SSTreasury+ 4 0.79 2.47 1.01 3.82 0.88 2.53 1.18 4.12 0.60

SecretSync 3.53 0.87 2.47 0.80 3.82 0.81 2.53 0.87 3.76 0.56

Question

Num.

6 7 8 9 10

Mean SD. Mean SD. Mean SD. Mean SD. Mean SD.

SSTreasury+ 1.76 0.75 4 0.79 1.88 0.70 4.47 0.87 2.41 1.28

SecretSync 2.29 0.77 4 0.71 2.06 0.83 4.24 0.75 2.29 0.92

SUS score of SSTreasury+ 73.38

SUS score of SecretSync 69.26

 SD: Standard deviation

Table 5-10 Comparison between SSTreasury+ and SecretSync I

According to the table 5-10, the average usability score in SecretSync system is 69.26,

our SSTreasury+ system which got 73.38 seems better than SecretSync, so that we

can find out that most of users felt that our system is more useful than SecretSync. For

instance, they felt that our system has better integrated according to question 5 and

easy to use than SecretSync according to question 8.

Which system will you prefer to choose to encrypt files?

SSTreasury+ 11 SecretSync 5 No comment 1

Table 5-11 Comparison between SSTreasury+ and SecretSync II

56

To vote the preferred system, our system got 11 of 17 votes, SecretSync got 5 of 17

and only one user had no comment. Most of users felt that our system need not have

to install the system is the most fascinating reason and portability (the private key to

be in the form of QR Code) is another advantage.

57

Chapter 6 Conclusion and Future Work

6.1 Conclusion

The cloud storage brings the convenient way to access files, we can edit or sync files

through different devices. However, the problem which we care about is security

because the file which we uploaded could be stolen by some bad guys. Although we

can use third-party encryption system to encrypt our files before uploading, but we

found that most of encryption systems do not have flexible to save the decryption key.

In this thesis, we proposed an integrated system named SSTreasury+ which integrates

security and storage service. We exploit the application named SSGuard to let user

encrypt the file before uploading, the decryption key encoded into the QR Code so

that it can store in smartphone or flash drive. The processing server named

SSManager saves file information and user’s public key, it also processes each user’s

requests. The back-end storage server we proposed three policies for provider to

construct. In this thesis, we named SSCoffers for our back-end storage servers and

each of the storage servers uses cloud storage to backup files to reach reliability.

6.2 Discussion

In this paper we design experiments for each part of our system. We found that using

SSGuard to access files can reach approximate 1.5 MB/s the maximum for

encryption/uploading; approximate 1.36 MB/s for downloading/decryption by using

webcam way; approximate 1.38 MB/s the maximum for downloading/decryption by

uploading QR Code image way, the both of two decryption way had the same

performance. The SSManager can process fewer than 2500 users to insert and

approximate 6500 to query SQL instructions. We also tested two experiments on

58

SSCoffers. One is using two clients in local LAN and another is four clients with

cross-switch, we found that the best number of user for storage server to service is

approximate 170 users. The experiments results show that the bottleneck of uploading

and downloading are on SSCoffers, even the SSManager can endure more than one

thousand concurrent users, but the SSCoffers can only endure approximate 170 users,

the performance begin to decline if the concurrent users more than 170 users.

To measure the usability of our system, we used “System Usability Scale” to evaluate

our system is useful or not. Our system got 73.38 scores, it represents that our system

is a good system and proves the high usability for users to use. We also compared

with a third-party encryption system which called “SecretSync”, the experiment result

showed that most of the users felt that our system is better than SecretSync because

our system has better integrated and portability.

6.3 Future Work

In our system, the user can only encrypt and decrypt file by using SSGuard which is

the application we developed, the mobile device can only access the files which saved

under “web_upload”. We will implement the mobile apps for mobile and tablet so that

the user can access the encrypted file anytime and anywhere.

In our system we made the private key into a QR Code, so the user could store the QR

Code in smart phone or flash drive portably. Although it is flexible and prevents to be

stolen if the key stored in the computer, it’s not prevent form users to leak out the QR

Code. So if there is a bad guy uses social engineering attack to steal the password and

copy the QR Code form user, then the bad guy can also access the encrypted file by

59

pretending the original user. So we would have to come out with other way to let the

user protect their decryption key more secure and convenient.

The uploading and downloading experiments which we tested in this paper are

individually, we will test on different file sizes to mix upload and download to

measure the total finish time and average megabyte per second to observe the

performance of our system.

Creating a new storage server consumes so much time in our system, it has to install

the desktop software and set the system environment. The next steps we have to do

are to design an application to install and set the system environment automatically,

so that the new storage server can be constructed rapidly to speed up the scalable.

60

Reference

[1] Shucheng Y., Cong W., Kui R., Wenjing L., “Achieving secure, scalable, and

finegrained data access control in cloud computing,” In Proceedings of the 29th

conference on Information communications, pp.534–542, Piscataway, NJ, USA,

2010

[2] Ion I., Sachdeva N., Kumaraguru P., Capkun S., “Home is Safer than the Clould!

Privacy Concerns for Consumer Cloud Storage,” In Proceedings of Symposium

on Usable Privacy and Security, pages 1-20, Pittsburgh, PA, USA, July 2011

[3] Talib A.M., Atan R., Abdullah R., Azmi Murad, M.A., "Security framework of

cloud data storage based on Multi Agent system architecture - A pilot

study," International Conference on 2012 Information Retrieval & Knowledge

Management (CAMP), pp.54-59, March 2012

[4] Hsiao-Ying L., Wen-Guey T., “A secure decentralized erasure code for

distributed network storage,” IEEE Transactions on Parallel and Distributed

Systems, vol. 21, no. 11, pp. 1586-1594, Nov. 2010

[5] Google Drive terms of services (http://www.google.com/policies/terms/)

retrieved in June 2012

[6] Venkatesh M., Sumalatha M.R., SelvaKumar C., "Improving public auditability,

data possession in data storage security for cloud computing," International

Conference on 2012 Recent Trends In Information Technology (ICRTIT),

http://www.google.com/policies/terms/

61

pp.463-467, April 2012

[7] Tang Y., Lee P., Lui J., Perlman R., "Secure Overlay Cloud Storage with Access

Control and Assured Deletion," IEEE Transactions on Dependable and Secure

Computing, June 2012

[8] Seiger R., Gross S., Schill A., "SecCSIE: A Secure Cloud Storage Integrator for

Enterprises," IEEE 13th Conference on Commerce and Enterprise Computing,

pp.252-255, 2011

[9] Zheng H., Qiang L., Dong Z., Kefei C., XiangXue L., "YI Cloud: Improving user

privacy with secret key recovery in cloud storage," Proceedings of 2011 IEEE

6th International Symposium on Service Oriented System Engineering,

pp.268-272, Dec. 2011

[10] Koletka R., Hutchison A., "An architecture for secure searchable cloud

storage," Information Security South Africa (ISSA), pp.1-7, Aug. 2011

[11] Seny K., Kristin L., "Cryptographic cloud storage", Proceedings of the 14th

international conference on Financial cryptograpy and data security,

pp.136-149, January 2010

[12] Denso Wave Inc. QR Code.com (http://www.qrcode.com/) retrieved in June

2012

[13] Rivest R. L., Shamir A., Adleman L., "A method for obtaining digital signatures

http://dl.acm.org/citation.cfm?id=1894876&CFID=106091373&CFTOKEN=14909459
http://dl.acm.org/citation.cfm?id=1894876&CFID=106091373&CFTOKEN=14909459
http://dl.acm.org/citation.cfm?id=1894876&CFID=106091373&CFTOKEN=14909459
http://www.qrcode.com/

62

and public-key cryptosystems", Commun. ACM, vol. 21, pp.120 -126, 1978

[14] Shiuhpyng S., “網路安全 -理論與實務 ”, 第 5 章 公開金鑰密碼系統

(http://140.113.210.231/ssp/2010-Spring-NetSec-book/Chap05.pdf) retrieved in

June 2012

[15] Advanced Encryption Standard

(http://en.wikipedia.org/wiki/Advanced_Encryption_Standard) retrieved in June

2012

[16] Lynn Hathaway (June 2003). "National Policy on the Use of the Advanced

Encryption Standard (AES) to Protect National Security Systems and National

Security Information"

[17] Dropbox (https://www.dropbox.com/dmca#security) retrieved in June 2012

[18] Denial-of-service attack (http://en.wikipedia.org/wiki/Denial-of-service_attack)

retrieved in June 2012

[19] Man-in-the-middle attack

(http://en.wikipedia.org/wiki/Man-in-the-middle_attack) retrieved in June 2012

[20] Packet sniffer (http://en.wikipedia.org/wiki/Hacker_(computer_security))

retrieved in June 2012

[21] Sugarsync

(https://sugarsync.custhelp.com/app/answers/detail/a_id/201/kw/security)

retrieved in June 2012

[22] ASUS WebStorage

(https://sugarsync.custhelp.com/app/answers/detail/a_id/201/kw/security)

retrieved in June 2012

[23] Neil H., “The s/key(tm) one-time password system”, Symposium on Network and

Distributed System Security, pages 151-157, Feb. 1994

[24] SecretSync (http://getsecretsync.com/ss/getstarted/) retrieved in June 2012

http://140.113.210.231/ssp/2010-Spring-NetSec-book/Chap05.pdf
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://csrc.nist.gov/groups/ST/toolkit/documents/aes/CNSS15FS.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/aes/CNSS15FS.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/aes/CNSS15FS.pdf
https://www.dropbox.com/dmca%23security
http://en.wikipedia.org/wiki/Denial-of-service_attack)
http://en.wikipedia.org/wiki/Man-in-the-middle_attack
http://en.wikipedia.org/wiki/Hacker_(computer_security))
https://sugarsync.custhelp.com/app/answers/detail/a_id/201/kw/security
https://sugarsync.custhelp.com/app/answers/detail/a_id/201/kw/security
http://getsecretsync.com/ss/getstarted/

63

[25] Amazon S3 (http://aws.amazon.com/s3/) retrieved in June 2012

[26] Leo D., “Protecting Drive Encryption Systems Against Memory Attacks”, May

2011 (http://eprint.iacr.org/2011/221.pdf) retrieved in June 2012

[27] Yanjiang Y., Youcheng Z., "A Generic Scheme for Secure Data Sharing in

Cloud," 40th International Conference on Parallel Processing Workshops,

pp.145-153, Sept. 2011

[28] Sanka S., Hota C., Rajarajan M., "Secure data access in cloud computing," IEEE

4th International conference on Internet Multimedia systems architectures and

applications, pp.1-6, Dec. 2010

[29] Ahmed M., Yang X., "Trust Ticket Deployment: A Notion of a Data Owner's

Trust in Cloud Computing," IEEE 10th International Conference on Trust,

Security and Privacy in Computing and Communications, pp.111-117, Nov. 2011

[30] Java Media Framework

(http://www.oracle.com/technetwork/java/javase/tech/index-jsp-140239.html)

retrieved in June 2012

[31] Zxing (http://code.google.com/p/zxing/) retrieved in June 2012

[32] VMware (http://www.vmware.com/) retrieved in June 2012

[33] Apache JMeter (http://jmeter.apache.org/usermanual/index.htm) retrieved in June

2012

[34] Bangor A., Kortum P., & Miller J.A., “The System Usability Scale (SUS): An

Empirical Evaluation,” International Journal of Human-Computer Interaction,

24(6), pp. 574-594.

[35] System Usability Scale (http://en.wikipedia.org/wiki/System_usability_scale)

retrieved in June 2012

[36] Brooke J., "SUS: A 'Quick and Dirty' Usability Scale," Usability Evaluation in

Industry, McClelland, I., Ed. London: Taylor & Francis Ltd., pp. 189-194, 1996.

http://aws.amazon.com/s3/
http://eprint.iacr.org/2011/221.pdf
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-140239.html
http://code.google.com/p/zxing/
http://www.vmware.com/
http://jmeter.apache.org/usermanual/index.htm
http://en.wikipedia.org/wiki/System_usability_scale

64

Appendix A: System Usability Scale

