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Chapter 1

Introduction

In the past, traffic data are mainly collected by infrastructure-based approaches, e.g., loop

detectors and CCTV. However, the high deployment and maintenance cost cause difficulty in

pervasively data collection. As compared with traditional infrastructure-based approaches,

crowdsourcing approaches have lower cost both in deployment and maintenance and thus

become a new trend for pervasively discovering traffic information. To obtain accurate traffic

information from crowdsourced data, effective mining techniques are required. In addition,

the percentage of participators in the mining process affects directly to the accuracy of

mining results. In short, mining techniques and the penetration rate are two major issues

in the crowdsourcing approaches. In this paper, we adopt shockwave models to discovery

traffic information from crowdsourced data.

Shockwaves are the propagation phenomenon of vehicle accumulation or relief on roads

between two traffic flows with different speeds [1][2]. As the speed of traffic flow decreases,
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vehicles start to accumulate in a line and form a congestion wave. Later on, as the speed of

traffic flow increases, vehicles start to relieve and form a relief wave. For example, consider

the shockwave propagation in signalized traffic, on encountering a red sign, vehicles gradually

stop, forming a congestion wave. On the sign turning to green, these vehicles start to move,

forming a relief wave. The congestion/relief waves of shockwave phenomenon in signalized

traffic are called ”stop/go shockwaves”. From the stop/go shockwaves, important parameters

of traffic information can be discovered.

Both the infrastructure-based approach and the crowdsourcing-based approach can be

used to detect shockwaves. For the infrastructured-based approach, a pair of loop detectors

is used to measure the speed and number of incoming and outgoing vehicles [3][4]. However,

this approach can not deployed pervasively due to the need of infrastructure. Besides,

the shockwave is identified by estimated the position where the flow speed changes, which

is inaccurate. For the crowdsourcing-based approach, GPS tracking data are reported to

measure the flow variation [5][6]. However, to obtain accurate mining results, as many as

3% penetration rate of GPS-tracking data is needed [5].

In this paper, we propose to use crowdsourced data for the identification of the stop/go

shockwaves. The movement data of vehicles in front of a intersection are collected for the

shockwave identification. To conquer the problem when the penetration rate of the move-

ment data is low, we propose a folding heuristic that adopts traffic light cycle information

to virtually increase the number of movement data used in the shockwave identification.

Extensive simulations are performed to validate the proposed concepts, especially on the
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penetration rate issue. Our results show that the shockwave models with the proposed fold-

ing technique are able to compute traffic information, including red/green light transition

information and vehicle arrival/relief rate with root mean square errors of 6.0/0.6 seconds

and 3.2/4.0 vehicles per minute, respectively under a low penetration rate of 1.6%.

The rest of this thesis is organized as follows. Chapter 2 covers some related works. In

Chaprer 3, we introduce the shockwave models. Chaprer 4 presents the mining techniques.

We verificate our shockwave models in Chaprer 5. Conclusions are drawn in Chapter 6.
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Chapter 2

Related Works

In this Chapter, we review some related works about method of traffic information detection.

This resherchs can be classfied to fix located sensor based and probe car sensor based.

2.1 Fix Located Sensing

The fix located sensing is means that detect the traffic information by the road side unit.

The most popular device of road side unit is the loop detector, so we study some researches

of loop detector-based method. Researches using data collected by the loop detector-based

method devoted in the development of analytical models for traffic estimation and the im-

provement of data collection methods by loop detectors. Skabardonis and Geroliminis [7]

developed an analytical model for traveling time estimation in signalized arterials. Liu et

al. [8] discovered a Queue-Over-Detector (QOD) problem in the traditional input-output

approach for queue length estimation in signalized road segments, and used high resolu-
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tion traffic signal data with data collected by loop detectors to estimate time-dependant

queue length. Followed by Wu et al. [3], Oversaturated Severity Index (OSI ) is defined for

quantifying the effects of spillovers, and further separated to temporal OSI and spatial OSI

where the temporal OSI describes the detrimental effects created by a residual queue, i.e.,

the detrimental effects in temporal dimension, and the spatial OSI describes the detrimental

effects created by spillovers, i.e., the detrimental effects in spatial dimension. After that, the

QOD problem in signalized arterials was further discussed in [9], Wu et al. found that the

QOD can significantly affects the accuracy of Arterial Fundamental Diagram (AFD) and

concluded that after removing the QOD effects, one can use AFD to interpret the traffic

flow in signalized arterials. In [4], Geroliminis and Skabardonis proposed a method to detect

spilliovers in signalized intersections.

2.2 Probe Car Sensing

Researches using data collected by the GPS-based method tried to utilize the new mobile

sensing technologies to find other means for traffic data collection. In [10], Herrera et al.

proposed to incorporate GPS tracking logs with data collected from loop detector for traffic

reconstruction. However, they did not discuss the penetration rate of GPS in vehicles, which

directly affects the accuracy of the estimated traffic flow. In [11], Izadpanah et al. proposed

a clustering algorithm to automatically identify the trajectories of shockwaves. However,

the penetration rate would still be a performance issue in their method. After that, the

penetration issue was brought back by Herrera et al. [5], they performed a field trial to show
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that a 2 − 3% penetration of GPS in vehicles is enough to provide accurate measurement

data. In [6], Ban et al. proposed to use traveling time between intersections from GPS

tracking logs, and developed an analytical model from the concept Queue Rear No-delay

Arrival Time (QRNAT) to estimate queue length.

2.3 Shockwave Models

The shockwave theory was first proposed by Lighthill, Whitham [1][2] and Richards [12] for

modeling highway traffic and later expanded by Stephanopolos [13] and Michalopoulos [14]

for modeling signalized traffic. The shockwave theory describes the dynamics of flow, speed

and density in space and time domain. The shockwave occurs when two flows intersect to

each other. For example, it often cause by a traffic signalm, an accident, change in capacity

on roadways and merge free way.
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Chapter 3

Stop-Go Shockwave Models

Vehicles moving between signalized intersections that are the most frequently road type in

urban areas are forced to stop and go due to the traffic light signal transition. They will

gradually stop when a red signal is encountered, and start to move after the traffic light turns

to green. The event that a vehicle transits from move to halt is called a stop event, and it

can be described by the time and position pair that a vehicle stops. Similarly, the event that

a vehicle transits from halt to move is called a go event, and it can also be described by the

time and position pair that a vehicle starts to go.

Considering that {s1, s2, ..., sn} is a collection of stop events and {g1, g2, ..., gn} is a collec-

tion of go events. Fig. 3.1 that is a time-position graph illustrates the movement of vehicles

in front of a traffic light. Each dash line represents a vehicle’s moving track in the time-

position plane, and the arrows indicate the moving direction of vehicles. Triangles represent

stop events and circles represent go events. If these stop events si = (tsi , p
s
i ) are put together,
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a linear trend called the stop shockwave may exist. Similarly, a linear trend called the go

shockwaves may exist among these go events gi = (tgi , p
g
i ). The propagation of the stop and

the go shockwaves in front of a traffic light are depicted by a solid arrow and a chain arrow,

respectively, in Fig. 3.1. These stop and go shockwaves can thus be expressed by equations

Ls : ps + αsts + βs (3.1)

Lg : pg + αgtg + βg, (3.2)

respectively. From the equations, many traffic parameters can be found including the arrival

and relief rates of vehicles and the traffic light transition times. The mining techniques used

to extract these traffic information and a folding heuristic are presented in the next section.

�
�
��
��
�
�

���	


	��
������	���� ��		��
������	����

����	���������	


	
�	�����	

( )s
i

s

i
pt , ( )g

i

g

i
pt ,

Figure 3.1: Propagation of two shockwaves in a signalized road segment.

Once the equations of the stop-go shockwaves are determined, many useful traffic infor-
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mation can be inferred from the parameters of the equations. If we regard the position of

the traffic light as the origin, the moment of ps = 0 indicates the start time of a red light

period. So, from 0 = αsts+βs, ts = −βs/αs is the start time of a red light period. Similarly,

tg = −βg/αg is the start time of a green light period. In addition, the arrival and relief rate

of vehicles can also be discovered from αs and αg in the shockwave equations, respectively.

Suppose H is the average space headway between vehicles and L is the number of lanes in

a direction. Since the arrival rate of vehicles is the number of incoming vehicles per unit

time, and |αs| is the vehicle accumulating distance per unit time per lane, |αs| ×L/H is the

average arrival rate of vehicles. Similarly, since the relief rate of vehicles is the number of

outgoing vehicles per unit time, and |αg| is the vehicle discharge distance per unit time per

lane, |αg| × L/H is the average queue discharge rate of vehicles.
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Chapter 4

Mining Techniques

Below, we present the mining techniques to identify the shockwave models for extraction of

traffic information, followed by a folding heuristic that is useful to reduce the requirement

on the penetration rate.

4.1 Detect Stop-Go Events

The trip of a vehicle is composed of a sequence of alternative stop periods and moving

periods separated by stop events and go events. A stop event indicates the transition from

a go period to a stop period; and a go event indicates the transition from a stop period to

a go period. Let {s1, s2, ...} denote a collection of the stop events of a trip and {g1, g2, ...}

denote a collection of the go events of the trip. In details, let si = (tsi , p
s
i ) denote a stop

event occurring at time tsi and location psi , and gi = (tgi , p
g
i ) denote a go event occurring at

time tgi and pgi . In addition, tsi < tgi < tsi+1 for all i = 1, 2, · · · . Ideally, we assume psi = pgi for
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all i = 1, 2, · · · . However, due to the drifting problem of GPS and the inaccuracy of go and

stop event detection algorithms, psi ̸= pgi could happen. We call s1, g1, s2, g2, ... the stop-go

(denoted as SG in short) sequence of the trip. The duration from tsi to tgi is corresponding

to the stop period at psi , and the duration from tgi to tsi+1 is corresponding to the moving

period from pgi to psi+1. A SG event pair is composed of a stop event and the subsequent go

event, i.e., (si, gi) for i = 1, 2, · · · in the notation.

Practically, it is not so definitely that the stop and go events can be detected. In this

work, a Finite State Machine (FSM) is used to model the status of a vehicle and also to

sketch an algorithm detecting the stop and go events. See Fig. 4.1. The GO state means
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Figure 4.1: The finite state machine that is used to recognize SG events from GPS tracking

logs.

the vehicle is moving, and the STOP state means the vehicle is stopped. As mentioned

before, the moving speed reported by GPS is more or less inaccurate and somewhat with
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delay. Even more, vehicles may move slowly before stopped. So, there exists a grey area

between the GO and STOP states. To reflect these facts, we add one more state called

STOPPING to quarantine the entrance to the STOP state as the speed is low. To sum up,

in the FSM, there are three states, GO, STOP and STOPPING, and two parameters, toStop

and QuarDur. Let v denote the current speed of the vehicle and tick denote the duration

after entering the STOPPING state. The vehicle is in the GO state whenever v ≥ toStop. In

the GO state, if v goes below the threshold toStop, i.e., v < toStop, the FSM transits to the

STOPPING state, and at the same time, tick is reset. In the STOPPING state, as v stays

below toStop for QuarDur unit time, i.e., tick = QuarDur, the FSM transits to the STOP

state. Remind that no matter when, as soon as v ≥ toStop, the FSM goes to the GO state.

As the FSM transits from the STOP state to the GO state, a go event with the location

and the time of the transition is reported. As the FSM transits from the STOPPING state

to the STOP state, a stop event with the location and the time of the previous transition

from the GO state to the STOPPING state is reported. The details of the GPS-based event

detection algorithm are depicted in PROCEDURE 1.

The inaccuracy, drifting and non-instant nature and low sampling rate (about 1Hz) of

GPS all make the GPS-based algorithm not precise. We use an IMU to measure the vibration

of the vehicle to refine the SG events reported by the GPS-based algorithm. We observe

that the amplitude of the vibration of g-value, i.e., the reading of the accelerometer, is

small as the vehicle is moving; and on the other hand, the amplitude of the vibration of

the g-value is relatively large as the vehicle is stopped. The flow chart of the proposed

12



PROCEDURE 1 EventSearch
BEGIN

1: state =STOP; tick = 0; i = 0;

2: while there is a datum in GPS buffer do

3: get the ith GPS datum from GPS buffer

4: vi: the speed of the ith GPS datum

5: if vi ≥ toStop then

6: if state =STOP then

7: Report a go event.

8: end if

9: state =GO

10: else

11: if state =GO then

12: tick = 0

13: state =STOPPING

14: Keep the location and time

15: else if state =STOPPING then

16: tick = tick + 1

17: if tick = QuarDur then

18: Report a stop event.

19: state =STOP

20: end if

21: end if

22: end if

23: i = i+ 1

24: end while

13



IMU-refine algorithm is depicted in Fig. 4.2. Let gi be the norm of the g-value at time ti.

We say gi is a peak if gi is a local maximum or local minimum, i.e., gi > max (gi−1, gi+1)

or gi < min (gi−1, gi+1). Let ∆alj and ∆arj respectively denote the left amplitude and right

amplitude of the peak at time tj. In other words, if gi, gj, gk are three consecutive peaks, then

∆alj = |gi − gj| and ∆arj = |gk − gj|. Now, if a stop event (ts, ps) is reported by the GPS-

based algorithm, the IMU-refine algorithm is triggered to scan the g-value backward from

time ts to time ts −QuarDur to find a peak whose left amplitude is larger then a threshold

astop. Then, the time and position related to the first found peak are reported to replace the

original stop event. Similarly, if a go event (tg, pg) is reported by the GPS-based algorithm,

the IMU-refine algorithm is triggered to scan the g-value forward from time tg − 2QuarDur

to time tg to find a peak whose right amplitude is larger then a threshold ago. Then, the time

and position related to the first found peak are reported to replace the original go event.

However, no matter for the stop or go event, if there are no such peaks found, the event is

not updated. The pseudocode of the proposed algorithm is given in PROCEDURE 2.

4.2 Identify Stop-Go Shockwaves by LSM

We provide the idea to find out the parameters αs, βs, αg and βg in Eq. (3.1) and (3.2).

Assume {s1, s2, · · · , sn} are stop events due to a red light period. For any 1 ≤ i ≤ n,

si = (tsi , p
s
i ) fits to a stop shockwave

Ls : psi + αstsi + βs. (4.1)

14
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Figure 4.2: The flow chart of the IMU-refine algorithm.
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PROCEDURE 2 IMU-refine
BEGIN

1: state: the vehicle state

2: if state =GO then

3: for i = ts − 2QuarDur to ts do

4: if gi is a peak and ∆ari > ago then

5: return the position and time related to gi

6: end if

7: end for

8: No update

9: else

10: for i = ts to ts −QuarDur do

11: if gi is a peak and ∆ali > astop then

12: return the position and time related to gi

13: end if

14: end for

15: No update

16: end if
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Let

Ts =



ts1 1

ts2 1

...
...

tsn 1


, ps =



ps1

ps2

...

psn


, and xs =

 αs

βs

 . (4.2)

The linear system can be written as Tsxs + ps. Since this is an approximately system, we

apply the Least Square Method (LSM) to find the linear regression equation for Ls. It follows

that

(Ts)T Tsxs = (Ts)T ps, (4.3)

and we have

xs =
(
(Ts)T Ts

)−1 (
(Ts)T ps

)
. (4.4)

Similarly, if {g1, g2, · · · , gn} are go events due to a green light period, for any 1 ≤ i ≤ n,

gi = (tgi , p
g
i ) fits to a go shockwave

Lg : pgi + αgtgi + βg. (4.5)

Let

Tg =



tg1 1

tg2 1

...
...

tgn 1


, pg =



pg1

pg2

...

pgn


, and xg =

 αg

βg

 , (4.6)

and we have

xg =
(
(Tg)T Tg

)−1 (
(Tg)T pg

)
. (4.7)
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Chapter 5

Model Verification

5.1 Experiment Results from Field Trials

To verify the proposed SG event detection algorithms and the shockwave equations obtained

by the LSM, an experimental field trial was performed. In the experiment, two vehicles go

around on a two-lanes road segment of length 650 m to collect SG events happening before

a signalized intersection as illustrated in Fig. 5.1. The road segment is part of BaoShan

Road near NCTU in Hsinchu City from A to B. The experiment is performed in a rush hour

from 7:37 am to 8:20 am. The traffic light is located at B and two vehicles go along the

black line from A to B to collect the SG events. The vehicles then take U turns at B and go

back to A to start another round of data collection. Totally, ten rounds were performed in

the experiment. A smartphone is installed in each vehicle to log GPS and IMU data. The

sampling rates of GPS and IMU are 1Hz and 20Hz, respectively. Besides the GPS and IMU

18
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Figure 5.1: The road segment for field trial experiments.
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data, the program also provides a function to let users manually log stop and go events.

Meanwhile, the traffic light cycle is 48 seconds for a red light period, including a 3-seconds-

long yellow light period, and 102 seconds for a green light period. The total average vehicle

arrival rate is 24 vehicles per minute in which the average vehicle arrival rate of the left

lane is 18.6 vehicles per minute. The average vehicle arrival rate is counted from recorded

video. Note that, the experiment is performed in the left lane since the traffic flow in Taiwan

is mixed with heavy vehicles, passenger vehicles and motorcycles, and motorcycles usually

drive in the right lane. In addition, in the ten-round experiment, there are total ten samples

among the 43-minute-length experiment and there are about 42.5 × 18.6 = 790.5 vehicles

during the experiment. Therefore, the penetration rate is 10/790.5 ≈ 1.2%. In the rest of

this sections, we will first give the analysis on the SG event detection algorithm and then on

the event-based shockwave model discovery.

5.1.1 Analysis on SG Event Detection

Fig. 5.2 depicts the time domain waveforms of GPS and IMU tracking logs, the SG events

recorded manually, and the SG events reported by the proposed algorithms. In the rest of

this section, the GPS-based event detection algorithm and GPS+IMU-based event detection

algorithm are called the GPS-based algorithm and GPS+IMU-based algorithm for short,

respectively. In the figure, the (blue) line marked with diamonds is the speed reported by

GPS and the y-axis on the left is the scale of speed inKm/hr; and the (red) line marked with

squares is the g-norm measured by IMU and the y-axis on the right is the scale of g-norm

20
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in g, i.e., 9.8 m/s2. The (green) line marked with triangles, the (yellow) line marked with

asterisks and the (purple) line marked with circles respectively are the STOP and GO states

manually logged, determined by GPS-based algorithm, and determined by the GPS+IMU-

based algorithm. In the three SG state curves, the high level denotes the GO state and the

low level denotes the STOP state. The thresholds used in the SG event detection algorithms,

including toStop, QuarDur, astop and ago, are set to 3 Km/hr, 3 seconds, 0.035g and 0.036g,

respectively. The stop and go events are respectively marked at 1867.5 second and 1885.5

second manually, at 1870.5 second and 1888.5 second by the GPS-based algorithm, and at

1867.5 second and 1885.5 second by the GPS+IMU-based algorithm. We can see that GPS

has a delayed response and therefore the SG events reported by the GPS-based algorithm is

usually behind the manually logged events. However, from the example provided in Fig. 5.2,

we can see that the delay problem of GPS can be significantly corrected by utilizing IMU to

fine tune the reported stop and go events.

Next, we would like to point out the drifting nature of GPS. In Fig. 5.3, the (blue) line

marked with diamonds is the distance of the vehicle to the traffic light, which is calculated

based on the position reported by GPS, and the (green) line marked with triangles indicates

the manually logged SG events. We can see that the distance drifts from −136.2 m to −139.3

m during the stop period. In other words, even the vehicle does not move, the position

reported by GPS varies in different time. However, the distance should be a constant when

a vehicle stops.

The SG event detection algorithms will be evaluated in terms of temporal and spatial
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errors, hitting rates, and false detection rates based on the manually logged SG events.

Fig. 5.4, in which the x-axis is the time line and the y-axis is the distance to the traffic

light, depicts the stop events collected in the experiment. The squares mark the manually
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Figure 5.4: Stop events from the manual log and the GPS+IMU-based algorithm.

logged stop events and the diamonds mark the stop events reported by the GPS+IMU-based

algorithm. The major reason that causes the inconsistent between the two groups of stop

events is the drifting problem of GPS. In details, the inconsistent can be further categorized

into two levels of errors. One is the false detection of the algorithms. The false detection

can be classified to positive false detection and negative false detection. The positive false

detection, e.g., the event marked by A in Fig. 5.4, means that an event is reported by the

algorithms but does not actually happen and thus is not manually logged. On the contrary,

the negative false detection, e.g., the event marked by B in Fig. 5.4, means that an event

logged by users but is not reported by the algorithms. The other level of inconsistence is the
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inaccuracy of the reported events, including the reported time and position. For example,

in Fig. 5.4, we can see that the square marks and diamond marks do not precisely coincide.

This is due to the inaccuracy of the time of reported events plus the drifting problem of

GPS.

The temporal error is defined as the time differences between the manually logged events

and the corresponding events reported by the algorithms. The GPS-based and GPS+IMU-

based algorithms respectively have 2.74 seconds and 1.81 seconds temporal errors in aver-

age. Similarly, the spatial error is defined as the distance differences between the manually

logged events and the corresponding events reported by the algorithms. The GPS-based and

GPS+IMU-based algorithms respectively have 3.89 m and 2.61 m spatial errors in average.

Both results indicate that IMU can improve the accuracy of the SG event detection.

The hitting rate is defined as the ratio of the number of the SG events correctly reported

by the algorithms to the number of the manually logged SG events. The false detection rate,

including the positive false detection rate and the negative false detection rate, is defined as

the ratio of the number of the false SG events to the number of manually logged SG events.

We can see from Fig. 5.4 that the hitting rate is 11/12 and the positive false detection rate

is 1/12, and the negative false detection rate is 1/12. The results show that the proposed

SG event detection algorithms can detect most SG events with a small false detection rate.

In summary, the experiment results suggest that it is sufficient to detect SG events by

the GPS-based algorithm. However, to improve the accuracy of the position and time of the

reported SG events, assistant devices such as IMU or OBD (On Board Diagnostic) may be
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needed in the SG event detection.

5.1.2 Analysis on Shockwave Model Discovery by LSM

In this section, we will look closer to shockwave equations obtained by applying LSM to the

SG event data sets. In the experiment, the length of traffic light cycle is 150 seconds. Due

to the low penetration rate of vehicles equipped with our experiment devices, a 150-seconds

cycle time is too short to log enough SG event data to discover the shockwave equations.

Even in the 43-minutes experiment, there are only 12 pairs of SG events logged. Without

further processing, no information about the shockwave equations can be easily extracted

from the data illustrated in Fig. 5.4. Based on the assumptions that the arrival of vehicles

is stable and all traffic light cycles during the experiment are with the same length, we can

shift the SG events into one traffic light cycle by the modulo operation mentioned in Section

??. Fig. 5.5 illustrates the distribution of the SG events reported by the GPS+IMU-based

algorithm after shifting the SG events into the traffic light cycle starting at time 0. In the

figure, the stop events are marked by (red) triangles, and the go events are marked by (green)

circles.

About Fig. 5.5, first of all, we notice that the group of stop events and the group of go

events both clearly reveal some trends but there are three outliers, or called noises, marked

by A, B and C. The events reported by the algorithms marked by A and B respectively are

the positive and negative false events discussed in the previous section. The outlier marked

by C is the SG event caused by spillover. The spillover effects are treated as noises here, and
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Table 5.1: Coefficients and RMSE of the congestion wave and relief shockwave equations in

different cycles.

Coefficients/RMSE Ls : (αs, βs) Lg : (αg, βg)

T1 (−2.07,−10.64) 12 (−4.08, 212.76) 11

T2 (−1.95,−12.18) 11 (−4.23, 244.80) 12

T3 (−2.22,−0.69) 12 (−3.95, 200.38) 12

Table 5.2: Coefficients of the congestion wave and relief shockwave equations

Coefficients Ls : (αs, βs) Lg : (αg, βg)

Manual (−2.07,−10.64) 9 (−4.08, 212.76) 8

GPS (−1.95,−12.18) 10 (−4.23, 244.80) 11

GPS+IMU (−2.22,−0.69) 12 (−3.95, 200.38) 12

GPS+OBD (−2.07,−10.64) 9 (−4.08, 212.76) 9

further discussions are left to our future study. After removing the outliers and applying

the LSM, the congestion wave equation Ls : ps = −2.22ts − 0.69 and the congestion relief

equation Lg : pg = −3.95tg + 200.38 are obtained and depicted in Fig. 5.5.

To compare the shockwave equations obtained from three SG data sets that are collected

manually, by the GPS-based algorithm, and by the GPS+IMU-based algorithm, in Table 5.2,

the coefficients of the congestion wave and relief equations obtained by the LSM are given.

The coefficients (αs, βs) of the congestion wave equation based on the stop event data sets
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Table 5.3: Trffic information estimation for shockwave equations

Parameters arrival rate (vel/min) Red light period

h = 6.10 h = 9.14 (sec)

Measured 18.63 48.1

Manual 20.67 13.59 57.3

GPS 19.51 12.83 64.2

GPS+IMU 22.21 14.60 51.1

logged manually, reported by the GPS-based algorithm, and reported by the GPS+IMU-

based algorithm respectively are (−2.07,−10.64), (−1.95,−12.18) and (−2.22,−0.69). The

coefficients (αg, βg) of the congestion relief equation based on the go event data sets logged

manually, reported by the GPS-based algorithm, and reported by the GPS+IMU-based

algorithm respectively are (−4.08, 212.76), (−4.23, 244.8) and (−3.95, 200.38). As mentioned

before, if the time tick starts from the beginning of the red light period, −βs/αs that is the

beginning of the red light period should be equal to 0, and −βg/αg that is the beginning of

the green light period should be equal to 48. From the shockwave equations based on the

SG events respectively logged manually, reported by the GPS-based algorithm, and reported

by the GPS+IMU-based algorithm, the values of −βs/αs are respectively −5.12, −6.25 and

−0.31, and the values of −βg/αg are respectively 52.15, 57.87, and 50.73.

To further verify the obtained shockwave equations, Table 5.3 lists traffic parameters that

can be estimated from the shockwave equations. The parameters include the average vehicle
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arrival rate and the length of the red light period. The average arrival rate is estimated by

|αs|×l/h where l = 1 in the experiment. As suggested in [15], a reasonable vehicle head space

h is from 6.10m to 9.14m. Based on the SG events respectively logged manually, reported

by the GPS-based algorithm, and reported by the GPS+IMU-based algorithm, the average

vehicle arrival rates are respectively 20.67, 19.51 and 22.21 if h = 6.10, and respectively

13.59, 12.83 and 14.6 if h = 9.14. We can see that the vehicle arrival rates are around

the measured one. The length of the red light period can be estimated by
∣∣βg

αg − βs

αs

∣∣. The

estimated value for three data sets are respectively 57.3, 64.2 and 51.1.

The results indicate that the framework proposed in this work can properly depict the

shockwave equations, and however, the GPS+IMU-based algorithm is usually the best one.

At the end of this section, we give three comments to briefly conclude the experiment results.

First, the shockwave equations obtained by the proposed framework have been verified by

several traffic parameters. Second, IMU are useful to improve the accuracy of the SG event

detection. Last, and the most important, our experiments show that 1.2% penetration rate is

enough to discover the shockwave equations. In short, the proposed framework for shockwave

model discovery is practical and economic.

5.2 Simulation

To verify the proposed concepts, extensive simulations are performed on VISSIM [16] traffic

simulator to generate vehicle traffic in a signalized single-lane road segment of 650m for 600

seconds. Each vehicle moves in a range of speed from 48km/h to 58km/h before encountering
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a red signal. It slows down its speed to 0km/h after the light turns to red and starts to

accelerate its speed after a green signal. In addition, it behaves according to a car following

model given in [16]. The traffic light system is operated with the cycle length, the red

and green phase length set to 150 seconds, 47 seconds and 103 seconds, respectively. The

traffic light phase sequence starts with a red light period followed by a green light period.

Since the stop/go shockwaves may not imply the knowledge of vehicle speeds, and vice

versa, the stop/go events detected by different speeds: 0km/h, 1km/h, 2km/h and 3km/h

are tested for different stop/go shockwave models. The traffic information including vehicle

arrival/relief rates and the start time of red/green light periods are mined from different

stop/go shockwave models under various levels of traffic intensity from 18 to 24 vehicles

per minute. In addition, to evaluate the penetration rate issues on the accuracy, different

sampling numbers of events from 3 to 8 in the same traffic light cycle are used for shockwave

identification. For example, if there are 18 events detected in the same traffic light cycle,

then the penetration rate for 3 sampled events is 3
18

+ 16.6%.

5.2.1 Time-Position Tracking

Fig. 5.6 illustrates a time-position graph of the propagation of stop-go shockwaves in the

simulations with an average vehicle arrival rate of 24 vehicles per minute. In the figure, the

stop and go events detected by 0km/h are marked by triangles and circles, respectively. It

can be noted that the stop/go shockwaves occurring with a similar slope every traffic light

cycle.
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Figure 5.6: The propagation of stop-go shockwaves in the simulations.

5.2.2 Simulation for LSM

In this subsection, we talk about our simulation result of using LSM to identify stop-go

shockwave model.

Vehicle Flow Information

We first validate the vehicle flow information including the vehicle arrival and relief rate.

Fig. 5.7 is the average Root Mean Square Errors (RMSE) of estimated vehicle arrival rates

and mined from stop shockwaves by stop events detected by different speeds. The x-axis

represents the number of sampling events; the y-axis represents the RMSE of the estimated
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vehicle arrival rates. The lines marked with diamonds, squares and triangles represent the

estimated vehicle arrival rates under average vehicle arrival rates of 18, 20 and 24 vehicles

per minute, respectively. The vehicle arrival rate is estimated by |αs| × L/H where L = 1

since the road segment is single-lane, and H is the average headspace calculated from the

simulation data ranged from 6.5m to 6.8m. Theoretically, H can be set from 6m to 9m. The

RMSE is calculated by the errors between the estimated vehicle arrival rates and the actual

vehicle arrival rates during the simulations. It can be noted that the RMSEs are all within 4

vehicles per minute, and the results show that 4 stop events in a cycle can achieve an RMSE

of 3.2 vehicles per minute, and this is good enough for estimation of vehicle arrival rate. The

Probability Density Function (PDF) of errors of the vehicle arrival rates is represented by a

heavy line in Fig. 5.8. Note that, in our simulations, the PDF shows similar distribution

for different stop shockwaves. It shows a bell-shape like distribution with the center at 0

vehicle per minute and the width ranged from −5 to 5 vehicles per minute. The Cumulative

Distribution Function (CDF) of errors of the vehicle arrival rates is represented by a red

line in Fig. 5.9. It shows the 80 percent of arrival rate errors is between −2 and 2 vehicle

per minute. In addition, the error distribution is with mean of 1.37 vehicles per minute and

standard deviation of 1.16 vehicles per minute. This reflects the fact that |αs| is the vehicle

accumulating distance per unit time per lane. The results show that the proposed model is

useful for the vehicle arrival rate estimation.

Fig. 5.10 is the average RMSE of estimated vehicle relief rates measured by the similar

way in the vehicle arrival rate estimation. Same legends are used in the figure to represent
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Figure 5.7: RMSE of estimated arrival rates of different stop shockwave models.

the vehicle relief rates under average vehicle arrival rates of 18, 20 and 24 vehicles per minute.

The vehicle relief rate is estimated by |αg|×L/H. There are two observations from the results.

First, the vehicle relief rates mined from the go shockwaves with go events detected by speeds

of 0km/h have the lowest RMSE among these four shockwave models. Errors become larger

as the speed is getting higher. This is because when the go events are determined by a

higher speed, it causes the go shockwave underestimate the vehicle relief rate. Second, it

shows that there is no significant affection by the penetration rate and 4 go events in a cycle

is enough to achieve a good estimation of vehicle relief rate which has an RMSE of 4 vehicles
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Figure 5.8: The PDF of the errors of the vehicle flow information. (a) the vehicle arrival

rate. (b) the vehicle relief rate.

per minute. This is because vehicles all start to move immediately when a traffic light turns

to green, i.e., the slopes between go events are very similar. The PDF of errors of the vehicle

relief rates is depicted by a line in Fig. 5.8. It shows a similar bell-shape distribution as the

vehicle arrival rate with mean of 2.12 vehicles per minute and standard deviation of 1.62

vehicles per minute. The CDF of errors of the vehicle relief rates is depicted by green line in

Fig. 5.9, and it shows the 80 percent of errors is between −3.2 and 3.2 vehicle per minute.

The results shows that |αg| × L/H can be used as a good estimator for the relief rate.
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Traffic Light Transition Information

The traffic light transition information including the start time of a red light period and the

start time of a green light period are validated. Fig. 5.11 is the average RMSE of estimated

start times of red light periods from stop shockwave models with stop events detected by

different speeds. The x-axis represents the number of sampling events; the y-axis represents

the RMSE of the estimated start time of a red light period in seconds. The lines marked

with diamonds, squares and triangles represent the estimated start time of a red period

under average vehicle arrival rates of 18, 20 and 24 vehicles per minute, respectively. The
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Figure 5.10: RMSE of estimated relief rates of different go shockwave models.

start times of red light periods in the simulations are at 0, 150, 300, 450, 600 seconds. The

x-intercept of the stop shockwave equation −βs/αs is used as an estimator for the start time

of a red light period. The RMSE is calculated by the errors between the estimators and

the actual start times of red light periods in the simulations. The results of the four stop

shockwave models show that the RMSEs of estimated start times of red light periods are all

in the range of 6˜8 seconds. The PDF of the RMSEs of errors of the start times of red light

periods is denoted by a dash line in Fig. 5.12, and the CDF is denoted by red line in Fig.

5.13. It can noted that the PDF is a bell-shape with the center at 5 seconds and width of
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a range from −5 seconds to 25 seconds, and the 80 percents of RMSEs of the start times of

red light periods is between −9 seconds and 9 seconds. This is because there may not be

vehicles appearing at the time when a traffic light turns to red, and this delay time is related

to the vehicle arrival rate.

3 4 5 6 7 8
6

6.5

7

7.5

8

8.5

Sampling number

(a) Speed = 0 km/hour

 

 
Arriavl rate 18 (vel/min)

Arriavl rate 20 (vel/min)

Arriavl rate 24 (vel/min)

3 4 5 6 7 8
5.5

6

6.5

7

7.5

8

Sampling number

(b) Speed = 1 km/hour

 

 
Arriavl rate 18 (vel/min)

Arriavl rate 20 (vel/min)

Arriavl rate 24 (vel/min)

3 4 5 6 7 8
5.5

6

6.5

7

7.5

8

Sampling number

(c) Speed = 2 km/hour

 

 
Arriavl rate 18 (vel/min)

Arriavl rate 20 (vel/min)

Arriavl rate 24 (vel/min)

3 4 5 6 7 8

5.5

6

6.5

7

Sampling number

R
M

S
E

 o
f 

th
e
 s

ta
rt

in
g

 t
im

e
s 

o
f 

re
d

 l
ig

h
t 

p
e
ri

o
d

s 
(s

e
c
)

(d) Speed = 3 km/hour

 

 
Arriavl rate 18 (vel/min)

Arriavl rate 20 (vel/min)

Arriavl rate 24 (vel/min)

3 4 5 6 7 8

5.5

6

6.5

7

Sampling number

(e) Speed = 4 km/hour

 

 
Arriavl rate 18 (vel/min)

Arriavl rate 20 (vel/min)

Arriavl rate 24 (vel/min)

3 4 5 6 7 8
5

6

7

8

9

Sampling number

(f) Speed = 5 km/hour

 

 
Arriavl rate 18 (vel/min)

Arriavl rate 20 (vel/min)

Arriavl rate 24 (vel/min)

Figure 5.11: RMSE of estimated start times of red light periods of different stop shockwave

models.

Fig. 5.14 is the average RMSE of estimated start times of green light periods from

different go shockwave models. The similar legends are used for the representation of the

estimated start time of a green light period. The start times of green light periods in the
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Figure 5.12: The PDF of the errors of the start times of red and green light periods.

simulations are at 51, 201, 351, 501 seconds. Similarly, −βg/αg is used as an estimator for the

start time of a green light period. Note that only 4 go events is enough for a good estimation

of the start time of a green light period. The results of the four go shockwave models show

that the RMSEs of estimated start times of green light periods are all within 2 seconds. The

PDF of the RMSEs of errors of the start times of green light periods is denoted by a solid

line in Fig. 5.12, and CDF is denoted by green line in Fig. 5.13. It can noted that the PDF

is a bell-shape with the center at −0.5 seconds and width of a range from −5 to 1 seconds,

and the Fig. 5.13 shows the 80 percents RMSEs is between −1.3 to 0. This is because there

is a delay when a vehicle starts to move after a traffic light turns to green. The results show
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Figure 5.13: The CDF of the errors of the start times of red and green light periods.

that −βg/αg can be used as a good estimator for the start time of a green light period.

Summary

In summary, the simulations reveal four things about the performance on traffic information

mining from the stop/go shockwave models. First, both stop/go shockwave models are useful

to estimate the vehicle arrival/relief rate. Second, the stop shockwave model may not be

used in the mining of the start time of a red light period, in contrast, the go shockwave

model is very useful in the mining of the start time of a green light period. We may use the

go shockwave occurring in the cross direction of the road to help in the mining of the start

time of a red light period. Third, it is better to use stop/go events detected by 0 speed for
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Figure 5.14: RMSE of estimated start time of green light periods of different go shockwave

models.

shockwave identification. Most importantly, it only requires 4 stop/go events to obtain a

good result for the traffic information estimation. If the folding technique is applied to fold

events within 10 cycles and the vehicle arrival rate is 24 vehicles per minute, the penetration

rate can be reduce as low as 4
24×10

+ 1.6%.
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Chapter 6

Conclusions

In this thesis, we propose a smartphone-based probe car system that utilizes mobile sensing

to pervasively detect and grade road abnormality such as potholes, speed bumps, expansion

joints manhole covers, etc. To overcome vibration factors such as orientation of smartphones,

phone racks, sensor chips of smartphones, types of vehicles, and driving speed, several mech-

anisms are proposed including a vertical component extraction algorithm and an abnormality

detection algorithm by the standard deviation of vertical vibration. The result indicates that

our algorithm can eliminate these factors and grade the road abnormality.
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