5 17 A% 38 N
AR TRERH AR
B s X

\

& SLA 223 TR o f T s

An SLA-aware Load Balancing Scheme for

Cloud Datacenters

y 2 ;j 4 :v’ﬁ};’:‘g}ﬁ

—

HEREIIRR . R

An SLA-aware load balancing scheme for cloud datacenters

oy o4 i we R Student : Chung-Cheng Li

R LAY Advisor : Kuo-Chen Wang

ngineering

for the Degree of
Master

Computer Science

June 2012

Hsinchu, Taiwan, Republic of China

PR R 101 # 6 °

ASLAZ ZATFHY < f T G

B RGP B REFE IR BL

ZAPE TR EFARE 2007 & ske F o v LG

=
o
%
il
&

i

Ehfeddiga 'l (4ot d) Fihedo®Bft &+ § 9as

AT
ks
W

S AR T PTG T e R R - kA2
TP oAPHRN - ATzt g P N f ;\..1 @3?’]‘# -
FEPTER (21dID) o FEeg P L TR v B e

R ER=2) S RN ER LRy I 5§ ;-‘?ﬁi%f%’*—%"o",ﬁ%ﬁ’*iﬂ,;\:fyuﬁ
- BAS AV SRR 6 G B BR (n-dwrr) G0 f T
L WEH B2 U R G vk Bk B i # —g;ﬁ—tza\ FeF] & B F ik IR
PR EY o A nn-dirriFE ¢ o A PERT R EE S

£ dptR(CPU ~ 2R ®d ~ 2R W ~ A2 A% 5)foipsd

ERBEL OMNABEE DB BIIRBEE o AP on-dirr F 5
EE LA A SR e 1 a4 0 F R MORIR K OE F 3k
(SLA) ehig F & - R G % AP AP I f £ T HRk 2
(nn-dwrr) w3 k3 "LnlRT > B T sl bt prr - 1,86

& » 1t capacity based - 1.49 & > 2 % v ANN-based #-1.21 & -

SR [AY ~
2\ ,FB] 72 » B

1§ T\’ﬁﬁﬁﬁfdé‘i\

tldib iw & 2

An SLA-aware Load Balancing Scheme
for Cloud Datacenters

Student: Chung-Cheng Li Advisor: Dr. Kuochen Wang

Department of Computer Science

National Chiao Tung University

Abstract

Cloud computing appears-at the fourth season, 2007. It has high scalability and
nearly unlimited (e.g., computing) resources. One of the most important issues about
cloud computing is how to achieve load balancing among thousands of virtual
machines (VMs) in a large datacenter. In this paper, we propose a novel decentralized
load balancing architecture, called tldib (two-level decentralized load balancer). This
distributed load balancer takes advantage of the decentralized architecture for
providing scalability and high availability capabilities to service more cloud users. We
also propose a neural network-based dynamic load balancing algorithm, called
nn-dwrr (neural network-based dynamic weighted round-robin), to dispatch a large
number of client requests to different VMSs, which are actually providing services. In
nn-dwrr, we combine of VM load metrics monitoring (CPU, memory, network
bandwidth, disk 1/0 utilization) and neural network to adjust the weight of each VM.
Our nn-dwrr algorithm can reduce SLA (service-level agreement) violations.
Experimental results support that our proposed load balancing algorithm, nn-dwrr,

can be applied to a large cloud datacenter, and it is 1.86 times faster than wrr, 1.49

times faster than capacity-based, and 1.21 times faster than ANN-based load
balancing algorithms in terms of average response time in the limited resources. In
addition, tldlb can avoid SLA violations via in-time activating VMs in the spare VM

pool.

Keywords: Artificial neural network, cloud computing, decentralized architecture,

load balancing, service level agreeme

Acknowledgements

Many people have helped me with this thesis. | deeply appreciate my thesis
advisor, Dr. Kuochen Wang, for his intensive advice and guidance. | would like to
thank all the members of the Mobile Computing and Broadband Networking
Laboratory (MBL) for their invaluable assistance and suggestions. The support by the
National Science Council under Grant NSC101-2219-E-009-001 and by the Inventec
under Contract 100C202 is grateful acknowledged. Finally, | thank my family for

their endless love and support.

Contents

AbStract (in ChineSe)......ccveeiiiiiniiiiineiiiinnticiinetecsssstosssssessesssssssssscsssassonns i
ADSTFACT. ... bbbt i
(0] 01 (=] 0 | £ TSRO U PP vi
I TS o) o [N OSSR vii
LIST OF TADIES.... i viii
Chapter 1 INtrOQUCTION. ..iiue . ieie e iee et cee it crae e b e st e e e sreesre e e e sreentesnnesreas 1
Chapter 2 Related WOOKK ..o ik et 4
2.1 Load halanCer arChiteCtUIE ...ouuuesseereeseesieieaibeie e abie s nne e st sneeseeee s 4
2.1.1 Centralized arChitBCIUIEcceiueeiiieieenne et eeie et iaesneeneeseeeneeaneeseeas 4

2.1.2 Decentralized architeCtureco.oveve i siinsesie b snsibe s e 5

2.2 Load balancing algorithms............cco it b 7

Chapter 3 Proposed SLA-aware Load Balancing Scheme for Cloud Datacenters 9
3.1 Two-level decentralized load balancer (tldIb)................cccooooi ittt 9

3.2 Neural network-based dynamic weighted round-robin (nn-dwrr) scheduling

.. 13
Chapter 4 Evaluation and DiSCUSSIONccueiuieiueireiaiineesssanasseeansssreesseeneesseenseens 18
4.1 Experimental NVITONMENT. it e sastiae e esbe e neestesiesiesseseeeeeenes 18
4.2 Comparison of different load balancing algorithmscc.ccocvvoveieiiinnn, 19
4.3 Comparison of SLA violation rates with and without a spare VM pool........ 23
Chapter 5 CONCIUSIONccviiiiie e 24
5.1 ConCluding rEMATKScoveiiiiiiiiieieiee e 24
5.2 FULUIE WOTK ...ttt 24
RETEIEINCES ...t sb bbb 25

vi

List of Figures

Figure 1. The cloud scales: Amazon EC2 growth [2].......cccooveiiieiiiiniiicieee 1
Figure 2. A classic load balancer architecture in a cloud computing environment........ 2
Figure 3. Three-level centralized load balancer architecture [9].ccccooviiniiiiiennnn 5
Figure 4. Structure of a decentralized load balancer [8].......c.cccccoovviiiiiiiiiieiiieiicen, 6
Figure 5. Structure of a Meta-Scheduler [8]. ... 6
Figure 6. Proposed two-level decentralized load balancer (tldlb) architecture. 10

Figure 7. The configuration of an SLA-aware local load balancer along with a spare
VMpogl. Nl ... vl R e 12

Figure 8 Schematic representation of an artificial neural network model for VM.14

Figure 9. The process of delta learning rule VM.coooociveiie e ceieieiiianise e 14
Figure 10. Flowchart of the nn-dwrr algorithm. ... e 17
Figure 11. EXperimental SELUP. . ..c.civveir i ctie i eite st ta e et 18

Figure 12. Comparison of four scheduling algorithms (maximum response time
specified In the SLA: 2000 MS). ..cieiieiieeiieireeiesaeieasseseesreeeeataesaaneeseesreeseeanes 20
Figure 13. Average response time (maximum response time specified in the SLA:
PIUINST o S SE 7 4. S 20
Figure 14. Comparison of four scheduling algorithms (maximum response time
specified in the SLA: 1000 MS). wou.cuereeierteiiesteniiereseeieiesiesie e ste e sressesseeeeeenens 21
Figure 15. Comparison of four scheduling algorithms (maximum response time
specified INthe SLA: 432 MS). c..eiiiiiie e 21

Figure 16. Comparison of SLA violation rates with and without a spare VM pool. ...23

vii

file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493770
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493771
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493772
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493773
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493774
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493775
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493776
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493776
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493777
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493778
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493779
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493780
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493781
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493781
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493782
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493782
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493783
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493783
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493784
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493784
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493785

List of Tables

Table 1. Qualitative comparison of different load balancing architectures. 7
Table 2. Qualitative comparison of different load balancing algorithms....................... 8
Table 3. Load balancing experimental parameters.ccccoeverereneninieieiene e 19
Table 4. Configuration 0f €aCh VM. ..o 19

viii

file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493786
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493787
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493788
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493789

Chapter 1

Introduction

Cloud computing is the delivery of computing as a service rather than a product,
whereby shared resources, software, and information are provided to computers and
other devices as a utility (like the electricity grid) over a network (typically the
Internet) [1]. Cloud Computing has been envisioned as the next-generation
architecture of IT enterprises. Therefore, it rapidly grows in recent years. We can
clearly find that the number of users which use cloud computing grows very fast, as
shown in Figure 1.We can see the growth of average daily instance launch counts in

Amazon EC2 is very fast.

80,000

70528

70,000
60,000
50,000
40,000
230,000

20,000

10,000

Average daily instance launch counts

0
2007 2008 2009 2010

Figure 1. The cloud scales: Amazon EC2 growth [2].

The load of a cloud computing system is highly dynamic. To support a large
number of users which use cloud services, cloud service providers must provide
shared resources in datacenters located across the world. Different users may require
different services, and it may lead to load unbalance between the servers (virtual
machines, VMs) in a cloud datacenter. To conquer this problem, user requests are
sending to a load balancer and the load balancer then forward them to the appropriate
VMs for processing in cloud datacenters. The function of load balancing aims to
realize a high ratio of user satisfaction and facilitate high resource utilization in the
cloud [3]. Improper allocation rules might cause the inefficiency of the cloud system
[4]. Therefore, we need a load-balancer in a cloud computing system to receive user
requests and forward them to appropriate servers (VMS) to service the user requests [5]

and [6].

Load
Balancer

Cloud Computing
Environment

Figure 2. A classic load balancer architecture in a cloud computing environment.

Figure 2 illustrates a classic load balancer architecture in a cloud computing

2

environment. All user requests will be connected to a load balancer. Obviously, we
cannot expect one load balancer to maintain the burden of the entire datacenter. We
can use a technique which is similar to Amazon’s Auto Scaling. When one load
balancer is overloaded, it will start another load balancer to share the load of user
requests.

A service-level agreement (SLA) is a part of a service contract where the level of
service is formally defined [7]. The SLA will typically have a technical definition in
terms of response time, throughput, or similar measurable details [7]. In this paper, we
aim to reduce the SLA violation rate while designing a load balancing architecture
and algorithm.

In Chapter 2, we describe the architecture and algorithm of a load balancer
design in a cloud computing environment and depict the differences between
centralized and distributed load balancer designs. Chapter 3 proposes a new
architecture, called an SLA-aware two-level decentralized load balancer (tldlb), to
support dynamic load balancing in cloud data centers and also proposes a novel load
balancing algorithm, called neural network-based dynamic weighted round-robin
(nn-dwrr), to dispatch requests to appropriate VMs. Chapter 4 shows experimental
results and the comparison of different load balancing algorithms. Finally, Chapter 5

concludes this paper and identifies future work.

Chapter 2

Related Work

2.1 Load balancer architecture

There are several load balancing architectures in cloud computing environments
[3], [8], [9], [10]. All these architectures, broadly implements load balancing
algorithms, which can be static or dynamic, and also uses centralized or decentralized
control [8]. Therefore we roughly divide load balancing architectures into two
categories, centralized and decentralized. We briefly describe these two architectures

as follows.

2.1.1 Centralized architecture

A centralized load balancer architecture has a single load balancer which
receives an incoming request and then select a proper VM to serve the request by a
scheduling algorithm, as shown in Figure 3. In this architecture, the load balancer may
become a bottleneck in cloud environments if the request rate grows to exceed the
capacity of the load balancer. That is, this architecture lacks scalability in cloud

environments.

Request
Manger

M,
Service

Manager

S] SZ
Service
Node
N, N, N3 Ny Ns Ny N; Ng N

S

3
'9 Nm NIl N]l

Figure 3. Three-level centralized load balancer architecture [9].

2.1.2 Decentralized architecture

A decentralized load balancer architecture has several load balancers. in cloud
environments. Incoming requests will be dispatched to load balancers randomly or
adjacent load balancers, as shown in Figure 4. Cluster-1, Cluster-2 and Cluster-3 are
composed of resources. Figure 5 shows the configuration of a Meta-Scheduler in
Figure 4. Users submit their jobs to a Meta-Scheduler, and the jobs are stored in the
queue of a request handler. Dispatch Manager obtains the submitted job periodically
from the queue. Load Balancer will perform load balancing by exploiting the
information gathered from Load Monitor and Information Manager. Information
Manager will query Load Monitor and send the host load information to Load
Balancer. Transfer Manager gives permission rights for the execution of a given job to
a remote host. Execution Manager will keep updating the job status to Dispatch
Manager. Although the decentralized load balancer architecture has more scalability
than the centralized load balancer architecture, it needs more communication cost to

share load information among load balancers.

User requests

User requests User requests

Meta-Scheduler

Figure 4. Structure of a decentralized load balancer [8].

Figure 5. Structure of a Meta-Scheduler [8].

Table 1. Qualitative comparison of different load balancing architectures.

Load balancin
9 Wang [9] Rajavel [8] tldlb (proposed)
approach
Architecture Centralized Decentralized Decentralized
Scalability Low High High
Spare VM pool No No Yes

The parameters in Table 1 are defined as follows:
1) Architecture

There are two Kinds of load balancing architectures, centralized and
decentralized.
2) Scalability

Load balancer can quickly adapt to such changes when the system grow or
shrink.
3) Spare VM pool

There is some spare VMs can be used to reduce SLA violation when the load

suddenly becomes larger.

2.2 Load balancing algorithms

We surveyed two existing load balancing algorithms and proposed a neural
network-based dynamic weighted round-robin (nn-dwrr) scheduling algorithm. The
first existing scheduling algorithm is called the weighted round-robin scheduling
algorithm (wrr) [10]. It assigns a fixed weight to each VM depending on the VM’s
processing capacity at the startup. The second capacity-based scheduling algorithm

monitors the resources of each VM and distributes more requests to the VM which

has more remaining resources. The main concept is distributing requests to a VM
which has the most remaining capacity [12]. The last load balancing algorithm is the
proposed neural network-based dynamic weighted round-robin algorithm (nn-dwrr),
which adjusts weights based on neural network-based load prediction, and it will be
detailed in Chapter 3. Table 2 shows qualitative comparison of different load

balancing algorithms.

Table 2. Qualitative comparison of different load balancing algorithms.

. Capacity-based nn-dwrr
Algorithm wrr [4]
[12] (proposed)
Static or _ . :
) Static Dynamic Dynamic
dynamic
Load
. No No Yes
prediction
SLA-aware No No Yes

Chapter 3
Proposed SLA-aware Load
Balancing Scheme for Cloud

Datacenters

In this paper, we propose an SLA-aware two-level decentralized load balancer
(tldlb) architecture and-a neural network-based dynamic weighted round-robin
scheduling algorithm (nn-dwrr) to support dynamic load balancing in cloud data

centers.

3.1 Two-level decentralized load balancer (tldlb)

The two-level decentralized load balancer is divided into two levels in our design:
global load balancer and local load balancer. Each global load balancer is connected
to an SLA-aware local load balancer that forms a virtual zone. The load balancer
architecture is shown in Figure 6, which contains two parts, described as follows:

1) Local load balancer

A local load balancer has two main tasks. The first task is monitoring the load of
VVMs which are in the same virtual zone. The local load balancer will obtain four load
metrics (CPU, memory, network bandwidth, disk 1/O utilization) from each VM and
the response time of each request for VMs. The local load balancer will provide the
above information to the global load balancer. If the current working VMs (VM;
through VM,) can’t handle the load, the local load balancer will activate some spare

VMs from the spare VM pool (VMg through VM) to provide service. The second
9

task is choosing an appropriate VM using a neural network-based load balancing
algorithm and then redirects the request to the VM. Our local load balancer is
SLA-aware, which means we assign user requests to appropriate VMs for service so
as to meet SLA requirements.
2) Global load balancer

Global load balancers are connected to each other via P2P connections. The
global load balancers exchange the load information of each virtual zone using the
load information from each local load balancer. If there is no VM available in the
spare VM pool to serve an overloaded virtual zone to meet the SLA requirement, the
corresponding global load balancer will direct its requests to another light-loaded

virtual zone to service the requests.

- Global load balancer

SLA-aware local load balancer

P2P |
VM |[o [VM | VMG VMG | P2P

Virtual Zone 2

5 Global load balancer JPZP » Global load balancer p
Request_—) 1 A-aware local load balancer SLA-aware local load balancer
e o e i
! VM| ... || YM, : VMg || ... || YMim : VM, (| ... || VM, : VMg || ... || YMim :
’;l';‘ E—————= | E—————— |
User Virtual Zone 1 Virtual Zone 3

Figure 6. Proposed two-level decentralized load balancer (tldIb) architecture.

Figure 7 shows the modules inside an SLA-aware local load balancer along with
a spare VM pool. The following is a brief description of each module.

* Request Handler

10

This module receives user requests and forwards them to the Request Scheduler
module. When the workload of a virtual zone reaches the upper limit, this module will
redirect requests to another Request Handler which belongs to another virtual zone.

* Request Scheduler

This module assigns requests from Request Handler to selected VMs based on
the weights from the Weight Adjustment module. We give each VM a weight and then
the Request Scheduler module distributes requests to appropriate VMs by these
weights.

* Load Monitor

It monitors four utilization-metrics (CPU, memory, network bandwidth, disk 1/0
utilization) of each VM in this local load balancer. These utilization information
allows the local-load balancer to dynamically adjust the capacity index (Cl;) for VM;.
e History Storage

The load history information collected by Load Monitor and the weight history
from Weight Adjustment will be stored in this module. The weight history data can
support the Load Prediction module to predict the load at the next time slot.

e Load Prediction

This module uses load history data, weight history data, and the specified
response time from the SLA Engine module to predict a neural index (NI;) for VM.
The NI;‘s are sent to the Weight Adjustment module. Note that we use an artificial
neural network (ANN) with the delta leaning rule in our design.

e SLAEngine

This module records the response time of each request and check if the response
time satisfies its SLA requirement.
e Weight Adjustment

This module adjusts the weight of each VM which belongs to this local load
11

balancer according to the remaining capacity information (CI;’s) of each VM; from the
Load Monitor module and load prediction information (NI’s) from the Load
Prediction module.
* Active VMs and a Spare VM pool

There are active VMs and some suspended VMs in the spare VM pool. When
active VMs can’t handle incoming requests to meet the SLA requirements, Request

Handler will wake up some spare VMS to service requests.

[
4""[32'?'"1-} Communication <J‘---R‘2-E---)
[
| 4 Globalload |
Lol ____|___Dbalancer |
r—ft—————— == === = === — = — = 1 Collection of four
: I oad Monitor < 1 utilization metrics
[|
(S : \
| N ‘ Load history ‘
| g CI. | > VM] S
[o |
Weight hist .
: P elg’ﬂr‘ History Storage } » VM., |
E \ -
| y :
| CQD Weight NIi| Load Prediction | | '
: § Adjustment (using ANN) } > VM. |
B Specified & ‘ - ———= 1
B response time ‘ | VM I
—- sl
7 . \ - |
: 8 Wi SLA Engine } | :
g | M,
: & 4 } | VM. |
: Request Scheduler } } : :
I ‘k ‘ _" VM\IT'I :‘-““
[\ [-
Requests | Localload | } Spare :
—:* Request Handler balancer } . VM pool |
‘ iiiiiii .l
\

Redirecting requests to
another Request Handler

Figure 7. The configuration of an SLA-aware local load balancer along with a

spare VM pool.

12

3.2 Neural network-based dynamic weighted

round-robin (nn-dwrr) scheduling

In this paper, we focus on dynamically adjusting the weight of each VM. We
propose a novel neural network-based load balancing algorithm, called nn-dwrr
(neural network-based dynamic weighted round-robin), to dispatch requests to
appropriate VMs based on their weights. A weight should be able to reflect the current
capacity of a VM. We give each active VM a weight according to the capacity index
(CI}) from Load Monitor and the neural index (NI;) from Load Prediction. The
Request Scheduler module distributes the requests to active VVMs by their weights
assigned by the Weight Adjustment module.

The first part of the information required by the Weight Adjustment module is
remaining capacity information. Load balancing ought to be achieved using an
inferred system state based on locally gathered data [11]. The Load Monitor module
collects four load metrics, utilizations of CPU, memory, network bandwidth, and disk
I/0. Weight Adjustment will use following formula to calculate capacity index (ClI;)
for VM.

Cl; = 1 — MAX(CPU;, Mem;, Bandwudth;, Disk 1/0;)
The greater capacity index means more remaining resources in this VM. We are not
sure what kinds of services will be provided in datacenters. Different services require
different critical resources. For example, the critical resource of a Web server is CPU
and the critical resource of a FTP server is network bandwidth. The critical resource
may become the bottleneck of a VM. Therefor we simply use a maximal to find the

current bottleneck of a VM [13].

13

Input Hidden Output
Layer Layer Layer

net, Mf()\

nets ’ F fC)

Wy N

N
M)

, Learning . o
g - Do \\:3\\\\ . S]gna] L d
7_7_7"""-—-7_,_7_\?\\ netS s \-.‘“:" i

Wigs D) generator

Adjusting hidden layer weights

Figure 8 Schematic representation of an artificial neural network model for VM.

X

Xi0

A(Dj
| Learning o
X _,(X}._’” signal df
\T generator '
a

Figure 9. The process of delta learning rule VM;.

The second part is the load prediction information from a neural network-based

load predictor. We used the delta learning rule in our ANN design (see Figure 8 and
14

Figure 9) because the neural network has the capability of optimization and prediction.
Due to there is no certain mathematical approach for obtaining the optimum number
of hidden layers and their neurons [14], we used a single hidden layer for less
computation time in our design.

In Figure 8, input x is a vector which contains recent ten history weights. To avoid
SLA violations, such as the response time required (d;), which is specified in the SLA,
we consider the response time when training the neural network. The neural network
will calculate a weight for each VM;, which we call neural index; (NI;). Request
Scheduler allocates requests according to NI;, and then measure the average response
time (0;). When the current average response time is close to the certain proportion
(called pre-reaction rate (p), €.9., 80%) of response time in the SLA, the neural
network will automatically adjust the hidden layer’s weights before SLA violation. If
the learning rate (a) is set to a large value, the neural network can learn faster.
However, If there is a large variability input, then the neural network may not learn

very well. We use the following formula to train the neural network:

NI; = f(Zf(netj))

reE (pxdi—oi)xf’(netj)
Aw=a XrXx

Wijt+1) = Wje) T Aw;

15

If there are n VMs in a local load balancer, the Weight Adjustment module will
combine remaining capacity system real time information CI and neural network
output NI together to calculate weight; (W;) for VM; by following formula:

Cl; X NI,

W, = « 100%
YTy (cl x NI 0

W; reflects the remaining l; in the entire n VMs. The
Weight Adjustmen end i gquest Scheduler. Figure 8 shows

the flowchart o

16

Start

)
Setting initial weights
ke
F
Loe}d anq <«— Collects VM utilization information
weight history | |

Calculating capacity index (CI;)
)
Calculating neural index (NI;)

Calculaling weight; (W;) of VM;

Calculating average response time
using the response time recorded

by SLA‘L Engine
> Adjusting hidden layer weights
d; ¥
.SLA SLA violation
requirements rate >= 5% —No—

I

Yes

A4
Activate a spare VM to serve requests —

Figure 10. Flowchart of the nn-dwrr algorithm.

17

Chapter 4

Evaluation and Discussion

4.1 Experimental environment

We built a testbed that includes a local load balancer and a VM configuration, as
shown in Figure 10. This testbed was for hosting a web page service. There was three
active VMs (VM;, VMy, and VM3) with different capabilities and two spare VMs
(VMs; and VMSs,), which-were running in an apache web server in a virtual zone. We
used the load balancer to link these VVMs together to form a virtual zone. The load
balancer would distribute user requests to three VMs according the proposed
scheduling algorithm nn-dwrr. The experimental environment setup and related

parameters are shown in Table 3 and the configuration of the five VMs is shown in

Table 4.
Local load
balancer
Spare VM pool
CI,*NI, CL,*NI, CI;*NI;
VM 1 VM2 VM:; VM, VMg,

Figure 11. Experimental setup.

18

Table 3. Load balancing experimental parameters.

0osS CentOS 5.5
Virtual machine hypervisor Xen
Number of VMs 3
Number of spare VMs 2
Application Web service
Duration (time limit) 60 sec
Response time specified in the SLA 2000, 1000, 432 ms
Pre-reaction rate (p) 80%
Transfer function (f)))
(for hidden and output layers) Log-sigmoid
Learning rate (a) 0.5

Table 4. Configuration of each VM.

VM, VM, VM; | VMg | VMg,
CPU (cores) 1 2 3 2 2
Memory (MB) 512 1024 2048 1024 1024
Virtual disk (GB) 10 10 10 10 10
Static weight (wrr) 1 2 4 - -

We used this testbed to host web services, and evaluated average response time
using an apache benchmark (ab) to collect real web traffic for different load balancing

algorithms. Requests are based on a real web service. We then compare four different

scheduling algorithms.

4.2 Comparison of different load balancing

algorithms

How to utilize the advantage of cloud computing and make each task to obtain

the required resources in the shortest time is an important topic [9]. Therefore, we use

19

the average response time as a metric for comparing different scheduling algorithms.

2 4000
'@ 3500 e

E

o 000 e T e Capacity-based
& 2500

@

© 2000 ——— ANN-based

-]

g 1500 s

o === nn-dwrr

>

< 1000 (proposed)

500

0

O D O L P DO DD DO DD DD DD
L ELLEL LT LLLLFELLL LSS

Number of requests/sec

Figure 12. Comparison of four scheduling algorithms (maximum response time

specified in the SLA: 2000 ms).

2590.03

2500 2298 19
2000 1876.56
1541.67
1500
1000
500
O T T 1

Average response time (ms)

wrr Capacity-based ANN-based nn-dwrr
(proposed)

Scheduling algorithm

Figure 13. Average response time (maximum response time specified in the SLA:

2000 ms).

20

5000

4500 - —

e
@ 4000 _ |
: 7 - ot = -wiIT
E 3500 —
= 3000 7 - |
g A e AN Capacity-based
& 2500 Pt D
%-/".-.‘ ,4,’
g = === ANN-based
2 « —=
o —Z-
) 1500 — . —
Z 1000 e Ao === nn-dwrr
) il (proposed)

500 L,
O O H O H O H O H H H D H O H D O O D
CEEFPLLL L L LT LTS LSS

Number of requests/sec

Figure 14. Comparison of four scheduling algorithms (maximum response time

specified in the SLA: 1000 ms).

5000

4500 —
e

W 4000 — .

£ e S = ewrr

@ 3500 —

E P

o 3000 - _

2 e A Capacity-based

g 2500 /'-. . .

- S A 7

@ 2000 /" ==t ANN-based

@ ~==-

?':1500 _’_';" ~- -

Z 1000 | o === nn-dwrr
g (proposed)
e

-
L

O H O H H H B H OB H O DO LD SHED
FEEPFTE PP PSS ECETEE S S

Number of requests/sec

Figure 15. Comparison of four scheduling algorithms (maximum response time

specified in the SLA: 432 ms).

Figure 12 shows the comparison of four scheduling algorithms. The response
time requirement specified in the SLA is 2000 ms. In Figure 12, we found that the

static scheduling algorithm (wrr) has the longest response time. The capacity-based

21

and wrr scheduling algorithm has near the same performance before number of
requests over 510. After that, the disparities of the response time between them will
become more obvious. The performance of the ANN is good when the number of
requests is large. However, we found the average response time of the ANN-based
algorithm is the worst and changes greatly before the average response time
exceeding 80% (pre-reaction rate) of the response time specified in the SLA. This is
because the ANN-based algorithm will continue to distribute requests to a VM when
the response time not exceeding 80% of the response time specified in SLA.
Disregarding the number of requests, the performance of the proposed nn-dwrr is
always the best. Figure 13-shows that the proposed nn-dwrr is 1.86 times faster than
wrr, 1.49 times faster than capacity-based, and 1.21 times faster than ANN-based
scheduling algorithms in terms of average response time. Figure 14 and Figure 15
shows the cases under different response times (1000 ms and 432 ms) specified in the
SLA. They shows the performance differences of the ANN-based and nn-dwrr are

getting closer when the specified response time become smaller.

22

4.3 Comparison of SLA violation rates with and

without a spare VM pool

19 -6
17 'y
< © 0 ¢ OO ef5
e 15 x
@ = A £
a | .
® 18 ¢ 4 £ aWithout a spare VM pool
= 4 'S
8 ¢ e o o0 A A A, 3
8 9 A & *With a spare VM pool
=} E
s 7 23
< A A =
=4 5 g ¢ o . ° ©Number of VMs
7] e % e e ®F1
3 9 ® 9
! & [] ® ® e
10 —9 : : —* Lo
O 0O OO0 O0 o000 OO0 000 OO0 CcC OO0 oo
0N o w o wmwowmowowmwo wunw o wo wnmw o wmo
— —~ N AN OO MO < < 0 WO OM~M~SODo oo

Number of requestsisec

Figure 16. Comparison of SLA violation rates with and without a spare VM pool.

Figure 16 shows the comparison of the SLA violation rate with and without a spare
VM pool in the proposed tldlb architecture, both running the proposed nn-dwrr
algorithm. In this experiment, the threshold of the SLA violation rate was set to 5%.

The SLA violation rate is defined as follows:

Number of requests violated

SLA violation rate =
Number of total requests

The SLA Engine, as shown in Figure 7, will keep monitoring the response time
of each request and calculating the SLA violation rate. The SLA Engine would
activate a spare VM when the SLA violation rate exceeds its threshold (5%, in this
case). We found that the proposed tldlb can avoid exceeding the SLA violation rate of
5% by activating VMs from a spare VM pool. The proposed tldIb can indeed reduce

the SLA violation rate by activating VMs in the spare VM pool in time.

23

Chapter 5

Conclusion

5.1 Concluding remarks

We have presented an SLA-aware decentralized load balancer architecture, tldlb,
which can reduce the SLA violation rate. If active VMs are overloaded, the proposed
tldlb avoids SLA violations by activating spare VMs in a spare VM pool. In addition,
we also proposed a novel neural network-based load balancing algorithm, nn-dwrr, to
distribute incoming requests to appropriate VVMs. Experimental results have shown
that the proposed nn-dwrr is 1.86 times faster than the wrr, 1.49 times faster than the
capacity-based, and 1.21 times faster than the ANN-based scheduling algorithms, in
terms.of average response time. The experiment results have demonstrated that our
proposed nn-dwrr algorithm has faster response time, which means we can handle
more requests per second. Since our scheduling algorithm-is simple and efficient, it is
well-suited for cloud computing environments to service a large number of requests

with less response time.

5.2 Future work

In our current design, we focused only on the local load balancer. In the future,
we will implement the global load balancer and will conduct some experiments to
evaluate user requests redirection performance. In addition, we will deploy our load

balancers to a cloud datacenter testbed for further evaluation.

24

References

[1] “Cloud Computing - Wiki,” [Online]. Available:

http://en.wikipedia.org/wiki/Cloud computing/.

[2] “Amazon S3 Growth,” [Online]. Available:

http://www.datacenterknowledge.com/wp-content/uploads/2011/01/amazon-s3 gr

owth 2010.jpa/.

[3] Z. Zhang and X. Zhang, "A Load Balancing Mechanism Based on Ant Colony
and Complex Network Theory in Open Cloud Computing Federation,” in
Proceedings of International Conference on Industrial Mechatronics and
Automation (ICIMA), pp. 240-243, 2010.

[4] W.Y. Lin, G. Y. Lin,.and H. Y. Wei, "Dynamic Auction Mechanism for Cloud
Resource Allocation,” in Proceedings of Cluster, Cloud and Grid Computing
(CCGrid), pp. 591-592, 2010.

[5] “Amazon Elastic Load Balancing,” [Online]. Available:

http://aws.amazon.com/elasticloadbalancing.

[6] “rackspace - Cloud Load Balancers On-Demand,” [Online]. Available:

http://iwww.rackspace.com/cloud/cloud hosting products/loadbalancers.

[7] “Service-level agreement - Wiki,” [Online]. Available:

http://en.wikipedia.org/wiki/Service-level agreement.

[8] R. Rajavel, “De-Centralized Load Balancing for the Computational Grid
environment,” in Proceeding of International Conference on Communication and
Computational Intelligence (INCOCCI), pp. 419-424, Dec. 2010.

[9] S. C. Wang, K. Q. Yan, W. P. Liao, and S. S. Wang, “Towards a Load Balancing in

a Three-level Cloud Computing Network,” in Proceeding of IEEE International

25

http://aws.amazon.com/elasticloadbalancing
http://www.rackspace.com/cloud/cloud_hosting_products/loadbalancers
http://en.wikipedia.org/wiki/Service-level_agreement

Conference on Computer Science and Information Technology (ICCSIT), vol. 1,
pp. 108-113, Jul. 2010.

[10] “Linux Virtual Server,“ [Online]. Available: http://www.linuxvirtualserver.org.

[11] M. Randles, D. Lamb, and A. Taleb-Bendiab, “A Comparative Study into
Distributed Load Balancing Algorithms for Cloud Computing,” in Proceeding of
Advanced Information Networking and Applications Workshops, pp. 551-556, Apr.
2010.

[12] C. C. Li, and K. Wang, “SLA-aware Load Balancing for Cloud Data Centers,”
Report, 2012.

[13] V. Nae, A. losup, and R. Prodan, “Dynamic Resource Provisioning in Massively
Multiplayer Online Games,” IEEE Transactions on. Parallel and Distributed
Systems, vol. 22, no. 3, pp. 380-395, Mar. 2011.

[14] Y. Zhang, J. Pang, R. Zhao, and Z. Guo, "Artificial Neural Network for Decision
of Software Maliciousness”, in Proceedings of Intelligent Computing and
Intelligent Systems (ICIS), pp. 622-625, 2010.

[15] J. Hu, J. Gu, G. Sun, and T. Zhao, “A Scheduling Strategy on Load Balancing of
Virtual Machine Resources in Cloud Computing Environment,” in Proceedings of
International Symposium on Parallel Architectures, Algorithms and Programming

(PAAP), pp. 89-96, Dec. 2010.

26

http://www.linuxvirtualserver.org/

