

國 立 交 通 大 學

網路工程研究所

碩 士 論 文

基於 S L A 之雲端資料中心負載平衡機制

An SLA-aware Load Balancing Scheme for

Cloud Datacenters

研 究 生：黎中誠

指導教授：王國禎 教授

中 華 民 國 １０１ 年 ６ 月

基於 SLA 之雲端資料中心負載平衡機制

An SLA-aware load balancing scheme for cloud datacenters

研 究 生：黎中誠 Student：Chung-Cheng Li

指導教授：王國禎 Advisor：Kuo-Chen Wang

國 立 交 通 大 學

網 路 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Network Engineering

College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2012

Hsinchu, Taiwan, Republic of China

中華民國 101 年 6 月

i

基於SLA之雲端資料中心負載平衡機制

學生：黎中誠 指導教授：王國禎 博士

國立交通大學網路工程研究所

摘 要

雲端計算這個名詞出現在 2007 年的第四季，它具有高度的可延

展性和接近無限的 (如計算) 資源。如何讓擁有成千上萬的虛擬機器

的大型資料中心達到負載平衡是雲端計算的重要議題之一。在本篇文

章中，我們提出了一種新的非集中式負載平衡結構，稱為雙層非集中

式負載平衡器 (tldlb)。這種非集中式負載平衡器擁有可延展性和

高可用性的優點，有利於服務更多雲端使用者。除此之外，我們也提

出一個稱為基於類神經網路之動態加權循環 (nn-dwrr) 的動態負載

平衡演算法，它能有效地將大量的使用者請求分配到各個實際提供服

務的虛擬機器上。在 nn-dwrr 演算法中，我們將監控虛擬機器所得的

負載指標(CPU、記憶體、網路頻寬、硬碟存取等四項利用率)和類神

ii

經網路結合，以調整每台虛擬機器的服務權重。我們的 nn-dwrr 演算

法可以利用類神經的預測和最佳化能力，有效減低服務水準協議

(SLA) 的違反率。實驗結果證明我們所提出的負載平衡演算法

(nn-dwrr) 在資源有限的情況下，其平均回應時間上比 wrr 快 1.86

倍，比 capacity based 快 1.49 倍，以及比 ANN-based 快 1.21 倍。

我們的方法，在相同時間內能處理更多的使用者要求，而與其他負載

平衡演算法相比，更適用於大型雲端資料中心。此外，tldlb 演算法

可以適時啟動虛擬機器池中的虛擬機器來避免違反 SLA。

關鍵詞：類神經網路、雲端計算、非集中式架構、負載平衡、服務水

準協議。

iii

An SLA-aware Load Balancing Scheme

for Cloud Datacenters

Student: Chung-Cheng Li Advisor: Dr. Kuochen Wang

Department of Computer Science

National Chiao Tung University

Abstract

Cloud computing appears at the fourth season, 2007. It has high scalability and

nearly unlimited (e.g., computing) resources. One of the most important issues about

cloud computing is how to achieve load balancing among thousands of virtual

machines (VMs) in a large datacenter. In this paper, we propose a novel decentralized

load balancing architecture, called tldlb (two-level decentralized load balancer). This

distributed load balancer takes advantage of the decentralized architecture for

providing scalability and high availability capabilities to service more cloud users. We

also propose a neural network-based dynamic load balancing algorithm, called

nn-dwrr (neural network-based dynamic weighted round-robin), to dispatch a large

number of client requests to different VMs, which are actually providing services. In

nn-dwrr, we combine of VM load metrics monitoring (CPU, memory, network

bandwidth, disk I/O utilization) and neural network to adjust the weight of each VM.

Our nn-dwrr algorithm can reduce SLA (service-level agreement) violations.

Experimental results support that our proposed load balancing algorithm, nn-dwrr,

can be applied to a large cloud datacenter, and it is 1.86 times faster than wrr, 1.49

iv

times faster than capacity-based, and 1.21 times faster than ANN-based load

balancing algorithms in terms of average response time in the limited resources. In

addition, tldlb can avoid SLA violations via in-time activating VMs in the spare VM

pool.

Keywords: Artificial neural network, cloud computing, decentralized architecture,

load balancing, service level agreement.

v

Acknowledgements

Many people have helped me with this thesis. I deeply appreciate my thesis

advisor, Dr. Kuochen Wang, for his intensive advice and guidance. I would like to

thank all the members of the Mobile Computing and Broadband Networking

Laboratory (MBL) for their invaluable assistance and suggestions. The support by the

National Science Council under Grant NSC101-2219-E-009-001 and by the Inventec

under Contract 100C202 is grateful acknowledged. Finally, I thank my family for

their endless love and support.

vi

Contents
Abstract (in Chinese)…………………………………………….…………………...i

Abstract ... iii

Contents ... vi

List of Figures ... vii

List of Tables ... viii

Chapter 1 Introduction .. 1

Chapter 2 Related Work ... 4

2.1 Load balancer architecture ... 4

2.1.1 Centralized architecture .. 4

2.1.2 Decentralized architecture .. 5

2.2 Load balancing algorithms ... 7

Chapter 3 Proposed SLA-aware Load Balancing Scheme for Cloud Datacenters 9

3.1 Two-level decentralized load balancer (tldlb) .. 9

3.2 Neural network-based dynamic weighted round-robin (nn-dwrr) scheduling

.. 13

Chapter 4 Evaluation and Discussion .. 18

4.1 Experimental environment ... 18

4.2 Comparison of different load balancing algorithms 19

4.3 Comparison of SLA violation rates with and without a spare VM pool 23

Chapter 5 Conclusion .. 24

5.1 Concluding remarks ... 24

5.2 Future work .. 24

References ... 25

vii

List of Figures
Figure 1. The cloud scales: Amazon EC2 growth [2]. ... 1

Figure 2. A classic load balancer architecture in a cloud computing environment. 2

Figure 3. Three-level centralized load balancer architecture [9]. 5

Figure 4. Structure of a decentralized load balancer [8]. ... 6

Figure 5. Structure of a Meta-Scheduler [8]. ... 6

Figure 6. Proposed two-level decentralized load balancer (tldlb) architecture. 10

Figure 7. The configuration of an SLA-aware local load balancer along with a spare

VM pool. .. 12

Figure 8 Schematic representation of an artificial neural network model for VMi. 14

Figure 9. The process of delta learning rule VMi. ... 14

Figure 10. Flowchart of the nn-dwrr algorithm. .. 17

Figure 11. Experimental setup. .. 18

Figure 12. Comparison of four scheduling algorithms (maximum response time

specified in the SLA: 2000 ms). .. 20

Figure 13. Average response time (maximum response time specified in the SLA:

2000 ms)... 20

Figure 14. Comparison of four scheduling algorithms (maximum response time

specified in the SLA: 1000 ms). .. 21

Figure 15. Comparison of four scheduling algorithms (maximum response time

specified in the SLA: 432 ms). .. 21

Figure 16. Comparison of SLA violation rates with and without a spare VM pool. ... 23

file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493770
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493771
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493772
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493773
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493774
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493775
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493776
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493776
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493777
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493778
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493779
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493780
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493781
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493781
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493782
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493782
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493783
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493783
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493784
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493784
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493785

viii

List of Tables
Table 1. Qualitative comparison of different load balancing architectures. 7

Table 2. Qualitative comparison of different load balancing algorithms. 8

Table 3. Load balancing experimental parameters. ... 19

Table 4. Configuration of each VM. .. 19

file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493786
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493787
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493788
file:///C:/Users/makoto/Dropbox/備份/進度報告/黎中誠SLA-aware%20load%20balancing%20for%20cloud%20datacenters_thesis2010-20120719-2.docx%23_Toc330493789

1

Chapter 1

Introduction

Cloud computing is the delivery of computing as a service rather than a product,

whereby shared resources, software, and information are provided to computers and

other devices as a utility (like the electricity grid) over a network (typically the

Internet) [1]. Cloud Computing has been envisioned as the next-generation

architecture of IT enterprises. Therefore, it rapidly grows in recent years. We can

clearly find that the number of users which use cloud computing grows very fast, as

shown in Figure 1.We can see the growth of average daily instance launch counts in

Amazon EC2 is very fast.

Figure 1. The cloud scales: Amazon EC2 growth [2].

2

The load of a cloud computing system is highly dynamic. To support a large

number of users which use cloud services, cloud service providers must provide

shared resources in datacenters located across the world. Different users may require

different services, and it may lead to load unbalance between the servers (virtual

machines, VMs) in a cloud datacenter. To conquer this problem, user requests are

sending to a load balancer and the load balancer then forward them to the appropriate

VMs for processing in cloud datacenters. The function of load balancing aims to

realize a high ratio of user satisfaction and facilitate high resource utilization in the

cloud [3]. Improper allocation rules might cause the inefficiency of the cloud system

[4]. Therefore, we need a load balancer in a cloud computing system to receive user

requests and forward them to appropriate servers (VMs) to service the user requests [5]

and [6].

Figure 2 illustrates a classic load balancer architecture in a cloud computing

Figure 2. A classic load balancer architecture in a cloud computing environment.

3

environment. All user requests will be connected to a load balancer. Obviously, we

cannot expect one load balancer to maintain the burden of the entire datacenter. We

can use a technique which is similar to Amazon’s Auto Scaling. When one load

balancer is overloaded, it will start another load balancer to share the load of user

requests.

A service-level agreement (SLA) is a part of a service contract where the level of

service is formally defined [7]. The SLA will typically have a technical definition in

terms of response time, throughput, or similar measurable details [7]. In this paper, we

aim to reduce the SLA violation rate while designing a load balancing architecture

and algorithm.

In Chapter 2, we describe the architecture and algorithm of a load balancer

design in a cloud computing environment and depict the differences between

centralized and distributed load balancer designs. Chapter 3 proposes a new

architecture, called an SLA-aware two-level decentralized load balancer (tldlb), to

support dynamic load balancing in cloud data centers and also proposes a novel load

balancing algorithm, called neural network-based dynamic weighted round-robin

(nn-dwrr), to dispatch requests to appropriate VMs. Chapter 4 shows experimental

results and the comparison of different load balancing algorithms. Finally, Chapter 5

concludes this paper and identifies future work.

4

Chapter 2

Related Work

2.1 Load balancer architecture

There are several load balancing architectures in cloud computing environments

[3], [8], [9], [10]. All these architectures, broadly implements load balancing

algorithms, which can be static or dynamic, and also uses centralized or decentralized

control [8]. Therefore we roughly divide load balancing architectures into two

categories, centralized and decentralized. We briefly describe these two architectures

as follows.

2.1.1 Centralized architecture

A centralized load balancer architecture has a single load balancer which

receives an incoming request and then select a proper VM to serve the request by a

scheduling algorithm, as shown in Figure 3. In this architecture, the load balancer may

become a bottleneck in cloud environments if the request rate grows to exceed the

capacity of the load balancer. That is, this architecture lacks scalability in cloud

environments.

5

2.1.2 Decentralized architecture

A decentralized load balancer architecture has several load balancers in cloud

environments. Incoming requests will be dispatched to load balancers randomly or

adjacent load balancers, as shown in Figure 4. Cluster-1, Cluster-2 and Cluster-3 are

composed of resources. Figure 5 shows the configuration of a Meta-Scheduler in

Figure 4. Users submit their jobs to a Meta-Scheduler, and the jobs are stored in the

queue of a request handler. Dispatch Manager obtains the submitted job periodically

from the queue. Load Balancer will perform load balancing by exploiting the

information gathered from Load Monitor and Information Manager. Information

Manager will query Load Monitor and send the host load information to Load

Balancer. Transfer Manager gives permission rights for the execution of a given job to

a remote host. Execution Manager will keep updating the job status to Dispatch

Manager. Although the decentralized load balancer architecture has more scalability

than the centralized load balancer architecture, it needs more communication cost to

share load information among load balancers.

Figure 3. Three-level centralized load balancer architecture [9].

6

Figure 4. Structure of a decentralized load balancer [8].

Figure 5. Structure of a Meta-Scheduler [8].

7

 The parameters in Table 1 are defined as follows:

1) Architecture

There are two kinds of load balancing architectures, centralized and

decentralized.

2) Scalability

Load balancer can quickly adapt to such changes when the system grow or

shrink.

3) Spare VM pool

There is some spare VMs can be used to reduce SLA violation when the load

suddenly becomes larger.

2.2 Load balancing algorithms

We surveyed two existing load balancing algorithms and proposed a neural

network-based dynamic weighted round-robin (nn-dwrr) scheduling algorithm. The

first existing scheduling algorithm is called the weighted round-robin scheduling

algorithm (wrr) [10]. It assigns a fixed weight to each VM depending on the VM’s

processing capacity at the startup. The second capacity-based scheduling algorithm

monitors the resources of each VM and distributes more requests to the VM which

Table 1. Qualitative comparison of different load balancing architectures.

Load balancing

approach
Wang [9] Rajavel [8] tldlb (proposed)

Architecture Centralized Decentralized Decentralized

Scalability Low High High

Spare VM pool No No Yes

8

has more remaining resources. The main concept is distributing requests to a VM

which has the most remaining capacity [12]. The last load balancing algorithm is the

proposed neural network-based dynamic weighted round-robin algorithm (nn-dwrr),

which adjusts weights based on neural network-based load prediction, and it will be

detailed in Chapter 3. Table 2 shows qualitative comparison of different load

balancing algorithms.

Table 2. Qualitative comparison of different load balancing algorithms.

Algorithm wrr [4]
Capacity-based

[12]

nn-dwrr

(proposed)

Static or

dynamic
Static Dynamic Dynamic

Load

prediction
No No Yes

SLA-aware No No Yes

9

Chapter 3

Proposed SLA-aware Load

Balancing Scheme for Cloud

Datacenters

In this paper, we propose an SLA-aware two-level decentralized load balancer

(tldlb) architecture and a neural network-based dynamic weighted round-robin

scheduling algorithm (nn-dwrr) to support dynamic load balancing in cloud data

centers.

3.1 Two-level decentralized load balancer (tldlb)

The two-level decentralized load balancer is divided into two levels in our design:

global load balancer and local load balancer. Each global load balancer is connected

to an SLA-aware local load balancer that forms a virtual zone. The load balancer

architecture is shown in Figure 6, which contains two parts, described as follows:

1) Local load balancer

A local load balancer has two main tasks. The first task is monitoring the load of

VMs which are in the same virtual zone. The local load balancer will obtain four load

metrics (CPU, memory, network bandwidth, disk I/O utilization) from each VM and

the response time of each request for VMs. The local load balancer will provide the

above information to the global load balancer. If the current working VMs (VM1

through VMn) can’t handle the load, the local load balancer will activate some spare

VMs from the spare VM pool (VMs1 through VMsm) to provide service. The second

10

task is choosing an appropriate VM using a neural network-based load balancing

algorithm and then redirects the request to the VM. Our local load balancer is

SLA-aware, which means we assign user requests to appropriate VMs for service so

as to meet SLA requirements.

2) Global load balancer

Global load balancers are connected to each other via P2P connections. The

global load balancers exchange the load information of each virtual zone using the

load information from each local load balancer. If there is no VM available in the

spare VM pool to serve an overloaded virtual zone to meet the SLA requirement, the

corresponding global load balancer will direct its requests to another light-loaded

virtual zone to service the requests.

Figure 7 shows the modules inside an SLA-aware local load balancer along with

a spare VM pool. The following is a brief description of each module.

 Request Handler

Figure 6. Proposed two-level decentralized load balancer (tldlb) architecture.

11

This module receives user requests and forwards them to the Request Scheduler

module. When the workload of a virtual zone reaches the upper limit, this module will

redirect requests to another Request Handler which belongs to another virtual zone.

 Request Scheduler

This module assigns requests from Request Handler to selected VMs based on

the weights from the Weight Adjustment module. We give each VM a weight and then

the Request Scheduler module distributes requests to appropriate VMs by these

weights.

 Load Monitor

It monitors four utilization metrics (CPU, memory, network bandwidth, disk I/O

utilization) of each VM in this local load balancer. These utilization information

allows the local load balancer to dynamically adjust the capacity index (CIi) for VMi.

 History Storage

The load history information collected by Load Monitor and the weight history

from Weight Adjustment will be stored in this module. The weight history data can

support the Load Prediction module to predict the load at the next time slot.

 Load Prediction

This module uses load history data, weight history data, and the specified

response time from the SLA Engine module to predict a neural index (NIi) for VMi.

The NIi‘s are sent to the Weight Adjustment module. Note that we use an artificial

neural network (ANN) with the delta leaning rule in our design.

 SLA Engine

This module records the response time of each request and check if the response

time satisfies its SLA requirement.

 Weight Adjustment

This module adjusts the weight of each VM which belongs to this local load

12

balancer according to the remaining capacity information (CIi’s) of each VMi from the

Load Monitor module and load prediction information (NIi’s) from the Load

Prediction module.

 Active VMs and a Spare VM pool

There are active VMs and some suspended VMs in the spare VM pool. When

active VMs can’t handle incoming requests to meet the SLA requirements, Request

Handler will wake up some spare VMs to service requests.

Figure 7. The configuration of an SLA-aware local load balancer along with a

spare VM pool.

13

3.2 Neural network-based dynamic weighted

round-robin (nn-dwrr) scheduling

In this paper, we focus on dynamically adjusting the weight of each VM. We

propose a novel neural network-based load balancing algorithm, called nn-dwrr

(neural network-based dynamic weighted round-robin), to dispatch requests to

appropriate VMs based on their weights. A weight should be able to reflect the current

capacity of a VM. We give each active VM a weight according to the capacity index

(CIi) from Load Monitor and the neural index (NIi) from Load Prediction. The

Request Scheduler module distributes the requests to active VMs by their weights

assigned by the Weight Adjustment module.

The first part of the information required by the Weight Adjustment module is

remaining capacity information. Load balancing ought to be achieved using an

inferred system state based on locally gathered data [11]. The Load Monitor module

collects four load metrics, utilizations of CPU, memory, network bandwidth, and disk

I/O. Weight Adjustment will use following formula to calculate capacity index (CIi)

for VMi.

CI𝑖 = 1 − MAX(𝐶𝑃𝑈𝑖, 𝑀𝑒𝑚𝑖, 𝐵𝑎𝑛𝑑𝑤𝑢𝑑𝑡ℎ𝑖 , 𝐷𝑖𝑠𝑘 𝐼/𝑂𝑖)

The greater capacity index means more remaining resources in this VM. We are not

sure what kinds of services will be provided in datacenters. Different services require

different critical resources. For example, the critical resource of a Web server is CPU

and the critical resource of a FTP server is network bandwidth. The critical resource

may become the bottleneck of a VM. Therefor we simply use a maximal to find the

current bottleneck of a VM [13].

14

The second part is the load prediction information from a neural network-based

load predictor. We used the delta learning rule in our ANN design (see Figure 8 and

Figure 8 Schematic representation of an artificial neural network model for VMi.

Figure 9. The process of delta learning rule VMi.

15

Figure 9) because the neural network has the capability of optimization and prediction.

Due to there is no certain mathematical approach for obtaining the optimum number

of hidden layers and their neurons [14], we used a single hidden layer for less

computation time in our design.

In Figure 8, input 𝑥 is a vector which contains recent ten history weights. To avoid

SLA violations, such as the response time required (di), which is specified in the SLA ,

we consider the response time when training the neural network. The neural network

will calculate a weight for each VMi, which we call neural indexi (NIi). Request

Scheduler allocates requests according to NIi, and then measure the average response

time (oi). When the current average response time is close to the certain proportion

(called pre-reaction rate (p), e.g., 80%) of response time in the SLA, the neural

network will automatically adjust the hidden layer’s weights before SLA violation. If

the learning rate (𝛼) is set to a large value, the neural network can learn faster.

However, if there is a large variability input, then the neural network may not learn

very well. We use the following formula to train the neural network:

𝑁𝐼𝑖 = 𝑓 (∑𝑓(𝑛𝑒𝑡𝑗))

𝑟 = (𝑝 × 𝑑𝑖 − 𝑜𝑖) × 𝑓′(𝑛𝑒𝑡𝑗)

∆ω = 𝛼 × 𝑟 × 𝑥

w𝑗(𝑡+1) = w𝑗(𝑡) + ∆ω𝑗

16

If there are n VMs in a local load balancer, the Weight Adjustment module will

combine remaining capacity system real time information CI and neural network

output NI together to calculate weighti (Wi) for VMi by following formula:

𝑊𝑖 =
𝐶𝐼𝑖 × 𝑁𝐼𝑖

∑ (𝐶𝐼𝑗 × 𝑁𝐼𝑗)𝑛
𝑗=1

∗ 100%

Wi reflects the remaining resources proportion of VMi in the entire n VMs. The

Weight Adjustment module sends these weights to Request Scheduler. Figure 8 shows

the flowchart of our algorithm.

17

Figure 10. Flowchart of the nn-dwrr algorithm.

18

Chapter 4

Evaluation and Discussion

4.1 Experimental environment

We built a testbed that includes a local load balancer and a VM configuration, as

shown in Figure 10. This testbed was for hosting a web page service. There was three

active VMs (VM1, VM2, and VM3) with different capabilities and two spare VMs

(VMs1 and VMs2), which were running in an apache web server in a virtual zone. We

used the load balancer to link these VMs together to form a virtual zone. The load

balancer would distribute user requests to three VMs according the proposed

scheduling algorithm nn-dwrr. The experimental environment setup and related

parameters are shown in Table 3 and the configuration of the five VMs is shown in

Table 4.

Figure 11. Experimental setup.

19

We used this testbed to host web services, and evaluated average response time

using an apache benchmark (ab) to collect real web traffic for different load balancing

algorithms. Requests are based on a real web service. We then compare four different

scheduling algorithms.

4.2 Comparison of different load balancing

algorithms

How to utilize the advantage of cloud computing and make each task to obtain

the required resources in the shortest time is an important topic [9]. Therefore, we use

Table 3. Load balancing experimental parameters.

OS CentOS 5.5

Virtual machine hypervisor Xen

Number of VMs 3

Number of spare VMs 2

Application Web service

Duration (time limit) 60 sec

Response time specified in the SLA 2000, 1000, 432 ms

Pre-reaction rate (p) 80%

Transfer function (f)

(for hidden and output layers)
Log-sigmoid

Learning rate (𝛼) 0.5

Table 4. Configuration of each VM.

 VM1 VM2 VM3 VMs1 VMs2

CPU (cores) 1 2 3 2 2

Memory (MB) 512 1024 2048 1024 1024

Virtual disk (GB) 10 10 10 10 10

Static weight (wrr) 1 2 4 - -

20

the average response time as a metric for comparing different scheduling algorithms.

Figure 12. Comparison of four scheduling algorithms (maximum response time

specified in the SLA: 2000 ms).

Figure 13. Average response time (maximum response time specified in the SLA:

2000 ms).

21

Figure 12 shows the comparison of four scheduling algorithms. The response

time requirement specified in the SLA is 2000 ms. In Figure 12, we found that the

static scheduling algorithm (wrr) has the longest response time. The capacity-based

Figure 14. Comparison of four scheduling algorithms (maximum response time

specified in the SLA: 1000 ms).

Figure 15. Comparison of four scheduling algorithms (maximum response time

specified in the SLA: 432 ms).

22

and wrr scheduling algorithm has near the same performance before number of

requests over 510. After that, the disparities of the response time between them will

become more obvious. The performance of the ANN is good when the number of

requests is large. However, we found the average response time of the ANN-based

algorithm is the worst and changes greatly before the average response time

exceeding 80% (pre-reaction rate) of the response time specified in the SLA. This is

because the ANN-based algorithm will continue to distribute requests to a VM when

the response time not exceeding 80% of the response time specified in SLA.

Disregarding the number of requests, the performance of the proposed nn-dwrr is

always the best. Figure 13 shows that the proposed nn-dwrr is 1.86 times faster than

wrr, 1.49 times faster than capacity-based, and 1.21 times faster than ANN-based

scheduling algorithms in terms of average response time. Figure 14 and Figure 15

shows the cases under different response times (1000 ms and 432 ms) specified in the

SLA. They shows the performance differences of the ANN-based and nn-dwrr are

getting closer when the specified response time become smaller.

23

4.3 Comparison of SLA violation rates with and

without a spare VM pool

Figure 16 shows the comparison of the SLA violation rate with and without a spare

VM pool in the proposed tldlb architecture, both running the proposed nn-dwrr

algorithm. In this experiment, the threshold of the SLA violation rate was set to 5%.

The SLA violation rate is defined as follows:

SLA violation rate =
Number of requests violated

Number of total requests

The SLA Engine, as shown in Figure 7, will keep monitoring the response time

of each request and calculating the SLA violation rate. The SLA Engine would

activate a spare VM when the SLA violation rate exceeds its threshold (5%, in this

case). We found that the proposed tldlb can avoid exceeding the SLA violation rate of

5% by activating VMs from a spare VM pool. The proposed tldlb can indeed reduce

the SLA violation rate by activating VMs in the spare VM pool in time.

Figure 16. Comparison of SLA violation rates with and without a spare VM pool.

24

Chapter 5

Conclusion

5.1 Concluding remarks

We have presented an SLA-aware decentralized load balancer architecture, tldlb,

which can reduce the SLA violation rate. If active VMs are overloaded, the proposed

tldlb avoids SLA violations by activating spare VMs in a spare VM pool. In addition,

we also proposed a novel neural network-based load balancing algorithm, nn-dwrr, to

distribute incoming requests to appropriate VMs. Experimental results have shown

that the proposed nn-dwrr is 1.86 times faster than the wrr, 1.49 times faster than the

capacity-based, and 1.21 times faster than the ANN-based scheduling algorithms, in

terms of average response time. The experiment results have demonstrated that our

proposed nn-dwrr algorithm has faster response time, which means we can handle

more requests per second. Since our scheduling algorithm is simple and efficient, it is

well-suited for cloud computing environments to service a large number of requests

with less response time.

5.2 Future work

In our current design, we focused only on the local load balancer. In the future,

we will implement the global load balancer and will conduct some experiments to

evaluate user requests redirection performance. In addition, we will deploy our load

balancers to a cloud datacenter testbed for further evaluation.

25

References

[1] “Cloud Computing – Wiki,” [Online]. Available:

http://en.wikipedia.org/wiki/Cloud_computing/.

[2] “Amazon S3 Growth,” [Online]. Available:

http://www.datacenterknowledge.com/wp-content/uploads/2011/01/amazon-s3_gr

owth_2010.jpg/.

[3] Z. Zhang and X. Zhang, "A Load Balancing Mechanism Based on Ant Colony

and Complex Network Theory in Open Cloud Computing Federation," in

Proceedings of International Conference on Industrial Mechatronics and

Automation (ICIMA), pp. 240-243, 2010.

[4] W. Y. Lin, G. Y. Lin, and H. Y. Wei, "Dynamic Auction Mechanism for Cloud

Resource Allocation," in Proceedings of Cluster, Cloud and Grid Computing

(CCGrid), pp. 591-592, 2010.

[5] “Amazon Elastic Load Balancing,” [Online]. Available:

http://aws.amazon.com/elasticloadbalancing.

[6] “rackspace - Cloud Load Balancers On-Demand,” [Online]. Available:

http://www.rackspace.com/cloud/cloud_hosting_products/loadbalancers.

[7] “Service-level agreement – Wiki,” [Online]. Available:

http://en.wikipedia.org/wiki/Service-level_agreement.

[8] R. Rajavel, “De-Centralized Load Balancing for the Computational Grid

environment,” in Proceeding of International Conference on Communication and

Computational Intelligence (INCOCCI), pp. 419-424, Dec. 2010.

[9] S. C. Wang, K. Q. Yan, W. P. Liao, and S. S. Wang, “Towards a Load Balancing in

a Three-level Cloud Computing Network,” in Proceeding of IEEE International

http://aws.amazon.com/elasticloadbalancing
http://www.rackspace.com/cloud/cloud_hosting_products/loadbalancers
http://en.wikipedia.org/wiki/Service-level_agreement

26

Conference on Computer Science and Information Technology (ICCSIT), vol. 1,

pp. 108-113, Jul. 2010.

[10] “Linux Virtual Server,“ [Online]. Available: http://www.linuxvirtualserver.org.

[11] M. Randles, D. Lamb, and A. Taleb-Bendiab, “A Comparative Study into

Distributed Load Balancing Algorithms for Cloud Computing,” in Proceeding of

Advanced Information Networking and Applications Workshops, pp. 551-556, Apr.

2010.

[12] C. C. Li, and K. Wang, “SLA-aware Load Balancing for Cloud Data Centers,”

Report, 2012.

[13] V. Nae, A. Iosup, and R. Prodan, “Dynamic Resource Provisioning in Massively

Multiplayer Online Games,” IEEE Transactions on Parallel and Distributed

Systems, vol. 22, no. 3, pp. 380-395, Mar. 2011.

[14] Y. Zhang, J. Pang, R. Zhao, and Z. Guo, "Artificial Neural Network for Decision

of Software Maliciousness", in Proceedings of Intelligent Computing and

Intelligent Systems (ICIS), pp. 622-625, 2010.

[15] J. Hu, J. Gu, G. Sun, and T. Zhao, “A Scheduling Strategy on Load Balancing of

Virtual Machine Resources in Cloud Computing Environment,” in Proceedings of

International Symposium on Parallel Architectures, Algorithms and Programming

(PAAP), pp. 89-96, Dec. 2010.

http://www.linuxvirtualserver.org/

