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Automatic Web Testing and Attack Generation

Student : Wai-Meng Leong Advisor : Dr. Shih-Kun Huang

Institute of Network Engineering

National Chiao Tung University

Abstract

In the well-developed information age, people are easy to get the rich inter-
net resource through web pages. However, in the rapid development process,
developers often tend to ignore the security concern carelessly. This leads
to access or destroy the resource illegally by hackers. In order to reduce
and fix these types of security issues, various methods have been proposed
and attempted to locate or prevent them in the field of web security. This
thesis attempts to act as an attacker and exploit web applications directly.
Our target is to automatically generate the attack string and reproduce the
results, emulating the manual attack behavior. In contrast with other tradi-
tional detection and prevention methods, this thesis can certainly determine
the presence of vulnerabilities and prove the feasibility of attacks. This au-
tomatic generation process is mainly based on a dynamic software testing
method - symbolic execution. Finally, we have applied this automatic pro-
cess to several known vulnerabilities on large-scale open source web appli-

cations, and generated the attack strings successfully.

Keyword : Web security ~ Symbolic execution ~ Automatic exploit gener-

ation
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Chapter 1

Introduction

The World Wide Web is a portal for people who want to experience the internet and web pages
bring a lot of resources from the internet. This convenience also brings about various security
issues at the same time. Most of the issues are caused by the input from web pages, such
as user data from HTML form and HTTP cookie. Practically, some inputs are validated or
sanitized inadequately by developers. When a user sends an improper input, it results in bug or
wrong response. On the other hand, attackers attempt to figure out a malicious input over the
inadequate development. Those malicious input data, i.e. “exploit”, often cause unexpected loss
and damage. The work in this thesis is to build an exploit generator for automatically figuring

out the exploit in order to fix them in time.

1.1 Motivation

In the web security research, various methods have been proposed and attempted to solve
web security issues. In contrast with traditional prevention and detection methods, exploit
generation[ |, 2] is a more precise way and provides a better result because it does not gen-
erate any false positive and inaccuracy results. The generated exploit is a strong evidence to
identify the presence of vulnerabilities. On the other hand, the purpose of generated exploit is
not only a harmful input for web applications, but also a practical sample for developers easier
to recognize the vulnerability. It can also help developers prioritize the bug fixing process. If a

bug is exploitable, it must be the highest priority to fix.

For the manual exploit generation, researchers require a strong security background and



knowledge to analyze vulnerabilities. Moreover, the cost of time is also an important consid-
eration. Whether white-box testing or black-box testing is used, manual exploit generation is a
high cost process[3]. Therefore, an automatic exploit generator is necessary to finish the overall

process in order to save the cost of time and knowledge.

1.2 Objective

Our objective is to automatically generate the exploit for common web security issues on real-
world web applications and reproduce the results, emulating the manual attack behavior. More-
over, this automatic process is based on a popular dynamic analysis technique in the field of
software testing, symbolic execution[4, 5]. Many related works are also based on it. However,
the overhead of symbolic execution on large-scale application is too expensive. Our challenge

is to automate the exploit generation process on large-scale web applications.

1.3 Overview

This thesis is organized as follows. Chapter 2 describes the background of software testing and
related web security issues. Chapter 3 describes and compares related works. Chapter 4 and
5 explain our method and implementation, respectively. Experimental results are reported in

Chapter 6. Finally, Chapter 7 concludes our thesis, with future work.



Chapter 2

Background

In the field of software testing, many approaches and researches have applied to web security.
They have their own advantage and disadvantage. For example, static analysis[0] is a testing of
an application by examining the code without executing the application. It is good at handling
large-scale applications, but false positive may happen. On the other hand, dynamic analysis[6]
is a testing of an application during runtime. It is more accurate than static analysis, but its
analysis overhead is too expensive. The first section in this chapter introduces advantage and

disadvantage of three popular dynamic analysis techniques, which relate to this thesis.

Nowadays, web security issues have various kinds[/]. The second section describes five
common web security issues including their exploit process and prevention. All of them are
usually caused by inputs without proper validation and sanitization. The exploit generation for
the first vulnerability, i.e. Cross Site Scripting, has been evaluated by automatically generating

the exploits for vulnerable web applications.

2.1 Software Testing

2.1.1 Symbolic Execution

Symbolic execution[4, 5] is a popular testing approach for software verification and validation
proving. Its objective is to explore as many paths in a program as possible. The main idea of
symbolic execution is to replace the concrete value of particular variables with symbolic values
during execution. Before executing, a path constraint is initialized as true. Whenever the pro-

gram execution encounters an assignment statement that associates with symbolic variable, the



symbolic variable will taint other concrete variables and update the concrete value as symbolic.
Whenever the program execution encounters a branch that associates with symbolic variable,
the branch condition will be collected into the path constraint. Moreover, symbolic execution
will fork a new execution for another path and negate the branch condition, which will be added
to another new path constraint. The collection of branch condition in each execution and path
constraint goes on until all forked executions finish. Each path constraint is accumulated by its
own path execution. All path constraints may be finally solved for a test case by a constraint

solver and the generated test cases can reproduce the same execution and explore the same path.

By considering symbolic execution on the example in Figure 1, symbolic variable input
is specified a symbolic value X at line 1 and a path constraint is initialized as true. For the as-
signment at line 4, the symbolic variable input taints the concrete variable key and the symbolic
value of key becomes X + /0. For the branch at line 5, the execution encounters the symbolic
variable key and forks a new execution for another new path. The branch condition, X + 10 =
54813, and its negation, X + 10 # 54813, is added to their path constraint respectively. When-
ever two forked executions finish, their path constraints can be solved by constraint solver for
their own test cases, /23 and 54803. The procedure shows in Figure 2.

PC: true

Sample Code 1
oid check(]nt lnput)

1 Vv

2| g PC: true

3 intkey = 0; / \

4  key=input + 10;

5 illey == 5481y
& printf(*True"); PC: (X + 10 = 54813) PC: (X + 10 !'=54813)

7 else

8 printf("False"); l l

9} For path 1, Input = 54803 For path 2, Input = 123

Figure 1: Sample code for software testing  Figure 2: Symbolic execution for Figure 1

2.1.2 Concolic Testing

However, the weakness of symbolic execution is the exponential growth for paths on large-scale
program or infinite loop. Concolic testing[&] is another solution for software verification. It is

a hybrid software verification technique that combines the concrete and symbolic execution. Its



main idea is to explore only one path at a time and prevents from path explosion simultane-
ously. From the beginning, a random concrete input is solved by constraint solver for concrete
execution on the first path of program under test. For symbolic execution, branch conditions are
collected into a path constraint during execution. Until the path finishes, concolic testing negates
the last condition in the path constraint and solves a new test case for concrete execution on the
next new path. The exploration of paths and the generation of test cases go on until all paths are

explored as much as possible. The path traversal is based on depth-first search (DFS) algorithm.

By considering the same example in Figure 1, a random concrete input is assumed as 321.
For the assignment at line 4, concrete variable key equals to 33/. For the branch at line 5, it
takes false and adds the branch condition X + 710 # 54813 into the path constraint. After the
termination of first path, concolic testing negates the last condition in the path constraint and
becomes another new path constraint X + /0 = 54813. A new test case 54803 is solved by
constraint solver with the new path constraint and is used to explore for another new path. The

procedure shows in Figure 3.

For path 1, Input = 321 For path 1, Input = 54803

. o
. Y-

(X+10!=54813) (X+10=754813)

. 8 Sy

Solve -(X + 10 != 54813)

and got X = 54803 Finish when stack is empty

Figure 3: Concolic testing procedure for Figure 1

2.1.3 Dynamic Taint Analysis

Dynamic taint analysis[?, 5] is a technique for tracking the information flow in software applica-
tions and attempts to locate the data flow of possible vulnerabilities. It relies on the dependency
of variables during the analysis, but not symbolic values, conditions or path constraints. If data
are from un-trusted source, e.g. user inputs, HTTP parameters, file inputs, dynamic taint analy-

sis will mark the state of the data as “tainted”. During the analysis, tainted variables propagate



its state to other non-tainted variables through the data dependency. If a tainted variable reaches
the sink, e.g. database operations, command executions, HTML outputs, it can affirm that the
data flow is dangerous and data from input source are vulnerable. However, taint analysis can-
not generate any test case or exploit without symbolic data. And false positive may happen
without considering the control flow problem in branches. This issue can be reduced by con-

structing a control flow diagram[10].

By considering an example in Figure 4, the state of un-trusted argument input is marked
as tainted. For the assignment at line 4, tainted variable input propagates another variable key
and marks as tainted. For the database query at line 8, it is considered as a sink and is tainted by
key. Thus, the example is vulnerable. However, if the branch takes false at line 5, key may not

taint the sink and false positive may happen. It is also the weakness of dynamic taint analysis.

Tainted m 1 void check(int input)

input db_query() ; { ntkey—o:
key echo() 4  key=input+10;
5  if(key==54813)
eval() 6  exit1
7 else
8  db_query(key);
9}

Figure 4: Dynamic taint analysis procedure with sample code

2.2 Web Security Issues

2.2.1 XSS

Cross Site Scripting (XSS) is the most frequent web security issue. Two common classifications
of XSS are known as reflected and stored. An attacker crafts a link with a malicious payload.
Whenever a victim is lured to click on the crafted link, the malicious payload will be executed
forcibly in the browser of the victim. This is an example of reflected XSS. If an attacker injects
a malicious payload into websites or databases and becomes persistent, victims will forcibly

execute the malicious payload by visiting related pages. This is an example of stored XSS.



In the example of Figure 5, a reflected XSS exists at line 3. An attacker can craft a link,
e.g. index.php ?id=<script>alert(document.cookie)</script>, and lures a victim to click on it.
The HTTP cookie of victim is forcibly displayed on a pop-up message box. The prevention of
XSS is to validate or sanitize inputs on output functions of web pages, such as echo(), printf{).

htmlspecialchars() is one of the suggested routines for sanitizing XSS in PHP.

1 <?php

2 include(5_GET['theme'].".php'});

9 echo "Welcome, ".5_GET['id']."<br=";

4

5 Sresult = mysgl_query("SELECT * FROM user WHERE

1d=".5_GET['id"]." AND pass=".5_GET['pass'], Sconn);

6 if(mysgl_num_rows(Sresult))

7

8 echo "Login successful, listing your directoryv<br=";
g system("ls-al /home/".5_GET[1d"]."/".5_GET['dir']);
10

11 7=

Figure 5: A PHP sample code with web security issues

2.2.2 SQL Injection

SQL injection is also a common technique to attack databases through websites. By injecting
a malicious SQL command into portion of SQL statement, an attacker can hijack the database
query and request some illegal operations, e.g. dump password, modify database content or

bypass authentication.

In the example of Figure 5, SQL injection exists at line 5. An attacker can craft a HTTP
request, e.g. index.php ?id=admin&pass=admin or 1=1, and the password of admin is always
correct with the Boolean expression, or I=1. Thus, the attacker can bypass the authentication
and login as an administrator. The prevention of SQL injection is to validate or sanitize inputs
on the parameters of database query. mysql_real_escape_string() is one of the suggested routines

for sanitizing SQL injection in PHP.

2.2.3 RFIand LFI

Remote File Inclusion (RFI) and Local File Inclusion (LFI) allow an attacker to include a re-

mote or local file, which is usually a script. This can lead to the arbitrary code execution on



web servers.

In the example of Figure 5, RFI and LFI also exist at line 2. An attacker can send a HTTP
request, e.g. index.php?theme=http://evil.com/webshell.txt?, to inject a remotely hosted file
containing a malicious code. Another HTTP request, e.g. index.php ?theme=/etc/passwd%00,
allows an attacker to read the content of the local password file on web server. A better preven-
tion for RFI and LFI is to prepare a white-list of the allowed file in dangerous functions, such

as include() and require() in PHP.

2.2.4 Directory Traversal

Directory traversal attack allows attackers to access restricted directories and sensitive files

placed on a web server by stepping out of the root directory using dot dot slash.

In the example of Figure 5, directory traversal attack exists at line 8. Although the
restricted directory, /home/, is defined, an attacker can also craft a HTTP request, e.g. in-
dex.php?id=user&pass=123&dir=../../, to list the root directory on the system. The restriction
fails finally. A better prevention of directory traversal attack is to configure the restriction in the

web server configuration file.

2.2.5 Command Injection

Command injection is similar to SQL injection. A malicious command is injected into func-
tions, which are used for shell command-line execution. An attacker can execute any command

like a pseudo shell.

In the example of Figure 5, command injection exists at line 8. An attacker can craft a
HTTP request, e.g. index.php?id=user&pass=123&dir=|uname, to execute a shell command,
uname. The prevention of command injection is to validate or sanitize the argument of the shell

command. escapeshellarg() is one of the suggested routines for sanitizing in PHP.



Chapter 3

Related Work

T saren Ardilla

Year 2008 2008 2009 2010 2010 2012
Symbolic  JavaSye Zend Apollo FLAX Yices S2E
executor Interpreter
Solver SUSHI HAMPI HAMPI STP+ Drails STP
HAMPI
Platform  Java PHP PHP JavaScript  Rails All
Focuson  SQLI Execution SQLI, DOM-based XSS,CSRF, XSS,SQLI
failures, XSS1, XSS etc
malformed  XSS2
HTML
Detect/ Exploit Exploit Exploit Exploit Detect Exploit
Exploit
Mutation No No No Yes No Yes
Detection Syntax HTML Taint Conjoinof  Assertion+ Symbolic
method trees validator+  propagate attack assumption response
matching  Oracle grammars and query

Table 1: Related work for symbolic execution on web applications

Symbolic execution is a popular software testing technique. Some related works have ap-
plied this technique in the field of web security. Table 1 shows a comparison between them and
our work, CRAX. SAFELI[] 1] was a SQL injection scanner based on Java web applications in
2008. It provided a concept for applying symbolic execution to web security early. Apollo[!2]

was a project from MIT in 2008. It modified the Zend interpreter in PHP to support concolic



execution for searching bugs in PHP web applications. A year later, MIT proposed an improved
work called Ardilla[13] in 2009. It combined concolic testing and dynamic taint analysis to per-
form as an exploit generator. Its objective is similar to ours and we have experimental result for
comparisons in later chapters. Kudzu[!4] was a symbolic execution framework for JavaScript
in 2010. It used attack grammars to solve the exploit and finally found out two unknown vul-
nerabilities. Rubyx[ 5] was a symbolic executor for Rails[16] in 2011. It was a recent work for

symbolic execution on web security.
As mention in later Section 4.1, platform-independent is one of the contributions in our

work than other related systems. The feature of mutation in Table | means the ability of con-

straint solving that explains in Section 4.2.1, which is the other contribution in this thesis.
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Chapter 4

Method

Our method is mainly based on symbolic execution to automate the web exploit generation
process. Symbolic socket[17] is used to propagate symbolic execution through socket between
applications. Exploit generation uses the ability of constraint solving in symbolic execution to
solve the constraints of the objective exploit. Single path concolic mode is an option to reduce
the overhead on path explosion on large-scale web applications. However, this option has its

own restriction. All details are described in this chapter.

4.1 Symbolic Socket

In a real-world scenario, attackers usually craft a malicious input over vulnerable entry points in
web pages, such as GET parameters in URL, POST data from HTML form and HTTP cookie,
and send a malicious HTTP request through socket. For XSS attack, a malicious HTTP re-
sponse is returned through port 80 for Apache by default. For SQL injection attack, a malicious
query impacts the database through port 3306 for MySQL by default. Symbolic socket can
then be applied in this scenario to assist symbolic execution over web servers and applications
together. This situation is shown in Figure 6. A symbolic data is prepared and injected into
HTTP request. If symbolic data can be propagated to HTTP response or database query during
symbolic execution through socket, it will represent that the response or query is vulnerable and
can be controlled by the original symbolic data. Therefore, it is possible to identify vulnerabil-

ities through symbolic socket.

The focus of symbolic socket is just on symbolic data, which sends to and receives from

11



socket. It is unnecessary to concern about what web server uses or how the source code of
applications is. They are tested like a black-box. Therefore, it leads to platform-independent

and source-independent testing on web server and applications during symbolic execution.

Web applications
Client Web server Database

HTTP request
GET/ index.php?id: )
Host : xxx.com %

HTTP response
HTTP/1.1200 OK
Server: apache

. s bO] i SQL query
_ bolic data Cdata
Content-Type: text/html M SELECT * FROM user

WHERE id=[ symbolic |

<html>
Welcome, et |
</html>

@ -

Exploit generator

Figure 6: Symbolic data propagates from HTTP request to HTTP resposne and database query

4.2 Exploit Generation

If a symbolic data is discovered in HTTP response or database query that is received from port
80 or 3306 respectively, it will be an opportunity for exploit generator to generate the exploit in

Figure 6.

Whenever the symbolic data is initially discovered in HTTP response or database query,
an expected attack script is then constructed, such as <script>alert(document.cookie)</script>
for XSS or " or 1=1- - for SQL injection respectively. It is used to execute the attack on HTML
page or database query and be triggered by submitting the exploit. However, the syntax cor-
rectness of the expected attack script is one of the concerns. It can be finished by parsing the
received HTTP response or database query with a simple HTML or SQL parser respectively so

that the syntax of the expected attack script is correct and available.

The format of the received symbolic data is another concern. The symbolic data must

be contiguous and the length must be longer than or equal to the expected attack script. If the

12



symbolic data is longer than the expected attack script, blank spaces will be used to fill the lack

of script.

4.2.1 Constraint solving

Constraint solving is an ability of solver in symbolic execution to generate test cases and also
the exploit. By considering a sample function in Figure 7, what is the value of x if f{x) has
to return /00?7 The answer can be solved with constraint solving. After the termination of
symbolic execution on f{x), two PCs, X + 10 >0 and X + 10 < 0, are collected for the first path
and the second path respectively. To restrict the return value of f{x), a constraint y = 100, i.e. X
+ 10 = 100, 1s added into each PC and attempts to solve each PC by solver to obtain the feasible

value of x. Finally, x is solved and equals to 90.

Sample Code

1 intf(intx)

2 {

3 intv=x+10;

4 if(v > 0)returny;
5 elsereturny;

6}
PCfor path 1 PCfor path 2
X+10>0 X+10<=0

Figure 7: Constraint solving for a sample function

The same concept can apply on exploit generation for assuming x as exploit and f{x) as
an expected attack script. By considering an example in Figure 8, what is the exploit if the
symbolic data in HTTP response equals to the expected attack script? Whenever symbolic data
is discovered in the HTTP response, an expected attack script is constructed as
7> <script>alert(document.cookie)</script> by a simple HTML parser. So the length of the
contiguous symbolic data must be longer than 41. The later process shows in Figure 8. The
expected attack script is used to construct additional constraints character by character and
added into collected constraints. The solver in symbolic execution then attempts to solve this
set of constraints to obtain the possible exploit. A similar approach can also be applied for the

exploit generation of SQL injection.

13



HTTP response

HTTP/1.1 200 OK
Server: apache
Content-Type: text/html

<html=>
Welcome o]

<f’hf;ml>-""”

Collected constraint
in Symbolic execution

: B Corr] B (o]

Expected attack
script constraint |

<zscriptz>>alert(document. cookie)</script=

Figure 8: Exploit generation by constraint solving

On most of the traditional web vulnerability, the exploit is directly reflected onto HTTP
response or database query without any arithmetic operation or simple mutation. These vulnera-
bilities can be easily discovered. The ability of constraint solving can assist exploit generation of
the potential vulnerability that is under some arithmetic operations or simple mutations. Those
vulnerabilities are hard to be discovered in the past and this is one of the contributions in our

work.

4.2.2 Cooperation with Web Crawler

Web crawler[ | 8] is a front-end in our web exploit generator. It can figure out all the possible
HTTP requests including GET and POST parameters in a web application. Those parameters
can be replaced by symbolic data and process symbolic execution through socket. This situation
is explained in Section 4.1. To cooperate with exploit generator, a fully automatic process can

be constructed to generate web exploit. The flow diagram shows in Figure 9.
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 HTTP request

GET /index.php?id:&pass:abc ’ - Web -

Web
Crawler

Host : xxx.com applications
| POST /index.php - . ..
.| Host: xxx.com Web applications

Content-Length 140 Client Web server Database

i id=admin&theme symbolic |

HTTP/1.1200 OK
Content-Type: text/html

S . SQL query
<html> W \% SELECT * FROM user
Welcome, WHERE id:
</html>

3 -

Exploit generator

Figure 9: Flow diagram of our automatic process

4.3 Single Path Concolic Mode

The weakness of symbolic execution is the path explosion during execution. This leads to the
challenge in this thesis for the exploit generation on large-scale web applications. To reduce the
overhead in symbolic execution, we utilize the advantage in concolic testing that explores one
path at a time. Regarding a particular single path is more effective than the exploration for all

paths.

In concolic testing, concrete values are originally responsible for helping symbolic exe-
cution to determine the direction in branches and paths. All paths are explored with their own
concrete input. In single path concolic mode, only one given concrete input is fed for fixing
the exploration on a particular single path. Whenever symbolic execution encounters branches
that associate with symbolic variables, the selection of branches reference the given concrete
input instead of the original concrete value. The execution does not fork for another new path

anymore.
Moreover, branch conditions are originally added into path constraints for solving a con-

crete value of the next new path. In single path concolic mode, branch conditions are not used

anymore because the concrete input is given and fixed. So branch conditions can be abandoned
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and just be collected and kept in the later backup on the exploit generation. This backup mech-

anism can also optimize the speed of overall execution.

Figure 10 shows that the difference between symbolic execution and single path concolic
mode. The single path concolic mode explores only one path with a given concrete input rather
than all paths. The overhead on path explosion is reduced. Symbolic data can still propagate

and be discovered at HTTP response and database query.

Symbolic input Concrete input

*e
L l. -
; r %
L - ¥ .
\—/ \.—’/

Symbolic execution Single path concolic mode

Figure 10: Single path concolic mode

4.3.1 Restriction

Actually, single path concolic mode not only reduces the overhead, but also brings a restricted
condition in exploit generation. If an exploit exists in a vulnerable web page to trigger XSS
and SQL injection, the path of symbolic execution from exploit to HTTP response or database
query must be the same as the path for our given concrete input in single path concolic mode.
Otherwise, the exploit cannot be solved by constraint solver with collected constraints that is
collected by symbolic execution on the given concrete input. This is a cost of reducing the
overhead, or restores this restriction by exploring all paths in traditional symbolic execution or

concolic testing.

According to our experimental results, only a part of exploit cannot be solved in some
vulnerable cases because of the different path between the given concrete input and the exploit.
It usually occurs at the branch of validating, sanitizing or exception checking on the input
string. Thus, we consider that the option of single path concolic mode is worth to do. Figure 11

shows that the validation of special characters leads to the different path and different collected
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constraints for BBBBBBBB and <SCRIPT>. The expected attack script, <SCRIPT>, cannot be
solved finally by a given concrete input, AAAAAAAA. But another input string, CCCCCCCC,
can be solved to reproduce the output string, BBBBBBBB.

HTTP request

GET /index.php?id=[ AAAAAAAA | |

Host : xxx.com

3 4

HTTP response [ Concrete input HIIF response Concrete input

HTTP/1.1200 OK HTTP/1.1200 OK
Server: apache Server: apache
Content-Type: text/html Content-Type: text/html

<html> <html>
Welcome, [FEEERE | Welcome, [ SCRIPT- ]
</html> </html>
Got a solution, 1d=CCCCCCCC No solution

Figure 11: Different path with the given concrete input and the exploit
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Chapter 5

Implementation

In this chapter, we explain in detail how our method is implemented on S?E[19], which is a
symbolic execution platform. The symbolic environment on S?E assists symbolic propagation
through sockets and a handler is built to receive symbolic data under sockets. After receiving the
symbolic data, it triggers the exploit generator, which is wrapped as a plugin of S2E. Moreover,
single path concolic mode and other optimizations are also implemented to speed up the overall

process inside S?E.

5.1 Symbolic Socket

5.1.1 Symbolic Environment on S’E

S2E has an ability to perform symbolic execution on the whole operating system rather than
applications. This ability comes from the combination of QEMU[20] and KLEE[17]. KLEE
is a symbolic execution engine built on top of the LLVM compiler infrastructure[2 | ]. It imple-
ments symbolic execution by interpreting LLVM bitcode. QEMU is a processor emulator that
relies on dynamic binary translation to translate instructions between two different host CPU
architectures. Whenever a program under test inside QEMU encounters symbolic data, S?E
triggers a new LLVM back-end to translate instructions into LLVM bitcode and feeds to KLEE
to perform symbolic execution on the whole system. The constraint solver of KLEE is STP[22].

A simple architecture of S?E shows in Figure 12.
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/6_‘ Web framework

Web applications

Rails, Django
il Bl P1iP, SP, ASP, Ruby, Python

[

Web ser{fﬁ/

Client

Symbolic value

To LLVM IR

Concrete value Symbolic executor

Tox86

Host OS

Figure 12: A simple architecture of S2E

Symbolic environment represents the existence and propagation of symbolic data in dif-
ferent environments, such as socket, file, argument, register and standard I/O. Due to symbolic
execution on the whole system in S?E, a part of symbolic environment is already supported
including symbolic socket. A sample code in Figure 13 demonstrates symbolic socket between
client and server. The branch after reading mesg in client forks a new execution state because
of the symbolic variable, a, which is tainted by the symbolic variable, buf, through symbolic

socket.

client_func() | Client ‘
{

Server |

make_symbolic(buf) server_func()

write(server_fd, buf) symbolic data 1 .
3| read(client_fd, buf)

w write(client_fd, buf)
read(server_fd, mesg) h

char a = mesg[0]
if(a > 100)

printt(“True™)
else N
printf(“False™)

Figure 13: Sample code for symbolic socket between client and server
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5.1.2 Architecture

The overall architecture for our automatic exploit generation is based on S?E and shows in
Figure 14. In the figure, the red arrow represents the symbolic propagation through symbolic
socket and solid blue block represents the main implementation part. s2eget and s2e_ myop are
the S2E instruction. The overall architecture is divided into three parts and explained detailedly

in the following section.

Web .
applications | 't

Web szeget
Crawler

§2e_myop

.,
LT
.
e
*a
.
L)
L
.,
.
L
Lh
*a,
.
LI
L
e

Symbolic
request
sender

Exploit
generator

s2e_myop

response STP
handler

Solver

Figure 14: Overall architecture for automatic exploit generator

5.1.3 Symbolic Response and Query Handler

The concept of symbolic socket can be developed and applied to HTTP to perform symbolic
execution on web applications and server. To cooperate with web crawler, all of the possible
HTTP requests are crawled from web applications and send to guest OS by a built-in S?E
instruction, s2eget. Each parameter in crawled HTTP requests is replaced by symbolic data.
Then, a symbolic request is sent to web server through socket to perform symbolic execution
on web applications and server together. The flow diagram shows in Figure 15. This is also the

first part that is from web crawler to symbolic request in Figure 14.

Handlers are implemented and listened on port 80 and 3306 on LAMP (Linux, Apache,

MySQL, PHP) architecture by default. During symbolic execution, handlers are ready to receive
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Host OS Guest 0S(Qemu)

s2eget(request);

. soe_get GET /_iﬂdeX-Php?id:admin&pass:
- Web Host : xxx.com
Crawler - s2e_make_syvmbolic(buf, 50);

write(server_fd, request, len);

Web
applications

Figure 15: From web crawler to symbolic request

symbolic response and symbolic query respectively. The database handler is a modified version
of MySQL. A new S?E instruction, s2e_ myop, is created and built in handlers for transferring
the received data directly from QEMU at guest OS to exploit generator at host OS. The received
data are analyzed by exploit generator later. The flow diagram shows in Figure 16. This is the
second part from a symbolic response or query to exploit generator in Figure 14. The final part

is explained in the following section.

Guest OS(Qemu) Host OS

DB handler(MySQL)

read(connfd, sql_query, len);
s2e_myop(sql_query, len); =

s2e_myop

S2E opcode

of 3f .
. Exploit
T 78R TR BT generator

.| read(connfd, response, len);
“s2e_myop(response, len); =

s2e_myop

Figure 16: From symbolic response or query to exploit generator

5.2 Exploit Generation

Whenever the exploit generator is triggered by our customized S2E instruction, the received

data, which is HTTP response or database query, is analyzed. To search a contiguous sym-
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bolic data, an algorithm is shown in Algorithm 1. The received data are necessary to determine
whether it is symbolic or concrete sequentially byte by byte. Until a contiguous symbolic data
is located, it has to ensure that the length is long enough to involve the expected attack script,
which is constructed by a simple HTML or SQL parser for the correct syntax. Thus, concerns

that are mentioned in Section 4.2 is satisfied here.

Algorithm 1: Searching for contiguous symbolic data
Input: data : received HTTP response or database query

1 symbolic_len < 0
2 for i < 0 to length(data) do
if isByteSymbolic(data + i) then

w

4 symbolic_len < symbolic_len + 1

5 else

6 if symbolic_len # 0 then

7 expect_attack <— constructAttack(data, i)

8 if symbolic_len > length(expect_attack) then
9 symbolic_data <— data + i - symbolic_len
10 solveExploit(symbolic_data, expect_attack)
11 end

12 symbolic_len < 0

13 else

14 continue

15 end

16 end

17 end

18 expect_attack <— constructAttack(data)
19 if symbolic_len > length(expect_attack) then

20 symbolic_data <— data + 1 - symbolic_len
21 solveExploit(symbolic_data, expect_attack)
22 end

Then, an algorithm in Algorithm 2 is used to solve the exploit. All constraints, which are
collected during symbolic execution, are restored. Extra constraints are constructed and added
byte-by-byte to restrict the result, emulating the expected attack script. Finally, an exploit
may be solved as a solution that can reproduce the expected attack script. If constraints are
unsolvable and no solution obtains, it will report as possible vulnerable instead of exploitable.
Reason for unsolvable may be the restriction that mentions in Section 4.3.1 or the limitation of

constraint solver itself[23].
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Algorithm 2: Solving the exploit constraints
Input: symblic_data : symbolic data, expect_attack : target attack string
Output: exploit : the solved exploit

1 backupConstraints()

2 for i < 0 to length(expect_attack) do

3 tmp <— readMemory(symbolic_data + 1)

4 constraint <— constructConstraint(tmp, expect_attack + 1)
5 addConstraint(constraint)

¢ end

7 exploit <— getSymbolicSolution()

5.2.1 Simple HTML and SQL parser

Common attack script, such as <script>alert(document.cookie)</script> for XSS or " or 1=1—
for SQL injection, may not work for all cases of vulnerability due to the wrong syntax. To en-
sure the availability of the expected attack script, a simple HTML or SQL parser is necessary to

construct the attack script in correct syntax.

By considering an example in Figure 17, a stack is used to maintain the status of HTML
syntax, such as <, >, ” and ’, at anytime. Whenever symbolic data are discovered at HTTP
response, >and ” are already kept in stack at that time and popped to complete the expected
attack script. So ”><script>alert(document.cookie)</script> should be constructed for the

expected attack script. The same concept can apply on the SQL parser.

HTTP response

HTTP/1.1200 OK h
Server: apache pus
Content-Type: text/html
<html>

<form name="‘check’ » .
action="_/index.php’ method="POST >

<input name="id’ value=' >

</form> <

</html> HTML parser & stack

4

> <seript>alert(document.cookie) < /seript>

Figure 17: Completing the syntax of the expected attack script
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5.3 Single Path Concolic Mode

The implementation of single path concolic mode has two parts. One is that the selection of
branches and paths depend on a given concrete input. The other one is to keep branch condi-
tions during symbolic execution and restore them at the later exploit generation. Before sym-
bolic execution, the given concrete input is read and constructed as constraints. An example is
constructed in Figure 18 for a concrete input, AAAAAAAA. A vector container, concreteCon-

straints, 1s used to store these constraints.

(Eq 41 (Read w8 o buf))
(Eq 41 (Read w8 1 buf))
(Eq 41 (Read w8 2 buf))

AAAAA A

(Eq 41 (Read w8 49 buf))

solver->evaluate(constraints, condition, res);

Conerete input .~

if(res==Solver::Unknown) {
swapConstraints();
solver->evaluate(constraints, condition, res);
swapConstraints();

backupConstraints();

. 5
s
)
Y
.
£ v . }
¥ .
.

Single path concolic mode

Figure 18: Concrete input constraints

Whenever a branch is encountered and its branch condition is evaluated by solver that is
feasible for true and false, the current path constraints are swapped out and concreteConstraints
are swapped in. Then, solver evaluates again with concreteConstraints to determine which di-
rection of the branch should go dependent on the given concrete input. So the branch is fixed
and S2E will not fork for two feasible paths anymore. Moreover, branch conditions here are also
kept in a vector container, backupConstraints, which is restored at the later exploit generation

process.
Single path concolic mode is an option to reduce the overhead on path explosion, but also

with the restriction mentioned in Section 4.3.1. A option is implemented for switching between

single path concolic mode and the original symbolic execution at any time conveniently.
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5.3.1 Optimization

For single path concolic mode, the current path constraints are replaced by concreteConstraints
to restrict and determine the selection of branches. In addition, concreteConstraints can also be
used as somewhere that requires the current path constraints inside S?E, such as constraint solver
evaluation on symbolic data. The overhead on solver can be reduced because the evaluation on

solver prefers a simple concrete value rather than a complex symbolic value.
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Chapter 6

Evaluation

In order to show our contribution and evaluate our work, two experiments have been reported in
this chapter. The first one demonstrates and proves the feasibility of platform-independent web
testing with our method. The second one is the experimental result of our automatic exploit
generator. Parts of the test cases are the comparisons with Ardilla. The remaining test cases are

the real-world web applications.

6.1 Experimental Environment

All experiments performed on a host hardware including a 2.4Ghz CPU with 8 cores, 8GB
physical memory and host OS with Ubuntu 10.10 64-bit desktop edition. The guest environment
that is emulated by Qemu includes 2.83GHz CPU with a single core, 128MB physical memory
and guest OS with Debian 5.0.7 32-bit for Linux platform and Windows XP sp2 for windows
platform. The software environment is based on S?E 1.0 and the database handler is based on

MySQL 5.5.15.

6.2 Evaluation for Different Platforms

The first experiment evaluates a test case on different platforms to prove the feasibility of
platform-independent web testing with our method. The test case is a simple web applica-
tion that acquires a GET parameter from URL and prints it on a web page directly. Different
platforms are based on five popular dynamic web programming languages including PHP, ASP,

JSP, Ruby and Python. Ruby and Python may cooperate with their own framework together,
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such as Rails[ 6] and Django[24].

The experiment attempts to perform symbolic execution in single path concolic mode
with a given concrete input, which is a string with fifty A. Hypothetically, a symbolic response
is detected and an exploit of XSS is generated by our automatic exploit generator. When the
symbolic response is detected, the time spent during the overall execution is marked as Symbolic
response time in Table 2. The result in PHP and Django reveals that it is feasible to generate
the exploit in a short time. The experiment on Rails finished in minutes, but the exploit con-
straints cannot be solved because of the default security prevention mechanism. Moreover, the
experiment on JSP finished, but a part of symbolic data is discontinued unexpectedly during the
symbolic propagation inside JVM. Thus, the exploit cannot be solved because of the insufficient
symbolic data. However, the experiment on ASP cannot complete in 12 hours because of the
large-scale on program architecture or the complexity of program structure inside their kernel.

This challenge may be optimized in the future.

By the way, we can test in another way of giving up all the collected constraints with
single path concolic mode to speed up symbolic execution. Actually, the exploit cannot be
generated finally without collecting constraints but it can still report as possible vulnerable for
web applications after discovering the symbolic response. This strategy has the same effects
as dynamic taint analysis. The time spent during the overall execution is marked as Without

constraints in Table 2.

I N N P Y P

Framework - 0.96.1

(OX] Linux Linux Linux Linux Windows
Server Apache-2.2.19 Tomeat-7.0.2 Webrick Built-in I1S-5.1
Kernel PHP-5.3.6 JDK-7u2 Ruby-1.9.3 Python-2.6.6 ASP-3.0
Bind Port 8o 8080 3000 8000 8o
Symbolic 18.50s 6.72min 7.45min 32.728 OT
response time

Without 16.42s 3.25min 5.62min 24.028 oT
constraints

Table 2: Evaluation for different platforms
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6.3 Evaluation for Exploit Generation

The second experiment reports the exploit generation on different web applications. All web
applications are under single path concolic mode and a string with fifty A is fed as the given

concrete input.

Web applications in Table 3 are the same test cases from Ardilla. The criterion in Ardilla
for discovering new exploit is the different vulnerable line of code in PHP. And our criterion
for discovering new exploit is the different path between each exploit that is generated by our
exploit generator. Thus, the comparison in numbers of exploit between us and Ardilla may
differ. OT is defined as over fifteen minutes during symbolic execution and exploit generation

in Time for all crawled request.

Test Case Llne # of # of XS # of Time Time for all
crawled (vu]nera XSS by | per crawled request
Code request | ble) exploit

Schoolmate-1.5.4 8,125 52 0.30min  107.78min + 300T
Webchess-1.0.0rc2 6,504 410 5(4) 13 0.80min 94.38min + 3130T
Faqgforge-1.3.2 1,710 28 4 4 0.20min 5.74 min
EVE Q04 12 2 2 0.42min 4.94min

Table 3: Evaluation for exploit generation with test cases from Ardilla
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Web applications in Table 4 are real-world web applications. SimpGB is a simple PHP
guestbook web application with vulnerabilities such as XSS, SQL injection and malicious file
execution (MFE). It is a good benchmark for case studying. DedeCMS is a famous content
management system (CMS) in China. The result of eleven generated exploits for DedeCMS
came from a zero-day vulnerability that was found half a year ago. The built-in admin interface
from old version Django are also vulnerable and the exploit of CVE-2008-2302[25] is generated
in our result. The last two cases are Discuz! and Joomla!. Discuz! is an internet forum software
written in PHP. It is the most popular internet forum program in China. Joomla! is a free and
open source content management framework for publishing content on internet. Finally, our

automatic exploit generator did not generate or find any exploit or vulnerability for these two

cases.

Test Case Platform | # of # of XSS | Time Time for all
crawled crawled request
request

SimpGB-1.49.02 41,296 PHP 1,299 33(57) 0.91min 7.67hr + 3340T

DedeCms-5.6 84,544 PHP 1,111 11(13) 0.48min  8.32hr+ 9OT

Django-admin-0.96.1 3,558 Python 5 1 5.29min 5.29min + 40T

Discuz!-6.0 67,088 PHP 613 o(1) 0.85min 8.37hr + 120T

Joomla-1.6 253,711 PHP 215 o(7) 2.17min 1.26hr + 1170T

Table 4: Evaluation for exploit generation
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Chapter 7

Conclusion and Future Work

In this chapter, we summarize the contribution and conclude the superiority and inferiority in
our work. Some future work is proposed to explore more web security issues with similar

methods in this thesis.

7.1 Conclusion

This thesis implemented an automatic exploit generator for web security issues on real-world
web applications. Symbolic socket is an evolution of symbolic execution and it is an important
idea in our work. In contrast with other related works, applying symbolic socket on HTTP is a

comprehensive solution and provides the capability of platform-independent web testing.

Whenever a symbolic data is received under sockets, an exploit has an opportunity to be
solved by constraint solving, which is an ability of constraint solver in symbolic execution. In
contrast with other traditional vulnerabilities, this ability leads to generate more feasible exploits
for potential vulnerability, which is under some arithmetic operations or simple mutations. This

is one of our contributions in our work.

In order to apply our work on real-world web applications, single path concolic mode and
some optimizations are proposed and implemented to overcome the challenge on large-scale
applications. The objective of single path concolic mode is to force the exploration on symbolic
execution in only one path with a given concrete input for reducing the overhead on path explo-

sion.
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In our evaluation, nine web applications include the benchmarks from Ardilla and real-
world web applications at different platforms, such as PHP and Django. All applications were
tested and exploits were generated by our automatic exploit generator. The experimental result
proved the feasibility of our implementation. In addition, some of the exploits were announced

as known vulnerabilities in CVE database.

7.2 Future Work

To develop our automatic exploit generator and become a more comprehensive solution in web

security, future work is suggested as follows.

7.2.1 Other Web Security Issues

As mentioned in Section 2.2, other types of web security issue are also possible to generate the
exploit with same method. By considering the exploit generation on RFI and LFI, vulnerability
happens at particular functions, such as require(), include() in PHP platform. All implementa-
tions are in the same way except the handler, which should be implemented as a PHP extension
and hook require() or include() inside PHP kernel for triggering the exploit generator and de-
tecting symbolic data. By hooking different vulnerable functions that mention in Figure 19, it is
possible to generate exploits for directory traversal attack, command injection or code injection.
However, platform-dependent ways exist because of the PHP extension and particular functions

in PHP kernel.

Qemu

Other Web
security issues

RFIand LRI include(), include_once(),
require(), require_once()...

Directory fopen(), file(), copy(), ]
traversal attack unlink()... s2e_myop(argument, len): EXpl o1t
Command fopen(), file(), copy(), generator
injection unlink()...

Code injection eval(), call _user_func(),

call_user func_array()...

Figure 19: Exploit for other web security issues
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7.2.2 Symbolic execution with Browser

To consider web security issues in Ajax or HTMLS, our present method that mentions in Section
5.1.3 is not suitable for them. Because the issues happen at client-side rather than server-
side and they should be determined at a browser rather than HTTP response. Thus, symbolic
execution with browser is necessary to figure out those issues. The strategy is similar with
Section 7.2.1. Handler including the new S2E instruction, s2e_ myop, should built in browser

and triggers the exploit generator at later. The scenario shows in Figure 20.

Qemu

yser
s2e_myop(argument, len);

Exploit

generator

Figure 20: Symbolic execution with Browser
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