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Handling Stall Cycles in EPIC Architecture

Student: Hsien-Chun Yen Advisor: Dr. Chung-Ping Chung

Department of Computer Science and Information Engineering
National Chiao Tung University

ABSTRACT

There are many types of stalls. Some instructions have unpredictable
execution latencies because of stall occurred. It is impossible at compile time to
identify all possible sources of stalls and their durations. Also, it is impossible to
give an optimized instruction scheduling at compiler time. When executing a
program, stalls may occur and break'down the performance. So, a good dynamic

scheduling execution mechanism IS necessary.

In this thesis, we introduce an-approach for an EPIC architecture to become
an out-of-order execution architecture. Instead of additional complex hardware,
we attach several bits to each instruction to show hardware how to execute
program dynamically without hazard detection and instruction scheduling circuit.
Stall cycles can overlap with other stall cycles and the blocked instructions can
be executed with non-blocked instructions. When the stall cycles are hidden, the

total execution time can be reduced and archive performance improvement.
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Chapter 1
Introduction

In this chapter, we introduce an overview of instruction-level parallelism, stalls, and
cycle accounting. Then we give the research motivation and objective of this thesis. At last,

the organization of this thesis is introduced.

1.1 Instruction-Level:Rarallelism
All processors since about 1985, including, those in the embedded space, use
pipelining to overlap the execution of instructions and1mprove performance. This potential
overlap among instructions is called instruction-level parallelism (ILP) since the instructions

can be evaluated in parallel.

Because of the limitation imposed by data and control dependences, the processor
cannot exploit parallelism unlimited. There are two largely separable approaches to exploiting
ILP. One approach covers techniques that are largely dynamic and depend on the hardware to
locate the parallelism. The other approach focuses on techniques that are static and rely much
more on software. In practice, this partitioning between dynamic and static and between
hardware-intensive and software-intensive is not clean, and techniques from one camp are

often used by the other.

The techniques of exploiting ILP to increase performance are the key to achieving

rapid performance improvements. The question of how much ILP exists is critical to our long-



term ability to enhance performance at a rate that exceeds the increase in speed of the base
integrated circuit technology. On a shorter scale, the critical question of what is needed to

exploit more ILP is crucial to both computer designers and compiler writers.

1.2 Stall Reasons
If an instruction can not be executed smoothly in expected way or expected cycle
counts, it calls “stall’. There are many stall reasons, such as memory access cycles, cycles
spent flushing the pipe due to branch mispredicts, cycles spent flushing the pipe due to

interrupts and exceptions, and etc.

It is not possible at compile time to identify all possible sources of stalls and their
durations. In a VLIW architecture, suppose a memory access causes a cache miss, leading to a
longer than expected stall. If other; parallelyfunctional units are allowed to continue operating,
sources of data dependency may-dynamically emerge. For example, consider two operations
which have an output dependency. The'original-scheduling by the compiler would ensure that
there is no consequent WAW (write after'write) hazard. However, if one stalls and the other
‘runs ahead’, the dependency may turn into a WAW hazard. So if you are serious about
getting the compiler to do all dependency resolution, you must stall all elements together.

This is a performance problem.

1.3 Cycle Accounting
The first step in any performance analysis is to understand the performance
characteristics of the workload under study. There are two fundamental measures of interest:

event rates and program cycle break down. !

e Event Rate Monitoring: Event rates of interest include average retired instructions

per clock, data and instruction cache miss rates, or branch mispredict rates measured
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across the entire application. Characterization of operating systems or large
commercial workloads (e.g. OLTP analysis) requires a system-level view of
performance relevant events such as TLB miss rates, VHPT walks/second,

interrupts/second, or bus utilization rates.

e Cycle Accounting: The cycle breakdown of a workload attributes a reason to every
cycle spent by a program. Apart from a program’s inherent execution latency, extra

cycles are usually due to pipeline stalls and flushes.

While event rate monitoring counts the number of events, it does not tell us whether
the observed events are contributing to a performance problem. A commonly used strategy is
to plot multiple event rates and correlate them with the measured IPC (instructions per cycle)
rate. If a low IPC occurs concurrently with.a;peak of cache miss activity, chances are that
cache misses are causing a performance problem. To-eliminate such guess work, a processor
can provide a set of cycle accounting monitors, which break down the number of cycles that
are lost due to various kinds of microarchitectural events. As shown in Figure 1.1, this lets us
account for every cycle spent by a program ‘and therefore provides insight into an
application’s microarchitectural behavior. Note that cycle accounting is different from simple
stall or flush duration counting. Cycle accounting is based on the machine’s actual stall and
flush conditions, and accounts for overlapped pipeline delays, while simple stall or flush
duration counters do not. Cycle accounting determines a program’s cycle breakdown by stall
and flush reasons, while simple duration counters are useful in determining cumulative stall or

flush latencies.



Inherent Program Data Access Branch | Fetch
Execution Latency Cycles Mispredicts Stalls Other Stalls
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Figure 1.1: Itanium Processor Family Cycle Accounting

The Itanium 2 processor cycle accounting monitors account for all major single and
multi-cycle stall and flush conditions. Overlapping stall and flush conditions are prioritized in
reverse pipeline order, i.e. delays that occur later in the pipe and that overlap with earlier stage
delays are reported as being caused later in the pipeline. The six back-end stall and flush

reasons are prioritized in the following order:

1. Exception/Interruption Cycle: cycles spent flushing the pipe due to interrupts and

exceptions.
2. Branch Mispredict Cyclezcycles spent flushing the pipe due to branch mispredicts.

3. Data/FPU Access Cycle: memory: pipeline full, data TLB stalls, load-use stalls, and

access to floating-point unit.
4. Execution Latency Cycle: scoreboard and other register dependency stalls.
5. RSE Active Cycle: RSE spill/fill stall.

6. Front-end Stalls: stalls due to the back-end waiting on the front-end.

1.4 Motivation

As the mentioned above, the performance of an in-order execution EPIC processor can
suffer significantly due to stalls. If the stall cycles can be hidden by overlapping them with
other stall cycles, or executing the blocked instructions using unused function units, we can

reduce the total execution time.



1.5 Objective

Because overlapping the stall cycles can hide some stall time and further improve total
execution time. We modify the original EPIC architecture to handle stalls such that the
program can be executed out of order without a hardware circuit checking dependences and

hide the stall latency cycles.

1.6 Organization of this Thesis
The organization of this thesis is divided as follows: In Chapter 2, the background is
presented. In Chapter 3, we describe our design on an EPIC architecture. In Chapter 4, we
show the simulation environment, simulation results and relative analysis. Finally, we

summarize our conclusions and future work. in Chapter 5.



Chapter 2
Background

In this chapter, overview of multiple-issue processors is described first. Next, we will
show the implementation of traditional dynamic execution. Then we will introduce our target
architecture, Explicitly Parallel Instruction Computing (EPIC). Finally, we will discuss the

previous work and related research on handling stalls.

2.1 Overview of:Multiple-lssue Processors
The goal of the multiple-issue processors is to allow multiple instructions to issue in a
clock cycle. Multiple-issue processors-come-in‘two types: superscalar processors and VLIW

(very long instruction word) processors.

Superscalar processors are ILP processor implementations for sequential
architectures—architectures for which the program is not expected to convey and, in fact,
cannot convey any explicit information regarding parallelism. Since the program contains no
explicit information about available ILP, if this ILP is to be exploited, it must be discovered

by the hardware, which must then also construct a plan of action for exploiting the parallelism.

Very long instruction word (VLIW) processors are examples of architectures for
which the program provides explicit information regarding parallelism. The compiler
identifies parallelism in the program and communicates it to the hardware by specifying

which operations are independent of one another. This information is of direct value to the



hardware, since it knows, with no further checking, which operations it can start executing in

the same cycle.

The Explicitly Parallel Instruction Computing (EPIC) style of architecture is an
evolution of VLIW that has also absorbed many superscalar concepts, albeit in a form adapted
to EPIC. EPIC provides a philosophy of how to build ILP processors, along with a set of
architectural features that support this philosophy. In this sense, EPIC is like RISC: The term
denotes a class of architectures that subscribe to a common philosophy. Just as there is more
than one distinct RISC instruction set architecture (ISA), there can also be more than one
EPIC ISA. Depending on which EPIC features it uses, an EPIC ISA can be optimized for

distinct domains such as general-purpose or embedded computing.

Table 2.1 summarizes the basic approaches to multiple issue and their distinguishing

characteristics and shows processots that,isé éach approach. ™!

Common Issue Hazard Scheduling Distinguishing Examples
name structure detection characteristics
Superscalar  dynamic  hardware+  Static in-order Sun UltraSPARC
(static) execution /11
Superscalar  dynamic  hardware dynamic some out-of- IBM Power?2
(dynamic) order
execution
Superscalar  dynamic  hardware dynamic out-of-order Pentium 111/4, MIPS
(speculative) with with R10K, Alpha 21264,
speculation speculation HP PA 8500, IBM
RS64I11
VLIW/LIW  static software  Static no hazards Trimedia, 1860
between issue
packets
EPIC mostly mostly mostly explicit Itanium
static software  static dependences
marked by
compiler

Table 2.1: The five primary approaches in use for multiple-issue processors and the
primary characteristics that distinguish them.



Although early superscalar processors used static instruction scheduling, and
embedded processors still do, most leading-edge desktops and servers now use superscalars

with some degree of dynamic scheduling.

2.2 Explicitly Parallel Instruction Computing
(EPIC)

EPIC defines a new style of architecture that could rival RISC in terms of impact. This
philosophy seeks to simplify hardware while extracting even more instruction-level

parallelism from programs than either VVLIW or superscalar strategies.

One of goals for EPIC was to retain VLIW’s philosophy of statically constructing the
POE, but to augment it with features—akin to those in a superscalar processor—that would
permit it to better cope with dynamic factors, whichetraditionally limited VLIW-style

parallelism. To accomplish these-goals, the EPIC philosophy has the following key aspects.
e Designing the desired POE at compiletime

EPIC places the burden of designing the POE on the compiler. Whereas, in
general, a processor’s architecture and implementation can obstruct the compiler in
performing this task, EPIC processors provide features that assist the compiler in
designing the POE. An EPIC processor’s runtime behavior must be predictable and
controllable from the compiler’s viewpoint. Dynamic out-of-order execution can
obfuscate the compiler’s understanding of how its decisions will affect the actual ROE
constructed by the processor; the compiler has to second-guess the processor, which
complicates its task. An “obedient” processor, which does exactly what the program

instructs it to do, is preferable.



The essence of engineering a POE at compile time is to reorder the original
sequential code to best take advantage of the application’s parallelism and make best
use of the hardware resources to minimize the execution time. Without suitable
architectural support, this reordering can violate program correctness. Thus, because
EPIC places the burden of designing the POE on the compiler, it must also provide

architectural features that support extensive code reordering at compile time.

Permitting the compiler to play the statistics

An EPIC compiler faces a major problem in constructing the POE: Certain
types of information that necessarily affect the ROE can only be known at runtime.
For example, a compiler cannot know for sure which way each conditional branch will
go, and, when scheduling code acrass basic blocks in a control flow graph, the
compiler cannot know for sure which control-flow path is taken. In addition, it is
typically impossible to censtruct a static schedule that jointly optimizes all paths
within the program. Ambiguity also results.when a compiler is unable to resolve
whether memory references are to the same location. If they are, they need to be

sequentialized. If not, they can be scheduled in any order.

With such ambiguities, there often exists a strong probability of a particular
outcome. An important part of the EPIC philosophy is to allow the compiler to play
the odds under such circumstances—the compiler constructs and optimizes a POE for
the likely case. However, EPIC provides architectural support—such as control and
data speculation, which we discuss later—to ensure program correctness even when

the guess is incorrect.

When the gamble does not pay off, program execution can incur a performance

penalty. The penalty is sometimes visible within the program schedule, for instance



when a branch exits a highly optimized program region and then executes code within
a less optimized region. Or, the penalty may be incurred in stall cycles that are not
visible in the program schedule; certain operations execute at full performance for the
likely, optimized case but stall the processor to ensure correctness for the less likely,

non-optimized case.
Communicating the POE to the hardware

Having designed a POE, the compiler must communicate it to the hardware.
To do so, the ISA must be rich enough to express the compiler’s decisions as to when
to issue each operation and which resources to use. In particular, it should be possible
to specify which operations are to issue simultaneously. The alternative would be for
the compiler to create a sequential, program that the processor reorganizes dynamically
to yield the desired ROE. But this-defeats. ERIC’s goal of relieving the hardware of the

burden of dynamic scheduling.

When communicating the POE to the-hardware, it is important to provide
critical information at the appropriate time. A case in point is a branch operation,
which—if it is going to be taken—requires that instructions start being fetched from
the branch target well in advance of the branch being issued. Rather than providing
hardware to deduce when to do so and what the target address is, the EPIC philosophy
provides this information to the hardware, explicitly and at the correct time, via the

code.

There are other decisions the microarchitecture makes that are not directly
concerned with code execution, but which do affect execution time. One example is
cache hierarchy management and the associated decisions as to what data to promote

up the hierarchy and what data to replace. Such policies are typically built into the

-10 -



cache hardware. EPIC extends its philosophy of having the compiler orchestrate the
ROE to having it also manage these microarchitectural mechanisms. To this end, EPIC
provides architectural features that permit programmatic control of mechanisms that

the microarchitecture normally controls.

2.3 Dynamic Execution
The potential performance gains of a dynamic execution engine are facilitated by the

following two techniques:
e Dynamic scheduling: Instructions are reordered to reduce unnecessary stalls.
e Register renaming: Registers are renamed to eliminate false dependencies.

Typically, the dynamic portion of the processor consists of a register renaming
mechanism, which maps between temporary and architectural files, a reorder buffer,

reservation stations, and execution.units.

2.3.1 Dynamic Scheduling

A simple statically scheduled pipeline fetches an instruction and issues it, unless there
was a data dependence between an instruction already in the pipeline and the fetched
instruction that cannot be hidden with bypassing or forwarding. (Forwarding logic reduces the
effective pipeline latency so that the certain dependences do not result in hazards.) If there is a
data dependence that cannot be hidden, then the hazard detection hardware stalls the pipeline
(starting with the instruction that uses the result). No new instructions are fetched or issued

until the dependence is cleared. &

We explore an important technique, called dynamic scheduling, in which the hardware
rearranges the instruction execution to reduce the stalls while maintaining data flow and

exception behavior. Dynamic scheduling offers several advantages: It enables handling some

-11 -



cases when dependences are unknown at compile time (e.g., because they may involve a
memory reference), and it simplifies the compiler. Perhaps most importantly, it also allows
code that was compiled with one pipeline in mind to run efficiently on a different pipeline. As
we will see, the advantages of dynamic scheduling are gained at a cost of a significant

increase in hardware complexity.

Although a dynamically scheduled processor cannot change the data flow, it tries to
avoid stalling when dependences, which could generate hazards, are present. In contrast, static
pipeline scheduling by the compiler (covered in the next chapter) tries to minimize stalls by
separating dependent instructions so that they will not lead to hazards, Of course, compiler
pipeline scheduling can also be used on code destined to run on a processor with a

dynamically scheduled pipeline.

A major limitation of the simple pipelining techniques is that they all use in-order
instruction issue and execution: Instructions-are issued-in program order, and if an instruction
is stalled in the pipeline, no later instructionscan proceed. Thus, if there is a dependence
between two closely spaced instructions in the pipeline, this will lead to a hazard and a stall
will result. If there are multiple functional units, these units could lie idle. If instruction j
depends on a long-running instruction i, currently in execution in the pipeline, then all
instructions after j must be stalled until i is finished and j can execute. For example,

consider this code:

mul fO, 2, 4
add f10, f0, f8
sub f12, 8, fl14

The sub instruction cannot execute because the dependence of add on mul causes the
pipeline to stall; yet sub is not data dependent on anything in the pipeline. This hazard creates
a performance limitation that can be eliminated by not requiring instructions to execute in

program order.

-12 -



To allow us to begin executing the sub in the above example, we must separate the
issue process into two parts: checking for any structural hazards and waiting for the absence
of a data hazard. We can still check for structural hazards when we issue the instruction; thus,
we still use in-order instruction issue (i.e., instructions issued in program order), but we want
an instruction to begin execution as soon as its data operand is available. Thus, this pipeline

does out-of-order execution, which implies out-of-order completion.

2.3.2 Register Renaming Issue on Predicated Code

As the instructions enter the renaming stage in processor, all registers are renamed and
each register definition is assigned a unique physical register. Occasionally, the renaming
mechanism may need to stall the pipeline if some predicates are not fully resolved. This
situation occurs when the renaming unit’processes multiple instructions that, guarded by
different unresolved predicates, write to-a common architectural register. As usual, each
definition of this common register would be assigned a unique physical register during
renaming. When a consumer instruction that uses.the'common register reaches the rename
stage, the renaming would become ambiguous. Without evaluating the predicates that guarded
the definitions of the common register, the renaming unit cannot yet map the common register
to the correct physical register. Thus, the processor needs stall the consumer instruction until
the predicates are resolved. The stall would induce bubbles in the pipeline and may result in

performance loss. "
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Before Rename

I5:  (p8) mov ri1l4 = r21

16: (9 Id r44 = [r50]

17: cmp p6, p7 = rd44, O

After Rename

I5: (pQ) mov rA = rE

16: (pR) Id rB = [rF]

17: cnp  pS, pT = r(A? or B?), O

Figure 2.1: Renaming issue

In our example above, both the mov instruction 15 and the Id instruction 16 assign
their results to the same architectural register r44, and they are guarded by p8 and p9,
respectively. Figure 2.1 shows the instructions before and after renaming. To distinguish from
the architectural registers, we use alphabetical letters to identify the physical registers. After
renaming, the definitions of r44:by 15 and 16 are assigned to rA and rB, respectively. With
unresolved predicates, the renaming of r44,.the-source operand of the consumer instruction
17, cannot yet be determined for using ‘either rA or rB. Thus, until the predicates are resolved,

the processor needs to stall 17 to prevent it from entering the rename stage.

2.4 Related Work

In order to hide the stall latencies, some software approaches and hardware approaches
were purposed. In the following subsections, we introduce two approaches. One is called
“advanced load”, implemented in real Itanium processors. The other is a survey of the
speedups gained by out-of-order execution Itanium processor over the baseline in-order

processor. However, it is too complex to implement on hardware.
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2.4.1 Advanced Load

Data speculation is the execution of a memory load prior to a store that preceded it and
that may potentially alias with it. Data speculative loads are also referred to as “advanced

loads”. ]

Consider the code sequence below:

store(st_addr, data)
load(ld_addr, target)
use(target)

The process of determining at compile time the relationship between memory
addresses is called disambiguation. In the example above, if Id_addr and st_addr cannot
be disambiguated, and if the load were to be performed prior to the store, then the load would
be data speculative with respect to the store. If memory addresses overlap during execution, a
data-speculative load issued before the store;might return a different value than a regular load
issued after the store. Therefore analogous to-control speculation, when the compiler data
speculates a load, it leaves a check instruction-at the‘original location of the load. The check
verifies whether an overlap has occurred and:if'so it branches to recovery code. The code

sequence above now translates into:

/* off critical path */
aload(ld_addr, target)

/* other operations including uses of target */
store(st_addr, data)

acheck(target, recovery_addr)

use(target)

Due to explicit support to control speculation and data speculation provided in the
Itanium architecture, the advanced compiler can potentially achieve performance comparable
to out-of-order execution through effective instruction scheduling. However, in applications
with complex memory access patterns and very short load-to-use distances, it is difficult for

the compiler to reduce the impact of cache misses for such applications.
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2.4.2 Out-of-order Execution Itanium Processor

As the speeds of processors and memory systems continue to diverge, the performance
of a processor depends more heavily on its ability to hide memory latency. In-order execution
processors, such as the current Itanium processor designs, may suffer an expensive stall when
servicing data cache misses. This problem is exacerbated in programs exhibiting hard-to-
predict memory accesses. To effectively hide the latency for in-order execution processors,
microarchitecture enhancements as well as software optimizations can be applied. For
example, caches can be implemented as non-blocking caches to avoid unnecessary processor
stalls, or the compiler can insert prefetch hints into the program. This related work evaluates
the memory latency tolerance microarchitecture approaches for the future Itanium processors.

The approach is to implement an out-of-order execution core. !

Out-of-order (OOO) execution allows the processor to dynamically schedule the code
and adapt to the run-time behavior of the program. 1ts major objectives are to prevent
unnecessary stalls and to hide memory latency. Due to explicit support to control speculation
and data speculation provided in the Itaniumarchitecture, the advanced compiler can
potentially achieve performance comparable to out-of-order execution through effective
instruction scheduling. However, in applications with complex memory access patterns and
very short load-to-use distances, it is difficult for the compiler to reduce the impact of cache
misses for such applications. An out-of-order Itanium core can discover independent
instructions dynamically and overlap their execution with the unpredictable outstanding cache

misses, thereby effectively hiding the miss latency.

This related work compares the speedups gained by the OOO processor over the
baseline in-order processor. The in-order baseline processor suffers significant performance
losses due to the large number of cache misses incurred in the memory-intensive benchmarks.

The in-order pipeline stalls when an instruction attempts to use the destination register of an
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outstanding load miss. The memory-intensive benchmarks often have extensive use of pointer
de-references, which are translated into adjacent dependent loads with very short distances in
between. Consequently, cache misses on the dependent loads will quickly induce pipeline
stalls upon these nearly immediate uses. The OOO processor can achieve an impressive
speedup over the baseline in-order processor, with 87% average across the memory-intensive
benchmarks. For the compute-intensive benchmarks, OOOQ can achieve on average 27%

speedup over in-order due to OOO’s ability to tolerate L1 cache misses.
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Chapter 3
Design of Out-of-order
Execution Mechanism

In this chapter, we propose an out-of-order execution mechanism on EPIC architecture

to handle stalls. Then we describe the design detail of the hardware and software additions.

3.1 Concept
When a program compiled, the program should become a control-data-flow graph
(CDFG). The graph contains all the program information, including basic blocks, instructions,
control flow dependences, and data flow dependences. In order to keep the execution order,
compiler should have some way to show the processor when to execute which instructions. As
Figure 3.1, the EPIC architecture uses instruction groups to keep the information of control

flow dependences and data flow dependences.

Comparing to VLIW, the instruction group is an easy way not only to keep

dependences information, but also flexible.
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[]

A program CDFG after compiled

______________

The EPIC representation

Control Flow Dependence
Data Flow Dependence

Instruction

r == Unpredictable
I | Execution Time
Instruction

<> Branch Instruction

:,-_: Instruction Group

Figure 3.1: A program's control-data-flow graph and its EPIC representation

______________

Execute
in order

______________

0o 0
@

I:' Instruction

r-

! —: Possibly stall instruction

<> Control instruction

! | Instruction group

Figure 3.2: One instruction stall occurred, whole instruction group stall.
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3.1.1 The Stall Problem of Instruction Groups

Once instructions are issued as a group, they will proceed as a group through the
pipeline. If one instruction in the issue group has a stall condition, the whole group will stall.
This stall will also stall all instructions behind it (younger). Figure 3.2 shows the execution
result if the second instruction group has 2 cycles stall and the third instruction group has 1
cycle stall. In fact, when the stall occurred, some instructions can still be executed if there is

no data dependence from the stalled instruction.

The way to solve this problem is using an out-of-order execution mechanism. Through
the instruction group is an easy way to keep dependences information, it loses the detail
dependence information about each instruction in the group. Even if the function unit is not
busy, no information can guarantee which instruction can be executed without waiting the

execution of previous instruction group completed.

3.1.2 Observation

When an instruction group is executed completely, all the result defined by those
instructions will be ready, and the instruction of next instruction group can use the result
without hazard detecting. It means that all instructions in the true dependency chain will

appear continuously in each instruction groups.

As Figure 3.3, if we allow instructions to execute out of order when there are
sufficient resources and no data dependences, only overlapping the stall cycles can gain the
benefit. In other words, even if all non-blocked instructions are executed, the blocked
instructions need to be executed later and no other instruction can overlap with, and no clock

cycle saved.
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______________

Figure 3.3: In-order execution vs.‘out-of-order execution

In the superscalar architecture, the performance gains of a traditional dynamic
execution mechanism are facilitated by dynamic scheduling and register renaming. However,
a register renaming mechanism is not suitable on a predicated code and the mechanism needs
to speculate the register name with instructions executed before. We do not use register

renaming mechanism in this design.

In order to execute out of order without checking the dependence relation, we
introduce a hint attached on each instruction to control the dependency and add some

hardware modification.
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3.2 Dependency Control
Because we allow some blocked instructions to be executed later, the non-blocked
instructions cannot use the registers used by those blocked instructions. We introduce the
dependency control to keep the dependency relations, like the scoreboard mechanism, the
dependency control knows which instructions shall be blocked when an instruction stalled,

and preserves the execution correctness without checking them in execution stage.

The dependency control is divided into two parts: the dependency bit and the hardware

modification.

3.2.1 Dependency Bit

Without a complex hardware circuit checking dependences, a dependency bit
represents all registers needed by-a stall-instruction and instructions depending on it. All
instructions dependent on a stall instruction can overlap with other instructions independent
from the stall dependency chain. We use one bit.only to record the first continuous
instructions in whole dependency chain and preserve all registers used by those continuous

instructions. One bit gives one opportunity of out-of-order execution.

. . Instruction
—

Dependency control bits

Figure 3.4: Dependency bits

For each instruction, we attach some dependency bits on it. Figure 3.4 shows the
instruction format after attaching dependency bits. Those bits are disjoint and can be used in

the same instruction.
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3.2.2 Hardware Modification

Instruction
Bundle
Queue

Decode and Dispatch

h 4 A 4 h 4

Function Function Function
Unit Unit Unit
| | |
| F 3 | F 1 | F 3
Register File Register File Register File

Figure 3.5: General EPIC block diagram

Figure 3.5 shows the general EPIC block diagram. Instructions are delivered to the
processor in bundles, and the instruction bundles will be issued into the instruction bundle
queue. The instructions in queue deliver and execute in groups. Instructions in different group

will not be deliver at the same time.
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Decode and Dispatch
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Function Function Function
Unit T Unit T Unit T
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h 4 A 4 h 4

Register File Register File Register File

Figure 3.6: Proposed EPIC architecturewith'dependency control block

Figure 3.6 is the proposed EPIC architecture. We modify the instruction bundle queue,
and add a dependency control block. Detail of the dependency control block is in Figure 3.7.

Each instruction has its own depency bits and the executable status corresponding to each bit.

=24 -



R “Dependency bit” ) .
marked by compiler Y

A
instruction | X
I

T e e e =

-
-——

S
—_—
- -~
T’
b
el
-
-
-
| -

' Corresponding F Pt
. “executable status” KiPiad
5 5 s
AN maintained by hardwag—;x’

Instruction bundle queue

1L

Decode and dispatch

Figure 3.7: Detail of the dependency control

The dependency control block follows the execution policy listed below:

e For each dependency bit,-executes instructions-in the instruction group order.

e Before executing marked tnstructions, sets the executable status to all continuous

instructions when no instruction with the'same bit is executing.

e An instruction group cannot be executed if one corresponding executable status of any

instruction in the group is not set.

e No more instruction can be executed when a control instruction (branch, call, or return)

is blocked.

3.3 Dependency Bit Marking Method

The dependency bit is marked in compile time. We divide the dependency bit marking

method into four steps. We also give an example to see how it works.

1. Mark all instructions which may cause stall.
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At this step, we assume that there are infinity dependency bits, find out all
possibly stall instructions, and give each possibly stall instruction a control bit. If two
or more stall instructions appear in the same instruction group, we may share the same
dependency bit with those stall instructions. Note that at this step, the dependency bit
only represents the destination register of that instruction, because when this stall
happened, destination register may not be defined, and can not to be used by non-
blocked instruction. For example, to mark the instruction “Id r3 = [r2]”, only

register r3 need to be concerned.

{mov r =0

lempp,=rzr
brc p, L2;;
macr, =r*r+r;

add r,=r, +r,;;

Bd r=r]; B Definer,
add ry=r,+r,;;

st [r]=r,

add r=r+1
|br L1
L2:

XXX

Figure 3.8: Step 1: Mark all instructions which may cause stall.

2. Mark all continuous instructions needed to be blocked when that stall occurred.
All continuous instructions within the data dependency chain must be marked.
In order words, all instructions which have data dependences (RAW, read after write)

or name dependences (WAR, write after read, and WAW, write after write) to the

destination register of the previous step must be marked.
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When the length of continuous dependency chain is longer than the instruction
queue length, we just simply discard up the mark. Because when the stall occur, the
non-blocked instructions cannot issue into the instruction queue, and no more

instruction can be executed until the stall instruction finished.

When the dependency chain is not continuous, we stop tracing and go to next

step.

[ |movr=0;

cmpp, =rzr,;;
brc p, L2 ;;
macr, =r*r+r;
add r,=r,+r,;;

Id  r,=1[r]; Define r,
add r,=r,+r,;; Define r,, Use r,, 1,
st [r]=r, Define [r,], User,, r,
add r=r+1
br L1
L2:
[ |xoxx

Figure 3.9: Step 2: Mark all continuous instructions needed to be blocked when that stall
occurred.

3. Mark the first instruction which has dependency relation to those blocked instructions.
We don’t use the register renaming mechanism in this design. In order to
execute program correctly, no more than the first instruction with data dependence the

continuous dependency chain can be executed. So we mark the first non-continued

instruction with register conflict (data dependences or name dependences).
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If a control instruction is met, stop tracing at that instruction and mark it when
the branch target is unknown (indirect branch, call library, or return), or just tracing all

possible paths otherwise.

Figure 3.10 shows that the control instruction “br L1” meet, we continue to
trace code after L1, because they are in the same procedure. The instruction “add r2
= rl + ra” need to be marked because it write r2 after the store instruction “st
[r2] = r3”read. Note that instructions after L2 need to be checked, because the

branch instruction “br.c pl, L2 is conditional.

movr=0;;

empp,=rzr
brc p,, L2
macr, =r*r,+r.

add r,=r,+r,_;;

Id  r,=1[r]; Define r,
add r,=r,+r1,;; Define r;, Use r;, 1,
st [r]=r, Define [r,], User,, 1,
add r=r+1
br L1 ;;
L2:
| xxx

Figure 3.10: Step 3: Mark the first instruction with data dependence after the
continuous dependency chain.
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4. Discard or merge marks.

If the resisters used by one dependency bit are subset of another dependency
bit in the same code fragment, we discard the subset one of the marks. As Figure 3.11,

the dependency bit is redundant.

R

Figure 3.11: Discard the redundant dependency bit.

Also, if we run out of dependency bit, we shall discard or merge them to fit the
limitation. Figure 3.12 shows the merging case of no overlap situation. Two
dependency bits are merged to one. Figure 3.13 shows another case, if we want to
merge dependency bits with some overlap instruction groups, we should take care of

all possible stalls and prevent all possible incorrectness.

-29 -



Figure 3.12: Merge two dependency bit without overlap.

Figure 3.13: Merge two dependency bit with overlap.
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3.4 Example

We will show the execution process of one dependency control bit machine in Figure

3.14 to Figure 3.30 below.

“Dependency bit” “Executable status”
marked by compiler / maintained by hardware
-[|movR =0; st[R]=R,
L1: addR, =R, + R,
cmp P, =R 2R, ld R, = [Ry]
brc p, L2;; add R, =R, + R,
mul R, =R *R_;; addR, =R, + R
add R,=R, +R Queue mulR, = R *R_
add R,=R,+R, direction br.c ps, L2
ld  R,=[Ri];; cmpp; =R 2R
add R, =R, + Rl s v Instruction bundle queue
st [R]=R,
add R=R +1
br L1
L2:
DXXX - mov R =0

Function units

Figure 3.14: The 1st clock cycle. There are 3 function units and 8 slot of instruction
bundle queue.
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[JmovR =0}

L1:

= cmpp, =R =R
br.c p,, L2,
mul R, =R *R,;;
add R, =R, + R ;;
add R, =R, + R, ;;
ld  R,=[R,];;
add R, =R, +R, ;;
st [R;]=R,
add R=R +1
br L1

L2:
[ o

add R =R, + 1

st [R;] = R,

addR4=R4+RA

ld Ry = [R;]

add R, =R, + R,

add R, =R, +R

mulR, =R *R,

br.c p,, L2

Instruction bundle queue

- cmpp, =R 2R,

Function units

Figure 3.15: The 2nd clock cycle.

[JmovR =0}

L1:
cmpp, =R =R,

= | |brc p,, L2;;

mul R, =R *R,;;
add R, =R, + R ;;
add R, =R, + R, ;;
ld  R,=[R,];;
add R, =R, +R, ;;
st [R]=R,
add R=R +1
br L1;;

L2:

[ o

br L1

add R = R + 1

st [R.] =R,

addR, =R, + R,

ld Ry = [R;]

add R, =R, + R,

add R, =R, +R

mulR, =R *R_

Instruction bundle queue

- br.c p;, L2

Function units

Figure 3.16: The 3rd clock cycle.




[JmovR =0}

L1:
cmpp, =R =R,
br.c p,, L2,

= mul R, =R *R_

add R,=R, +R

add R, =R, + R, ;;
ld  R,=[R,];;
add R, =R, +R, ;;
st [R]=R,

add R=R +1

br L1

L2:
[ o

XXX

br L1

add R =R, + 1

st[R.]=R,

ld Ry = [R:]

add R, =R, + R,

addR, =R, +R

Instruction bundle queue

- mulR, =R *R,

Function units

Figure 3.17: The 4th clock cycle.

[JmovR =0}

L1:
cmpp, =R =R,
br.c p,, L2,
mul R, =R *R,;;

= jadd R, =R, +R ;;
add R, =R, + R, ;;
ld  R,=[R,];;
add R, =R, +R, ;;
st [R]=R,
add R=R +1
br L1

L2:
[ o

XXX

XXX

br L1

add R =R, + 1

st [R.] =R,

d R, = [R]

add R, =R, + R,

Instruction bundle queue

- add R, =R, +R

Function units

Figure 3.18: The 5th clock cycle.
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[JmovR =0} XXX
L1: XXX
cmp p, =R =R, ;; XXX
br.c p,, L2, br L1
mul R, =R *R,;; addR =R +1
add R, =R, + R ;; st [R.] =R,
= Nadd R,=R,+ R, add R, =R, + R,
Id  R,=[R.];; Id R, = [R.]
add R, =R, +R, ;; Instruction bundle queue
st [R,]=R, Set executable status
add R=R +1 of all continuous
br L1 instructions
L2:
DXXX - add R, =R, + R,

Function units

Figure 3.19: The 6th clock cycle. A marked instruction can be executed if no stall
instructions with the same mark in thefunction units. When execute a marked
instruction, the executable status:of all continuous instructions are set.

[JmovR =0} XXX

L1: XXX
cmp p, =R =R, ;; XXX
br.c p,, L2, XXX
mul R, =R *R,;; br L1
add R, =R, + R ;; addR =R +1
add R,=R,+R,;; I st [R.] = R,

—mld R,=[R.];; add R, =R, + R,

add R, =R, +R, ;; Instruction bundle queue
st [R;]=R,
add R =R + 1 A stall occurred
br L1 N\,

L2: — = ld R, = [R;]

[ o

Function units

Figure 3.20: The 7th clock cycle. A stall occurred.
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[JmovR =0}

L1:

cmpp, =R =R,
br.c p,, L2,

mul R, =R *R,;;

add R,=R, +R

add R, =R, + R, ;;

- Qld R,=[R.];;
add R, =R, +R, ;;

st [R;]=R,
= | ladd R=R +1
= \br L1;;
L2:
[ o

XXX

XXX

XXX

XXX

XXX

XXX

st [R:]=R,
add R, = R, + R,

Instruction bundle queue

ad - ld R, = [R;]
- add R =R, + 1
- br L1

Function units

Figure 3.21: The 8th clock cycle. The blocked instructions are skipped at this time. Note
that these two instructions can be executed‘at:the same time because they belong to the

same instruction group. A branch-mispredict occurred at this clock cycle.

[JmovR =0}
L1:
= cmpp, =R =R
br.c p,, L2,
mul R, =R *R,;;
add R, =R, + R ;;

add R, =R, + R, ;;
- Qld R,=[R.];;
add R, =R, +R, ;;

st [R;]=R,
add R=R +1
br L1

L2:

[ o

add R, =R, + R,
ld R, = [R;]
add R, =R, + R,
add R, =R +R
mul R, =R * R,
br.c p;, L2

st [R:]=R,
add R, = R, + R,

Instruction bundle queue

- Id R, = [Ry]

2R/

cmp p, = R, 2 R,

Function units

Figure 3.22: The 9th clock cycle.




[JmovR =0}

L1:
cmpp, =R =R,
= | |brc p,, L2;;
mul R, =R *R,;;
add R, =R, + R ;;

add R, =R, + R, ;;
- Qld R,=[R.];;
add R, =R, +R, ;;

st [R;]=R,
add R=R +1
br L1

L2:

[ o

st [R.] =R,
add R, =R, + R,

ld R, = [R:]
add R, =R, + R,
addR, =R, +R
mul R, =R * R,

st [R:]=R,
addR, =R, + R,

Instruction bundle queue

Id R, = [Ry]

br.c p;, L2

Function units

Figure 3.23: The 10th clock cycle.

[JmovR =0}
L1:
cmpp, =R =R,
br.c p,, L2,
= mul R, =R *R_
add R, =R, + R ;;

add R, =R, + R, ;;
- Qld R,=[R.];;
add R, =R, +R, ;;

st [R;]=R,
add R=R +1
br L1

L2:

[ o

add R =R, + 1

st [R;] = R,

addR4=R4+RA

ld Ry = [R;]

add R, =R, + R,

add R, =R, +R

st [R:]=R,

add R, = R, + R,

Instruction bundle queue

2R/

Function units

Figure 3.24: The 11th clock cycle.




[JmovR =0}

L1:

cmpp, =R =R,
br.c p,, L2,

mul R, =R *R,;;

—||add R,=R, +R

add R, =R, + R, ;;

- Qld R,=[R.];;
add R, =R, +R, ;;

br L1

add R = R + 1

st [R.] =R,

addR, =R, + R,

ld Ry = [R;]

add R, =R, + R,

st [R:]=R,

add R, = R, + R,

Instruction bundle queue

st [R,]=R,
add R =R +1
br L1
L2: adl - ld R, = [Rq]
[ ]xxx - add R, =R, + R
Function units
Figure 3.25: The 12th clock cycle.
[JmovR =0} br L1
L1: add R =R, + 1
cmpp, =R =R, ;; st [R.] = R,
br.c p,, L2, add R, =R, + R,
mul R, =R *R,;; ld R, = [R,]
Stall| |add R, =R, + R ;; add R, =R, + R,
= ladd R, =R, + R, ;; st [R.] =R,
- Qld R,=[R.];; add R, =R, + R,
add R, =R, +R, ;; Instruction bundle queue
st [R,]=R,
add R =R +1
br L1
L2: adin Id R, = [Rs]
[ o

Function units

Figure 3.26: The 13th clock cycle. No instruction can be executed until the stall

instruction completed.




]

L1:

mov R =0
cmpp, =R =R,
br.c p,, L2,

mul R, =R *R,;;
add R, =R, + R ;;
add R, =R, + R, ;;
ld  R,=[R,];;
add R, =R, +R, ;;
st [R;]=R,

add R=R +1

br L1

XXX

L2
]

cmp p, = R 2R,

br L1

add R =R, + 1

st[R.]=R,

ld Ry = [R:]

add R, =R, + R,

st[R.]=R,

Instruction bundle queue

Function units

Figure 3.27: The 14th clock cycle. The stall instruction is completed. Blocked
instructions in the queue can be executed now.

]

L1:

mov R =0

cmp p; =R =R, ;;
br.c p,, L2,

mul R, =R *R,
add R,=R, + R ;;
add R, =R, + R, ;;
Id  R,=[R];;
add R, =R, +R, ;;
st [R,]=R,

add R=R +1

br L1

XXX

L2
]

.

-l

br.c p,, L2

cmp p, = R 2 R

br L1

add R =R, + 1

st [R:] =R,

addR, =R, + R,

ld Ry = [R;]

add R, =R, + R,

Instruction bundle queue

st [R.] =R,

Function units

Figure 3.28: The 15th clock cycle.
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[JmovR =0} mulR, = R * R
L1: br.c p;, L2
cmp p, =R =R, cmpp, =R 2R,
br.c p,, L2, br L1
mul R, =R *R,;; addR =R +1
add R, =R, + R}, st [R] = R,
—fadd R;=R,+R_; addR, = R, + R,
ld R, =R d R, = [R.]
add R, =R, +R T Instruction bundle queue
st [R]=R, Set executable status
add R=R +1
br L1

L2:
DXXX -> add Rg = R; + Rﬁ

Function units

Figure 3.29: The 16th clock cycle. Set the executable status of next continuous marked
instructions.

[JmovR =07 XXX

L1: XXX
cmp p, =R =R, ;; XXX
br.c p,, L2, XXX
mul R, =R *R, br L1
add R,=R, + R ;; addR =R +1
add R,=R,+R_;; I st [R.] = R,

- Hld R,=[R.]; add R, =R, + R,

add R, =R, +R, ; Instruction bundle queue
st [R.]=R,
add R=R +1
br L1

L2: ng . ld R, = [R:]

[ ]xxx

Function units

Figure 3.30: The 17th clock cycle.

-39 -



Chapter 4
Simulation Environment
and Result

In this chapter, we will describe the simulation environment, including simulator,
compiler, and benchmarks. Then we will show the simulation results of total execution time

and give an analysis for the simulation results.

4.1 Simulation Environment
The only one implementation of EP1C-architecture is the Intel 1A-64 Itanium family.

We use the Itanium 2 processor for the Simulation target processor.

4.1.1 |IA-64 Simulator

The 1A-64 is a RISC-style, register-register instruction set, but with many novel

features designed to support compiler-based exploitation of ILP.
The components of the 1A-64 register state are

e 128 64-bit general-purpose registers, which as we will see shortly are actually 65 bits

wide

e 128 82-bit floating-point registers, which provide two extra exponent bits over the

standard 80-bit IEEE format

e 64 1-bit predicate registers
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e 8 64-bit branch registers, which are used for indirect branches

e avariety of registers used for system control, memory mapping, performance counters,

and communication with the OS

Execution  Instruction Instruction Example instructions
unit slot type description
I-unit A Integer ALU add, subtract, and, or, compare
I Non-ALU integer integer and multimedia shifts, bit tests,
moves
M-unit A Integer ALU add, subtract, and, or, compare
M Memory access Loads and stores for integer/FP registers
F-unit F Floating point Floating-point instructions
B-unit B Branches Conditional branches, calls, loop branches
L+ X L+ X Extended Extended immediates, stops and no-ops

Table 4.1: The five execution unit slots in the 1A-64 architecture and what instructions
type they may hold are shown.

The 1A-64 instruction set architecture (ISA) includes six instructions types, which are
A-type, I-type, M-type, F-type, B:type, and L+X-type, A-type instructions, which correspond
to integer ALU instructions, may:.be placed.in either an I-unit or M-unit slot. L+X slots are
special, as they occupy two instruction slots, L+X instructions are used to encode 64-bit
immediates and a few special instructions. L+X instructions are executed either by the I-unit

or the B-unit.

There is no open source |A-64 simulator. We write a simulator to simulate the
processor. Our simulator simulates all the A-type instructions, I-type instructions, M-type

instructions, and B-type instructions. This simulator also simulates some F-type instructions.

The simulator counts the clock cycles and simulate the branch mispredict, instruction

fetch stalls, and data access cycles.
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4.1.2 IA-64 Compiler

We use two of the free C/C++ compiler for 1A-64 architecture as below:
e Microsoft C/C++ Optimizing Compiler for 1A-64

e GNU C/C++ compiler

These two compilers can save the object file into ELF64 format for our simulator.
Instead of code rewriting, we write an independent program to provide the dependency bits

and store the result in the corresponding file.

4.1.3 Benchmarks
Because some of the floating-point instructions not implemented, we only write two
simple benchmarks. One is computer-intensive program, which is a RSA algorithm
implementation. The other is memory-intensive program, which is just implementing a block

memory coping.

4.2 Simulation Results and Analysis
The length of continuous instructions after each stall instruction is very short in our
chosen compilers. Figure 4.1 is the counting result of a parser generator called “Bison’. So we

just simply use infinity dependency bits without concerning the overhead of merging them.
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Figure 4.1: The length of continuous instfu_ctions after each stall instruction.
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Figure 4.2: Simulation Results
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Figure 4.2 shows the simulation results. For compute-intensive program, 24.2% of
total clock cycles will be saved. For memory-intensive program, 48.1% of total clock cycles

can be saved.

The simulation results show us that when executing a compute-intensive program,
stall can overlap with other non-stall instructions and execute the blocked instructions later
with non-stall instructions. When a memory intensive program executed, stall cycles can

overlap with other stall cycles.

The real performance gain may less than the result because some other stalls are not

simulated. However, those stalls can still be overlapped.
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Chapter 5
Conclusions and Future
Works

This chapter concludes this thesis. We summarize and conclude this study in section

5.1. Section 5.2 points out some possible issues worth further investigation.

5.1 Conclusions
In this thesis, an approach-to an out-of-order execution EPIC is proposed and
simulated. Complier gives the hint.of handling stall cycles to hardware instead of using a

complex circuit to detect the instruction.dependency.

In order to hide the stall cycles and become an out-of-order execution processor, the
way to keep the dependency relation is the key point of this research. Not only retain the

dependency information between each instruction, but also execute them correctly.

The dependency chain will occupy whole execution resources very soon, and no more
instruction can be executed if stall duration is too long. Therefore, the out-of-order execution

mechanism is most effective in tolerating stall penalty of short instruction length.

As the simulation results, both compute-intensive program and memory-intensive

program can get the performance improvement.
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5.2 Future Works

Still, there are some other issues worth further investigation.

This design is a conservative approach to prevent the incorrect execution. It is not an
optimized out-of-order execution mechanism. To become an optimized approach, maybe all

the dependency relations are needed and it may hard to store those relations.

The simulator of this thesis assumes that there are infinity dependency bits without
concerning the merging issue. This issue may need to be verified and improve the merging

method.

Finally, comparing to the simultaneous multi-threading technology (SMT) where
multiple threads of software applications can be run simultaneously on one processor, it is
effective in tolerating large stall penalty. They don’t have conflict and the combination of

these technologies may be interesting.
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