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語者辨別的研究 

研究生：詹子杰          指導教授：陳玲慧 博士 

 

國立交通大學多媒體工程研究所 

 

摘要 

近年來，以生物特徵為基礎的認證系統已經廣泛的被應用在我們的日

常生活中，像是智慧型手機、筆記型電腦、門禁管理…等。聲音為人類最

自然、簡單的表現行為，將其應用在以生物特徵為基礎的認證系統中是合

適的。因為不同錄音裝置還有錄音環境的影響，會導致以聲音為基礎的認

證系統辨識率下降。而我們稱這些錄音裝置還有環境的影響叫做通道效應。

在本論文中，我們提出了一個去除通道效應的新方法。基於已被廣泛使用

的梅爾倒頻譜(Mel-scale frequency cepstral coefficients)係數特徵，

使用我們的去除通道效應方法去取得新特徵。然後根據我們取出的新特徵

和高斯混合模型(Gaussian Mixture Models)，就可以判斷語者是誰。根據

實驗結果，我們的去通道效應方法擁有比較高的辨識率。 
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A Study on Speaker Identification 

Student: Tzu-Chieh Chan            Advisor: Dr. Ling-Hwei Chen 
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National Chiao Tung University 

 

Abstract 

In recent years, the biometric-based authentication systems have been widely used in our 

life, like the smart-phones, laptops, access control systems, etc. As the most natural, 

economical, and expressive behavior, the voice is a suitable characteristic for an 

authentication system. But the channel effects that speeches recorded form different record 

devices or in a noisy environment make the identification rate decreased. In this thesis, we 

provide a new channel effect remover to improve the identification rate. Based on the 

Mel-scale frequency cepstral coefficients (MFCC) features, we use our channel effect 

remover to extract the new features. According to these new features and Gaussian Mixture 

models (GMMs), we can recognize the speaker. Experiment results show that our method has 

higher identification rate than other methods. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

In recent years, the biometric-based authentication systems have been widely used in our 

life, like the smart-phones, laptops, access control systems, etc. A biometric-based 

authentication system is a pattern recognition system. Various human physiological or 

behavioral characteristics like speech, face, fingerprint, etc, are considered as the different 

features used in the pattern recognition system. As the most natural, economical, and 

expressive behavior, the voice is a suitable feature for person identification. No two 

individuals have the same voice, because their sound production organizations are different 

[1]. We will propose a method based on the Mel-scale frequency cepstral coefficients (MFCC) 

[2-4] to get voice features of a person. Based on these voice features, we can determine the 

speaker. We record our lab members’ speech and take the CMU PDA Database from the 

internet as the database of our experiments. 

  

1.2 Related Work 

Speaker identification system can be text-dependent and text-independent. For 

text-dependent system, the speaker is required to utter a specific phrase or sentence. But the 

text-independent system does not limit a spoken phrase or sentence. In this thesis, we propose 
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a text-independent system. 

Reynolds et al. [5, 6] first proposed an architecture of the text-independent speaker 

identification system using Gaussian mixture models (GMM). In their method, they extract 

the MFCC features from speeches, and train each speaker’s GMM using these MFCC features. 

To determine a unknown speaker, the MFCC features are extracted from the speaker’s speech. 

The extracted MFCC features are inputted to each GMM model to calculate their probability, 

then the speech is determined to be spoken by the speaker with the highest probability. In 

2000, Reynolds et al. [7] based on [5, 6] to propose a new architecture of the adapted 

Gaussian Mixture Models used in the text-independent speaker verification system. In their 

new architecture, a huge GMM called universal background model (UBM) is trained. The 

UBM contains all speakers’ features. For each speaker, they adapt the coefficients of the 

UBM to get his/her own GMM coefficients. For an input speech, they extract the MFCC 

features, then the probabilities of the claimed speaker’s GMM and the UBM are calculated, 

finally a threshold is used to determine whether the input speech is from the claimed speaker 

or not. 

 In [5, 6], an input speech can be from different record devices or recorded in a noisy 

environment these are called channel effects and make the identification rate decreased. To 

solve this problem, Reynolds [8] proposed a method based on the cepstral mean subtraction [9, 

10] to remove the channel effects. Based on the MFCC features, the method uses the energy 
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dependent cepstral mean subtraction to remove the channel effects and to achieve a higher 

identification rate.  

 Hanson et al. [11] proposed delta-spectrum features to represent dynamic features of the 

speech spectrum to improve the speech recognition. Chen and Hong [12] proposed a 

two-level decision method based on the GMM and the hidden Markov model (HMM) to 

achieve a higher identification rate. Ajmera et al. [13] also proposed a Radon and discrete 

cosine transform based on the GMM architecture to achieve a higher identification rate. 

 From the above mentioned methods, we see that the GMM has become the main 

approach for modeling speech in text-independent speaker identification and verification 

system over the past years. But the channel effects will make extracted features with some 

variation which will decrease the identification rate. Our system is based on the MFCC 

feature and the GMM, but we provide a new method to remove channel effects to achieve a 

higher identification rate than that in [8]. 

 

1.3 Organization of the Thesis 

 The thesis is organized as follows. In Chapter 1, the motivation and previous work are 

introduced. In Chapter 2, we will describe our method. In Chapter 3, we will show the 

experiment results. Chapter 4 makes conclusions and gives future works of our research. 
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CHAPTER 2 

THE PROPOSED SYSTEM 

 The proposed speaker identification system (see Fig. 1) has two parts: training and 

testing. These two parts contain two same components: feature extraction and channel effects 

removing. At the training part, first, speakers’ speeches are collected, and the corresponding 

MFCC features are extracted. Then the channel effects in these original MFCC features are 

removed. Based on these new features, each speaker’s GMM model is established through the 

GMM training method. At the testing part, the MFCC features are first extracted from the 

input speech, and the channel effects are removed from the original MFCC features to obtain 

the new features. These new features are inputted to each speaker’s GMM to calculate the 

Fig. 1 The architecture of the proposed speaker identification system. 
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probability. Then the input speech is determined to be spoken by the speaker with the highest 

probability. 

 In the following, we will describe the details of feature extraction, channel effects 

removing, and GMM training method. 

 

2.1 Feature Extraction 

 We use the Mel-scale frequency cepstral coefficients (MFCC) as features. The MFCC 

features are designed according to human perception sensitivity with respect to frequencies. 

The advantages of MFCC are that the size of features involved can be reduced and features 

are not affected by different tone or pitch of the input speech in the speaker identification or 

verification system. 

The feature extraction component (see Fig. 2) contains six steps: pre-emphasis, frame 

segmentation, windowing, fast Fourier transforms (FFT), Mel-scale band-pass filter, and 

discrete cosine transforms (DCT). The six steps are the standard of the MFCC feature 

Fig. 2 The block diagram of feature extraction. 
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extraction [2-4]. 

 Pre-emphasis 

Human’s sound production organization suppresses the high frequency part when they 

sound. The goal of pre-emphasis is to compensate the high frequency part (see Fig. 3). The 

pre-emphasis formula is as below 

      ,1 tatt         (1) 

where  t  is the current sample,  1t  is the previous sample of the original waveform, 

and a  is a constant value 0.97. 

 Frame Segmentation 

After applying pre-emphasis to an input speech signal, S , the resulting signal S  is 

segmented into H  frames with size 20-30 ms per frame, sliding with a half-frame size rate. 

Each frame  ph  has P samples ( HhPp  1,10 ). The following steps are applied 

Fig. 3 The effect of the pre-emphasis. (a) The input waveform. (b) The waveform after 

pre-emphasis. (c) The spectrum energy in frequency domain of (a). (d) The spectrum energy 

in frequency domain of (b). 
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to each frame. 

 Windowing 

For each frame  ph , a Hamming window is applied. The Hamming window is used to 

keep the continuity of the first and the last points in a frame. The Hamming window and its 

effect are shown in Fig. 4. The windowing formula is as below 

      ,~ pwpp hh           (2) 

where the Hamming window  pw  is defined as 

     .10,1/2cos46.054.0  PpPppw       (3) 

 

 Fast Fourier Transform 

Note that no two individuals have the same voice, because their sound production 

organizations are different. The different sound production organizations produce the speech 

Fig. 4. The Hamming window and its effect of applying Hamming window. (a) Hamming 

window. (b) The waveform of an input speech without applying Hamming window. (c) The 

waveform of an input speech with Hamming window applied. 
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signals with different frequencies. Thus the speech signal is transformed into frequency 

domain by FFT. The FFT formula is as below 

    ,10,~ 21

0






 PkepkA
p

P

k
jP

p

hh



       (4) 

where k is the frequency index. 

After applying the FFT, for each frequency index, we can calculate its energy  kh
 
:  

    .10,
2

 PkkAk hh       (5) 

The energy is called the spectrum energy and the spectrum energy will be used to obtain 

MFCC features through Mel-scale band-pass filter and discrete cosine transform.  

 Mel-Scale Band-Pass Filter 

The Mel-scale band-pass filter (see Fig. 5) is designed according to human hearing 

perception sensitivity with respect to frequencies. It first divides the frequency domain into 

several sub-bands. Each sub-band represents the same human hearing perception sensitivity 

level. Human is sensitive to low frequency, but insensitive to the high frequency. The 

sub-band’s bandwidth is determined according to the human perception sensitivity with 

respect to frequencies; hence the bandwidth is narrow at the low frequency, but broad at the 

high frequency. Then, for each sub-band, a triangular window is applied to get the sub-band 

energy. The center of each triangular window is the human most sensitive frequency. And the 

triangular window of a sub-band is used to avoid the boundary effects of these continuous 

sub-bands. The areas of all triangular windows are the same. 
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For frame h , each sub-band’s energy is obtained by the following equation 

     
 

,1,
12/

0

BbkWkbE
P

k

bhh  




       (6) 

where B is the total number of sub-bands (B is 25 in this thesis),  kWb  is the triangular 

window of the b-th sub-band in the Mel scale, and  kWb  
satisfies the following constraint 

 
 

.,1
12/

0

bkW
P

k

b 




        (7) 

For each sub-band, the lower bound and the upper bound frequency are shown in Table 1. 

All of the obtaining sub-bands’ energies of each frame are then used to extract MFCC 

features. 

Fig. 5. The Mel-scale band-pass filter. 
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 Discrete Cosine Transform 

After obtaining B sub-band energies  bEh  through the Mel-scale band-pass filter, the 

DCT is applied to these sub-band energies. The purpose of applying DCT is to transform 

frequency domain back to time-like domain. The formula of DCT is as the following 

      .10,1log/5.0cos
1

0

10, 




BlbEBblc
B

b

hlh      (8) 

After performing the DCT, for frame h , we can obtain B  coefficients called the 

The Sub-band Number The Frequency Interval (Hz) 

1 (0,200] 

2 (100,300] 

3 (200,400] 

4 (300,500] 

5 (400,600] 

6 (500,700] 

7 (600,800] 

8 (700,900] 

9 (800,1000] 

10 (900,1149] 

11 (1000,1320] 

12 (1149,1516] 

13 (1320,1741] 

14 (1516,2000] 

15 (1741,2297] 

16 (2000,2639] 

17 (2297,3031] 

18 (2639,3482] 

19 (3031,4000] 

20 (3482,4595] 

21 (4000,5278] 

22 (4595,6063] 

23 (5278,6964] 

24 (6069,8000] 

25 (6964,9190] 

 

Table 1 The frequency range of each Mel-scale sub-band. 
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Mel-scale frequency cepstral coefficients. The B  coefficients are also called a MFCC feature 

vector as shown below 

  .,...,, 1,1,0,

T

Bhhhh ccc x        (9) 

 Thus, for an input speech, we can obtain H  MFCC feature vectors, X ,

 HxxxX ,...,, 21 . Note that in the proposed method, for each frame, we only take L  

coefficients to form a L -dimensional feature vector. 

 

2.2 Channel Effect Removing 

 The speeches recorded from different record devices or recorded in a noisy environment 

will have some variation, which makes the identification rate decreased. The variation is 

called channel effect. 

The traditional method of removing the channel effect is the cepstral mean subtraction [9, 

10]. For an input speech, the MFCC feature vectors X  (  HxxxX ,...,, 21 ) are first 

extracted. Then the mean feature vector totalm  of the MFCC feature vectors is calculated. For 

each MFCC feature vector, the totalm
 
is subtracted to obtain a new feature vector. 

 In [8], based on the traditional cepstral mean subtraction, Douglas proposed an energy 

dependent cepstral mean subtraction method. For an input speech, the MFCC feature vectors 

are extracted and for each frame, the frame total energy is calculated. According to the frame 

total energy, frames are divided into several classes with different energy levels. Then for each 
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class with the same energy level, the cepstral mean vector is calculated. For each frame, each 

MFCC feature vector is subtracted by its corresponding cepstral mean vector. 

 Here, we propose a new channel effect remover. First, frames are classified into two 

types, one is called silent and the other is called real speech. The silent frames are those 

frames between speaking sentences or with murmurous speech or without speaker speaking. 

The real speech frames are the remaining ones. For these two types of frames, the MFCC 

feature vectors are extracted. Then for each real speech frame, the cepstral mean feature 

vector of silent frames is subtracted from its MFCC feature vector. The cepstral mean feature 

vector of silent frames is considered as the channel effect. Only real speech frames are kept to 

do further processes, those silent frames are discarded. 

 The proposed channel effect remover contains three steps: frame total energy calculation, 

the silent frame mean vector calculation, and the silent frame mean vector subtraction. The 

details are described as follows: 

 Frame Total Energy Calculation 

For each frame, its total energy is evaluated by Eq. (10).  

  .ˆ
1

0







P

k

hh k         (10) 

 The frame total energy h̂  is used to classify frames as silent frames or real speech 

frames. 

Given a threshold silentt , frame h  with h̂  less than silentt  is classified as a silent 
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frame; otherwise as a real speech one. 

 The Silent Frame Mean Vector Calculation 

For silent frames, the cepstral mean feature vector silentm  is evaluated based on their 

MFCC feature vectors 

,
1

1





silent

silent

silent

H

h

h

silent

silent
H

xm       (11) 

where silentH  is the total number of silent frames, 
silenthx  is the MFCC feature vector of a 

silent frame. 

silentm  is then considered as the channel effect of the input speech. 

 The Silent Frame Mean Vector Subtraction 

For the MFCC feature vector, 
realhx , of each real speech frame, it is subtracted by silentm

 

to obtain a new feature vector 

.~
silenthh realreal

mxx         (12) 

For an input speech, the new feature vectors extracted are denoted as 

  ,~,...,~,~~
21 realHxxxX         (13) 

where realH  is the total number of real speech frames. 

 Note that threshold silentt  used to classify the silent frames and real speech frames is not 

a constant value. It
 
is set according to the frame energy. After calculating each frame energy, 

set a percentile of the frame energies as the threshold. 

 The new feature vectors extracted will be inputted to the GMM. 
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2.3 Gaussian Mixture Models Training Method 

 For a text-independent speaker identification or verification system, we do not limit what 

the speaker will say. In [5-8, 12, 13], the Gaussian mixture models (GMM) has been used to 

represent speaker’s speech feature distribution.  

The GMM can be denoted as   Mmmmm ,...,2,1,,,  μ , where M is the mixture 

number, m  is the weight of the m -th Gaussian distribution mp  ( 1
1




M

m

m ), 
mμ  is the 

mean vector of mp , and m  is the covariance matrix of mp . 

 For a L -dimensional feature vector, 
realhx~ , we can calculate its probability in the GMM 

as below 

    ,~~

1





M

m

hmmh realreal
pp xx         (14) 

 
 

      .~~

2

1
exp

2

1~ 1

2/12/














mhm

T

mh

m

Lhm realrealreal
p μxμxx


   (15) 

 According to our system architecture, there are two parts: the training part and the testing 

part. In the training part, the GMM for each speaker is established. In the testing part, the 

speech feature vectors of a speaker are input into each speaker’s GMM to calculate the 

corresponding probabilities. Then the speech is considered to be spoken by the speaker with 

the highest probability. 

In the training part, for each speaker, his speeches are collected as the training speeches. 

First, the feature vectors of these training speeches are extracted. Secondly, the K-means 
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cluster method [5, 14] is used to classify these feature vectors into M  classes. Then, the 

mean vector, 0

mμ , and covariance matrix, 0

m , for class m  are calculated. Suppose class m  

has mn  feature vectors. Set 



M

i

imm nn
1

0 . The 0

mμ , 0

m  and 0

m  are considered as the 

initial parameters of the speaker’s GMM. Finally, the initial parameters and these training 

feature vectors are used to estimate the maximum likelihood model parameters by the iterative 

expectation maximization (EM) algorithm [5, 15]. The EM algorithm refines the GMM 

parameters iteratively and monotonically increases the likelihood of the estimated model. 

 The feature vectors,  
realHxxxX ~,...,~,~~

21  , are assumed independent. The probability of 

X
~

 in a model   is evaluated as below 

    .~~

1





real

real

real

H

h

hpp  xX        (16) 

To avoid a frame with probability very close to 0 dominating the probability, the 

probability of a frame less than 2510  is reset to 2510 . For implementation convenience, the 

log-likelihood probability is used as the below formula 

    .~log
~

log
1





real

real

real

H

h

hpp  xX       (17) 

In the testing part, for an input speech, the feature vectors for all real speech frames are 

extracted and the log-likelihood probability for each speaker’s GMM through the above 

methods is evaluated. The speech is determined to be spoken by the speaker Ŝ  with the 

highest probability 
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  ,
~

logmaxargˆ
1

i
Si

pS X


       (18) 

where S is the number of speakers, i is the i-th speaker. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

17 
 

CHAPTER 3 

EXPERIMENT RESULTS 

 In this chapter, we present the experiment results of our system. The databases used in 

our experiments are the CMU PDA Database and our own database from our lab members’ 

speeches.  

The CMU PDA Database is a free database that is released by the Carnegie Mellon 

University in the internet. There are 16 speakers in this database. 51 different speeches are 

recorded for each speaker. When a speaker speaks, the speech that is spoken by the speaker is 

recorded by 5 record devices at the same time. So each speech of a speaker has five record 

files, and each speaker has total 255 record files. The sampling frequency is 16000 Hz in this 

database. The durations of these speeches are 3-5 seconds.  

In our database, we record the speeches from our lab members. There are 8 speakers. For 

each speaker, 5 different speeches are recorded. And each speech is spoken 5 times using the 

same record device. Thus, each speaker has total 25 record files. The sampling frequency is 

44100 Hz in our database. The durations of these speeches are 10-15 seconds.  

In our experiments, we take 100 speeches as the training speeches and the remaining 155 

speeches as the testing speeches for each speaker in the CMU PDA Database. And the 30 

percentile energy is used as threshold silentt  in this database. In our database, we use 10 

speeches as the training speeches and the remaining 15 speeches as the testing speeches. And 



 

18 
 

the 20 percentile energy is used as threshold silentt
 
in our database. For each experiment, we 

take different training speeches to do 4 times. The experiment result shows the average 

identification rates and the standard deviations. 

 

3.1 Feature Dimension and Mixture Number Decision 

 For our system, we need to determine the dimension L  of the MFCC feature vector and 

the mixture number M  of the GMM. The identification rate will be affected by different L  

and M . In this experiment, we try different dimensions 19,18,17,16,15L , and different 

mixture numbers 12,10,8,6,4M . The results of CMU PDA Database are shown in Fig. 

6 and Table 2. And the results of our database are shown in Fig. 7 and Table 3. 

According to this experiment results, we choose the dimension 16L  and the mixture 

number 8M  with the highest identification rate of CMU PDA Database. In our database, 

10,18  ML  and 12,18  ML  have the same identification rate. The more mixture 

number makes the computing complexity increased; hence we choose the dimension 18L  

and the mixture number 10M  of our database. 
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Fig. 6. Identification rates using different dimensions and mixture numbers for CMU PDA Database. 

 

IR(SD) L=15 L=16 L=17 L=18 L=19 

M=4 98.94%(0.24%) 99.04%(0.40%) 98.85%(0.55%) 98.66%(0.94%) 98.86%(0.63%) 

M=6 99.28%(0.28%) 99.35%(0.18%) 98.91%(0.86%) 98.80%(1.39%) 97.88%(1.79%) 

M=8 99.35%(0.23%) 99.53%(0.25%) 96.96%(2.04%) 98.24%(1.54%) 98.86%(0.94%) 

M=10 99.44%(0.31%) 99.20%(0.58%) 96.85%(2.27%) 97.81%(2.16%) 99.20%(0.45%) 

M=12 99.49%(0.34%) 98.88%(0.70%) 98.40%(1.65%) 98.87%(0.97%) 99.47%(0.35%) 

 

Table 2. Identification rates (IR) and standard deviations (SD) using different dimensions 

and mixture numbers for CMU PDA Database. 
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Fig. 7. Identification rates using different dimensions and mixture numbers for our database. 

 

IR(SD) L=15 L=16 L=17 L=18 L=19 

M=4 95.21%(2.49%) 97.29%(2.08%) 98.13%(2.19%) 98.96%(0.80%) 98.96%(0.80%) 

M=6 97.08%(3.23%) 98.33%(1.80%) 98.13%(2.19%) 98.75%(1.08%) 98.54%(1.42%) 

M=8 96.67%(2.45%) 98.54%(1.42%) 98.75%(1.08%) 98.75%(1.08%) 98.75%(1.08%) 

M=10 97.08%(2.59%) 97.92%(1.73%) 98.54%(1.42%) 99.17%(0.68%) 98.96%(0.80%) 

M=12 96.88%(2.29%) 97.92%(1.73%) 98.96%(0.80%) 99.17%(0.68%) 98.96%(0.80%) 

 

Table 3. Identification rates (IR) and standard deviations (SD) using different dimensions 

and mixture numbers for our database. 
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3.2 Comparison of Different Threshold silentt  

 In our channel effect remover, we need to set a threshold silentt  to classify frames as 

silent frames or real speech frames. The silentt  is set according to the percentile of the frame 

energy. Different percentile energies affect the identification rate. In this experiment of CMU 

PDA Database, we use different percentiles 10%, 15%, 20%, 25%, 30%, 35%, and 40% with

8,16  ML . The experiment results are shown in Table 4. 

  

 

 

 

 

 

 

According to the results, we choose the threshold silentt  of percentile 30% for CMU 

PDA Database. 

 For our database, we also use different percentiles 10%, 15%, 20%, 25%, 30%, 35%, and 

40% with 10,18  ML . The experiment results are shown in Table 5. 

 

 

 

 
Identification Rates

 
Standard Deviations

 

10% 88.42% 3.04% 

15% 91.02% 4.67% 

20% 91.75% 4.9% 

25% 99.12% 0.58% 

30% 99.53% 0.25% 

35% 99.38% 0.37% 

40% 99.37% 0.28% 

 

Table 4. Identification rates and standard deviations using different percentiles of 

CMU PDA Database. 
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 According to the results, we choose the threshold silentt  of percentile 20% for our 

database. 

 

3.3 Comparison of Different Methods 

In this experiment, we compare the identification rates of the proposed method and other 

methods using different feature vectors. According to the above experimental results of CMU 

PDA Database, 8,16  ML  has the highest identification rate, thus it is used in this 

experiment. For our database, 10,18  ML  has the highest identification rate, thus this is 

used in the experiment. 

 The methods used in this experiment include the proposed method, the MFCC, the 

MFCC of the real speech frames, the MFCC using the traditional cepstral mean subtraction 

(CMS) [9, 10], the delta-cepstrum of MFCC [11], and the MFCC using CMS of the real 

speech frames. The experimental results of CMU PDA Database are shown in Table 6. And 

 

 
Identification Rates

 
Standard Deviations

 

10% 98.54% 0.42% 

15% 98.96% 0.80% 

20% 99.17% 0.68% 

25% 96.88% 3.00% 

30% 97.08% 3.08% 

35% 96.67% 2.81% 

40% 96.46% 3.22% 

 

Table 5. Identification rates and standard deviations using different percentiles of our 

database. 
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the experiment results of our database are shown in Table 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

These experiment results show that the identification rate of the proposed method is the 

highest, it is increased 4.09% relative to that of using the original MFCC for CMU PDA 

Database, and increased 2.5% for our database. And the identification rate of the proposed 

 

 
Identification Rates

 
Standard Deviations

 

MFCC 95.44% 3.02% 

Real speech frames 96.59% 2.41% 

MFCC using CMS 98.17% 1.33% 

Delta-cepstrum of MFCC 99.02% 0.65% 

Real Speech frames using CMS 99.28% 0.60% 

Proposed method 99.53% 0.25% 

 

Table 6. Identification rates and standard deviations of different methods for CMU 

PDA Database. 

 

 
Identification Rates

 
Standard Deviations

 

MFCC 96.67% 1.18% 

Real speech frames 97.71% 1.05% 

MFCC using CMS 98.13% 0.80% 

Delta-cepstrum of MFCC 98.54% 0.80% 

Real Speech frames using CMS 98.75% 0.48% 

Proposed method 99.17% 0.68% 

 

Table 7. Identification rates and standard deviations of different methods for our 

database. 
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method is increased 0.25% relative to that of using the real speech frames using CMS for 

CMU PDA Database, and increased 0.42% for our database. The proposed method has the 

highest identification rate and the lowest standard deviations for CMU PDA Database, and 

has the highest identification rate for our database. 

 

3.4 System Robustness Testing 

 In this experiment, we test the robustness of our system. For the two databases, we use 

half training speeches to train the GMMs for each speaker. The experiment results are shown 

in Tables 8, 9 to compare the mentioned methods with our proposed method. 

 

 

 

 

 

 

 

 

 

 

 

 
Identification Rates

 
Standard Deviations

 

MFCC + Delta-cepstrum ( 32L ) 88.43%  2.97%  

MFCC 94.22%  4.30%  

Real speech frames 95.20%  4.51%  

MFCC using CMS 97.12%  1.06%  

Delta-cepstrum of MFCC 98.64%  1.21%  

Real Speech frames using CMS 98.88%  0.94%  

Proposed method 99.16%  0.57%  

 

Table 8. Identification rates and standard deviations of half training speeches in 

different methods for CMU PDA Database. 
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 These experiment results using half training speeches show that the rate of the proposed 

method is the highest, it is increased 0.28% relative to that of using the real speech frames 

using CMS for CMU PDA Database, and increased 0.31% for our database. The proposed 

method has the highest identification rate and the lowest standard deviations for CMU PDA 

Database, and has the highest identification rate for our database. 

 

 

 

 

 

 

 

 

 

 
Identification Rates

 
Standard Deviations

 

MFCC + Delta-cepstrum ( 32L ) 42.66%  19.31%  

MFCC 95.00%  1.35%  

Real speech frames 96.56%  1.20%  

MFCC using CMS 97.66%  1.39%  

Delta-cepstrum of MFCC 98.13%  0.88%  

Real Speech frames using CMS 98.28%  0.60%  

Proposed method 98.59%  0.79%  

 

Table 9. Identification rates and standard deviations of half training speeches in 

different methods for our database. 
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CHAPTER 4 

CONCLUSIONS AND FUTURE WORKS 

 In this thesis, we proposed a speaker identification system. A new channel effect remover 

is provided to get a higher identification rate. In the channel effect remover, the channel 

effects for speeches recorded from different record devices or in a noisy environment are 

decreased. In our system, for each input speech, the MFCC feature vectors are first extracted. 

Secondly, these feature vectors are inputted into the proposed channel effect remover to obtain 

new feature vectors. Finally, in the training part, these new feature vectors are used to get the 

GMM of each speaker, and in the testing part, these feature vectors are inputted to GMM to 

determine the speaker. Experiment results show that the proposed method provides a higher 

identification rate. 

 In our channel effect remover, the threshold used to classify frames into silent type and 

real speech type is adapted according to different databases. We use a constant percentile of 

the frame energies as the threshold for all speeches in the same database. In the future, we 

want to develop a method to adapt the threshold according to each speech. With the 

automatically adapted threshold, the real speech frames and silent frames can be classified 

more precisely such that identification rate can be improved. 
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