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Student: Tzu-Chieh Chan Advisor: Dr. Ling-Hwei Chen
Institute of Multimedia Engineering

National Chiao Tung University

Abstract

In recent years, the biometric-based authentication systems have been widely used in our
life, like the smart-phones, laptops, access control systems, etc. As the most natural,
economical, and expressive behavior, the wvoice is a suitable characteristic for an
authentication system. But the channel effects that speeches recorded form different record
devices or In a noisy environment make the identification rate decreased. In this thesis, we
provide a new channel effect remover to improve the identification rate. Based on the
Mel-scale frequency cepstral coefficients (MFCC) features, we use our channel effect
remover to extract the new features. According to these new features and Gaussian Mixture
models (GMMs), we can recognize the speaker. Experiment results show that our method has

higher identification rate than other methods.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In recent years, the biometric-based authentication systems have been widely used in our

life, like the smart-phones, laptops, access control systems, etc. A biometric-based

authentication system is a pattern recognition system. Various human physiological or

behavioral characteristics like speech, face, fingerprint, etc, are considered as the different

features used in the pattern recognition system. As the most natural, economical, and

expressive behavior, the voice iIs a suitable feature for person identification. No two

individuals have the same voice, because their sound production organizations are different

[1]. We will propose a method based on the Mel-scale frequency cepstral coefficients (MFCC)

[2-4] to get voice features of a person. Based on these voice features, we can determine the

speaker. We record our lab members’ speech and take the CMU PDA Database from the

internet as the database of our experiments.

1.2 Related Work

Speaker identification system can be text-dependent and text-independent. For

text-dependent system, the speaker is required to utter a specific phrase or sentence. But the

text-independent system does not limit a spoken phrase or sentence. In this thesis, we propose



a text-independent system.

Reynolds et al. [5, 6] first proposed an architecture of the text-independent speaker

identification system using Gaussian mixture models (GMM). In their method, they extract

the MFCC features from speeches, and train each speaker’s GMM using these MFCC features.

To determine a unknown speaker, the MFCC features are extracted from the speaker’s speech.

The extracted MFCC features are inputted to each GMM model to calculate their probability,

then the speech is determined to be spoken by the speaker with the highest probability. In

2000, Reynolds et al. [7] based on [5, 6] to propose a new architecture of the adapted

Gaussian Mixture Models used in the text-independent speaker verification system. In their

new architecture, a huge GMM called universal background model (UBM) is trained. The

UBM contains all speakers’ features. For each speaker, they adapt the coefficients of the

UBM to get hislher own GMM coefficients. For-an input speech, they extract the MFCC

features, then the probabilities of the claimed speaker’s GMM and the UBM are calculated,

finally a threshold is used to determine whether the input speech is from the claimed speaker

or not.

In [5, 6], an input speech can be from different record devices or recorded in a noisy

environment these are called channel effects and make the identification rate decreased. To

solve this problem, Reynolds [8] proposed a method based on the cepstral mean subtraction [9,

10] to remove the channel effects. Based on the MFCC features, the method uses the energy



dependent cepstral mean subtraction to remove the channel effects and to achieve a higher
identification rate.

Hanson et al. [11] proposed delta-spectrum features to represent dynamic features of the
speech spectrum to improve the speech recognition. Chen and Hong [12] proposed a
two-level decision method based on the GMM and the hidden Markov model (HMM) to
achieve a higher identification rate. Ajmera et al. [13] also proposed a Radon and discrete
cosine transform based on the GMM architecture to achieve a higher identification rate.

From the above mentioned methods, we see that the GMM has become the main
approach for modeling speech in text-independent speaker identification and verification
system over the past years. But the channel effects will make extracted features with some
variation which will decrease the identification rate. Our system is based on the MFCC
feature and the GMM, but we provide a new method to remove channel effects to achieve a

higher identification rate than that in [8].

1.3 Organization of the Thesis
The thesis is organized as follows. In Chapter 1, the motivation and previous work are
introduced. In Chapter 2, we will describe our method. In Chapter 3, we will show the

experiment results. Chapter 4 makes conclusions and gives future works of our research.



CHAPTER 2

THE PROPOSED SYSTEM

The proposed speaker identification system (see Fig. 1) has two parts: training and

testing. These two parts contain two same components: feature extraction and channel effects

removing. At the training part, first, speakers’ speeches are collected, and the corresponding

MFCC features are extracted. Then the channel effects in these original MFCC features are

removed. Based on these new features, each speaker’s GMM model is established through the

GMM training method. At the testing part, the MFCC features are first extracted from the

input speech, and the channel effects are removed from the original MFCC features to obtain

the new features. These new features are inputted to each speaker’s GMM to calculate the

J
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| Channel Effect Removing | : | Channel Effect Removing |
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Speaker’s Features | i \L :
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: Models i

V

Identified Speaker :-

-----
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Fig. 1 The architecture of the proposed speaker identification system.
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probability. Then the input speech is determined to be spoken by the speaker with the highest
probability.
In the following, we will describe the details of feature extraction, channel effects

removing, and GMM training method.

2.1 Feature Extraction

We use the Mel-scale frequency cepstral coefficients (MFCC) as features. The MFCC
features are designed according to human perception sensitivity with respect to frequencies.
The advantages of MFCC are that the size of features involved can be reduced and features
are not affected by different tone or pitch of the input speech in the speaker identification or
verification system.

The feature extraction component (see Fig. 2) contains six steps: pre-emphasis, frame
segmentation, windowing, fast Fourier transforms (FFT), Mel-scale band-pass filter, and

discrete cosine transforms (DCT). The six steps are the standard of the MFCC feature

Wﬂ% — Pre—emphasis Frame Segmentation V\*"indowing

Input Speech

/ MEFCCs /A DCT Mel-Scale Band-Pass Filter FFT

Fig. 2 The block diagram of feature extraction.



extraction [2-4].
® Pre-emphasis
Human’s sound production organization suppresses the high frequency part when they
sound. The goal of pre-emphasis is to compensate the high frequency part (see Fig. 3). The
pre-emphasis formula is as below
plt]=rft]-axyft=a], €
where y/[t] is the current sample, y[t —1] is the previous sample of the original waveform,

and a isaconstant value 0.97.
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Fig. 3 The effect of the pre-emphasis. (a) The input waveform. (b) The waveform after

pre-emphasis. (¢) The spectrum energy in frequency domain of (a). (d) The spectrum energy
in frequency domain of (b).
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® Frame Segmentation
After applying pre-emphasis to an input speech signal, S, the resulting signal S’ is
segmented into H frames with size 20-30 ms per frame, sliding with a half-frame size rate.

Each frame ph[p] has P samples (0< p<P -1, 1<h<H). The following steps are applied



to each frame.
® \Windowing

For each frame ,oh[p], a Hamming window is applied. The Hamming window is used to
keep the continuity of the first and the last points in a frame. The Hamming window and its
effect are shown in Fig. 4. The windowing formula is as below

pulp]=py[pxwlpl; @

where the Hamming window w[p] is defined as

w[p]=0.54 -0.46 x cos(2p /(P~1)) ,0< p<P 1. 3)
@
OMW Mﬂm JWMWM WMWVWW v r E’”M“W’MMMMNWMM A\WWWMWMWW
0 100 200 (i!)ﬂ)ﬂ 400 500 600 - 100 200 (32; 400 500 600

Fig. 4. The Hamming window and. its effect of applying Hamming window. (a) Hamming
window. (b) The waveform of an input speech without applying Hamming window. (c) The
waveform of an input speech with Hamming window applied.

® Fast Fourier Transform

Note that no two individuals have the same voice, because their sound production

organizations are different. The different sound production organizations produce the speech

7



signals with different frequencies. Thus the speech signal is transformed into frequency

domain by FFT. The FFT formula is as below
LI
PPO<k<P-1 (4)

where k is the frequency index.

After applying the FET, for each frequency index, we can calculate its energy w, [k] :

wilk]=[A k][ o<k <P=1. (5)

The energy Is called the spectrum energy and the spectrum energy will be used to obtain
MFCC features through Mel-scale band-pass filter and discrete cosine transform.
® Mel-Scale Band-Pass Filter

The Mel-scale band-pass filter (see Fig. 5) iIs designed according to human hearing
perception sensitivity with respect to frequencies. It first divides the frequency domain into
several sub-bands. Each sub-band represents the same human hearing perception sensitivity
level. Human is sensitive to low frequency, but insensitive to the high frequency. The
sub-band’s bandwidth is determined according to the human perception sensitivity with
respect to frequencies; hence the bandwidth is narrow at the low frequency, but broad at the
high frequency. Then, for each sub-band, a triangular window is applied to get the sub-band
energy. The center of each triangular window is the human most sensitive frequency. And the
triangular window of a sub-band is used to avoid the boundary effects of these continuous

sub-bands. The areas of all triangular windows are the same.
8



For frame h, each sub-band’s energy is obtained by the following equation
(P/2}1
E.(b)= f v, [k]xW,[k] 1<b<B, (6)
k=0
where B is the total number of sub-bands (B is 25 in this thesis), W, [k] is the triangular
window of the b-th sub-band in the Mel scale, and W, [k] satisfies the following constraint
(P/2)1
fwb[k]=1, vb . @)
k=0
For each sub-band, the lower bound and the upper bound frequency are shown in Table 1.
All of the obtaining sub-bands’ energies of each frame are then used to extract MFCC

features.
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Fig. 5. The Mel-scale band-pass filter.



Table 1 The frequency range of each Mel-scale sub-band.

The Sub-band Number | The Frequency Interval (Hz)

1 (0,200]

2 (100,300]
3 (200,400]
4 (300,500]
5 (400,600]
6 (500,700]
7 (600,800]
8 (700,900]
9 (800,1000]
10 (900,1149]
11 (1000,1320]
12 (1149,1516]
13 (1320,1741]
14 (1516,2000]
15 (1741,2297]
16 (2000,2639]
17 (2297,3031]
18 (2639,3482]
19 (3031,4000]
20 (3482,4595]
21 (4000,5278]
22 (4595,6063]
23 (5278,6964]
24 (6069,8000]
25 (6964,9190]

® Discrete Cosine Transform
After obtaining B sub-band energies Eh(b) through the Mel-scale band-pass filter, the
DCT is applied to these sub-band energies. The purpose of applying DCT is to transform
frequency domain back to time-like domain. The formula of DCT is as the following
Coy = Ecos[l (b+0.5)z/B]xlog,,(1+E,(b)) ,0<I<B-1. (8)
b=0

After performing the DCT, for frame h, we can obtain B coefficients called the
10



Mel-scale frequency cepstral coefficients. The B coefficients are also called a MFCC feature
vector as shown below

X, = [Ch,O’Ch,l""'Ch,B—l] " 9)

Thus, for an input speech, we can obtain H MFCC feature vectors, X ,

X:{xl,xz,...,xH}. Note that in the proposed method, for each frame, we only take L

coefficients to form a L -dimensional feature vector.

2.2 Channel Effect Removing

The speeches recorded from different record devices or recorded in a noisy environment
will have some variation, which makes the identification rate decreased. The variation is
called channel effect.

The traditional method of removing the channel effect is the cepstral mean subtraction [9,
10]. For an input speech, the MFCC feature vectors X (X= {xl,xz,...,xH }) are first
extracted. Then the mean feature vector m,,,, of the MFCC feature vectors is calculated. For
each MFCC feature vector, the m,,,, is subtracted to obtain a new feature vector.

In [8], based on the traditional cepstral mean subtraction, Douglas proposed an energy
dependent cepstral mean subtraction method. For an input speech, the MFCC feature vectors
are extracted and for each frame, the frame total energy is calculated. According to the frame
total energy, frames are divided into several classes with different energy levels. Then for each

11



class with the same energy level, the cepstral mean vector is calculated. For each frame, each
MFCC feature vector is subtracted by its corresponding cepstral mean vector.

Here, we propose a new channel effect remover. First, frames are classified into two
types, one is called silent and the other is called real speech. The silent frames are those
frames between speaking sentences or with murmurous speech or without speaker speaking.
The real speech frames are the remaining ones. For these two types of frames, the MFCC
feature vectors are extracted. Then for each real speech frame, the cepstral mean feature
vector of silent frames is subtracted from its MFCC feature vector. The cepstral mean feature
vector of silent frames is considered as the channel effect. Only real speech frames are kept to
do further processes, those silent frames are discarded.

The proposed channel effect remover contains three steps: frame total energy calculation,
the silent frame mean vector calculation, and the ‘silent frame -mean vector subtraction. The
details are described as follows:
® Frame Total Energy Calculation

For each frame, its total energy is evaluated by Eg. (10).

‘/}h:ZWh[k] : (10)

The frame total energy 7, is used to classify frames as silent frames or real speech

frames.

Given a threshold t frame h with 7, less than t is classified as a silent

silent ! silent

12



frame; otherwise as a real speech one.
® The Silent Frame Mean Vector Calculation
For silent frames, the cepstral mean feature vector mg,, is evaluated based on their

MFCC feature vectors

Hient

m (11)

silent — H thilent !
silent Ngjent =L

where H,, Iisthe total number of silent frames, x,  isthe MFCC feature vector of a
silent frame.
m

sient 1S then considered as the channel effect of the input speech.

® The Silent Frame Mean Vector Subtraction
For the MFCC feature vector, x, , of each real speech frame, it is subtracted by m

silent

to obtain-a new feature vector
ihreal =X, ~ Maiten - (12)
For an input speech, the new feature vectors extracted are denoted as
X=Xy Xoree X | (13)
where H,., isthe total number of real speech frames.
Note that threshold t,, used to classify the silent frames and real speech frames is not
a constant value. It is set according to the frame energy. After calculating each frame energy;,
set a percentile of the frame energies as the threshold.

The new feature vectors extracted will be inputted to the GMM.
13



2.3 Gaussian Mixture Models Training Method
For a text-independent speaker identification or verification system, we do not limit what
the speaker will say. In [5-8, 12, 13], the Gaussian mixture models (GMM) has been used to
represent speaker’s speech feature distribution.
The GMM can be denoted as A= {@, ,n,, %, |, Mm=12,..,.M, where M is the mixture
number, o, is the weight of the m-th Gaussian distribution p, (ia)m =1), n, is the
m-1

mean vector of p.,and X isthe covariance matrix of p.. .

For a L -dimensional feature vector, X, , we can calculate its probability in the GMM

as below

M
(%, [4)= D @n Pl ) (14)
m=1
b6 )G s R R ) 09

According to our system architecture, there are two parts: the training part and the testing

part. In the training part, the GMM for each speaker-is established. In the testing part, the

speech feature vectors of a speaker are input into each speaker’s GMM to calculate the

corresponding probabilities. Then the speech is considered to be spoken by the speaker with

the highest probability.

In the training part, for each speaker, his speeches are collected as the training speeches.

First, the feature vectors of these training speeches are extracted. Secondly, the K-means

14



cluster method [5, 14] is used to classify these feature vectors into M classes. Then, the
mean vector, p°, and covariance matrix, >.°, for class m are calculated. Suppose class m

M
has n, feature vectors. Set @) =n, /> n. The p), X0 and @, are considered as the
i=1

initial parameters of the speaker’s GMM. Finally, the initial parameters and these training
feature vectors are used to estimate the maximum likelihood model parameters by the iterative
expectation maximization (EM) algorithm [5, 15]. The EM algorithm refines the GMM

parameters iteratively and monotonically increases the likelihood of the estimated model.

The feature vectors, X= {il,iz,...,iHreal} , are assumed independent. The probability of

X inamodel A -isevaluated as below

Hreal

p(XI2)= [T p&,. 1) (16)

real =

To.avoid a frame with probability very close to O dominating the probability, the
probability-of a frame less than 107*° is reset to 107, For implementation convenience, the

log-likelihood probability is used as the below formula

H real

> log p(%, [2). (17)

Nreal=1

log p()~(|/1):

real

In the testing part, for an input speech, the feature vectors for all real speech frames are
extracted and the log-likelihood probability for each speaker’s GMM through the above
methods is evaluated. The speech is determined to be spoken by the speaker S with the
highest probability

15



S =arg max log p(X|/1i) , (18)

where S is the number of speakers, i is the i-th speaker.




CHAPTER 3

EXPERIMENT RESULTS

In this chapter, we present the experiment results of our system. The databases used in

our experiments are the CMU PDA Database and our own database from our lab members’

speeches.

The CMU PDA Database is a free database that is released by the Carnegie Mellon

University in the internet. There are 16 speakers in this database. 51 different speeches are

recorded for each speaker. When a speaker speaks, the speech that is spoken by the speaker is

recorded by 5 record devices at the same time. So each speech of a speaker has five record

files, and each speaker has total 255 record files. The sampling frequency is 16000 Hz in this

database. The durations of these speeches are 3-5 seconds.

In our database, we record the speeches from our lab members. There are 8 speakers. For

each speaker, 5 different speeches are recorded. And each speech is spoken 5 times using the

same record device. Thus, each speaker has total 25 record files. The sampling frequency is

44100 Hz in our database. The durations of these speeches are 10-15 seconds.

In our experiments, we take 100 speeches as the training speeches and the remaining 155

speeches as the testing speeches for each speaker in the CMU PDA Database. And the 30

percentile energy is used as threshold t in this database. In our database, we use 10

silent

speeches as the training speeches and the remaining 15 speeches as the testing speeches. And

17



the 20 percentile energy is used as threshold t in our database. For each experiment, we

silent

take different training speeches to do 4 times. The experiment result shows the average

identification rates and the standard deviations.

3.1 Feature Dimension and Mixture Number Decision
For our system, we need to determine the dimension L of the MFCC feature vector and

the mixture number M of the GMM. The identification rate will be affected by different L

and M . In this experiment, we try different dimensions L =15, 16, 17, 18, 19, and different
mixture numbers. M =4, 6, 8, 10, 12. The results of CMU PDA Database are shown in Fig.

6 and Table 2. And the results of our database are shown in Fig. 7 and Table 3.

According to this experiment results, we choose the dimension L =16 and the mixture

number M =8 with the highest identification rate of CMU PDA Database. In our database,

L=18, M =10 and L=18, M =12 have the same identification rate. The more mixture

number makes the computing complexity increased; hence we choose the dimension L =18

and the mixture number M =10 of our database.

18
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Fig. 6. Identification rates using different dimensions and mixture numbers for CMU PDA Database.

Table 2. Identification rates (IR) and standard deviations (SD) using different dimensions

and mixture numbers for CMU PDA Database.

IR(SD) L=15 L=16 L=17 L=18 L=19
M=4 | 98.94%(0.24%) | 99.04%(0.40%) | 98.85%(0.55%) | 98.66%(0.94%) | 98.86%(0.63%)
M=6 | 99.28%(0.28%) | 99.35%(0.18%) | 98.91%(0.86%) | 98.80%(1.39%) | 97.88%(1.79%)
M=8 | 99.35%(0.23%) | 99.53%(0.25%) | 96.96%(2.04%) | 98.24%(1.54%) | 98.86%(0.94%)

M=10 | 99.44%(0.31%) | 99.209%(0.58%) | 96.85%(2.27%) | 97.81%(2.16%) | 99.20%(0.45%)

M=12 | 99.49%(0.34%) | 98.8896(0.70%) | 98.409%(1.65%) | 98.87%(0.97%) | 99.47%(0.35%)

19
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Fig. 7. Identification rates using different dimensions and mixture numbers for our database.

Table 3. ldentification rates (IR) and standard deviations (SD) using different dimensions
and mixture numbers for our database.

IR(SD) L=15 L=16 L=17 L=18 L=19
M=4 | 95.21%(2.49%) | 97.29%(2.08%) | 98.13%(2.19%) | 98.96%(0.80%) | 98.96%(0.80%)
M=6 | 97.08%(3.23%) | 98.33%(1.80%) | 98.13%(2.19%) | 98.750%(1.08%) | 98.54%(1.42%)
M=8 | 96.67%(2.45%) | 98.54%(1.42%) | 98.75%(1.08%) | 98.75%(1.08%) | 98.75%(1.08%)
M=10 | 97.08%(2.59%) | 97.9296(1.73%) | 98.54%(1.42%) | 99.17%(0.68%) | 98.96%(0.80%)
M=12 | 96.88%(2.29%) | 97.92%(1.73%) | 98.96%(0.80%) | 99.179%(0.68%) | 98.96%(0.80%)
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3.2 Comparison of Different Threshold t_,

In our channel effect remover, we need to set a threshold t,,, to classify frames as
silent frames or real speech frames. The t,,, is set according to the percentile of the frame
energy. Different percentile energies affect the identification rate. In this experiment of CMU

PDA Database, we use different percentiles 10%, 15%, 20%, 25%, 30%, 35%, and 40% with

L =16, M =8. The experiment results are shown in Table 4.

Table 4. Identification rates and standard deviations using different percentiles of
CMU PDA Database.

Identification Rates | Standard Deviations

10% 88.42% 3.04%
15% 91.02% 4.67%
20% 91.75% 4.9%

25% 99.12% 0.58%
30% 99.53% 0.25%
35% 99.38% 0.37%
40% 99.37% 0.28%

According to the results, we choose the threshold t,, of percentile 30% for CMU

PDA Database.
For our database, we also use different percentiles 10%, 15%, 20%, 25%, 30%, 35%, and

40% with L =18, M =10. The experiment results are shown in Table 5.
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Table 5. Identification rates and standard deviations using different percentiles of our

database.
Identification Rates | Standard Deviations
10% 98.54% 0.42%
15% 98.96% 0.80%
20% 99.17% 0.68%
25% 96.88% 3.00%
30% 97.08% 3.08%
35% 96.67% 2.81%
40% 96.46% 3.22%

According to the results, we choose the threshold t

database.

3.3 Comparison of Different Methods

of percentile 20% for our

silent

In this experiment, we compare the identification rates of the proposed method and other

methods using different feature vectors. According to the above experimental results of CMU

PDA Database, L=16, M =8 has the highest identification rate, thus it is used in this

experiment. For our database, L =18 M =10 has the highest identification rate, thus this is

used in the experiment.

The methods used in this experiment include the proposed method, the MFCC, the

MFCC of the real speech frames, the MFCC using the traditional cepstral mean subtraction

(CMS) [9, 10], the delta-cepstrum of MFCC [11], and the MFCC using CMS of the real

speech frames. The experimental results of CMU PDA Database are shown in Table 6. And
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the experiment results of our database are shown in Table 7.

Table 6. Identification rates and standard deviations of different methods for CMU

PDA Database.

Identification Rates | Standard Deviations
MFCC 95.44% 3.02%
Real speech frames 96.59% 2.41%
MFCC using CMS 98.17% 1.33%
Delta-cepstrum of MFCC 99.02% 0.65%
Real Speech frames using CMS 99.28% 0.60%
Proposed method 99.53% 0.25%

Table 7. Identification rates and standard deviations of different methods for our

database.

Identification Rates | Standard Deviations
MFCC 96.67% 1.18%
Real speech frames 97.71% 1.05%
MFCC using CMS 98.13% 0.80%
Delta-cepstrum of MFCC 98.54% 0.80%
Real Speech frames using CMS 98.75% 0.48%
Proposed method 99.17% 0.68%

These experiment results show that the identification rate of the proposed method is the
highest, it is increased 4.09% relative to that of using the original MFCC for CMU PDA
Database, and increased 2.5% for our database. And the identification rate of the proposed
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method is increased 0.25% relative to that of using the real speech frames using CMS for
CMU PDA Database, and increased 0.42% for our database. The proposed method has the
highest identification rate and the lowest standard deviations for CMU PDA Database, and

has the highest identification rate for our database.

3.4 System Robustness Testing

In this experiment, we test the robustness of our system. For the two databases, we use
half training speeches to train the GMMSs for each speaker. The experiment results are shown

in Tables 8, 9 to compare the mentioned methods with our proposed method.

Table 8. Identification rates and standard deviations of half training speeches in
different methods for CMU PDA Database.

Identification Rates | Standard Deviations
MFCC + Delta-cepstrum (L =32) 88.43% 2.97%
MFCC 94.22% 4.30%
Real speech frames 95.20% 4.51%
MFCC using CMS 97.12% 1.06%
Delta-cepstrum of MFCC 98.64% 1.21%
Real Speech frames using CMS 98.88% 0.94%
Proposed method 99.16% 0.57%
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Table 9. Identification rates and standard deviations of half training speeches in
different methods for our database.

Identification Rates

Standard Deviations

MFCC + Delta-cepstrum (L =32) 42.66% 19.31%
MFCC 95.00% 1.35%

Real speech frames 96.56% 1.20%

MFCC using CMS 97.66% 1.39%
Delta-cepstrum of MFCC 98.13% 0.88%
Real Speech frames using CMS 98.28% 0.60%
Proposed method 98.59% 0.79%

These experiment results using half training speeches show that the rate of the proposed
method is the highest, it iIs increased 0.28% relative to that of using the real speech frames
using CMS for CMU PDA Database, and increased 0.31% for our database. The proposed

method has the highest identification rate and the lowest standard deviations for CMU PDA

Database, and has the highest identification rate for our database.

25




CHAPTER 4

CONCLUSIONS AND FUTURE WORKS

In this thesis, we proposed a speaker identification system. A new channel effect remover

Is provided to get a higher identification rate. In the channel effect remover, the channel

effects for speeches recorded from different record devices or in a noisy environment are

decreased. In our system, for each input speech, the MFCC feature vectors are first extracted.

Secondly, these feature vectors are inputted into the proposed channel effect remover to obtain

new feature vectors. Finally, in the training part, these new feature vectors are used to get the

GMM of each speaker, and in the testing part, these feature vectors are inputted to GMM to

determine the speaker. Experiment results show that the proposed method provides a higher

identification rate.

In our channel effect remover, the threshold used to classify frames into silent type and

real speech type is adapted according to different databases. We use a constant percentile of

the frame energies as the threshold for all speeches in the same database. In the future, we

want to develop a method to adapt the threshold according to each speech. With the

automatically adapted threshold, the real speech frames and silent frames can be classified

more precisely such that identification rate can be improved.
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