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Student: Hou-1 Lin Advisor: Dr. Ling-Hwei Chen

Institute of Multimedia Engineering

National Chiao Tung University

Abstract

This thesis proposes a new- technique on puzzle solving. The novelty of the proposed
technique is that it provides a semi-automatic puzzle solution which can reconstruct all kinds
of puzzles without any initial restriction about the shapes of pieces, the number of neighbor
pieces, etc. This technique uses both shape and color information to cope with the puzzle
solving problem and consists of four steps. First, puzzle pieces are extracted from the input
image. Second, shape and color features are extracted from each puzzle piece to form the
shape and color feature strings. Third, the possible common boundary of each pair of puzzle
pieces is found and its similarity measure is estimated by using their shape and color feature
strings. Fourth, based on the similarity measure of each pair of pieces, a recurrent procedure is
applied; it merges puzzle pieces with the largest similarity measure in pair until the original
puzzle image is reformed. In the merging step, we provide a simple user interactive method,

which allows a user to decide if each pair of pieces selected by the solver is adjacent or not.



Our solver will select another pair of puzzle pieces which may be adjacent as soon as the user

decides previous selected pieces are not adjacent pieces. This method makes our solver be

able to restore puzzle pieces completely. And a user can easily reconstruct a puzzle through

our puzzle solver.

We tested this technique by emp and artificial puzzle images containing

o ique is efficient and effective

dozens of pieces. The

for restoring
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CHAPTER 1
INTRODUCTION

1.1 Motivation

A puzzle solving problem focuses on restoring a picture that is separated into several
pieces by placing all pieces back to their original locations accurately. This problem includes
many popular issues such as boundary detection, shape matching, and texture comparison,
which are of general topics in the fields of computer vision and pattern recognition. In
addition to solve jigsaw puzzle problem, the puzzle solving problem could also be applied to
other fields such as the reconstruction of archeological artifacts [1-3], the molecular docking
problem [4, 5], the speech descrambling [6], and the reconstruction of ripped-up documents
[71.

The research on puzzle solving started since 1964 [8]. Most of the related works to solve
puzzle were discussed under certain puzzle conditions like picture outfit existence, a specific
number of neighbor fragments for each piece, and particular outfit shape of the target picture,
etc. However, the applications of the puzzle solving problem in the real world will not be
limited by these conditions. Therefore, we attempt to propose a solver that is able to handle all

kinds of puzzles without limitations.



1.2 Related work

Generally, jigsaw puzzles can be classified into two classes. One has only shape

information like Fig. 1(a). The other has both shape and color information like Fig. 1(b). Early

researches mainly focus on solving the first class of puzzles.

(a) (b)
Fig. 1. Twao various patterns of jigsaw puzzles. (a) Puzzle with only shape information. (b)
Puzzle with both shape and color information.

In 1964, the idea to solve the Jigsaw puzzle problem automatically was firstly brought up

by Freeman and Gardner [8]. They use partial boundary curve matching and some heuristics

to handle this problem without referring to the original picture. Their work has become the

foundation of many subsequent papers. Radack and Badler [9] in 1982 also use partial

boundary curve matching, but they employ the polar coordinate system to take the place of

the Cartesian coordinate system. Wolfson et al. [10] in 1988 proposed an algorithm, which

uses the Schgartz-Sharir curve matching algorithm and optimized search trees, to solve the

puzzle problem up to 104 puzzle pieces with two specific patterns. Based on the algorithm
2



proposed by Wolfson et al. [10], Goldberg et al. [11] tries to find indents, outdents, and

straight sides of each piece, and then a global matching algorithm is provided to restore the

puzzle picture. Their method can handle up to 204 puzzle pieces with different shapes, but it

is still limited by the existence of picture outfit which will reduce the complexity on puzzle

solving. All of the aforementioned methods only use. shape information without color

information.

Few researches deal with the puzzle solving problem using both shape and color

information. Kosiba et al. [12] in 1994 firstly proposed an algorithm related to shape and

color information of pieces. Their method can handle puzzles up to 54 colorful puzzle pieces

with satisfactory results. In 1998, Chung et al. [13] use the distance from a point on boundary

curves to the line determined by two neighboring corner points for shape matching, and they

employ the local image features of a small region along the edge to calculate the similarity

measure. This work is useful while handling puzzles under 54 colorful puzzle pieces. The idea

of using both shape and color information was further used by Yao and Shao [14] in 2003.

Their technique combines shape and image matching with a cyclic “growth” process, and it

uses the integration degree on subdivided strips all along the edge. It can handle real-world

images with dozens of jigsaw pieces. Nielsen et al. [15] in 2008 proposed a new method,

which is the first work to solve the puzzle problem using only color information. This method

calculates the similarity measure for each pair of puzzle pieces along their edges, and based



on the similarity measure, they restore the puzzle picture. At the process of merging pieces,

the puzzle solving problem is split into two sub-problems of solving boarder and interior

pieces. This actually reduces the complexity of the puzzle solving problem. This method can

handle up to 320 puzzle pieces created by computers with a specific picture, which is the

largest puzzle solved to date by a computer, and it tried to cope with two puzzles, which are

real-world puzzles scanned by the scanner, of 24 and 54 pieces, but the puzzle of 54 pieces

was not completely reconstructed by this method.

Though all the aforementioned works can handle puzzle solving problem with small

puzzle pieces, but their methods are just confirmed on few specific pictures, and still limited

by common puzzle conditions such as picture outfit existing, specific neighbor fragment

number of each piece, and particular shapes of some specific pictures, which can reduce the

complexity of puzzle solving problems.

The most recent work was proposed by Makridis and Papamarkos [17] in 2010. They

properly handled the puzzle solving problem without using common puzzle conditions. Their

method uses the IPAN99 algorithm [18] to find the characteristic points in each piece, and

Kohonen self-organized feature map neural network technique [19] is used to reduce color

information into ten dimensions. After that, each pair of pieces is examined and the most

similar pair of pieces is merged. The merging procedure is repeated until all pairs are

examined or only one piece is left. Although it can handle more complex puzzles than



previous works, but it is unable to handle regular puzzle pieces such as rectangular pieces or
canonical jigsaw puzzles.

Table 1 summarizes the aforementioned works on handling the puzzle solving problem.
Currently, there is no efficient way to cope with all kinds of puzzles without any common
puzzle conditions. Thus, this thesis is dedicated to find out a method to restore all kinds of
puzzles without any common puzzle conditions. The proposed method contains four steps:

(1) Extract each puzzle piece from the color input image.

(2) Extract features of each puzzle piece according to its shape and color information.

(3) Find a possible common boundary for each pair of puzzle pieces based on their
features extracted in Step (2), and estimate the similarity measure.

(4) Based on the result of Steps (3), find out the pair of pieces with the maximum
similarity measure and merge them according to the common boundary. Step (4) is
repeated until only one piece is left.

In Step (4), a user interactive method is provided, it allows the user deciding if the pair of

puzzle pieces selected by our solver is adjacent or not. If the current pair of puzzle pieces is
not considered as adjacent pieces, our solver will immediately find another pair of puzzle

pieces. After these four steps, the original puzzle picture can be restored completely.



Table 1. Categorization of methods on handling puzzle solving problems.

RESRCR VL
(1998) —
Yao and ‘ > :
Shao (2003)-| ———— L ;
- | — l G — v
IS o2 "=
@

1.3 Organization of this Thesis

The detail of o [ [0 cope with the p 0l o

Chapter 2, and then the progress a

m will be described in

d Ity in search and the user interactive method

are discussed in Chapter 3. In Chapter 4, the experimental results will be displayed. Finally,

Chapter 5 makes a conclusion.



CHAPTER 2
THE PROPOSED METHOD

In this chapter, we will describe our proposed method in detail. Fig. 2 shows the block
diagram of the proposed method. As mentioned in Chapter 1.2, our method contains four
steps:

(1) Puzzle Piece Extraction.

(2) Feature Extraction.

(3) Common Boundary Finding.

(4) Adjacent Pieces Merging.

N Puzzle Puzzle Piece Feature
Pieces Extraction y Extraction

A pair of Common
Adjacent Boundary
Pieces Finding Finding

Adjacent |
Pieces Merging

RGN
Image

~

Fig. 2. The block diagram of the proposed method.
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2.1 Puzzle Piece Extraction

At the beginning of puzzle solving, a series of images are inputted. Each image contains
one puzzle piece (see Fig. 3(a)). In order to extract all puzzle pieces, each puzzle piece is
placed over a background layer with a predefined color. This color should be chosen to make
the contour of a puzzle piece be extracted easily on the input image; therefore we select the
color, excluding those boundary colors, as the background color.

The proposed method is quoted from Makridis and Papamarkos [17]. First, it uses the
background color to differentiate the background region from the puzzle piece region. A

binary image Bl will be built by the following Equation:

0, if thecolor on (X y)is equal to the background color

B ) = {1, otherwise. @

Note that some points on the puzzle piece with background color might be judged as
background and some noises on the background might be considered as a part of the puzzle
piece (see Fig. 3(b)). To overcome this problem, all connected components on BI are found.
Based on the hypothesis that the biggest connected component is either the puzzle piece or the
background, all erroneous smaller connected components are reclassified.

More concretely, the input image is classified into two classes: (1) pixels with the
background color and (2) all other pixels. Then, all connected components are found for both

classes. After that, there will be two classes of objects; one for puzzle piece objects and
8



another for background ones. The biggest object of each class is considered as either puzzle
piece or background. Each smaller object will be reclassified if it lies inside the biggest object,

but belongs to the different class. Fig. 3 gives an example to illustrate puzzle piece extraction.

(a) (b) (c)

Fig. 3. Puzzle piece extraction. (a) The input Image. (b) Binarization based on the
predefined background color. (c) Extracted puzzle piece.

2.2 Feature Extraction

After correctly extracting all puzzle pieces, we will locate the boundary of each puzzle
piece. All boundary points extracted are referred as sample points, which are chosen following
the boundary of a piece pixel by pixel by selecting the next pixel from the 8-neighbors
counterclockwise. However, two sets of sample points corresponding to the common
boundary of two adjacent pieces may be different, that is, pixels on the common boundary of
one piece are unmatched to those in the common boundary of the adjacent piece (see Fig.

4(a)). The occurrence of the above situation is due to the curvature of the boundary. Here, we



apply the method proposed by Nielsen et al. [15] to solve this problem. Their method uses the

edge of the boundary to take the place of pixels on the boundary as sample points (see Fig.

4A(b)).

[1[=2][s[a[s]ef7]>]

Lr]z]3]alala|s]s]

(a) (b)

Fig. 4. An example of sample points on two adjacent pieces. (a) Sample points extracted
from pixels on the common boundary with black color standing for one piece and white for
the other piece. (b) Sample points extracted from the edge of the common boundary with
circles denoting sample points.

2.2.1. Shape Feature Extracting

The technique used to extract shape information is an adaptation of Chain code [20] with
8-neighbors. It extracts the direction of each sample point on the boundary as the shape
feature. For each sample point X, points P; and P, are located at the right and left sides of X
with the same distance (see Fig. 5(a)). Then, the direction from Py to P, is considered as the
direction of X. Here, we design eight direction codes based on our coding map, which

normalizes all directions to eight values 0 ~ 7 (see Fig. 5(b)).

10



(a) (b)

Fig. 5. Anexample to illustrate direction code extraction. (a) A sample point X with P; and
P, located at its right and left sides. (b) The direction coding map.

After obtaining the direction codes of all sample points on each puzzle piece, we group

these codes to form a shape feature string to represent the shape information of the puzzle

piece. Note that the proposed method wants to find adjacent pieces, and then these adjacent

pieces are merged to form the original image. Each pair of adjacent pieces should have a

common boundary. This boundary will correspond to a segment of shape feature string of

each piece. The segments representing the common boundary of two adjacent pieces will be

similar.

In order to reduce the complexity of finding pairs of similar segments between two

puzzle pieces, the run-length coding (RLC) algorithm is used to encode all shape feature

strings; the result is called run length coding string (RLCS). However, there are some small

runs in RLCS; these will increase the complexity of finding pairs of similar segments. These

small runs are produced from those sample points with directions near the boundary of two

neighbor direction codes. A technique is provided to eliminate these small runs.
11



For each RLCS S with S=(Ry, Rz,...,, Rj, ..., Rm), Where R;j=(Cj,L;) represents the jth
run with direction code C; and run length L;. First, we classify all runs into four categories

by threshold T, as shown in the following:

Categoryl: Lj>Thy,

Category2: Lj<T:iand Lj+1>Ty,

Category3: Lj<T:and Lj+1<T: and QC;—Cj+1|>l or |Cj—Cj+1|<7),
Category4: Lj<T: and Lj+<1<T: and QC,——CJ-+1]=1 or|Cj—Cj+1|:7)

Where T:1 is a constant defined by the user. Then, those runs in Categoryl, Category2, or
Category3 will be held. Runs in Category4 will be merged together with their neighbor runs
in Category4. This process will be executed until no run in Category4. To treat the above
merging process, the number of direction codes will be increased to 16 corresponding to
{0,01,1,12,2,23,3,34,4,45,5,56,6,67,7,70} . Note that the new direction code CC, is
created to represent the direction value of two merged runs with direction codes C; and C,.
For the convenience of using these values, we reset these direction codes to 0~15 (see Fig. 6).
After that, if there are still small runs in RLCSs, that is, those runs are classified into

Category?2 or Category3. They will be averagely reassigned to the neighbors on both sides.

12



0110203 405 67

(a)

0 01| 1]12)2 12813 3 4 45 5 566 77 70

(b)

01 t2]3lels 67 69 w0]ul12]1s 115

(c)

1
4

2
9

(d)

Fig. 6. The new 16 direction codes. (a) Original 8 direction codes. (b) After merging each
pair of two neighboring direction codes. (c) The new direction codes. (d) New direction
coding map.

2.2.2. Color Feature Extracting

The puzzles discussed here contain not only shape but also color information. In order to
enhance the accuracy of reconstructing puzzle pieces, we consider the color feature around
the boundary. According to the research of Nielsen et al. [15], using all HSI color components
(Hue, Saturation, and Intensity) as the color feature can get the most correct result on
restoring puzzle pieces, so we choose the HSI color model to represent colors of an input
image. Because shadow exists on the boundary of a puzzle piece, this makes colors of
boundary points darker than expected ones. Fig. 7 shows an example. To solve this problem,
we take an inside point near a sample point to get a color representing the color of the sample
point. Here, a distance D is used for preventing from the shadow effect. Note that D depends
on the input image. If the image is produced by the scanner, then D is set to 2. Otherwise, if
the image is created by a person, then D is set to 0.

13



Fig. 7. An example to sho 3 zzle piece are darker due to

shadows on the b

within the
same the line
segme ‘ i I i erage aturation,
and intensi ed. These
ple points are

values are ¢

grouped to form a color feature string. Fig.8 illustrates the color fez extraction.

T
=

Fig. 8. An Example of color extraction with D=3.5.
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2.3 Common Boundary Finding

To reconstruct the puzzle image, the first thing we have to do is to find a possible
common boundary between two puzzle pieces. Note that this boundary will correspond to a
pair of similar segments in these two pieces’ RLCSs. In this section, we will describe how to
find the most similar segment pair of two puzzle pieces. In some situations, it is difficult to
find the correct pair of similar segments in two adjacent puzzle pieces by only using shape
information, since there might be more than one pair of similar segments in two puzzle pieces
(see Fig. 9). To treat the above problem, a common boundary finding technique is provided

based on both shape and color features.

(d)

Fig. 9. Examples of multiple similar segments with only shape information used. (a) and (c)
Results of correct pairs of similar segments. (b) and (d) Results of incorrect pairs of similar
segments.

15



In the proposed technique, first, for two puzzle pieces, several possible common
boundaries, which are apt to merge these two puzzle pieces, are found based on their RLCSs.
Second, for each possible common boundary, the matching points of this boundary, which can
align two corresponding similar segments representing the possible boundary, are located
based on the shape and color feature strings. Finally, the best possible common boundary will
be extracted. Following is the details of our common boundary finding method.

First, the proposed method attempts to find several possible common boundaries
between two puzzle pieces based on their RLCSs. This method is an adaption of
Smith-Waterman. algorithm (SWA) [21], which is designed for determining similar regions
between two nucleotide or protein sequences. It performs local sequence alignment, that is,
SWA can find a pair of similar matching segments between two strings. Note that each
element in a string is a single symbol. However, our purpose is-to find several pairs of similar
matching segments based on RLCSs, in which each element contains two values: direction
code and its run length. Thus, SWA is modified to. meet this situation. The details are
described as follows.

Let S1=(Rix,..., Rim) and Sz = (Ras,..., Ran) be the RLCSs of two puzzle pieces, where m
is the number of runs in S, and n is the number of runs in S,. Assume that m<n, S;'=
(R1,R12,...,RimR11,R12,...,R1m) and S,'= (Ra1,R2,...,Ron,R21,R2,...,Rom). S;" and S," are
created to be circular strings, they are used to deal with the problem that for a similar segment

16



pair, each segment may consist of two separated substrings, one in the front of a RLC string,

the other in the rear of this string. Fig. 10 shows an example to illustrate this problem.

The beginning of the
A\ shape feature strin:
’O ;’; ‘f P g

nsists of two
ing. Solid

Fig. 10.
separated rings, d ar of
line repre the front sub S the rear su '2 rin

|O) 0, for 0<i<2m,
j)=0, for 0< j<(m+n),

0 )
H(i _11 = ' v . .

H (i, j) = max (! J : ) , for 1<i<2m,1< j<(m+n),
H(@i-1 j)+w(Rui,—) Deletio
H(, j-1) +w(—, Rzj) Insertion

SimiMat[Cli][Czj]X Ly, if Lu<Ly

W(R1i,R2j) =1 . . _ ’ 3
( ' 21) {SlmlMat[Cli][CZj]X sz, if L.; < Lu ( )

W(Rii,—) = (=10) x L , 4

W(—, R2j) = (—10) X sz . (5)
17



Where w(a,b) is a gap-scoring scheme, a,be Si, Sz, 0r {—} '—' stands for missing
element. Rui (Rz;) is the ith (jth) run in S; (Sz). SimiMat is a similarity measure matrix to

represent the similarity of two direction codes (see Table 2).

Table 2. The SimiMat matrix values with codes C; and C,.

Ci-CJ | 0| 1|2 |3 |4|5|6]7

SimiMat[C4][C2] | 20 | 5 | -1 | -4 | -8 | -10 | -10 | -10

IC1—C4 8 |9 |10 |11 |12 |13 |14 |15

SimiMat[C4][Co] | -10 | -10. -10/{ -10 | -8 |4 | -1 | 5

Note that in SWA, two similar strings may have some insertions and deletions. But in
puzzle solving, two similar strings should represent the common boundary of two adjacent
puzzle pieces in the original puzzle image. Thus, only few insertions and deletions are
allowed. This means that for a pair of similar segments, the number of consecutive unmatched
elements should be less than a threshold T,, which depends on the size of puzzle pieces.
Therefore, on the process of building matrix H, a counter is used to record the number of
consecutive unmatched elements. If the counter is larger than T, in calculating the value of

H(i, j), the value of H(i, j) will be reset to 0.
Note that H(i, j) stands for the maximum similarity score between segment MS;

(Rai',...,Ru) and segment MS; (Rzj,...,Rz2j), where Rw (Rzj) is the beginning run of MS;

18



(MS,). The bigger the value of H(i, j) is, the more similar the pair of segments is.

To locate R« and Rzj for each similar segment pairs, we start from position (i, j),
then, we go backwards to one of positions (i -1, j), (i, j—1),and (i—1, j—1) depending on
the direction of movement used to build H(i, j). Keep the process until it reaches a position
(i, j') with H(', j)=0 or position(0,0).

Based on matrix H we can extract several similar segments. The top 10 largest values in
H are extracted, each of which corresponds to a pair of similar segments. However, there may
be some duplicates in these ten pairs since strings. S, (S,') is a concatenation of S; (Sy).
Therefore, all pairs of similar segments are examined and duplications are discarded.

After several pairs of similar segments between two puzzle pieces are found, our method
attempts to find a pair of matching points in RLCSs for each pair of similar segments, so that
we can merge these two puzzle pieces based on the-matching points.

Note that a pair of similar segments found might consist of matching runs and several
insertions or deletions (see Fig. 11). That is each segment can be split into several
sub-segments by these insertions or deletions. Based on this phenomenon, we take the longest
sub-segment in each segment; it has the maximum similarity. Assume that the locations of
matching points will be situated at the longest sub-segments. Then, the shape and color
features on these two sub-segments are used to find the best pair of matching points on these
two segments. More details are described as follows.
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The longest sub-segment :
\ L < Deletion
Sub-segment 1 Sub-segment 2 \ Sub-segment 3

LS, [0.2)| (1,4 ] (3.5 | (4.3) [ (5.3) | 4.4 | (3.5) | (2.2) | (1.4) | (0,6)

INONONINY

LS, (0.5) | (1,3) [ (2.2) | (3.5) | (4,3) | (5.4) [ (4.5) | (3.7) | (1.4) | (0.4)

Sub-segment 1 '\ Sub-segment 2 Sub-segment 3
Insertion The longest sub-segment

Fig. 11. A pair of similar segments with arrows standing for matching runs.

Let LS; (LS;) be the longest sub-segment of MS; (MS3), LsS; (LsS,) be the result string of
run-length decoding (RLD) for LS; (LSz) with length 1 (I'), LsS1=(C41C"2,...,C')
(LsS2 =(C'213, C'22,...,C'2) ), and LcS; (LcSy) be the sub-string of color features of pixels on
LS; (LSz) with length I (I'), LcSi=(CS13,CS>,...;CSu) (LcS2=(CS'21,CS'%z,::,CS'21') ).
LsS; and LsS; are used to estimate a Local Shape Similarity (LSS), and LcS; and LeS; are used
to estimate a Local Color Difference (LCD). In case these two sub-segments LsS; and LsS; are

not perfectly aligned, that is I =1', the shorter sub-segment may be shifted relative to the

longer one to find the maximum similarity measure (see Fig. 12).
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Fig. 12. An example of finding matching points with | =1'.

Let I <I', LSS and LCD are computed as follows:

1-1
LSSy =Y SimiMat[C'i + n][C2 + 1+ w)], (6)

t=0

3 (ICS'1(1+ —CS"21+t+ u)I)

LCDu=*+2 I . )

Where index u denotes the number of times the shorter sub-segment shifts. After obtaining all
LSS, and LCD,, the proposed method finds the maxima LSSyax and LCDnax, and the minima
LSSmin and LCDnin, then uses these values to estimate the Local Similarity Measure (LSM) by

Equation (8) for each possible pair of matching points.

LSMu = a % M + (1—a)>< 1— LCDu — LCDhmin (8)
LSSmax LCDmax '

Where a is set to determine the contribution of shape and color features for LSM. The pair
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of points with maximum LSM will be considered as the pair of matching points for segments
MS; and MS;.

According to the above method, a pair of matching points is found for each similar
segment pair. After that, Shape Similarity (SS) and Color Difference (CD) are estimated for
each pair of similar segments. Let (x, y) be the pair of matching points for a pair of similar
segments MS; and MS,, MsS; and MsS; be the result sub-string of RLD for MS; and MS; with
length k and k’, and McS; and McS; be the corresponding color feature substrings of MS; and
MS, with length k and k’, MsS; = (Ci1,Cia,..5C1k), MSS; = (C21,C2,...,Cok), McS; =
(CS11,CS1y,...,CSu), and McS; = (CS1,CS»,...,CSy). Assume that x <y and k < k’, the SS

and CD will be calculated as follows:

x—1 k—x
SS = > SimiMat[Cix=0][Cay -]+ Y_ SimiMat[Cux - v][Ca(y 1] | 9)
t=0 el
x-1 k=X
ZQCS:L(X -)—CSzy - t)|)+ ZQCSl(x +)—CSoy+ t)|)
CD = t=0 t=;
" . (10)

Then, the similarity measure (SM) of each pair of matching segments can be estimated by

following Equation:

SM :aX(SS—SSmin)_'_( _a)x(l_CDC—DCDminj. (11)

Where SSmax, CDmax are the maxima of all SSs and CDs, and SSmin, CDmin  are the minima of

all SSs and CDs. Finally, the maximum SM is considered as the similarity measure of the pair
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of two pieces, and the pair of similar segments with maximum SM will be considered as the
possible common boundary between these two pieces. If SM is close to 1 for a possible

common boundary, the corresponding two puzzle pieces are more suitable to be merged.

2.4 Adjacent Pieces Merging
The final destination is to correctly restore the puzzle pieces; the aforementioned SM is
used to reconstruct the puzzle piece by piece. First of all, the similarity measures of all pairs
of puzzle pieces are ranked from maximum to minimum. Secondly, according to the order,
our merging procedure executes the following steps:
(1) Take the pair of two puzzle pieces with maximum SM and merge them based on
their matching points.
(2) Based on the merged piece, take the next pair of puzzle pieces, where one of them is
a merged piece. If the overlap of the unmerged piece with the merged piece
occupies 20% of the unmerged piece, it would not be merged. Otherwise, this piece
will be merged with the merged piece based on the pair of matching points.
(3) Repeat Step (2) until all pieces have been merged.

The result will be considered as the original puzzle image.
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CHAPTER 3
SEMI-AUTOMATIC PUZZLE SOLVER

The proposed method attempts to reconstruct all kinds of puzzle pattern without any
common puzzle conditions. According to the adjacent pieces merging step described in
Chapter 2.4, our method will automatically select a pair of puzzle pieces in each step, and
merges them by their matching points, until all the pieces have been merged. However, our
method might select few incorrect pairs of matching pieces. These errors occur when
nonadjacent puzzle pieces have texture or similar colors and shapes near boundary. Fig. 13
demonstrates these situations. In Fig. 13(a), two nonadjacent puzzle pieces are merged due to
that they have texture boundaries. In Figs. 13(b) and (c), two nonadjacent puzzle pieces are
merged due to that their boundaries have similar shapes and colors. These errors are hard to
be solved automatically, and this will result in that our solver cannot restore the puzzle pieces

to the original image completely.
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Fig. 13. Incorrect matching pairs of pieces selected by our method.

In order to overcome this problem, we propose a semi-automatic solver to successfully

restore puzzle pieces because of these errors may be correctly recognized by a person. This

solver uses the proposed method described in Chapter 2, but it allows a user deciding if the

current merging step is correct or not. If a pair of matching pieces is recognized as an

incorrect.merging, this pair of puzzle pieces will not be merged. Fig. 14 gives an example.

Nevertheless, there are still incorrect matching pieces that cannot be recognized by the user,

so our solver implements a backtracking method that can remowve some error merging. Finally,

we can get the correct result of reconstructing puzzle pieces. Fig. 15 shows an example of the

backtracking method. In Fig. 15(a), piece R2 is selected and the user determines that the

merging of R1 and R2 is correct. After several mergings, R2, R3, and R4 are merged. Then, in

Fig. 15(b), piece R5 is selected, and the user finds that the merging of R1 and R2 is incorrect;

the previous mergings including R2 are removed. The result is shown in Fig 15(c).
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Fig. 14. User decision on the pieces merging step of puzzle solver. (a) D5 is selected in the
merging step, and the user determines that this step is correct. (b) C3 is selected in the next
step. () D2 is selected in the merging step, and the user determines that this step is incorrect.
(d) D2'is discarded by the solver, and Al is selected in the next step.
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Fig. 15. An example of backtracking method. (a) Piece R2 is selected and merged with R1.
(b) When R5 is selected, the merging of R2 and R1 is found incorrect. (c) The result after
backtracking with R2, R3, and R4 removing.
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To sum up, the block diagram of the semi-automatic puzzle solver is shown in Fig. 16

and it is depicted as follows:

(1) Our solver automatically extracts shape and color features for all puzzle pieces.

(2) It calculates a similarity measure for each pair of pieces.

(3) It ranks these similarity. measures from maximum to minimum and restores the

puzzle image based on this order.

(4) This solver implements the adjacent pieces merging step described in Chapter 2.4,

but it requests the user to determine if two selected puzzle pieces should be merged

in each merging.

NPuzzle Puzzle Piece Feature
Pieces Extraction Extraction
Common
Boundary
Finding

A pair of
Adjacent
Pieces Finding

Adjacent : User
Pieces Merging Deciding

Result
Image

r g

Fig. 16. The block diagram of the semi-automatic puzzle solver.
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CHAPTER 4
EXPERIMENTAL RESULTS

The final goal of the semi-automatic puzzle solver is to restore all kinds of puzzles into
their original images. Here, we will calculate the number of times for incorrect merging. Note
that the solver will keep solving until all puzzle pieces are placed in their correct locations.

In this thesis, we present six puzzle images. Four of them are produced by factitiously
splitting original puzzle images into various shapes of pieces. The other two are real-world
puzzle pieces derived from the database of Nielsen et al. [16] which scan real-world puzzle
pieces by a scanner. These puzzles have been chosen to show that this solver can cope with
any kinds of puzzle pieces. The parameter « is set to 0.5. And if the puzzle images are
created by a person, D is set to 0. Otherwise, If they are created by a scanner D Is set to 2.

Example 1 (Blockhouse): In this example, the original puzzle image has been artificially
divided into 13 pieces with different shapes (see Fig. 17). The proposed solver restores this
puzzle without any incorrect merging. The result is shown in Fig. 18.

Example 2 (Lake): In this example, the original puzzle image has been artificially
divided into 31 varied pieces (see Fig. 19). This puzzle is restored with 6 incorrect mergings.

The result is shown in Fig. 20.
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Example 3 (Leopard): This puzzle is a real-world puzzle of 24 pieces. The proposed

solver restores this puzzle with 16 incorrect mergings. The result is shown in Fig. 21.

Example 4 (Benjamin): This puzzle is a real-world puzzle of 54 pieces. This puzzle is

restored with 22 incorrect mergings. The result is shown in Fig. 22.

Example 5 (Construction50, Construction160): This puzzle image depicts a construction

with varies colors and texture (see Figs. 23 and 24); it is derived from Nielsen et al. [16]. In

this example, we divide this image into 50 and 160 rectangular pieces. The piece size of the

first puzzle image Is 154 x198 pixels, and the other is 100104 pixels. The First puzzle is

restored without any incorrect merging, and the result is shown in Fig. 25. The second puzzle

of 160 pieces is also successfully restored with 59 incorrect mergings.

In our proposed solver, o value is the key parameter to affect the number of incorrect

mergings. This value is set to determine the contribution of shape and color information, and

it is normalized to [0, 1]. If & is close to 1, the proposed solver coping with the puzzle

mainly depends on shape information. On the contrary, if « is close to 0, our solver coping

with the puzzle mainly depends on color information. In Table 3, five puzzles (Benjamin,

Blockhouse, Construction50, Lake, Leopard) are used to analyze the effect of a by

computing the number of incorrect mergings occurred. From this table, we can see that each

puzzle can be restored with few incorrect mergings by using a specific « value. The

selection of o will be based on the characteristics of each puzzle, if the colors and textures
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in a puzzle are similar, then this puzzle should be restored using the shape information, that is
a s set to close 1, like Leopard. On the other hand, if the shapes of pieces are similar, then
this puzzle should be restored using the color information, that is « is set to close 0O, like
Construction50. We can also see that when « =0.5 our puzzle solver can restore all puzzles

effectively. Therefore o is suggested to set to O

Table 3. Analysi S i alue in thi is the number of incorrect
merging to ‘o designated pu: le : , t be
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Fig. 18. The restored image of puzzle Blockhouse.
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Fig. 19. Puzzle pieces of puzzle Lake.

Fig. 20. The restored image of puzzle Lake.
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Puzzle pieces of puzzle Construction50.
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Fig. 24. Puzzle pieces of puzzle Construction160.
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Fig. 25. The restored image of puzzle Construction.
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CHAPTER 5
CONCLUSIONS

This thesis provides a semi-automatic puzzle solver, which is based on shape and color
information. The target puzzles are not restricted by some specific patterns. And the solver
does not use any common puzzle limitations. The experiments were performed with
real-world and artificial puzzle images. The experimental results show that our method is
successful for restoring all kinds of puzzle pieces.

In this method, first, the shape and color features are extracted; they are next used to
estimate the similarity measure of a possible common boundary for each pair of puzzle pieces.
Then, a simple user interactive method is provided to allow a user deciding if two selected
pieces are adjacent or not. Our solver will select another pair-of puzzle pieces which may be
adjacent as soon as the user decides previous selected pieces are not adjacent. This method
makes any kinds of puzzle pieces be restored completely. And a user can easily restore a

puzzle by our puzzle solver.
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