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應用於主動式攝影機上的權重式重取樣粒子濾

波器的人形追蹤 

 

學生：張良成    指導教授：林進燈 教授 

 

國立交通大學 多媒體工程研究所碩士班 

摘要 

 我們提出了權重式重取樣粒子濾波器演算法，並應用於主動式攝影機上做人

形追蹤。本系統主要有三部分，分別是人形偵測，人形追蹤和攝影機的控制。在

人形偵測方面使用編碼比對去得到人形區域，而粒子濾波器會對每張輸入的影片

估測出人形的位置。我們在重取樣中選擇具有高權重的粒子，因為這能讓追蹤特

徵更精確。此外比例-積分-微分控制器(PID controller)用來控制主動式攝影機，藉

由最小化介於影片中心和物體位置的誤差，並轉換此誤差為 pan-tilt 速度來驅動

攝影機移動讓被追蹤的人保持在影片的可視範圍內。在追蹤過程中，影像的強度

和人的特徵也會隨之變化。因此高斯混和模型(GMM)會隨著時間來更新人的特

徵模型。至於短暫的遮蔽問題可透過特徵相似度和重新取樣粒子來解決。而粒子

濾波器能估測出每張輸入影像裡人形的位置，因此可以平滑地驅動主動式攝影

機。 
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Abstract 

 We proposed a weighted resampling algorithm for particle filter and applied for 

human tracking on active camera. The system consists of three major parts which are 

human detection, human tracking, and camera control. The codebook matching 

algorithm is used to extract human region in human detection system, and the particle 

filter algorithm is estimating the position of the human in every input image. We 

select particles with high weighting value in resampling, because it will give higher 

accurate tracking features. Moreover, a proportional–integral–derivative controller 

(PID controller) controls the active camera by minimizing difference between center 

of image and the object’s position obtained from particle filter, also convert the 

position difference into pan-tilt speed to drive the active camera and keep the human 

in the field of view (FOV) camera. The intensity of image may change over tracking, 

and so do the human features. Therefore, the Gaussian mixture model (GMM) 

algorithm is used to update the human feature model overtime. As regards, the 

temporal occlusion problem is solved by feature similarity and the resampling 

particles. Also, the particle filter is estimating the position of human in every input 

frames, thus the active camera will drive smoothly. 
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1 Chapter 1 

Introduction 

 

In recent years, visual-based detection and tracking methods have been applied 

to security surveillance to improve safety and convenience of human’s life. 

Traditional visual-based surveillance system uses human eyes to check monitor all 

day. This is inefficient and time consuming. In order to solve this problem, automatic 

and real-time vision based surveillance system has been proposed in this work. 

In surveillance system, human detection and tracking are important topics. The 

human detection system has two parts: moving object extraction and human 

recognition. The moving object extraction extracts object from background and find 

its related position and size in an image. Human recognition recognizes object as 

human or nonhuman. Then, the tracking system will track the human in continuous 

frame. The human may be occluded with other objects while tracking. So the tracking 

system must able to predict the position during and after occlusion. 

There are two kinds of camera used in surveillance system, which are fixed and 

active camera. The advantage of a fixed camera is low cost, but its FOV (field of view) 

is limited. On the other hand, active camera has good FOV because it has the ability 

to perform pan-tilt to keep target human in the camera scene. Also, it has good 

resolution because able to do zoom in/out. 

In this thesis, we integrate human detection, human tracking, and active camera 

controller to achieve automatic and real-time surveillance systems. 
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1.1 Motivation 

Commonly, tracking system on active camera uses temporal difference to extract 

moving object. In this process, we need to wait the camera stable enough to do image 

processing. In other word, the moving camera will capture blur images and extract not 

only moving object but also background pixels. Consequently, the active camera is 

driven discontinuously and non-smoothly. Therefore, we applies particle filter 

tracking algorithm to solve this problem. The codebook method is applied first to 

detect human as target model, then the particle filter tracks it by calculating the 

Bhattacharyya distance between target model’s color histogram with next frame color 

histogram of the sampled particle position. The color histogram has many advantages, 

for example it can track non-rigid object, robust to partial occlusion, rotation and 

scale invariant, also calculated efficiently. 

1.2 Objective 

The objective of this thesis is to construct a real-time human tracking system on 

active camera which has some characteristics as listed below. 

1) It can detect human fast. 

2) It can track without using background information. 

3) It can handle occlusion condition. 

4) It can drive active camera smoothly and continuously. 

5) It can zoom in/out appropriately. 
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1.3 Related work 

In this thesis, we classify the related work into three parts as follows, 

1. Human detection 

A human detection system determines the human’s position and its size in an 

image. Optical flow [1, 2] is used to estimating independently moving object, but it 

costs complex computation and sensitive to the change of intensity. Zhao et al [3] 

exploit stereo based segmentation algorithm to extract object from background, and 

recognizing the object by neural network. Although stereo vision based technique has 

been proved more robust, but it requires at least two cameras and cannot be used in 

long distance detection. Dalal and Triggs [4] computed oriented gradient and select 

the dominant orientated gradients to detect human. Sebastian and Alvaro [5] present a 

new computer vision algorithm which designed to operate with moving cameras and 

detect human in different poses under partial or complete view of the human body. 

Viola et al [6] proposed cascade Boosting detector, the AdaBoost iteratively 

constructs a strong classifier guided by user-specified performance criteria. The 

cascade approach is quickly rejecting non-pedestrian sample in early cascade layer, 

thus this method has high processing speed. A template-based approach [7] is 

presented to detect human silhouettes in a specific walking pose, and templates 

consist of short sequences of 2D silhouettes obtained from motion capture data. 

In order to detect human fast, we choose the shape-based human model to classify 

human being by codebook matching, which decreases the time of human detection 

from the other objects. 
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Fig. 1-1 Three categories of tracking 

2. Human tracking 

Human tracking is used to following target human through the sequence images 

in terms of changes in scale and position. Fig. 1-1 shows three based tracking method. 

First, feature based is the most commonly method, and color, edge, or motion is used 

as tracking feature. The edge detection method, such as Sobel method [8], Laplacian 

method [8], and Marr–Hildreth method [9], etc., utilize masks to do convolution on 

the image to detect the edges. Wei Guo et al. [10] propose human tracking system 

based on shape analysis. Law et al. [11] design fuzzy rules used in edge based human 

tracking. This method requires a rather large and complicated rules set, also need 

more computation time, and edge pixels cannot be always detected continuously. We 

noted that all those methods mentioned above detect edges using gray level images, 

and those methods will be neglect for color images because the representation of a 

pixel is not only a gray level but a vector in a color space. The edge occurring in the 

adjacent pixels which have the same values may not be detected. So, edge detection 

only in gray level image is not sufficient and robust.  

Pattern recognition do learning the target object and search them in sequence 

image. Williams et al. [12] extended the approach to the nonlinear translation 

predictors which learned by Relevance Vector Machine. Agarwal and Triggs [13] used 

RVM to learn the linear and nonlinear mapping for tracking of 3D human poses from 
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silhouettes. Bohyung Han and Larry Davis [14] used PCA to extract feature from 

color and used these feature in mean-shift tracking algorithm. Robert T. et al. [15] 

presents an online feature selection mechanism for evaluating multiple features while 

tracking and adjusting the set of features to improving tracking performance. The 

feature evaluation mechanism is embedded in a mean-shift tracking system. It can 

adaptively select features for tracking. The mean-shift algorithm was originally 

proposed by Fukunaga and Hostetler [16] for clustering data. The kernel-based object 

tracking is proposed by Meer et al [17]. This method tracks an object region 

represented by a spatial weighted intensity histogram, and computed its similarity 

value by Bhattacharyya distance using iterative mean-shift algorithm. Later, many 

variants of the mean-shift algorithm were proposed for various applications [18-21]. 

Although the mean-shift object tracking algorithm performs well on sequences with 

relatively small object displacement, however its performance is not guaranteed when 

objects undergo partial or full occlusion. In order to improve the performance of 

mean-shift tracker under partial occlusion, there some algorithms added to the 

mean-shift such as Kalman filter [22-23] or particle filter [24-25]. K. Nummiaro et al 

[25] use the idea of particle filter to apply a recursive Bayesian filter based on sample 

sets. They use color as feature. Their work has evolved from the condensation 

algorithm which was developed in the computer vision community. In this thesis, we 

select the particle filter to track human, because it has proven very successful for 

non-linear and non-Gaussian estimation problems. 

3. Camera 

Tracking object with an active camera can drive pan-tilt to keep the object in the 

scene of camera and use zoom in/out to adjust the resolution of object. Many tracking 

system work only on pan/tilt or zoom. Murray et al. [26] utilized morphological 

filtering of motion images for background compensation. It can track a moving object 
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from dynamic images with drive pan-tilt angles. C. Lin et al. [27] use an image 

mosaic technique to track moving objects with a single pan-tilt camera for indoors 

environment. Collins et al. [28] developed a system with multiple cameras that 

tracked a moving figure using pan-tilt cameras alone. This system used a kernel-based 

tracking approach to overcome the apparent motion of the background while the 

camera moved. L. Fiore et al. [29] used wide angle and active camera to achieve 

human tracking. In this work the target object was found by wide angle camera and 

through camera calibration method tell the active camera to drive pan-tilt to track to 

the specific object position. The objective of our approach is driving pan-tilt to keep 

target in the center of FOV. If the target’s size is smaller or larger than a minimum or 

maximum size, then the zoom function will drive zoom-in or zoom-out. In order to 

drive active camera smoothly and continuously, we use PID controller, because it can 

minimize the error between target and center of camera’s FOV. Also, we use the target 

ROI size which estimated by particle filter to determine zoom-in or zoom-out. 
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1.4 System architecture 
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PTZ camera

Human tracking
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tracking

Occlusion 

handler

Camera control

PID 

controller

PTZ cmd

is initial 

FOV ?

is human?

Fig. 1-2 System overview 

 The whole system consists four major parts: Image source, Human detection, 

Human tracking, and Camera control. The input frames are captured by PTZ camera 

with resolution 720*480. The initial FOV is the scene we want to monitor. Moving 

object will be extracted by background difference. The codebook matching is applied 

to classify the moving object into human or nonhuman. When a human is detected in 

initial FOV, we regard it as target. The Particle filter algorithm will track the target in 

every frame also send the target position and size to camera control. The occlusion 
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handler uses the similarity value in every frame to solve the temporal full occlusion 

that sometimes leads to tracking lost in particle filter. The Target position is sent to 

PID controller to determine pan-tilt speed and the size is used to decide zoom-in or 

zoom-out. The PTZ cmd will drive PTZ to keep the target in the center of FOV. When 

PTZ camera is driven, it changes FOV. And the human detection is skipped during 

camera tracking. 
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2 Chapter 2 

Human detection 
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Fig. 2-1 Human detection system 

This chapter describes human detection which includes moving object module 

and codebook matching module. The details of moving object and codebook matching 

are indicated in Fig. 2-1. 

2.1 Moving object extraction 

No matter active camera or static camera used in surveillance system, the default 

position of camera is mostly fixed. So, we can use background subtraction to extract 

moving object. The background subtraction only uses gray level image, so it can 

decrease the computing power and achieve real-time requirement. The background 

image is constructed by using the first frame, and adapted as time using Eq. 2.1. 

 𝐼𝐵
𝑛(𝑥, 𝑦) = {

𝛼 ∗ 𝐼𝐵
𝑛−1(𝑥, 𝑦) + (1 − 𝛼) ∗ 𝐼𝑐(𝑥, 𝑦), 𝐼𝑀(𝑥, 𝑦) = 0

𝐼𝐵
𝑛−1(𝑥, 𝑦),                                                𝐼𝑀(𝑥, 𝑦) = 1

 (2.1) 

where 𝐼𝐵
𝑛 and 𝐼𝐵

𝑛−1 represent current and previous background image, respectively. 

The background image is updating by scaling factorα(0,1). 𝐼𝑀(𝑥, 𝑦) represents 
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active pixel between previous frame and current frame. 

The moving object 𝐼𝐵𝑆 is calculated from difference between current image 𝐼𝑐 

and background image 𝐼𝐵 as written below. 

 𝐼𝐵𝑆(𝑥, 𝑦) = |𝐼𝑐(𝑥, 𝑦) − 𝐼𝐵(𝑥, 𝑦)| (2.2) 

A threshold value ths is determined for producing binary moving object 𝑀𝑜𝑏𝑗 as 

described in Eq. 2.3. 

 𝑀𝑜𝑏𝑗(𝑥, 𝑦) = {
1, 𝐼𝐵𝑆 ≥ 𝑡ℎ𝑠

0, 𝐼𝐵𝑆 < 𝑡ℎ𝑠
 (2.3) 

The dilation process is applied on 𝑀𝑜𝑏𝑗 for enlarging the boundaries and filling 

holes in the moving object. Also, the connected component is labeling the pixel that 

connected together with same label. The process of moving object extraction step by 

step is shown in Fig. 2-2. 

   

(a) (b) (c) 

  

(d) (e) 

Fig. 2-2 The results in moving object extraction. (a)𝐼𝐵 (b)𝐼𝑐 (c)𝑀𝑜𝑏𝑗 (d)I𝐷 (e)𝐼𝑅𝑂𝐼 
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2.2 Codebook matching 

Moving objet Normalize
Shape feature 

extraction

Histogram 

feature 

extraction

Feature 
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Fig. 2-3 Codebook matching 

The codebook matching algorithm in this thesis is based on human-shape 

information. At first, the moving object obtained from moving object extraction is 

normalized into (20*40). The shape feature extraction extracts the position of shape 

pixels in an image, as pointed by red dot in Fig. 2-4. Ten Y-axis coordinates are 

chosen for leftmost and rightmost of object’s boundary. Then, the twenty coordinates 

of its related X-axis coordinate are arranged as feature vector as shown as blue blocks 

in Fig. 2-4. 

The projection of X-axis calculates the histogram of pixel values on the Y-axis. 

Total bin of the histogram is ten as shown as green blocks in Fig. 2-4. Therefore, an 

object can be representing as 30-feature vector in our work. 

 

Fig. 2-4 Feature word X 
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By observation, the top and bottom of Y-axis of shape pixels are not suitable to 

choose as feature points, because these pixels are changeable. The way to find ten 

specific coordinates at Y-axis is to calculate the standard deviation in each value of 

Y-axis for a training sample, and then chooses ten lowest standard deviation values 

each side. 

The feature vector is matched with the code vectors in the codebook. The 

codebook represents a list of feature vectors. The purpose of matching process is to 

find a code vector with the minimum distortion to the feature vector of object. In 

order to describe how the codebook is used to classify the human from other objects, 

there are some variables should be defined at first. Let a series of features vector 

denotes as 𝑋, and each of 𝑋 includes data of 𝑀 dimensions, indicated by 𝑋0…

𝑋𝑖…𝑋𝑀−1 . There are 𝑁  sets of code word 𝑉  defined as 𝑉0…𝑉𝑗…𝑉𝑁−1  in 

codebook 𝐶. Each of 𝑉𝑗  is just like 𝑋 that has 𝑀 dimensional data defined as 

𝑉𝑗
0…𝑉𝑗

𝑖…𝑉𝑗
𝑀−1. The distortion between feature word and code words is defined in Eq. 

2.4. 

 𝐷𝑖𝑠𝑗 = ‖𝑋 − 𝑉𝑗‖ = ∑ |𝑋𝑖 − 𝑉𝑗
𝑖|𝑀−1

𝑖=0  (2.4) 

 𝐷𝑖𝑠𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝐷𝑖𝑠𝑗)  𝑗 = 0…𝑁 − 1 (2.5) 

With the definition of the variables above, the feature vector of normalized 

moving object compares with every 𝑉𝑗 in the codebook 𝐶. If the value of 𝐷𝑖𝑠𝑚𝑖𝑛 is 

smaller than the threshold defined by user, the moving object with the feature word 𝑋 

is considered as human. Otherwise, it is a nonhuman object. The demonstration of 

comparing 𝑋 with 𝑉𝑗 is showed in Fig. 2-5. 

 

Fig. 2-5 The procedure of the comparison with the codebook 
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3 Chapter 3 

Human tracking 

 

A human tracking system based on particle filter algorithm is proposed in this 

thesis. The key idea of particle filter is to approximate the probability distribution by a 

weighted sample set and each sample represents one hypothetical state of the object 

with a corresponding discrete sampling probability [25].  The original resample 

method selects sample using uniformly distributed random number. It usually keeps 

some low weighted samples which may decrease the accuracy of tracking. In this 

thesis, we proposed a weighted resampling particles method which just selects high 

weighted samples. 

3.1 Histogram color features 

Mostly, feature based object tracking method uses color as feature. Color 

information is more accurate than gray scale. Based on experiment, the HSV color 

space gives a good performance while tracking, thus we apply it on our tracking 

algorithm. 

The main purpose of HSV color space is to reduce the sensitivity of illumination 

or lightness information of RGB color space. Fig. 3-1 (a), (b) shows RGB and HSV 

color space, respectively. The HSV model, also known as HSB model, was created in 

1978 by Alvy Ray Smith. It is a nonlinear transformation of the RGB color space. It 

defines a color space in terms of three components: hue, saturation, and value. The 

definition is described below: [31] 
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1. Hue: It is the color type and ranges from 0 ~ 360 degree. Each value corresponds 

to one color. For example, 0 is red, 45 is orange and 55 yellow. When it comes to 

360 degree, it is also equal to 0 degree. 

2. Saturation: It is the intensity of the color, and ranges from 0%~100%. 0 means 

no color, and that means only gray value between black and white exists. 100 

means the intense color with the most color variety. 

3. Value: It is the brightness of the color, and also ranges from 0%~100%. 0 is 

always black. Depending on the saturation, 100 may be white or a more or less 

saturated color. 

  

(a) (b) 

Fig. 3-1 (a) RGB color model [31] (b) HSV color model [32] 

The transformation from RGB color model to HSV color model is written in the 

following equation. 
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 V M A X  (3.3) 

where MAX, MIN denote maximum and minimum value of (R, G, B), 

respectively. Generally, each color-channel has 8-bits data, means produce 

(256*256*256) of bins of color histogram. Without loss of generality, the color-data is 

quantizing into (6*6*6). Therefore, total bin of the color histogram is 216 bins. 

3.2 Kernel function 

Kernel function is used to represent a target object. Different statistical 

distributions can be adopted for both target object or candidate model, such as 

Gaussian kernel, Flat kernel and Epanechnikov kernel. Let x be normalized pixel as 

location in the region defined as target model, then the Gaussian kernel, Flat kernel 

and Epanechnikov kernel [33] are defined as follows. 

1. Gaussian kernel 
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(3.4) 

2. Flat kernel 
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3. Epanechnikov kernel 
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(3.6) 

Fig. 3-2 (a) and (c) show the distribution of Gaussian and Epanechnikov kernel 

are similar. They have highest value are the center distribution. If we take a look at the 

ROI of target model in Fig. 3-3 (a), the pixels which are closer to the center of ROI is 
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containing more important information and the background pixels are mostly near at 

ROI’s boundary. Therefore, Gaussian and Epanechnikov kernel can disregard the 

boundary information and the accuracy will larger than flat kernel. 

  

 

(a) (b) (c) 

Fig. 3-2 (a) Gaussian kernel (b) flat kernel (c) Epanechnikov kernel 

   

(a) (b) (c) 

Fig. 3-3 (a) Target object (b) Kernel function (c) Target object and Kernel function 
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3.3 Particle filter algorithm 

Particle filter provides a robust tracking framework, as it models uncertainty. It 

can keep its options open and consider multiple state hypotheses simultaneously. 

Since less likely object states have a chance to temporarily remain in the tracking 

process, particle filters can deal with short-lived occlusions [25]. 

Define target model at location-y as m-bin histogram 𝑞𝑦 = {𝑞𝑦
(𝑢)
}𝑢=1…𝑚 which 

compute by equation below. 

 𝑞𝑦
(𝑢)

= 𝑓∑ 𝑘 (
‖𝑦−𝑥𝑖‖

𝑎
) 𝛿[ℎ(𝑥𝑖) − 𝑢]𝐼

𝑖=1  (3.7) 

with the normalized factor 

 𝑓 =
1

∑ 𝑘(
‖𝑦−𝑥𝑖‖

𝑎
)𝐼

𝑖=1

 (3.8) 

where I denotes the number of pixels in the ROI region, 𝛿 is the Kronecker delta 

function, and a=√𝑤2 + ℎ2 is used to normalize the size of the object region. The 

sample model 𝑝𝑦 = {𝑝𝑦
(𝑢)
}𝑢=1…𝑚 is represented as the same model as target model. 

The similarity value 𝜌 between target and sample model computes by Bhattacharyya 

distance d. Large 𝜌  means two models more similar, 𝜌  equal to 1 when two 

histograms are identical. 

 𝑝𝑦
(𝑢)

= 𝑓∑ 𝑘 (
‖𝑦−𝑥𝑖‖

𝑎
) 𝛿[ℎ(𝑥𝑖) − 𝑢]𝐼

𝑖=1  (3.9) 

 𝜌[𝑝, 𝑞] = ∑ √𝑝(𝑢)𝑞(𝑢)𝑚
𝑢=1  (3.10) 

 𝑑 = √1 − 𝜌[𝑝, 𝑞] (3.11) 

In particle filter algorithm, the target model can be represented by a state vector 

𝑠𝑡𝑎𝑟𝑔𝑒𝑡. 

 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 = {x, 𝑣𝑥 , y, 𝑣𝑦 , w, h} (3.12) 

where (x, y) specify the center position of ROI, (𝑣𝑥,  𝑣𝑦) object’s motion. w and h 
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denote the width and height of ROI, respectively. 

 The initial sample set 𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = {𝑠(𝑛)}𝑛=1…𝑁 compute by 

 𝑠(𝑛) = 𝐼𝑠𝑡𝑎𝑟𝑔𝑒𝑡 + 𝑟. 𝑣. (3.13) 

with 𝑁 is the number of samples, 𝐼 is an identity matrix, and 𝑟. 𝑣. is a multivariate 

Gaussian random variable. 

The sample set is propagated through a dynamic model as following equation. 

 𝑠𝑡 = 𝐴𝑠𝑡−1 + 𝑟. 𝑣.𝑡−1 (3.14) 

where 𝐴 defines the deterministic component of the model. By using every sample’s 

weight and its state vector, the target human’s position and size can be obtained from 

estimated vector using following equation. 

 𝐸[𝑆𝑡] = ∑ 𝜔𝑡
(𝑛)𝑁

𝑛=1 𝑠𝑡
(𝑛)

 (3.15) 

The Bhattacharyya distance uses to update each sample’s weight as following 

equation. 

 𝜔(𝑛) =
1

√2𝜋𝜎
𝑒
−

𝑑2

2𝜎2 =
1

√2𝜋𝜎
𝑒
−
(1−𝜌[𝑝

𝑠(𝑛)
,𝑞])

2𝜎2  (3.16) 

The resample step avoids the problem of degeneracy of the algorithm, in other 

words, avoiding the situation that most sample weights are close to zero. The 

opportune moment of resample step is determined by following equation. 

 𝑁𝑒𝑓𝑓 < 𝑁𝑡ℎ𝑠 (3.17) 

 𝑁𝑒𝑓𝑓 =
1

∑ (𝜔𝑡
(𝑛)

)2𝑁
𝑛=1

 (3.18) 

 𝑁𝑡ℎ𝑠 = 𝑟𝑎𝑡𝑒 ∗ 𝑁 (3.19) 

where 𝑟𝑎𝑡𝑒 ∈ (0,1), 𝑁𝑒𝑓𝑓 and 𝑁𝑡ℎ𝑠 are the effective number of samples and given 

of threshold sample, respectively. During resample step, samples with high weight 

may be chosen several times, leading to identical copies, while others with relatively 

low weights may not be chosen at all. 

Given a sample set 𝑆𝑡−1 and the target model q, for the first iteration, 𝑆𝑡−1 is 
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set to 𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙. The details particle filter algorithm for each iteration described as 

follow. 

1. Propagate each sample from the set 𝑆𝑡−1 by a linear stochastic differential 

equation: 

𝑠𝑡
(𝑛)

= 𝐴𝑠𝑡−1
(𝑛)

+ 𝑟. 𝑣.𝑡−1
(𝑛)

  

2. Observe the color distributions: 

(a) calculate the color distribution 

𝑝
𝑠𝑡
(𝑛)
(𝑢)

= 𝑓∑ 𝑘 (
‖𝑠𝑡

(𝑛)
−𝑥𝑖‖

𝑎
)𝛿[ℎ(𝑥𝑖) − 𝑢]𝐼

𝑖=1  for each sample in the set 𝑆𝑡 

(b) calculate the Bhattacharyya coefficient for each sample of the set 𝑆𝑡 

ρ [𝑝
𝑠𝑡
(𝑛) , q] = ∑ √𝑝

𝑠𝑡
(𝑛)

(𝑢)
𝑞(𝑢)𝑚

𝑢=1   

(c) weight each sample of the set 𝑆𝑡 

𝜔𝑡
(𝑛)

=
1

√2𝜋𝜎
𝑒
−
(1−𝜌[𝑝𝑠𝑡

(𝑛),𝑞])

2𝜎2   

3. Estimate the mean state of the set 𝑆𝑡 

𝐸[𝑆𝑡] = ∑ 𝜔𝑡
(𝑛)𝑁

𝑛=1 𝑠𝑡
(𝑛)

  

4. Resample the sample set 𝑆𝑡, if 𝑁𝑒𝑓𝑓 < 𝑁𝑡ℎ𝑠 

Select 𝑁 samples from the set 𝑆𝑡 with probability 𝜔𝑡
(𝑛)

: 

(a) calculate the normalized cumulative probabilities 𝑐𝑡
′ 

𝑐𝑡
(0) = 0  

𝑐𝑡
(𝑛)

= 𝑐𝑡
(𝑛−1)

+ 𝜔𝑡
(𝑛)

  

𝑐′𝑡
(𝑛)

=
𝑐𝑡
(𝑛)

𝑐𝑡
(𝑁)  

(b) generate a uniformly distributed random number 𝑟 ∈ [0,1] 

(c) use binary search to find the smallest 𝑗 for which 𝑐′𝑡
(𝑗)

≥ 𝑟 

(d) set 𝑠′𝑡
(𝑛)

= 𝑠𝑡
(𝑗)

 

Finally resample by 𝑆𝑡 = 𝑆𝑡
′ 
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Fig. 3-4 Weighted resampling particle filter 

Our proposed tracking method is showed in Fig. 3-4. The differences between 

original particle filter and ours are weighted resampling and occlusion handler. We 

will explain them later. 

3.4 Weighted resampling algorithm 

The original resample step in particle filter selects samples randomly. Samples 

with a high weight value may be chosen several times, leading to identical copies. But 

there are some samples with relatively low weights are selected in resample step. 

 

Fig. 3-5 Original resampling 

Fig.3-5 shows the samples points with high weights are in the ROI (green block), 

and samples with relatively low weights are in the red block. Although, two blocks 
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have nearly same similarity value, but the actual target object is in the green block. 

Consequently, it may track a different object as target object. In other word, it will 

decrease the accuracy of tracking. Thus, we proposed a weighted resampling 

algorithm to cover this problem. First, choose top sample set 𝑆𝑡
𝑡𝑜𝑝

 with 𝑁𝑡𝑜𝑝 

weights from set 𝑆𝑡. 

 𝑁𝑡𝑜𝑝 = 𝑡𝑜𝑝 ∗ 𝑁   (3.20) 

 𝑆𝑡
𝑡𝑜𝑝 = {𝑠𝑡𝑜𝑝

(𝑛)
}𝑛=1…𝑁𝑡𝑜𝑝 (3.21) 

where 𝑡𝑜𝑝 is a top rate which set to 0.2. The 𝑆𝑡
𝑡𝑜𝑝

 just selecting samples with top 

20% weights from set 𝑆𝑡. Reproduce 𝑁 samples in 𝑆𝑡 according to the weight of 

𝑠𝑡𝑜𝑝
(𝑛)

. This step will produce 𝑠𝑡𝑜𝑝
(𝑛)

 which has relative high more times in 𝑆𝑡, and 

others with relative low weight will be produced at least one time. Fig. 3-6 shows the 

weighted resampling result. Most of sample points lie in the green block or in the 

target object region. 

 

Fig. 3-6 Weighted resample 

3.5 Target update 

The GMM (Gaussian Mixture Model) applies to update the target model over 

time. Let 𝐾  Gaussian distributions are chosen to approximate any continuous 
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probability distribution. 

 𝑝(𝑥) = ∑ 𝑝(𝑘)𝑝(𝑥|𝑘) = ∑ 𝜋𝑘𝑁(𝑥|𝜇𝑘, 𝜎𝑘)
𝐾
𝑘=1

𝐾
𝑘=1  (3.22) 

where 𝑁(𝑥|𝜇𝑘, 𝜎𝑘)  is the Gaussian distribution with mean 𝜇𝑘  and standard 

deviation 𝜎𝑘. 𝜋𝑘 is the weight of Gaussian distribution and the sum of 𝜋𝑘 is equal 

to 1. 

The idea of GMM update algorithm is to update target model’s color histogram. 

Each bin 𝑞(𝑢) is modeled by 𝐾 = 3 Gaussian distributions. The mean 𝜇𝑘, standard 

deviation 𝜎𝑘, and weight 𝜋𝑘 will be initialized as 𝜇𝑘 = 𝑞
(𝑢), 𝜎𝑘 = 1, and 𝜋𝑘 =

1

𝐾
, 

where 𝑘 = 1~𝐾. 

1. Sort the {𝜋𝑘}𝑘=1~𝐾  in descending order and obtain the order {𝜋𝑎, 𝜋𝑏 , 𝜋𝑐} 

which 𝜋𝑎 ≥ 𝜋𝑏 ≥ 𝜋𝑐. 

2. Update bin’s value by following equation. 

 𝑞′
(𝑢)

= 𝐴𝜇𝑎 + 𝐵𝜇𝑏 + 𝐶𝜇𝑐  (3.23) 

where A = 0.6, B = 0.25, C = 0.15 and a, b, c is the descending order. 

3. If the difference previous and current frame’s 𝑞(𝑢) is smaller than a threshold. 

Find the first one Gaussian distribution which follows Eq. 3.24. 

 |𝑞(𝑢) − 𝜇𝑘| < 𝜎𝑘 ∗ 3 (3.24) 

where k follows the descending order { a, b, c }. 

If the first one Gaussian distribution followed by Eq. 3.24 has been found, it 

updates the corresponding 𝜇𝑘, 𝜎𝑘, 𝜋𝑘 by Eq. 3.25, Eq. 3.26, Eq. 3.27. 

 𝜇𝑘 = (1 − α) ∗ 𝜇𝑘 + 𝛼 ∗ 𝑞(𝑢) (3.25) 

 𝜎𝑘 = √(1 − α) ∗ 𝜎𝑘 ∗ 𝜎𝑘 + 𝛼 ∗ (𝑞(𝑢) − 𝜇𝑘)2  (3.26) 

 𝜋𝑘 = (1 − 𝛽) ∗ 𝜋𝑘 + 𝛽  (3.27) 

where 𝛼 = 0.05, 𝛽 = 0.01 and update others weights by 𝜋𝑗 = (1 − 𝛽) ∗ 𝜋𝑗 

where 𝑗 = 1~𝐾 𝑎𝑛𝑑 𝑗 ≠ 𝑘. 
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Step 1~3 will produce updated target model 𝑞′ = {𝑞′
(𝑢)
}
𝑢=1…𝑚

. 

3.6 Occlusion handler 

Normally, particle filter can handle some occlusion condition, but it depends on 

the range of samples which spread in the spatial space. If some samples spread in the 

location where human appeared after occlusion, then the human still can be tracked 

continuously. On the other hand, if the occlusion happened and spread range of 

samples is too small to cover the region where human appears, then resample will 

lead to track lost. 

The occlusion handler in our work is based on color similarity of target and 

candidate model. The details are described below. 

1. Create candidate model 𝑐 = {𝑐(𝑢)}
𝑢=1…𝑚

 from the ROI in current frame. 

2. Compute similarity value between target model 𝑞′ = {𝑞′
(𝑢)
}
𝑢=1…𝑚

and 

candidate model 𝑐 = {𝑐(𝑢)}
𝑢=1…𝑚

. 

3. If 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 < 𝑡ℎ𝑠𝑠𝑖𝑚 , then do not process the resample step. Assume 

candidate model is occluded with other object. 

4. Add counter 𝐶𝑜𝑢𝑛𝑡 = 𝐶𝑜𝑢𝑛𝑡 + 1. 

5. During tracking process, the step 1~4 are iterated until the tracking human has 

appeared (similarity value larger than thssim) or 𝐶𝑜𝑢𝑛𝑡 ≥ 10 which avoided the 

samples spread out of image. 

6. Then the resample step is restarted. 
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(a) frame 681 (b) frame 685 

  

(c) frame 690 (d) frame 695 

Fig. 3-7 Occlusion handler (a) frame 681 (b) frame 685 (c) frame 690 (d) frame 695 
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Fig. 3-8 Occlusion handler flow chart 
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4 Chapter 4 

Camera control 

 

RS-232 to RS-485

Image capture

PTZ control

 

Fig. 4-1 Active camera control through RS485 

The active camera is controlled by pelco P-protocol [34] through RS-232 to 

RS-485 converter. It has to control pan (horizontal direction), tilt (vertical direction) 

angle, and zoom’s step to achieve tracking purpose. 

The pelco P-protocol has 8 bytes data with message format as shown in Fig. 4-2. 

Byte1 and byte7 is start and stop byte, and always set to 0xA0 and 0xAF respectively. 

Byte2 is the receiver or camera address. In this thesis, we only use one camera, so 

byte2 always set to 0x00. Byte3, byte4, byte5, byte6 are used to control pan-tilt-zoom 

(PTZ) as shown in Fig. 4-3. The last byte is an XOR check sum byte. 

Byte1 Byte2 Byte3 Byte7

Start transmition 

value : A0

Address 

value: 00 ~ 1F

Data byte 1

Byte8

End transmission 

value: AF
Check sum

Byte4 Byte5 Byte6

Data byte 2 Data byte 3 Data byte 4

Fig. 4-2 Message format 
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 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

Data byte1 Fixed to 0 Camera On 
Auto Scan 

On 

Camera 

On/Off 
Iris Close Iris Open Focus Near Focus Far 

Data byte2 Fixed to 0 Zoom Wide Zoom Tele Tilt Down Tilt Up Pan Left Pan Right 
0 (for 

pan/tilt) 

Data byte3 Pan speed 00 (stop) to 3F (high speed) and 40 for Turbo 

Data byte4 Tilt speed 00 (stop) to 3F (high speed) 

Fig. 4-3 Data byte 1 to 4 format 

 In this thesis, we divide the image into 9 regions associated with pan-tilt 

directions, and keep moving object in the center of FOV. Every region has specific 

direction as shown in Fig. 4-4. If the target is located on stop-region, then camera is 

set to stop. Meanwhile, the camera speed on other regions is determined by PID 

controller. The zoom-in and zoom-out will be activated if the target’s size becomes 

smaller or larger than user’s defined size. The details of camera control are showed in 

Fig. 4-5. 

S T O P

 

Fig. 4-4 Control direction for each regions 
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Target size < 
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Stop command

PID control

Pan / Tilt command

Update upper bound 
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target size
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Yes

Yes

Yes
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No

No

 

Fig. 4-5 Camera control flow chart 

4.1 PID controller 

A proportional-integral-derivative controller (PID controller) is a generic control 

loop feedback mechanism (controller) widely used in industrial control systems [35]. 

The diagram of PID is showed in Fig. 4-6. 
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Fig. 4-6 The PID controller 

In the PID control system, the monitored Plant/Process is hoped to keep one 

ideal state. The measured value of Plant/Process is 𝑦(𝑡)  which is sent to the 

comparer to compare with setting value 𝑢(𝑡). If the Plant/Process has affected by 

disturbance, the measured value is not equal to setting value and the comparer will 

produce error signal 𝑒(𝑡). The error signal 𝑒(𝑡) is sent to controller. The controller 

produces output signal 𝐶𝑜𝑢𝑡 to correct Plant/Process and make it returns to ideal state. 

The output signal 𝐶𝑜𝑢𝑡 is defined by following equation. 

 𝐶𝑜𝑢𝑡 = 𝐾𝑝𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝑡) 𝑑𝑡 + 𝐾𝐷
𝑑𝑒(𝑡)

𝑑𝑡
 (4.1) 

where 𝐾𝑝 is proportional constant, 𝐾𝐼  is integral constant, and 𝐾𝐷  is derivative 

constant. 

The controller consists proportional controller (P controller), integral controller 

(I controller), and derivative controller (D controller). 

1. P controller: is error signal 𝑒(𝑡) multiplied by 𝐾𝑝. The Plant/Process which has 

been disturbed can be corrected by this controller, but there are some small 

eternal error cannot solve by this controller. 

2. I controller: is the integral of error signal 𝑒(𝑡) with time. In other words, it 

multiplies error with its existed time. Also, it can correct the small eternal error 

which P controller cannot overcome. This controller can use the accumulated 

integrals with time to make disturbed Plant/Process recover to setting value 𝑢(𝑡). 
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3. D controller: is the differential of error signal 𝑒(𝑡). Due to this operation, the 

system has the perspective and can predict the Plant/Process which has large 

variation. 

The corresponding variables of PID controller in our work are defined as 

follows: 

Setting value 𝑢(𝑡): the center position of image. 

Error signal 𝑒(𝑡): the difference of center position and target position. 

Measured value 𝑦(𝑡): the target position which estimated by tracking system. 

Output signal 𝐶𝑜𝑢𝑡: the output is transferred to pan / tilt speed. 

We use two independent PID controllers to control horizontal and vertical 

position difference, and estimate the speed of pan and tilt. The 𝐶𝑜𝑢𝑡 is converted to 

pan speed and tilt speed by Eq. 4.2, Eq. 4.3. 

 𝑆𝑝𝑒𝑒𝑑𝑝𝑎𝑛 = 𝐶𝑜𝑢𝑡 ∗ 0.1 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑝𝑎𝑛 (4.2) 

 𝑆𝑝𝑒𝑒𝑑𝑡𝑖𝑙𝑡 = 𝐶𝑜𝑢𝑡 ∗ 0.1 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑡𝑖𝑙𝑡 (4.3) 

 𝑜𝑓𝑓𝑠𝑒𝑡𝑝𝑎𝑛 = {
𝑜𝑓𝑓𝑠𝑒𝑡𝑝𝑎𝑛, 𝐶𝑜𝑢𝑡 ≥ 0

−𝑜𝑓𝑓𝑠𝑒𝑡𝑝𝑎𝑛, 𝐶𝑜𝑢𝑡 < 0
 (4.4) 

 𝑜𝑓𝑓𝑠𝑒𝑡𝑡𝑖𝑙𝑡 = {
𝑜𝑓𝑓𝑠𝑒𝑡𝑡𝑖𝑙𝑡, 𝐶𝑜𝑢𝑡 ≥ 0

−𝑜𝑓𝑓𝑠𝑒𝑡𝑡𝑖𝑙𝑡, 𝐶𝑜𝑢𝑡 < 0
  (4.5) 

where 𝑜𝑓𝑓𝑠𝑒𝑡𝑝𝑎𝑛 and 𝑜𝑓𝑓𝑠𝑒𝑡𝑡𝑖𝑙𝑡 are defined by user. These values are related to the 

pan-tilt speed provided by camera’s specifications (0 to 64). The PID controller in Eq. 

4.2 and Eq. 4.3 produced limited speed value in a suitable range, because if the speed 

is set too large, then the camera may drive over the object. The consequence is 

tracking lost may happen. 
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4.2 Zoom in/out control 

The zooming idea is using the ROI’s size to decide when to do zoom-in or 

zoom-out. Let the initial width and height of target human are 𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and ℎ𝑖𝑛𝑖𝑡𝑖𝑎𝑙, 

respectively. 

 {
𝑢𝑝𝑝𝑒𝑟𝑤 = 𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∗ 𝑟𝑎𝑡𝑒𝑏𝑖𝑔
𝑢𝑝𝑝𝑒𝑟ℎ = ℎ𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∗ 𝑟𝑎𝑡𝑒𝑏𝑖𝑔

    (4.6) 

 {
𝑙𝑜𝑤𝑒𝑟𝑤 = 𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∗ 𝑟𝑎𝑡𝑒𝑠𝑚𝑎𝑙𝑙

𝑙𝑜𝑤𝑒𝑟ℎ = ℎ𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∗ 𝑟𝑎𝑡𝑒𝑠𝑚𝑎𝑙𝑙
    (4.7) 

where 𝑟𝑎𝑡𝑒𝑏𝑖𝑔 and 𝑟𝑎𝑡𝑒𝑠𝑚𝑎𝑙𝑙 set to 1.1 and 0.9. 

By zoom-in/out, the size of target model will updated by aspect 𝑟𝑎𝑡𝑖𝑜𝑤 ℎ⁄ , and its 

new width and height are defined as follow. 

 𝑟𝑎𝑡𝑖𝑜𝑤 ℎ⁄ =
𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙

ℎ𝑖𝑛𝑖𝑡𝑖𝑎𝑙
  (4.8) 

1. Zoom-in: 

 w𝑛𝑒𝑤 = {
𝑙𝑜𝑤𝑒𝑟𝑤 ∗ 𝑟𝑎𝑡𝑒𝑏𝑖𝑔                      , 𝑖𝑓 w < 𝑙𝑜𝑤𝑒𝑟𝑤
𝑙𝑜𝑤𝑒𝑟ℎ ∗ 𝑟𝑎𝑡𝑒𝑏𝑖𝑔 ∗ 𝑟𝑎𝑡𝑖𝑜𝑤 ℎ⁄  , 𝑖𝑓 h < 𝑙𝑜𝑤𝑒𝑟ℎ

 (4.9) 

 h𝑛𝑒𝑤 = {
𝑙𝑜𝑤𝑒𝑟𝑤 ∗ 𝑟𝑎𝑡𝑒𝑏𝑖𝑔 ∗

1

𝑟𝑎𝑡𝑖𝑜𝑤 ℎ⁄
   , 𝑖𝑓 w < 𝑙𝑜𝑤𝑒𝑟𝑤

𝑙𝑜𝑤𝑒𝑟ℎ ∗ 𝑟𝑎𝑡𝑒𝑏𝑖𝑔                    , 𝑖𝑓 h < 𝑙𝑜𝑤𝑒𝑟ℎ
 (4.10) 

2. Zoom-out: 

 w𝑛𝑒𝑤 = {
𝑢𝑝𝑝𝑒𝑟𝑤 ∗ 𝑟𝑎𝑡𝑒𝑠𝑚𝑎𝑙𝑙                       , 𝑖𝑓 w > 𝑢𝑝𝑝𝑒𝑟𝑤
𝑢𝑝𝑝𝑒𝑟ℎ ∗ 𝑟𝑎𝑡𝑒𝑠𝑚𝑎𝑙𝑙 ∗ 𝑟𝑎𝑡𝑖𝑜𝑤 ℎ⁄  , 𝑖𝑓 h > 𝑢𝑝𝑝𝑒𝑟ℎ

 (4.11) 

  h𝑛𝑒𝑤 = {
𝑢𝑝𝑝𝑒𝑟𝑤 ∗ 𝑟𝑎𝑡𝑒𝑠𝑚𝑎𝑙𝑙 ∗

1

𝑟𝑎𝑡𝑖𝑜𝑤 ℎ⁄
   , 𝑖𝑓 w > 𝑢𝑝𝑝𝑒𝑟𝑤

𝑢𝑝𝑝𝑒𝑟ℎ ∗ 𝑟𝑎𝑡𝑒𝑠𝑚𝑎𝑙𝑙                    , 𝑖𝑓 h > 𝑢𝑝𝑝𝑒𝑟ℎ
 (4.12) 

 After zoom-in or zoom-out, the w𝑛𝑒𝑤 and  h𝑛𝑒𝑤 are used to update upper and 

lower size in Eq. 4.6 and Eq. 4.7. 
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5 Chapter 5 

Experimental results 

 

This system was implemented on PC platform with Intel®  Core™ i5 CPU 650 @ 

3.20GHz, 4GB RAM, and developed in Borland C++ Builder 6.0 on Windows 7. The 

system has been tested under several environments in order to verify its performance 

and stability. Both video files (AVI uncompressed format) and image sequences from 

active camera are tested. 

5.1 Track on video file 

Three videos have been used to verify the tracking system, with parameter 

particle filter as follows. 

Number of samples 𝑁 = 30 

Number of bins in histogram 𝑚 = 6 ∗ 6 ∗ 6 = 216  

State covariance (𝜎𝑥, 𝜎𝑣𝑥 , 𝜎𝑦, 𝜎𝑣𝑦 , 𝜎𝑤, 𝜎ℎ) = (2,0.5,2,0.5,0.4,0.8) 

1. Video 1 is used to verify the occlusion handler in our system as shown in Fig. 

5-1 and Fig. 5-2. Figure 5-1 shows the tracking result without occlusion handler. 

The full occlusion condition happens in frame 685. If the particle filter resamples 

during the full occlusion condition, it may resample on uncorrect positions as 

shown in frame 689 and tracking will lost in frame 694 and 698. Meanwhile, 

when the full occlusion happens in the particle filter with occlusion handle, the 

resample step will not be done immediately. So, the sample set can keep 

widespread range to track after full occlusion. 
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Frame 558 Frame 673 

  

Frame 685 Frame 689 

  

Frame 694 Frame 698 

Fig. 5-1 Tracking without occlusion handler 
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Frame 558 Frame 673 

  

Frame 685 Frame 689 

  

Frame 694 Frame 698 

Fig. 5-2 Tracking with occlusion handler 
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2. Video 2 is used to verify the tracking feature. Figure 5-3 shows human wears 

black jacket walking near a black chair. In this case, the target human has similar 

color feature with the black chair, but the proposed system still can tracks the 

target human. 

  

Frame 193 Frame 258 

  

Frame 292 Frame 351 

  

Frame 372 Frame 398 

Fig. 5-3 Object has similar color as target human 
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3. Video 3 is used to verify the tracking performance in complex situation. Figure 

5-4 shows the target human is paritial occluded with a chair. The target human 

does sitting down and stand-up activity, as shown in Fig. 5-4 (b). Moreover, the 

target human is partial occluded with other human as shown in Fig. 5-4 (c). 

   

(a) 

   

(b) 

   

(c) 

Fig. 5-4 (a) frame 1436, 1547 and 1605 (b) frame 2152, 2214 and 2277  

(c) frame 2757, 2818 and 2838  
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5.2 Track on active camera 

The active camera sets-up in our laboratory. The complexity of the environment 

is enough to verify the system while detecting and tracking moving human. The 

parameters of particle filter and PTZ are set as follows: 

 

Number of samples              

𝑁 = 30 

Number of bins in histogram       

𝑚 =      6 ∗ 6 ∗ 6 = 216  

State covariance 

(𝜎𝑥, 𝜎𝑣𝑥 , 𝜎𝑦, 𝜎𝑣𝑦 , 𝜎𝑤, 𝜎ℎ) =

(10,1,10,1,1,2) 

𝑜𝑓𝑓𝑠𝑒𝑡𝑝𝑎𝑛 = 12  

𝑜𝑓𝑓𝑠𝑒𝑡𝑡𝑖𝑙𝑡 = 6  

Proportional constant 𝐾𝑝 = 0.9 

Integral constant 𝐾𝐼 = 0.1 

Derivative constant  𝐾𝐷 = 0.15 

𝑟𝑎𝑡𝑒𝑏𝑖𝑔 = 1.1  

𝑟𝑎𝑡𝑒𝑠𝑚𝑎𝑙𝑙 = 0.9  
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1. Tracking result only by controlling pan and tilt. The experimental result shows 

the target human is mostly located on camera’s FOV, no matter how he walks. 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(h) (i) (j) 

   

(k) (l) (m) 

Fig. 5-5 Update pan and tilt command to track 
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2. Tracking to test the zoom-in/out. In this case, the target human is walking away 

from camera or approaching to the camera. 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Fig. 5-6 The effects of zoom in / out 

Figure 5-6 (a) shows the target human has been detected and the 𝑍𝑜𝑜𝑚𝑙𝑎𝑦𝑒𝑟 is 

initialized to 0. If there is a zoom-in happened, 𝑍𝑜𝑜𝑚𝑙𝑎𝑦𝑒𝑟 is added by 1. On the 

other hand, 𝑍𝑜𝑜𝑚𝑙𝑎𝑦𝑒𝑟 is subtracted by 1 when zoom-out happened. The details of 

𝑍𝑜𝑜𝑚𝑙𝑎𝑦𝑒𝑟 is showed in Table 5-1. 

 

Table 5-1 Zoom layer varies in Fig. 5-6 

 (a) (b) (c) (d) (e) (f) (g) (h) (i) 

 𝒐𝒐       0 0 1 2 1 2 3 2 1 
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3. Tracking by controlling pan, tilt, and zoom, with target human freely walking in 

the environment. 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

   

(j) (k) (l) 

Fig. 5-7 Combination of pan, tilt and zoom in / out 

 

Table 5-2 Zoom layer varies in Fig. 5-7 

 (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) 

 𝒐𝒐       0 0 1 1 1 0 0 1 2 1 0 0 
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4. Tracking a target human which more than one person walking in the same 

environment. 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

   

(j) (k) (l) 

Fig. 5-8 Human tracking in multiple objects 
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5. Tracking a target human which more than one person walking in the same 

environment. 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

Fig. 5-9 Human tracking in multiple objects 
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6 Chapter 6 

Conclusions and Future work 

 

6.1 Conclusions 

The experiment results show that the proposed system can track moving human 

by particle filter algorithm on active camera. Also, the tracking system is able to track 

the target human when more than one person walking in the same environment. 

Moreover, the zoom-in/out adjusts the resolution image of tracking human. 

There are several contributions in this research: 

1. Our system can exactly distinguish human and nonhuman. 

2. The weighted resampling can help particle filter to preserve the samples with 

high weights. 

3. Occlusion handler can solve the temporal full occlusion condition. 

4. It can track target human smoothly by using the PID controller to determine the 

motion of camera. 
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6.2 Future works 

In our system, the moving human can be detected and tracked smoothly and 

continuously. But there are some situations which will result in tracking lost. For 

example, the background has significant light changes that will lead to moving human 

changing its character. 

In order to use particle filter with active camera in real-time, we reduces the bins 

of color histogram and the number of samples, it sometimes affects the accuracy of 

tracking. It can be solved by using some optimized methods in samples. For example, 

mean-shift can be used to optimize each sample in particle filter. 

The active camera is driven by pelco P protocol and uses PID controller to pan or 

tilt. The results of driving active camera are successful. But it doesn’t use the result of 

𝑣𝑥 and 𝑣𝑦 in estimated target state vector 𝑠𝑡𝑎𝑟𝑔𝑒𝑡. The 𝑣𝑥 and 𝑣𝑦 can be involved 

in the speed of pan and tilt to increase the accuracy of camera control. 
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