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摘 要 

 

 由於攝影器材（例如數位相機和手機）的發展與普及，越來越多的數位影像

出現在人們的日常生活中。同時，隨著網際網路與社群網路逐漸發展成熟，人們

可以很輕易的與朋友分享彼此的影像。但是並不是所有的影像都是讓人滿意的。

攝影器材的技術限制以及不適當的攝影環境會使得有些影像曝光不夠而有些影

像則是過度曝光。為了能夠解決這個問題，許多傳統的影像強化技術被提出來。

但是這些傳統技術經常只適用於一些特定的影像抑或這些方法是非自動化的。因

此，本論文提供了一個基於影像融合技術的對比強化演算法。首先，數張亮度不

同的影像會被產生出來。接著，輸入影像的像素會依據像素的亮度來做分群。最

後，我們提出的 Classified Image Fusion (CIF)方法會將這些虛擬影像作結合

來得到一張曝光良好的結合後的影像。 
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ABSTRACT 

 

 There are more and more digital images in our daily life thanks to the popularity 

of photograph capturing equipments, such as digital cameras and mobile phones. In 

addition, as the Internet and social networks have been well developed, it’s easier for 

people to share images with their friends. However, not all people are satisfied with 

the photos they taken due to the limitations of the image capturing devices. The 

improper luminance condition may cause under-exposed and over-exposed images. 

To solve this problem, plenty of researches are proposed for contrast enhancement. 

However, they often cannot afford to produce pleasing images for a broad variety of 



 

iii 

 

low contrast images or cannot be automatically applied on all images. Hence, in this 

thesis, we propose a classified image fusion (CIF) method for image contrast 

enhancement. First several virtual images having different intensities are generated. 

Second, the input image pixels are classified to several classes according to their 

luminance values. Finally, CIF was proposed to combine these exposure images to 

produce a fused image in which every region is well-exposed. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

There are more and more digital images in our daily life thanks to the popularity 

of photograph capturing equipments, such as digital cameras and mobile phones. In 

addition, as the Internet and social networks have been widely developed, it’s easier 

for people to share images with their friends. However, not all people are satisfied 

with the photos they taken due to the limitations of image capturing devices. Typically, 

the dynamic ranges of digital cameras or mobile phones are much smaller than that 

human eyes can perceive. This phenomenon becomes more apparent in high dynamic 

regions such as skies or shadows. The common shortages found in real-life images 

include:  

(1)  A normal image with suitable exposure but some under-exposed and/or 

some over-exposed regions;  

(2)  An over-exposed image;  

(3)  An under-exposed image.  
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1.2 Related Work 

In order to obtain an image with proper exposedness and contrast, an image 

contrast enhancement technique is needed. There are plenty of researches proposed 

for image contrast enhancement. These methods can be classified into four major 

categories:  

(1) Histogram-based methods [1-7];  

(2) Transform-based methods [1], [8], [9];  

(3) Exposure-based methods [10], [11];   

(4) Image fusion based methods [12-14]. 

The most common and well-known histogram-based method is histogram 

equalization (HE) [1]. HE adjusts the input image histogram by using a non-linear 

mapping function to yield a histogram which approximates uniform distribution. It 

will spread the gray levels with high occurring probabilities and compress the gray 

levels with low occurring probabilities to obtain an image having better contrast. 

However, HE was proved to produce some unwanted artifacts, including 

(1) False contour;  

(2) Amplified noise;  

(3) Washed-out appearance.  

Various advanced HE based approaches have been developed [2-7]. Pizer et al. 
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[2] proposed a local HE method. First, the input image is divided into several 

non-overlapping blocks. Then, HE is applied on each block. The HE enhanced blocks 

are finally fused by using bilinear interpolation to reduce the blocking effect. Kim [3] 

proposed a subimage independent HE method named brightness preserving 

bi-histogram equalization (BBHE). In BBHE, the input gray image is first 

decomposed into two subimages based on its mean luminance, μ. Then, HE is applied 

to the histograms corresponding to these two subimages independently. The subimage 

with luminance lower than the mean value is mapped into the range [lmin, μ], where 

lmin denotes the minimum gray level. The subimage with luminance larger than the 

mean value is mapped into the range [μ, lmax], where lmax denotes the maximum gray 

level. Then, the composition of these two equalized subimages is the output image. 

Wang et al. [4] proposed another bi-histogram HE method in which the input image is 

decomposed into two subimages by using the threshold value which yields maximum 

entropy of the processed image. Then, HE is applied to two subimages independently 

and the composition of HE enhanced subimages will form the output image. Chen et 

al. [5] extended the former two methods and proposed minimum mean brightness 

error bi-histogram equalization (MMBEBHE). In MMBEBHE, the threshold with 

minimum absolute mean brightness error (AMBE) is found to divide the input image 

into two subimages. Then, HE is applied independently to each subimage and the 
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composition of the HE result is the output image. Wang et al. [6] used histogram 

specification to yield the target histogram which maximizes the entropy under the 

constraint that the mean brightness is fixed. Chen et al. [7] proposed a method based 

on BBHE. They recursively divide each subimage into two new subimages and finally 

perform HE on each portions independently.  

Transform-based methods [1], [8], [9] were widely used in electrical devices and 

computer software. These methods use a function to map original image luminance 

values to another ones. To get a pleasing image, some user-specified parameters are 

needed. That is, these methods require some user interactions and thus are not fully 

automatic. Transform-based methods can well handle either under-exposed images or 

over-exposed images if appropriate parameters are selected. However, they cannot 

produce pleasing images when the input images have both under-exposed regions and 

over-exposed regions. Moroney [8] proposed a local color correction operation which 

uses non-linear masking and a pixel-by-pixel gamma correction to enhance the image 

quality. Schettini et al. [9] presented a local and image-dependent exponential 

correction method which uses bilateral filter instead of Gaussian filter to avoid halo 

effects. However, the global contrast is reduced as well. 

Exposure-based methods [10], [11] adjust the exposedness of images by using a 

function between the light quantity and the image gray values. Battiato et al. [10] 
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proposed a method which first identifies the information carrying regions and then 

adjusts the exposure levels using a “camera response”-like function. In their algorithm, 

contrast and focus are used as the measures to identify the information carrying 

regions. In addition, skin pixel identification method is applied to find the skin 

regions. Then, the mean gray values of those pixels in informative regions are used as 

reference values to adjust the exposure levels. Since the technique is designed 

specifically to regions of interest, it can produce proper results in those interested 

regions. However, other regions may yield poorer illumination. Safonov et al. [11] 

provided an exposure correction approach based on contrast stretching and 

alpha-blending which considers both brightness and the estimated reflectance of the 

input image. The main problem of this method is that it may exhibit unsatisfied 

illumination in some regions. 

Image fusion based methods [12-14], [22], [26] tried to extract and merge 

relevant information from several images taken in the same scene in order to form a 

fused image which contains more information and has better visual quality/contrast 

than each input image. Hsieh et al. [12] used a linear function to fuse the input image 

and a HE enhanced image to produce a fused image. Pei et al. [13] performed HE and 

sharpening to the input image and fused together these two enhanced images in the 

wavelet transform domain. Mertens et al. [22] used contrast, saturation and 
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well-exposedness as image quality measures to evaluate the contribution of each pixel 

to the fused image. First, for each input image, a corresponding weight map is 

computed. Then, the Laplacian pyramid of the input image and Gaussian pyramid of 

the weight map are built respectively. The Laplacian pyramids of the input images are 

blended with the corresponding Gaussian pyramid as the weights. Finally, the output 

image is produced from the blended Laplacian pyramid. Malik et al. [26] proposed an 

image fusion method performed in the wavelet transform domain. The output image is 

produced by taken the inverse wavelet transform. 

The aforementioned contrast enhancement methods [1-14], [22], [26] often 

cannot produce pleasing images for a broad variety of low contrast images or cannot 

be automatically applied on all images. That is, some user-specified parameters are 

needed to obtain satisfied pictures. Therefore, we tried to design an image contrast 

enhancement algorithm which can automatically enhance the contrast without taking 

any user-specified parameters for any low contrast images. 

In this thesis, we will propose a classified image fusion method for image 

contrast enhancement. First, several virtual images having different intensities are 

generated. In addition, the input image pixels are classified to several classes 

according to their luminance values. Finally, a classified image fusion method, 

performed in DWT domain, will be used to combine relevant information in the 
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virtual images and produce a fused image which is well-exposed in every region. 

 

1.3 Organization of the Thesis 

The thesis is organized as follows. In Chapter 1, motivation and some related 

work are given. In Chapter 2, the proposed classified image fusion method, which can 

combine the generated virtual images in an attempt to obtain an image which is 

well-exposed in every region. In Chapter 3, experimental results will be given to show 

the effectiveness of the proposed method. Finally, a brief conclusion and future work 

will be depicted in Chapter 4. 
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CHAPTER 2 

PROPOSED CLASIFIED IMAGE FUSION METHOD 

FOR IMAGE CONTRAST ENHANCEMENT 

  

In this chapter, we will describe the proposed classified image fusion (CIF) 

method for image contrast enhancement. Image fusion is the process that aims to 

extract relevant information from multiple images taken in the same scene and obtain 

a more informative picture with better contrast and image quality. Image fusion has 

numerous applications such as remote sensing [15-17], medical imaging [17], high 

dynamic range imaging (HDRI) [17], [18], multi-focus imaging [17], [19], etc. In 

remote sensing and medical imaging, several images captured from various sensors 

are given. Then, these images are fused to produce a high quality image. In HDRI, 

multiple images taken in the same scene with different exposure time are generated. 

The image pixels having distinct luminance values are then fused to yield an image 

having wide dynamic range than each individual one. In multi-focus imaging, several 

images with each having some objects in focus will be merged to obtain an image in 

which all relevant objects are in focus. For these applications, several images with 

varying luminance, exposure, or focus, should be obtained in advance. However, it is 

not a simple task for digital cameras or mobile phones to capture several images of 
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the same scene with variant information. Therefore, an algorithm will be proposed to 

produce several virtual images for image fusion.  

 Since our proposed CIF method works on gray images, a color value to gray 

value conversion is first applied on each input color image. The luminance image Y(x, 

y) is converted from its original red, blue, green components using the following 

function: 

).,(114.0),(587.0),(299.0),( yxByxGyxRyxY     (1) 

where R(x, y), G(x, y), and B(x, y) denote red, green and blue color values of the pixel 

located at (x, y). Then, several virtual images having different intensities are generated. 

In addition, a multilevel thresholding algorithm is employed to classify the input 

image pixels to different classes depending on their luminance values. By using the 

classification result, several relevant virtual images are selected among the generated 

virtual images. After the relevant virtual images are selected, the proposed classified 

image fusion algorithm, performed in discrete wavelet transform (DWT) domain, will 

be designed to obtain a fused image with proper exposure in every region. The flow 

chart of the proposed image contrast enhancement method is shown in Fig. 1. 
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2.1 Generation of Virtual Exposure Images 

 In image fusion, several images are combined to produce an output image having 

better quality. For image enhancement, only one input image is given to produce an 

output image with higher contrast. Therefore, it is necessary to design an algorithm to 

generate several virtual images such that image fusion technique can be applied for 

image contrast enhancement. In the proposed CIF method, the concept of exposure, 

which refers to how much light will reach the image sensors on image capturing 

devices, will be exploited to generate several virtual images having distinct luminance. 

For digital cameras, shutter speed and F-stop are used to determine the exposure when 

taking photos. Shutter speed controls how long the shutter is open, which corresponds 

to the length of time the light can reach the image sensors. The larger the shutter 

speed, the more the amount of light reaching the image sensors. Another factor 

controlling the exposure of a photo is F-stop, which controls the size of the aperture. 

The aperture is the hole the light of the scene passing through in the digital cameras. 

Fig. 1 Flow chart of the proposed CIF system 



 

11 
 

Modern cameras use a standard F-stop scale: f/1, f/1.4, f/2, f/2.8, f/4, f/5.6, f/8, f/11, 

f/16, f/22, etc. The scale is an approximately geometric sequence that corresponds to 

the sequence of the powers of the square of 2. In this sequence, each stop represents a 

halving of the light intensity from the previous stop. For example, f/1 allows twice as 

much light to fall on the image sensor than f/1.4, and four times as much light than f/2. 

In this study, we exploit the F-stop concept to generate virtual images such that their 

pixel luminance values approximate a geometric sequence. In this thesis, the 

luminance of the k-th virtual exposure image, denoted by Yk, is defined by the 

following equation: 











otherwise                 ,255

2552)( if    ,2),(),(
44

kk

x,yYyxYyxYk     (2) 

where Y(x, y) is the gray level of input image pixel located at (x, y). 

From Eq. (2), N brighter images )1 ..., ,1 ,(with  -NNk  and N darker 

images ) ..., ,2 ,1(with Nk   compared to the input image Y are generated. Fig. 2 and 

Fig. 3 show some generated virtual exposure images. From Fig. 2, we can see that in 

those brighter virtual images, the detail of the central building becomes more apparent 

and the contrast is much sharper than that in the original image (with k = 0). However, 

the contrast in the sky region becomes less sharp in these brighter images. Fig. 3 

shows a similar result. That is, the detail of the dark foreground objects becomes 

clearer in those brighter virtual images. 



 

12 
 

 

 

 
           (a)                     (b)                     (c) 

 
           (d)                     (e)                     (f) 

 
           (g)                     (h)                     (i) 

 
           (j)                     (k)                     (l) 

 
           (m)                    (n)                     (o) 

Fig. 2 Generated virtual exposure images (a) k = -7 (b) k = -6 (c) k = -5 (d) k = -4 (e) k 

= -3 (f) k = -2 (g) k = -1 (h) k = 0 (original image) (i) k = 1 (j) k = 2 (k) k = 3 (l) k = 4 

(m) k = 5 (n) k = 6 (o) k = 7 
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           (a)                     (b)                     (c) 

 
           (d)                     (e)                     (f) 

 
           (g)                     (h)                     (i) 

 
           (j)                     (k)                     (l) 

 
           (m)                    (n)                     (o) 

Fig. 3 Generated virtual exposure images (a) k = -7 (b) k = -6 (c) k = -5 (d) k = -4 (e) k 

= -3 (f) k = -2 (g) k = -1 (h) k = 0 (original image) (i) k = 1 (j) k = 2 (k) k = 3 (l) k = 4 

(m) k = 5 (n) k = 6 (o) k = 7 
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2.2 Image Pixel Classification 

In the proposed CIF method, the input image pixels are classified to m classes. 

Pixels in different classes will be blended with different image fusion rules. A 

multilevel thresholding algorithm designed by Liao et al. [20] is utilized to find m-1 

thresholds, denoted by Thd1, Thd2, …, Thdm-1 (Thd1 < Thd2 < … < Thdm-1), to divide 

the input image pixels into m classes. Let Ω1, Ω2, …, Ωm denote these m classes, 

according to the m-1 thresholds, these classes can be defined as follows: 

 .),(|),( 11 ThdyxYyx          (3) 

  .1  2for      ),(    |),( 1 m-...,,iThdyxYThdyx iii      (4) 

 .),(|),( 1 mm ThdyxYyx       (5) 

In order to determine the proper cluster number m, a metric called Dunn index (DI) 

[20] will be used to evaluate the classification results. DI was defined to get a 

clustering result having small within-class variance and a large between-class 

variance. The definition of DI for n classes is given by: 

kji
cc

DI
k

nk

ji
ijnji

n ,,,
max

),(min

1

,,1










     (6) 

where ),( ji cc  denotes the distance between two cluster centers of Ωi and Ωj 

(between-class variance) and Δk is defined as follows: 

).,(max
,

qpd
kqp

k


        (7) 

where ),( qpd  is the distance between the points p and q in class Ωk (within-class 
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variance). The higher DI indicates the better clustering result. Based on Eq. (6), the 

cluster number m is determined by: 

.maxarg
maxmin

n
mnm

DIm


        (8) 

where mmin and mmax are the maximum and minimum cluster number to be examined. 

To save computation time, we bound the cluster number in the range from 3 to 6. That 

is, set mmin = 3 and mmax = 6. This setting is based on the observation that typically an 

image has at least three classes: dark pixels, bright pixels, and pixels with luminance 

values in-between. Fig. 4 shows three input images and the corresponding image pixel 

classification results. The input image shown in Fig. 4(a) is classified to three classes 

as shown in Fig. 4(b): the sky region (the bright pixels), the background buildings 

(well-exposed pixels), and the front-central building (dark pixels). Fig. 4(c) shows an 

input image which is classified to four classes as shown in Fig. 4(d): the left side of 

the sky region, the right side of the sky region, the background mountain, and the dark 

houses. In Fig. 4(c), since the right side of the sky is visibly darker than the left side 

of the sky, they are separated to two classes. Similarly, the right side of the sky is 

noticeable brighter than the background mountain and the roof of the houses, they are 

also separated. Finally, the dark trees, parts of the houses and the wall are classified to 

the dark pixels. Fig. 4(f) shows the classification result of Fig. 4(e) which is classified 

into five classes. 
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Fig. 4 Input images and classification results. (a) Original gray image 

(b) Classification result with m = 3 (c) Original gray image (d) 

Classification result with m = 4 (e) Original gray image (f) 

Classification result with m = 5 
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2.3 Selection of Relevant Virtual Exposure Images 

The previously generated 2N+1 images are not all used in the image fusion 

process. Among these 2N+1 virtual exposure images, only those images having some 

relevant informative regions will be chosen for image fusion. That is, those images 

which are completely under-exposed or completely over-exposed will not be used in 

the image fusion process in an attempt to yield a high informative fused image. To 

this end, an anchor image among these 2N+1 virtual exposure images will be selected 

first. For virtual image Yk, the trimmed mean luminance, denoted by k , of the image 

pixels belonging to clusters Ω2, Ω3, …, Ωm-1 is calculated: 

.

Ω

),(

1

2

Ω,...,Ω),( 12








 
m

i

i

yx

k

k
m

yxY

       (9) 

That is, the pixels in the darkest class C1 and the brightest class Cm are not considered. 

The image having a trimmed mean luminance k closest to gray level 128 (the middle 

value in the luminance range [0, 255]) will be selected as the anchor image: 

.|128|minarg
,...,




k
NNk

anc             (10) 

The anchor image and its preceding M (M   N) brighter images and succeeding M 

darker images, denoted by Yanc-M, …, Yanc, …, Yanc+M,, will yield the final set of virtual 

exposure images for image fusion. Fig. 5 and Fig. 6 show two examples of selected 

relevant virtual exposure images. Comparing these two figures with Fig. 2 and Fig. 3, 
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we can see that those dark virtual images which are less informative are excluded for 

image fusion process. 

 

 

 
           (a)                     (b)                     (c) 

 
           (d)                     (e)                     (f) 

 
           (g)                     (h)                     (i) 

 
           (j)                     (k)                     (l) 

 
           (m)                    (n)                     (o) 

Fig. 5 Selected relevant virtual exposure images (a) k = -9 (b) k = -8 (c) k = -7 (d) k = 

-6 (e) k = -5 (f) k = -4 (g) k = -3 (h) k = -2 (anchor image) (i) k = -1 (j) k = 0 (k) k = 1 

(l) k = 2 (m) k = 3 (n) k = 4 (o) k = 5 
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           (a)                     (b)                     (c) 

 
           (d)                     (e)                     (f) 

 
           (g)                     (h)                     (i) 

 
           (j)                     (k)                     (l) 

 
           (m)                    (n)                     (o) 

Fig. 6 Selected relevant virtual exposure images (a) k = -14 (b) k = -13 (c) k = -12 (d) 

k = -11 (e) k = -10 (f) k = -9 (g) k = -8 (h) k = -7 (anchor image) (i) k = -6 (j) k = -5 (k) 

k = -4 (l) k = -3 (m) k = -2 (n) k = -1 (o) k = 0 
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2.4 Classified Image Fusion 

The 2M+1 virtual exposure images, denoted by Yk (k = anc-M, …, anc, …, 

anc+M), having different intensities are then blended by using the proposed classified 

image fusion method. First, for every virtual exposure image Yk, a weighted map Wk 

indicating the contribution of each pixel to the final fused image is computed. The 

weight maps consider the contrast and the well-exposedness as quality measures. 

Since the image fusion process is conducted on luminance images, we do not consider 

the saturation measure as that described in [22]. The contrast measure is exploited to 

preserve the detail part such as edge or texture information in each image. Further, the 

just-noticeable-difference (JND) model of the human visual system (HVS) [25] is 

included in the contrast computation process to prevent from amplifying noises. The 

well-exposedness measure attempts to find the proper luminance value for each pixel. 

The flow chart of the proposed classified image fusion method is shown in Fig. 7. 

 

Fig. 7 Flow chart of the proposed classified image fusion method 
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2.4.1 Just-Noticeable-Difference (JND) Model of the Human Visual 

System (HVS) 

JND determines the threshold of luminance difference that can be perceived by 

HVS. In this thesis, the JND model proposed by Chou and Li [25], determined by the 

average background intensity and the spatial non-uniformity, will be used for quality 

measure evaluation. The JND value of the image pixel located at (x, y) is defined as 

follows: 

 .)),(()),,(),,((max),( 21 yxbgJyxmgyxbgJyxJND      (11) 

where J1 models the spatial masking effect and is defined by: 

)).,(()),((),()),(),,((1 yxbgyxbgyxmgyxmgyxbgJ      (12) 

where α(x) and β(x) are defined as follows:  

,115.00001.0)(  xx       (13) 

, 01.0)(  xx         (14) 

where λ influences the visibility threshold due to spatial masking effect, bg(x, y) is the 

average background intensity computed by using the mask B (as shown in Fig. 8): 

.)2,2(),(
32

1
),(

2

2

2

2


 


i j

jiBjyixYyxbg     (15) 

mg(x, y) is the maximum gradient value in four directions: 

|}.),({|max),(
4,3,2,1

yxgradyxmg k
k

       (16) 

where gradk(x, y) is the weighted average gradient along the direction k: 
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.)2,2(),(
16

1
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2

2

2


 


i j

kk jiGjyixYyxgrad    (17) 

where Gk is the k-th gradient mask as shown in Fig. 9. 

 

Fig. 8 The mask B used in computing bg(x, y) 

 

 

 

 

   G1                   G2                   G3                   G4 

Fig. 9 The gradient mask used in computing gradk(x, y) 

 

J2 determines the luminance threshold due to background intensity and is defined as 

follows: 










127 if              ,3)127(

127 if   ,3))127/(1(
)(

2/1

0

2
gg

ggT
gJ


     (18) 

where T0 and γ depend on the viewing distance between the monitor and the tester, T0 

denotes the visibility threshold when the background gray level is 0, and γ denotes the 

slope of the line that models the JND visibility threshold function at higher 

background luminance. In this thesis, we set T0 = 17, γ = 3/128, and λ = 1/2 as 

conducted by Chou and Li [25]. 
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2.4.2 Contrast Measure 

To measure the contrast of a pixel p located at (x, y) in the virtual image Yk, we 

find the maximum and the minimum values (denoted by ),(max yxYk
 and ),(min yxYk

) 

of its eight neighbors within a 3×3 window centered at p. Then the difference 

),( yxY dif

k between ),(max yxYk
 and ),(min yxYk

 is calculated: 

).,(),(),( minmax yxYyxYyxY kk

dif

k       (19) 

The difference can be considered as a simple contrast value for pixel p. If the 

difference is smaller than its corresponding JND value )(x,yJNDk , which implies 

that there is no visible edge or texture information, the contrast measure is set to 0. 

Otherwise, we set the contrast value as ),( yxY dif

k . To prevent from zero weight value 

and variant range for different quality measures, the contrast measure for pixel p is 

normalized by using the following equation: 












otherwise  ,256/)1),((

)()(  if                       ,256/1
),(

yxY

x,yJNDx,yY
yxC

dif

k

k

dif

k

k   (20) 

where ),( yxCk  denotes the contrast value for the pixel located at (x, y) in exposure 

image Yk. For each virtual exposure image Yk, a corresponding contrast map Ck is 

computed. In total, 2M+1 contrast maps are computed. Fig. 10 and Fig. 11 show the 

contrast maps computed from those virtual images shown in Fig. 5 and Fig. 6. 

 

 



 

24 
 

 

 

 
           (a)                     (b)                     (c) 

 
           (d)                     (e)                     (f) 

 
           (g)                     (h)                     (i) 

 
           (j)                     (k)                     (l) 

 
           (m)                    (n)                     (o) 

Fig. 10 Computed contrast maps (a) C-9 (b) C-8 (c) C-7 (d) C-6 (e) C-5 (f) C-4 (g) C-3 (h) 

C-2 (i) C-1 (j) C0 (k) C1 (l) C2 (m) C3 (n) C4 (o) C5 
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           (a)                     (b)                     (c) 

 
           (d)                     (e)                     (f) 

 
           (g)                     (h)                     (i) 

 
           (j)                     (k)                     (l) 

 
           (m)                    (n)                     (o) 

Fig. 11 Computed contrast maps (a) C-14 (b) C-13 (c) C-12 (d) C-11 (e) C-10 (f) C-9 (g) C-8 

(h) C-7 (i) C-6 (j) C5 (k) C4 (l) C3 (m) C2 (n) C1 (o) C0 
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2.4.3 Well-exposedness Measure 

 Well-exposedness measure evaluates how well a pixel is exposed. Mertens et al. 

[22] utilized a Gaussian distribution to model the exposedness of a pixel depending on 

how close its luminance is to the target luminance values 128 (the middle value of 

luminance range [0, 255]). That is, the pixels with luminance value closer to gray 

level 128 should have a larger weight while the pixels with luminance far away from 

128 should have a smaller weight when computing the well-exposedness measure. 

Generally, the well-exposedness measure is defined as follows [22]: 

.
2

)128),((
exp),(
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
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
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

 
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

yxY
yxE k

k
     (21) 

where Ek(x, y) is the well-exposedness value of the pixel located at (x, y), and σ is the 

standard deviation of the Gaussian distribution which is set as 0.2×255 (the luminance 

range). From Eq. (21), the well-exposedness value is bounded to be the range [0, 1]. 

Further, the pixel with luminance value closer to gray level 128 will be assigned a 

larger exposedness value. Consequently, the luminance of each pixel in the fused 

image will be adjusted toward 128. However, this does not make sense for real-life 

images. For example, all dark pixels and bright pixels will be both adjusted toward 

128. As a result, the global contrast will be reduced. To solve this problem, we 

classify the pixels in the original image into different classes according to their 

original luminance values. Then, distinct target luminance values are defined for 
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different classes. Intuitively, the target luminance values t

iY  (i = 1, 2, …, m) can be 

determined by finding the center of each equally-spaced interval (see Fig. 12 for an 

example with cluster number m = 3).  

  

Fig. 12 The equally-distributed target luminance values t

iY  with m = 3. 

This method assumes that the whole luminance range (256) is divided into m 

equally-spaced intervals having width R = 256/m. Further assuming that the 

luminance values in each class are Gaussian distributed with width equals R = 6σe 

where σe is the standard deviation of the Gaussian distribution. Thus, the target 

luminance value associated with class Ωi is  

.)
2

1
( RiY t

i        (22) 

However, the equally-spaced target luminance values, without considering property of 

the input image, should be adjusted to appropriate values. For example, if the input 

image is a dark one consisting of many dark pixels in Ω1, the target luminance value 

tY1  should be adjusted as well. Similarly, if the input image is a bright one consisting 

of many bright pixels in Ωm, the target luminance value t

mY  should be adjusted in 

according with the number of pixels belonging to Ωm. Another approach, considering 
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the number of pixels in each class, will take into account the image property to find 

target luminance values. Let pi denote the probability of the pixels belonging to class 

Ωi in the input image. Then, the cumulative probability Cum(i) for each class Ωi is 

defined as follows: 





i

k

kpiCum
1

)(        (23) 

Thus, the target luminance range associated with class Ωi is [Cum(i-1)×255, 

Cum(i)×255] (see Fig. 13) for mi 1 , where Cum(i) is defined as 0.  

 

Fig. 13 The target luminance values P

iY with m = 3. 

According to the probability of each class, the target luminance value is defined as the 

middle value in each target luminance range: 

m...,,,i
iCumiCum

Y P

i   2 1for  ),
2

)()1(
(255 


    (24) 

Further, the mean luminance value of the pixels belonging to the largest class is 

used to determine whether an input image is a dark one or a bright one. Let Ni denote 

the number of pixels belonging to class Ωi. The index of the largest class is defined as 

follows: 

.maxarg
1

max i
mi

Nn


        (25) 

Then the mean luminance value of the largest class 
o

nmax
  is computed: 
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Finally, t

iY  is defined as follows: 
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If the pixel belongs to Ωi, the pixel luminance value will be adjusted toward t

iY . 

However, if the luminance value of a pixel is near the boundary of two classes, it is 

hard to determine which class this pixel really belongs to. That is, it is hard to 

determine its target luminance value and thus it is impossible to correctly evaluate the 

appropriate exposedness value. Therefore, we exploit the concept of fuzzy clustering 

to determine the probability that a pixel belongs to a class. Let o

i  denote in the 

input image the average luminance of those pixels belonging to cluster Ωi: 
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Then, the probability, computed as the likelihood that a pixel value is from each class, 

is modeled as a Gaussian function:  
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where Y is the input image, σi is the standard deviation computed from the luminance 

values of those pixels having luminance values in the range [ o

i 1 , o

i 1 ]. Note that 

o

0  is set to 0 and o

m 1  is set to 255. Since the range [ ,1

o

i o

i 1 ] is larger for those i 
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with mi 1  and thus the corresponding standard deviation is multiplied by 0.75 

such that every σi is computed from similar range. Fig. 14 illustrates the above 

concept. 

 

Fig. 14 The luminance range for determining σi with m = 3. 

To utilize the fuzzy clustering concept, the well-exposedness value of the pixel in Yk 

associated with class Ωi is defined as follows: 
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Finally, the well-exposedness is defined by: 

).,(),(),( ,
1

yxWyxPMaxyxE e
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k 
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     (31) 

where Ek(x, y) denotes the well-exposedness value associated with the pixel located at 

(x, y) in virtual exposure image Yk. By applying different target luminance values to 

different classes, pixels will be adjusted toward different luminance value and thus the 

global contrast can be reserved. Fig. 15 and Fig. 16 show the well-exposedness maps 

produced by using the exposedness measure computed by using a single target 

luminance value 128 proposed by Mertens el al. [22] and the proposed classified 



 

31 
 

exposedness measure. From Fig. 15, by observing the sky region, we can see that 

those lower exposure dark images have larger weight values than those in the brighter 

images. As a result, the luminance of the sky region will decrease in the fused image. 

From Fig. 16, however, by using the proposed method, E-2 has larger weight values in 

the sky region and can preserve the luminance much better than Mertens’s method. 

Fig. 17 and Fig. 18 show another example of computed well-exposedness maps by 

using the exposedness measure proposed by Mertens el al. [22] and the proposed 

classified exposedness measure. 
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           (a)                     (b)                     (c) 

 
           (d)                     (e)                     (f) 

 
           (g)                     (h)                     (i) 

 
           (j)                     (k)                     (l) 

 
           (m)                    (n)                     (o) 

Fig. 15 Exposedness maps generated by using the exposedness measure proposed by 

Mertens et al. [22] (a) E-9 (b) E-8 (c) E-7 (d) E-6 (e) E-5 (f) E-4 (g) E-3 (h) E-2 (i) E-1 (j) 

E0 (k) E1 (l) E2 (m) E3 (n) E4 (o) E5 
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           (a)                     (b)                     (c) 

 
           (d)                     (e)                     (f) 

 
           (g)                     (h)                     (i) 

 
           (j)                     (k)                     (l) 

 
           (m)                    (n)                     (o) 

Fig. 16 Classified well-exposedness maps (a) E-9 (b) E-8 (c) E-7 (d) E-6 (e) E-5 (f) E-4 (g) 

E-3 (h) E-2 (i) E-1 (j) E0 (k) E1 (l) E2 (m) E3 (n) E4 (o) E5 
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           (a)                     (b)                     (c) 

 
           (d)                     (e)                     (f) 

 
           (g)                     (h)                     (i) 

 
           (j)                     (k)                     (l) 

 
           (m)                    (n)                     (o) 

Fig. 17 Exposedness maps generated by using the exposedness measure proposed by 

Mertens et al. [22] (a) E-14 (b) E-13 (c) E-12 (d) E-11 (e) E-10 (f) E-9 (g) E-8 (h) E-7 (i) E-6 

(j) E-5 (k) E-4 (l) E-3 (m) E-2 (n) E-1 (o) E0 
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           (a)                     (b)                     (c) 

 
           (d)                     (e)                     (f) 

 
           (g)                     (h)                     (i) 

 
           (j)                     (k)                     (l) 

 
           (m)                    (n)                     (o) 

Fig. 18 Classified well-exposedness maps (a) E-14 (b) E-13 (c) E-12 (d) E-11 (e) E-10 (f) 

E-9 (g) E-8 (h) E-7 (i) E-6 (j) E-5 (k) E-4 (l) E-3 (m) E-2 (n) E-1 (o) E0 
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Finally, t

kW , denoting the weight map of the virtual exposure image Yk, is 

defined as the multiplication of Ck and Ek: 

).,(),(),( yxEyxCyxW kk

t

k       (32) 

Because the fused image is the weighted average of these 2M+1 virtual exposure 

images, we normalize each weight map, t

kW , such that for each pixel (x, y), the sum 

of weights among these 2M+1 weight maps equals 1: 
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Fig. 19 and Fig. 20 show two example of final weight maps produced by multiplying 

the proposed contrast measure and the classified exposedness measure.  
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           (a)                     (b)                     (c) 

 
           (d)                     (e)                     (f) 

 
           (g)                     (h)                     (i) 

 
           (j)                     (k)                     (l) 

 
           (m)                    (n)                     (o) 

Fig 19 Weight maps, Wk, of each exposure image Yk generated by using the proposed 

classified exposedness measure. (a) W-9 (b) W-8 (c) W-7 (d) W-6 (e) W-5 (f) W-4 (g) W-3 

(h) W-2 (i) W-1 (j) W0 (k) W1 (l) W2 (m) W3 (n) W4 (o) W5 
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           (a)                     (b)                     (c) 

 
           (d)                     (e)                     (f) 

 
           (g)                     (h)                     (i) 

 
           (j)                     (k)                     (l) 

 
           (m)                    (n)                     (o) 

Fig 20 Weight maps, Wk, of each exposure image Yk generated by using the proposed 

classified exposedness measure. (a) W-14 (b) W-13 (c) W-12 (d) W-11 (e) W-10 (f) W-9 (g) 

W-8 (h) W-7 (i) W-6 (j) W-5 (k) W-4 (l) W-3 (m) W-2 (n) W-1 (o) W0 
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2.4.4 Classified Image Fusion in the DWT Domain 

 Mertens et al. [22] have shown that if images are directly fused in the spatial 

domain, there will be annoying seams at pixels where weight values change quickly. 

To solve this problem, they blend the images in multiple resolutions realized by using 

image pyramid decomposition. First, a Laplacian pyramid is built for each exposure 

image and a Gaussian pyramid is constructed for each weight map. Then the 

coefficients are combined for each level independently. Finally, the combined 

coefficients are collapsed to obtain the fused image. In this thesis, the fusion method 

proposed by Malik et al. [26] will be employed to merge the virtual images in discrete 

wavelet transform (DWT) domain to avoid annoying seams caused by the rapid 

change of weight values. Discrete wavelet transform is a well-known method to 

perform multi-resolution decomposition of an image. For one-dimensional (1-D) 

DWT, the input signal is filtered by a low-pass filter and a high-pass filter. The 

low-pass filtering reserves the coarse information while the high-pass filtering 

extracts the detail information of the input signal. Then, the filtering result is 

down-sampled by a factor of two. To apply 2-D DWT to an image, 1-D DWT can be 

first applied to each row of the input image. Then, 1-D DWT is again applied to each 

column of the corresponding two decimated signals. This procedure completes one 

level of 2-D DWT decomposition and results in four low-resolution subimages, 
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denoted by LL, LH, HL, HH. The subimage LL preserves the coarse information of 

the input image while the other subimages, LH, HL, and HH respectively correspond 

to vertical, horizontal, and diagonal details. The subimage LL can be further 

decomposed to four subimages by applying 2-D DWT to it. Therefore, there will be 

3L+1 subimages after applying L-level 2-D DWT on the input image.  

 In this thesis, we apply L-level 2-D DWT on each virtual exposure image Yk in 

order to produce 3L+1 wavelet subimages. Let ,l

kY denotes the wavelet subimage 

with direction θ ( },,,{ HHHLLHLL ) at level l. For each weight map, Wk, a 

Gaussian pyramid is constructed. Let l

kW  denote the subimage of weight map at 

level l associated with exposure image Yk. Then the blending of these virtual exposure 

images is implemented by a weighted sum of the wavelet subimages at level l 

(1≦l≦L) of all virtual images with the coefficients at the same level of the Gaussian 

pyramid of the weight map serving as the weights: 

.),(),(),( ,, 





Manc

Manck

l

k

l

k

l yxWyxYyxF 
    (34) 

where F
l,θ

(x, y) denotes the fused wavelet coefficients of pixel (x, y) with direction θ 

at level l. The final fused image F(x, y) can be obtained by applying the inverse DWT 

to the fused wavelet subimages, F
l,θ

(x, y).  
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2.5 Color Components Reconstruction 

 Finally, the fused grayscale image, F(x, y), will be used to reconstruct the color 

image. Let R, G, and B represent the red, green, blue components of the original 

image respectively. To prevent from relevant hue shift and color desaturation, the 

color components will be reconstructed by the following equation [23]:  
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where rR , rG , and rB denote the reconstructed color components. 
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CHAPTER 3 

EXPERIMENTAL RESULTS 

 

 In this thesis, four different types of real-life images will be used to show the 

effectiveness of our proposed method:  

(1)  A normal image with suitable exposure but some regions are 

under-exposed;  

(2)  A backlight image with over-exposed and/or under-exposed regions  

(3)  Four low contrast images;  

(4) A dark scene image.  

The proposed CIF method will be compared with the following techniques: 

(1) HE [1]; 

(2) Local gamma correction (LCC) proposed by Schettini et al. [9]; 

(3) Exposure correction (EC) proposed by Battiato et al. [10]; 

(4) Shadow correction (SC) proposed by Safonov et al. [11]; 

(5) Picasa software [27]. 

(6) A wavelet image fusion based method proposed by Pei et al. [13] 

(7) Exposure Fusion (EF) proposed by Mertens et al. [22] 

 



 

43 
 

3.1 Experimental Results on a Normal Image 

 Fig. 21 shows an image with proper exposure in most areas and the enhanced 

images by applying different contrast enhancement methods. Fig. 21(a) shows the 

original image; we can observe that the exposure of the whole image is proper, except 

that the central building is under-exposed to some extent. Fig. 21(b) shows the 

enhanced image produced by HE; we can see that the central building is still not 

well-exposed; however, the sky region is over enhanced. There is no big change in Fig. 

21(c) produced by Picasa software [27]. Fig. 21(d) and Fig. 21(e) show the enhanced 

results using EC and LCC. Though the contrast of the central building becomes better 

compared to the original image, it’s still not sufficient. In Fig. 21(f), though the 

central building has a better contrast, the global contrast is not satisfactory. Fig. 21(g) 

shows the result using the method proposed by Pei et al. The contrast of center 

building is better but still insufficient. In Fig. 21(h), the global contrast decreases. By 

using the proposed CIF method, the result shown in Fig. 21(i) has a high contrast than 

other enhanced images. 

 

3.2 Experimental Results on a Backlight Image 

 Fig. 22 shows a backlight image and the enhanced images by applying different 

contrast enhancement methods. The original image is shown in Fig. 22(a). We can see 
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that the tower and trees in the foreground are almost invisible. Fig. 22(b) and Fig. 

22(g) yield a clear foreground. However, the washed-out appearance happens. Picasa 

software enhanced very little as shown in Fig 22(c). Battiato’s EC method, Schettini’s 

LCC method, and Safonov’s SC method can enhance the foreground tower and trees 

to some extent. Nevertheless, the global contrast is not satisfied (see Fig. 22(d), Fig. 

22(e) and Fig. 22(f)). In Fig. 22(h), the global contrast decreases severely. From Fig. 

22(i), we can see that our proposed CIF method produces an image with clear 

foreground and the global contrast is increased. 

 

3.3 Experimental Results on Low Contrast Images 

 Fig. 23 shows a low contrast image and the enhanced images by applying 

different contrast enhancement methods. Fig. 23(a) shows the original image; we can 

observe that the advertise board in the left side and the building in the right side is too 

dark and is not clear. Fig. 23(b) and Fig. 23(g) show the results produced by using HE 

and the method proposed by Pei et al. The contrast increases, however, there is severe 

false contour in the sky region. Picasa software enhances very little and the result is 

shown in Fig. 23(c). Battiato’s EC method, Schettini’s LCC method, and Safonov’s 

SC method can enhance the contrast a bit (see Fig. 23(d), Fig. 23(e) and Fig. 23(f)). 

However, the total contrast is still not satisfactory. In Fig. 23(h), the global contrast 
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decreases severely. From Fig. 23(i), we can see our proposed CIF method produces a 

pleasing, high-contrast image. 

 Fig. 24 shows another low contrast image and the enhanced images by using 

different contrast enhancement methods. The original image is shown in Fig. 24(a). 

We can observe that it is an under-exposed, low contrast image. From Fig. 24(b), we 

can see that HE produces a high contrast image. However, the saturation in the bright 

regions reduced. Schettini’s LCC method produces an enhanced image with 

washed-out appearance and thus the enhanced image (see Fig. 24(e)) seems unnatural. 

Picasa software and Safonov’s SC method can produce images with slightly better 

contrast (see Fig. 24(c) and Fig. 24(f)). From Fig. 24(d) and Fig. 24(g), In Fig. 24(h), 

the global contrast decreases severely. Battiato’s EC method, the method proposed by 

Pei et al. and the proposed CIF method can yield comparably pleasing images with 

higher contrast. 

Fig 25 shows a low contrast image and the enhanced images by applying 

different contrast enhancement methods. Fig. 25(a) shows the original image; we can 

see that the subjects in the foreground are dark while the sky is well-exposed. From 

Fig. 25(b) and Fig. 25(g), we can see that there is severe false contour in the sky 

region. Fig. 25(c) shows the image produced by using Picasa software. Thought the 

contrast in the foreground is better, the sky region is over-exposed and the contrast is 
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lost. Battiato‘s EC method, Schettini’s LCC method and Safonov’s SC method can 

produce images with a little better contrast (see Fig. 24(d), Fig. 25(e), and Fig. 25(f)). 

In Fig. 25(h), the global contrast decreases severely. From Fig. 25(i), we can see that 

the proposed CIF method can produce a pleasing image with higher contrast. 

Fig. 26 shows another example of low contrast image. Fig. 26(a) shows the 

original image; we can see that the foreground subject is dark and in low contrast. By 

comparing all the results, the contrast is insufficient for some methods (see Fig. 26(c), 

Fig. 26(e), Fig. 26(f) and Fig. 26(g)). The result images produced by using HE and 

Battiato’s EC method can enhance the contrast quite well, but the background is 

over-exposed (see Fig. 26(b) and Fig. 26(d)). In Fig. 26(h), the global contrast 

decreases severely. From Fig. 26(i), the proposed CIF method can produce 

comparably pleasing images with higher contrast. 

 

3.4 Experimental Results on a Dark Scene Image 

 Fig. 27 shows a dark scene image and the enhanced images by applying different 

contrast enhancement methods. Fig. 27(a) shows the original image; we can see that 

the subjects in the foreground are dark due to the bright neon and the Chinese lanterns. 

By comparing all the results, the subjects in the foreground become clear by using HE 

and proposed CIF method (see Fig. 27(b) and Fig. 27(g)).  
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(a) Original Image               (b) HE 

  

(c) Picasa software               (d) EC 

  

(e) LCC                    (f) SC 

  

(g) Pei’s method                 (h) EF 

 

(i) Proposed CIF 

 

Fig. 21 Enhanced results of a normal image using different methods 
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(a) Original image          (b) HE           (c) Picasa software 

   

(d) EC              (e) LCC                (f) SC 

 

(g) Pei’s method           (h) EF          (i) Proposed CIF 

 

Fig. 22 Enhanced results of a backlight image using different methods 
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(a) Original Image            (b) HE 

  

(c) Picasa software            (d) EC 

  

(e) LCC                (f) SC

  

(g) Pei’s method             (h) EF 

 

(i) Proposed CIF 

 

Fig. 23 Enhanced results of a low contrast image using different methods 
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(a) Original Image               (b) HE 

  

(c) Picasa software               (d) EC 

  

(e) LCC                    (f) SC 

  

(g) Pei’s method                 (h) EF 

 

(i) Proposed CIF 

 

Fig. 24 Enhanced results of a low contrast image using different methods 
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(a) Original Image           (b) HE 

  

(c) Picasa software            (d) EC 

  

(e) LCC                (f) SC 

  

(g) Pei’s method            (h) EF 

 

(i) Proposed CIF 

 

Fig. 25 Enhanced results of a low contrast image using different methods 
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(a) Original Image             (b) HE 

  

(c) Picasa software             (d) EC 

  

(e) LCC                  (f) SC 

  

(g) Pei’s method              (h) EF 

 

(i) Proposed CIF 

 

Fig. 26 Enhanced results of a low contrast image using different methods 
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(a) Original Image            (b) HE 

  

(c) Picasa software            (d) EC 

  

(e) LCC                 (f) SC 

  

(g) Pei’s method              (h) EF 

 

 

(i) Proposed CIF 

 

Fig. 27 Enhanced results of a dark scene image using different methods 
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CHAPTER 4 

CONCLUSIONS 

 

In this thesis, an image fusion method named classified image fusion (CIF) is 

proposed for image contrast enhancement. In the proposed CIF method, several 

virtual exposure images with different luminance are generated by using an imitative 

“F-stop” function. Then, a classified image fusion method performed in DWT domain 

is designed to produce a fused image in which every region is well-exposed. Four 

types of images including a normal image, a backlight image, two low contrast 

images, and a dark scene image are used as the test images. The proposed method can 

produce a pleasing image with every region well-exposed when comparing the 

enhanced results with several methods, including HE, local gamma correction (LCC), 

exposure correction (EC), shadow correction (SC), and Picasa software.  
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