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ABSTRACT

There are more and more digital images. in our daily life thanks to the popularity
of photograph capturing equipments, such as digital cameras and mobile phones. In
addition, as the Internet and social networks have been well developed, it’s easier for
people to share images with their friends. However, not all people are satisfied with
the photos they taken due to the limitations of the image capturing devices. The
improper luminance condition may cause under-exposed and over-exposed images.
To solve this problem, plenty of researches are proposed for contrast enhancement.

However, they often cannot afford to produce pleasing images for a broad variety of



low contrast images or cannot be automatically applied on all images. Hence, in this
thesis, we propose a classified image fusion (CIF) method for image contrast
enhancement. First several virtual images having different intensities are generated.
Second, the input image pixels are classified to several classes according to their

luminance values. Finally, CIF was proposed to combine these exposure images to

produce a fused image i
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CHAPTER 1

INTRODUCTION

1.1 Motivation

There are more and more digital images in our daily life thanks to the popularity

of photograph capturing equipments, such as digital cameras and mobile phones. In

addition, as the Internet and social networks have been widely developed, it’s easier

for people to share images with their friends. However, not all people are satisfied

with the photos they taken due to the limitations of image capturing devices. Typically,

the dynamic ranges of digital cameras or mobile phones are much smaller than that

human eyes can perceive. This phenomenon becomes more apparent in high dynamic

regions such as skies or shadows. The common shortages found in real-life images

include:

(1) A normal image with suitable exposure but some under-exposed and/or

some over-exposed regions;

(2) An over-exposed image;

(3) An under-exposed image.



1.2 Related Work

In order to obtain an image with proper exposedness and contrast, an image
contrast enhancement technique is needed. There are plenty of researches proposed
for image contrast enhancement. These methods can be classified into four major
categories:

(1) Histogram-based methods [1-7];

(2) Transform-based methods [1], [8], [9];
(3) Exposure-based methods [10], [11];
(4) Image fusion based methods [12-14].

The most common and well-known histogram-based method is histogram
equalization (HE) [1]. HE adjusts the input image histogram by using a non-linear
mapping function to yield a histogram which. approximates uniform distribution. It
will spread the gray levels with high occurring probabilities and compress the gray
levels with low occurring probabilities to obtain an image having better contrast.
However, HE was proved to produce some unwanted artifacts, including

(1) False contour;
(2) Amplified noise;
(3) Washed-out appearance.

Various advanced HE based approaches have been developed [2-7]. Pizer et al.



[2] proposed a local HE method. First, the input image is divided into several

non-overlapping blocks. Then, HE is applied on each block. The HE enhanced blocks

are finally fused by using bilinear interpolation to reduce the blocking effect. Kim [3]

proposed a subimage independent HE method named brightness preserving

bi-histogram equalization (BBHE). In BBHE, the input gray image is first

decomposed into two subimages based on its mean luminance, «. Then, HE is applied

to the histograms corresponding to these two subimages independently. The subimage

with luminance lower than the mean value IS mapped into the range [lnin, ], Where

Imin denotes the minimum gray level. The subimage with luminance larger than the

mean value is mapped into the range [«, Inax], Where In.x denotes the maximum gray

level. Then, the composition of these two equalized subimages is the output image.

Wang et al. [4] proposed another bi-histogram HE method in which the input image is

decomposed into two subimages by using the threshold value which yields maximum

entropy of the processed image. Then, HE is applied to two subimages independently

and the composition of HE enhanced subimages will form the output image. Chen et

al. [5] extended the former two methods and proposed minimum mean brightness

error bi-histogram equalization (MMBEBHE). In MMBEBHE, the threshold with

minimum absolute mean brightness error (AMBE) is found to divide the input image

into two subimages. Then, HE is applied independently to each subimage and the



composition of the HE result is the output image. Wang et al. [6] used histogram

specification to yield the target histogram which maximizes the entropy under the

constraint that the mean brightness is fixed. Chen et al. [7] proposed a method based

on BBHE. They recursively divide each subimage into two new subimages and finally

perform HE on each portions independently.

Transform-based methods [1], [8], [9] were widely used in electrical devices and

computer software. These methods use a function to.map original image luminance

values to another ones. To get a pleasing image, some user-specified parameters are

needed. That Is, these methods require some user interactions and thus are not fully

automatic. Transform-based methods can well handle either under-exposed images or

over-exposed images if appropriate parameters are selected. However, they cannot

produce pleasing images when the input images have both under-exposed regions and

over-exposed regions. Moroney [8] proposed a local color correction operation which

uses non-linear masking and a pixel-by-pixel gamma correction to enhance the image

quality. Schettini et al. [9] presented a local and image-dependent exponential

correction method which uses bilateral filter instead of Gaussian filter to avoid halo

effects. However, the global contrast is reduced as well.

Exposure-based methods [10], [11] adjust the exposedness of images by using a

function between the light quantity and the image gray values. Battiato et al. [10]



proposed a method which first identifies the information carrying regions and then

adjusts the exposure levels using a “camera response”-like function. In their algorithm,

contrast and focus are used as the measures to identify the information carrying

regions. In addition, skin pixel identification method is applied to find the skin

regions. Then, the mean gray values of those pixels in informative regions are used as

reference values to adjust the exposure levels. Since the technique is designed

specifically to regions of interest, it can produce proper results in those interested

regions. However, other.regions may Yyield poorer illumination. Safonov et al. [11]

provided. an exposure correction approach based on contrast stretching and

alpha-blending which considers both brightness and the estimated reflectance of the

input image. The main problem of this method is that it may exhibit unsatisfied

illumination in some regions.

Image fusion based methods [12-14], [22], [26] tried to extract and merge

relevant information from several images taken in the same scene in order to form a

fused image which contains more information and has better visual quality/contrast

than each input image. Hsieh et al. [12] used a linear function to fuse the input image

and a HE enhanced image to produce a fused image. Pei et al. [13] performed HE and

sharpening to the input image and fused together these two enhanced images in the

wavelet transform domain. Mertens et al. [22] used contrast, saturation and



well-exposedness as image quality measures to evaluate the contribution of each pixel

to the fused image. First, for each input image, a corresponding weight map is

computed. Then, the Laplacian pyramid of the input image and Gaussian pyramid of

the weight map are built respectively. The Laplacian pyramids of the input images are

blended with the corresponding Gaussian pyramid as the weights. Finally, the output

image is produced from the blended Laplacian pyramid. Malik et al. [26] proposed an

image fusion method performed in the wavelet transform domain. The output image is

produced by taken the inverse wavelet transform.

The aforementioned contrast enhancement methods [1-14], [22], [26] often

cannot produce pleasing images for a broad variety of low contrast images or cannot

be automatically applied on all images. That is, some user-specified parameters are

needed to obtain satisfied pictures. Therefore, we tried to design an image contrast

enhancement algorithm which can automatically enhance the contrast without taking

any user-specified parameters for any low contrast images.

In this thesis, we will propose a classified image fusion method for image

contrast enhancement. First, several virtual images having different intensities are

generated. In addition, the input image pixels are classified to several classes

according to their luminance values. Finally, a classified image fusion method,

performed in DWT domain, will be used to combine relevant information in the



virtual images and produce a fused image which is well-exposed in every region.

1.3 Organization of the Thesis
The thesis is organized as follows. In Chapter 1, motivation and some related

work are given. In Chapter 2, the proposed classified image fusion method, which can

combine the generated virtua ages in-an attempt to obtain an image which is
well-exposed i < ion. i : be given to show
the effective

d future work

will be dep



CHAPTER 2

PROPOSED CLASIFIED IMAGE FUSION METHOD

FOR IMAGE CONTRAST ENHANCEMENT

In this chapter, we will describe the proposed classified image fusion (CIF)

method for image contrast enhancement. Image fusion is the process that aims to

extract relevant information from multiple images taken in the same scene and obtain

a more informative picture with better contrast and image quality. Image fusion has

numerous applications such as remote sensing [15-17], medical imaging [17], high

dynamic range imaging (HDRI) [17], [18], multi-focus imaging [17], [19], etc. In

remote sensing and medical imaging, several images captured from various sensors

are given. Then, these images are fused to produce a high quality image. In HDRI,

multiple images taken in the same scene with different exposure time are generated.

The image pixels having distinct luminance values are then fused to yield an image

having wide dynamic range than each individual one. In multi-focus imaging, several

images with each having some objects in focus will be merged to obtain an image in

which all relevant objects are in focus. For these applications, several images with

varying luminance, exposure, or focus, should be obtained in advance. However, it is

not a simple task for digital cameras or mobile phones to capture several images of



the same scene with variant information. Therefore, an algorithm will be proposed to

produce several virtual images for image fusion.

Since our proposed CIF method works on gray images, a color value to gray

value conversion is first applied on each input color image. The luminance image Y(x,

y) is converted from its original red, blue, green components using the following

function:

Y (X,y)=0.299-R(x, y)+0.587-G(x, y) + 0.114- B(X, y). (1)

where R(X, V), G(x, y), and B(X,.y) denote red, green and blue color values of the pixel

located at (X, y). Then, several virtual images having different intensities are generated.

In addition, a multilevel thresholding algorithm is employed to classify the input

image pixels to different classes depending on their luminance values. By using the

classification result, several relevant virtual images are selected among the generated

virtual images. After the relevant virtual images are selected, the proposed classified

image fusion algorithm, performed in discrete wavelet transform (DWT) domain, will

be designed to obtain a fused image with proper exposure in every region. The flow

chart of the proposed image contrast enhancement method is shown in Fig. 1.



Virtual Exposure

Image Generation

Luminance Selection of
Component Informative Virtual
Conversion Exposure Images

Input Color
Image

Image Pixel
Classification

Output Color Component Classified Image
Color Image Reconstruction Fusion

Fig. 1 Flow chart of the proposed CIF system

2.1 Generation of Virtual Exposure Images

In image fusion, several images are combined to produce an output image having
better quality. For image enhancement, only one input image is given to produce an
output image with higher contrast. Therefore, it is necessary to design an algorithm to
generate several virtual images such that image fusion technique can be applied for
image contrast enhancement. In the proposed CIF method, the concept of exposure,
which refers to how much light will reach the image sensors on image capturing
devices, will be exploited to generate several virtual images having distinct luminance.
For digital cameras, shutter speed and F-stop are used to determine the exposure when
taking photos. Shutter speed controls how long the shutter is open, which corresponds
to the length of time the light can reach the image sensors. The larger the shutter
speed, the more the amount of light reaching the image sensors. Another factor
controlling the exposure of a photo is F-stop, which controls the size of the aperture.

The aperture is the hole the light of the scene passing through in the digital cameras.
10



Modern cameras use a standard F-stop scale: f/1, /1.4, /2, f/2.8, f/4, /5.6, f/8, /11,
f/16, /22, etc. The scale is an approximately geometric sequence that corresponds to
the sequence of the powers of the square of 2. In this sequence, each stop represents a
halving of the light intensity from the previous stop. For example, f/1 allows twice as
much light to fall on the image sensor than /1.4, and four times as much light than /2.
In this study, we exploit the F-stop concept to generate virtual images such that their
pixel luminance values approximate a geometric sequence. In this thesis, the
luminance of the k-th virtual exposure image, denoted by Yy, is defined by the

following equation:

. «
Y, (x, y) =4 Y () x24It Y(xy)x 24 <255 )
255, otherwise

where Y(X, y) is the gray level of input image pixel located at (X, y).

From Eqg. (2), N brighter images (withk=—N,-N+1,...,—1) and N darker
images (withk =1,2,..., N) compared to the input image Y are generated. Fig. 2 and
Fig. 3 show some generated virtual exposure images. From Fig. 2, we can see that in
those brighter virtual images, the detail of the central building becomes more apparent
and the contrast is much sharper than that in the original image (with k = 0). However,
the contrast in the sky region becomes less sharp in these brighter images. Fig. 3
shows a similar result. That is, the detail of the dark foreground objects becomes

clearer in those brighter virtual images.
11



& - F

(9) (h) (i)

(m) (n) (0)
Fig. 2 Generated virtual exposure images (a) k=-7 (b) k=-6 (c)k=-5(d) k=-4 (e) k

=3 (f) k=-2(g) k=-1 (h) k = 0 (original image) () k=1 () k=2 (K) k=3 (I) k=4
(mk=5(Mk=6@) k=7
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(m) (n) (0)
Fig. 3 Generated virtual exposure images (a) k=-7 (b)k=-6 (c) k=-5(d) k=-4 (e) k

=3 (f) k=-2(g) k=-1 (h) k = 0 (original image) () k=1 () k=2 (K) k=3 (I) k=4
(mk=5(Mk=6@) k=7
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2.2 Image Pixel Classification

In the proposed CIF method, the input image pixels are classified to m classes.
Pixels in different classes will be blended with different image fusion rules. A
multilevel thresholding algorithm designed by Liao et al. [20] is utilized to find m-1
thresholds, denoted by Thdi, Thd,, ..., Thdy; (Thd; < Thd, < ... < Thdn.1), to divide
the input image pixels into m classes. Let Q;, Oy, ..., Qn denote these m classes,

according to the m-1 thresholds, these classes can be defined as follows:

Q,={(x,y) 1Y (x,y) <Thd, (3)
Q.={(xy)|Thd, , < Y(xY) < Thd,}fori=2,..., m-L. (4)
Q,={(xy)IY(xy)=Thd,,} (5)

In order to determine the proper cluster number m, a metric called Dunn index (DI)
[20] will be used to evaluate the classification results. DI was defined to get a
clustering result having small within-class variance and a large between-class

variance. The definition of DI for n classes is given by:

min- 5(¢;.c;)
DI = =Lisn i ’Vi! J!k (6)

" maxA,
1<k<n

where &(c;,c;) denotes the distance between two cluster centers of € and €

(between-class variance) and Ay is defined as follows:
A= max d(p,q). (7)
P.gey

where d(p,q) is the distance between the points p and q in class Q (within-class
14



variance). The higher DI indicates the better clustering result. Based on Eqg. (6), the

cluster number m is determined by:

m=arg max DI,. (8)

Mppjn SN<Mppae

where My, and Mpax are the maximum and minimum cluster number to be examined.
To save computation time, we bound the cluster number in the range from 3 to 6. That
is, set mpin = 3 and myax = 6. This setting is based on the observation that typically an
image has at least three classes: dark pixels, bright pixels, and pixels with luminance
values in-between. Fig. 4 shows three input images and the corresponding image pixel
classification results. The input image shown in Fig. 4(a) is classified to three classes
as shown in Fig. 4(b): the sky region (the bright pixels), the background buildings
(well-exposed pixels), and the front-central building (dark pixels). Fig. 4(c) shows an
input image which is classified to four classes as shown in Fig. 4(d): the left side of
the sky region, the right side of the sky region, the background mountain, and the dark
houses. In Fig. 4(c), since the right side of the sky is visibly darker than the left side
of the sky, they are separated to two classes. Similarly, the right side of the sky is
noticeable brighter than the background mountain and the roof of the houses, they are
also separated. Finally, the dark trees, parts of the houses and the wall are classified to
the dark pixels. Fig. 4(f) shows the classification result of Fig. 4(e) which is classified
into five classes.

15



Fig. 4 Input images and classification results. (a) Original gray image
(b) Classification result with m = 3 (c) Original gray image (d)
Classification result with m = 4 (e) Original gray image (f)
Classification result with m =5

16



2.3 Selection of Relevant Virtual Exposure Images

The previously generated 2N+1 images are not all used in the image fusion
process. Among these 2N+1 virtual exposure images, only those images having some
relevant informative regions will be chosen for image fusion. That is, those images
which are completely under-exposed or completely over-exposed will not be used in
the image fusion process in an attempt to yield a high informative fused image. To
this end, an anchor image among these 2N+1 virtual exposure images will be selected
first. For virtual image Y, the trimmed mean luminance, denoted by x, , of the image

pixels belonging to clusters Q;, Qs, ..., Qn. IS calculated:

PRACH)

(XY)eQy ... O
#k . Xyemz_]_ : . (9)

[

=2

That is, the pixels in the darkest class C; and the brightest class C, are not considered.
The image having a trimmed mean luminance , closest to gray level 128 (the middle
value in the luminance range [0, 255]) will be selected as the anchor image:

1, —128]. (10)

..... N |
The anchor image and its preceding M (M < N) brighter images and succeeding M
darker images, denoted by Yanc-m, ..., Yanc, -+, Yanc+m,, Will yield the final set of virtual
exposure images for image fusion. Fig. 5 and Fig. 6 show two examples of selected
relevant virtual exposure images. Comparing these two figures with Fig. 2 and Fig. 3,

17



we can see that those dark virtual images which are less informative are excluded for

image fusion process.

18



(m)
Fig. 6 Selected relevant virtual exposure images (a) k = -14 (b) k = -13 (c) k = -12 (d)

k=-11 (e) k = -10 (f) k = -9 (g) k = -8 (h) k = -7 (anchor image) (i) k = -6 (j) k = -5 (k)
k=-4()k=-3(m)k=-2(n)k=-1(0) k=0

19



2.4 Classified Image Fusion

The 2M+1 virtual exposure images, denoted by Y¢ (k = anc-M, ..., anc, ...,
anc+M), having different intensities are then blended by using the proposed classified
image fusion method. First, for every virtual exposure image Yy, a weighted map Wy
indicating the contribution of each pixel to the final fused image is computed. The
weight maps consider the contrast and the well-exposedness as quality measures.
Since the image fusion process is conducted on luminance images, we do not consider
the saturation measure as that described in [22]. The contrast measure is exploited to
preserve the detail part such as edge or texture information in each image. Further, the
just-noticeable-difference (JND) model of the human visual system (HVS) [25] is
included in the contrast computation process to prevent from amplifying noises. The
well-exposedness measure attempts to find the proper luminance value for each pixel.

The flow chart of the proposed classified image fusion method is shown in Fig. 7.

Classified Image Fusion

Fused image

Fig. 7 Flow chart of the proposed classified image fusion method
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2.4.1 Just-Noticeable-Difference (JND) Model of the Human Visual
System (HVS)

JND determines the threshold of luminance difference that can be perceived by
HVS. In this thesis, the JND model proposed by Chou and Li [25], determined by the
average background intensity and the spatial non-uniformity, will be used for quality
measure evaluation. The JND value of the image pixel located at (X, y) is defined as
follows:

IND(x, y) = max {3, (bg (x, Y. mg(x. )., (bg (x, y)) . (12)
where J; models the spatial masking effect and is defined by:
J, (bg (x,y).mg(x, y)) = mg(x, y)e(bg(x, y)) + £(bg (X, y))- (12)
where a(x) and p(x) are defined as follows:
a(X) = x-0.0001+0.115, (13)
B(X)=21—x-0.01, (14)
where A influences the visibility threshold due to spatial masking effect, bg(x, y) is the

average background intensity computed by using the mask B (as shown in Fig. 8):

bg(x,y)=3—12.ZZY(x+i,y+j)B(i+2,j+2). (15)

mg(x, y) is the maximum gradient value in four directions:

mg(x,y) = max {| grad, (x,y)} (16)

where gradg(x, y) is the weighted average gradient along the direction k:
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grad, (X, y)=%iiY(x+i,y+ DG (i+2,j+2). a7

i=—2j=—2

where Gy is the k-th gradient mask as shown in Fig. 9.

[ [ T = Y =
= NN N
P I N[O N =
(RN I NG T I NG T [ NGJ J
e I S == IS

Fig. 8 The mask B used in computing bg(X, y)
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Fig. 9 The gradient mask used in computing grady(x, y)

J, determines the luminance threshold due to background intensity and is defined as
follows:

3,(g) = Ty-(1-(g/127)Y%) +3, if g<127
: 7-(g-127)+3, if g>127

(18)
where Ty and y depend on the viewing distance between the monitor and the tester, Ty
denotes the visibility threshold when the background gray level is 0, and y denotes the
slope of the line that models the JND visibility threshold function at higher

background luminance. In this thesis, we set Top = 17, y = 3/128, and 4 = 1/2 as

conducted by Chou and Li [25].
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2.4.2 Contrast Measure
To measure the contrast of a pixel p located at (X, y) in the virtual image Yy, we
find the maximum and the minimum values (denoted by Y,™(x,y) and Y™ (x,y))
of its eight neighbors within a 3x3 window centered at p. Then the difference
Y (x, y)between Y™ (x,y) and Y™ (x,y) is calculated:
YOGy =Y (X ) =Y (X, ). (19)
The difference can be considered as a simple contrast value for pixel p. If the
difference is smaller than its _corresponding JND value JND, (X)), which implies
that there is no_visible edge or texture information, the contrast measure is set to 0.
Otherwise, we set the contrast value as Y,"" (x, y). To prevent from zero weight value
and variant range for different quality measures, the contrast measure for pixel p is

normalized by using the following equation:

1/ 256, if YA (x, IND, (X,
Cx =1 " < O S@NB, (%) 20)
T (x,y)+1)/256, otherwise

where C,(x,y) denotes the contrast value for the pixel located at (x, y) in exposure

image Y. For each virtual exposure image Yy, a corresponding contrast map Cy is

computed. In total, 2M+1 contrast maps are computed. Fig. 10 and Fig. 11 show the

contrast maps computed from those virtual images shown in Fig. 5 and Fig. 6.
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. e

(n) (0)
Fig. 10 Computed contrast maps (a) C9 (b) Cg (c) C7 (d) C (e) Cs (f) C4 (g) C3 (h)

C-2 (i) C1 () Co (k) Ca (1) C2 (M) Cs (n) C4 (0) Cs
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Fig. 11 Computed contrast maps (a) C.14 (b) C.13 (€) C.12 (d) C.11 () C.10 (f) C (9) Cs
(h) C7 (i) C.6 (4) Cs (k) Ca (1) Cs (M) C2 (n) C4 (0) Co
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2.4.3 Well-exposedness Measure

Well-exposedness measure evaluates how well a pixel is exposed. Mertens et al.
[22] utilized a Gaussian distribution to model the exposedness of a pixel depending on
how close its luminance is to the target luminance values 128 (the middle value of
luminance range [0, 255]). That is, the pixels with luminance value closer to gray
level 128 should have a larger weight while the pixels with luminance far away from
128 should have a smaller weight when computing the well-exposedness measure.

Generally, the well-exposedness measure is defined as follows [22]:

_ (Y (x.y)~128)* J 1)

E (X, y) = exp( =
where Ex(X, y) is the well-exposedness value of the pixel located at (X, y), and o is the
standard deviation of the Gaussian distribution which is set as 0.2x255 (the luminance
range). From Eq. (21), the well-exposedness value is bounded to be the range [0, 1].
Further, the pixel with luminance value closer to gray level 128 will be assigned a
larger exposedness value. Consequently, the luminance of each pixel in the fused
image will be adjusted toward 128. However, this does not make sense for real-life
images. For example, all dark pixels and bright pixels will be both adjusted toward
128. As a result, the global contrast will be reduced. To solve this problem, we

classify the pixels in the original image into different classes according to their

original luminance values. Then, distinct target luminance values are defined for
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different classes. Intuitively, the target luminance values Y (i =1, 2, ..., m) can be
determined by finding the center of each equally-spaced interval (see Fig. 12 for an

example with cluster number m = 3).

Y/ Y/ Y!
0 T : I : T 255
| R | R | R |

Fig. 12 The equally-distributed target luminance values Y,' with m = 3.
This method assumes that the whole luminance range (256) is divided into m
equally-spaced intervals having width R = 256/m. Further assuming that the
luminance values in each class are Gaussian distributed with width equals R = 60,
where e IS the standard deviation of the Gaussian distribution. Thus, the target
luminance value associated with class €; is
R |
Y, =({-=)xR (22)
2
However, the equally-spaced target luminance values, without considering property of
the input image, should be adjusted to appropriate values. For example, if the input
image is a dark one consisting of many dark pixels in Q;, the target luminance value
Y, should be adjusted as well. Similarly, if the input image is a bright one consisting
of many bright pixels in Qn, the target luminance value Y. should be adjusted in
according with the number of pixels belonging to Q.. Another approach, considering
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the number of pixels in each class, will take into account the image property to find
target luminance values. Let p; denote the probability of the pixels belonging to class
Q; in the input image. Then, the cumulative probability Cum(i) for each class Q; is
defined as follows:

cum(i) = kzl: P, (23)
Thus, the target luminance range associated with class Q; is [Cum(i-1)x255,

Cum(i)x255] (see Fig. 13) for 1<i<m, where Cum(i) is defined as 0.

¥ ) £ 7
Cum(0) Cum(1) Cum(2) Cum(3)

Fig. 13 The target luminance values Y,” with m =3.
According to the probability of each class, the target luminance value is defined as the

middle value in each target luminance range:

Cum(i —1)+Cum(i))

Y, =255 (
2

fori=1,2,..m (24)

Further, the mean luminance value of the pixels belonging to the largest class is
used to determine whether an input image is a dark one or a bright one. Let N; denote
the number of pixels belonging to class Q;. The index of the largest class is defined as

follows:

Ny =argmax N,. (25)

1<i<m

Then the mean luminance value of the largest class yﬁw is computed:
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DY (X, )
pp = ma (26)

m a x

Nm alx

Finally, Y,' is defined as follows:

fori=12,..,m (27)

max((i-1/2)xR,Y,”), if u° <128
{min((i—l/Z)x RYP) if 40 >128
If the pixel belongs to Q;, the pixel luminance value will be adjusted toward VY,'.
However, if the luminance value of a pixel is near the boundary of two classes, it is
hard to determine which class this pixel really belongs to. That is, it is hard to
determine its target luminance value and thus it is impossible to correctly evaluate the
appropriate exposedness value. Therefore, we exploit the concept of fuzzy clustering

to determine the probability that a pixel belongs to a class. Let .’ denote in the

input image the average luminance of those pixels belonging to cluster Q;:

DY (x)
= CEs el Nfarittto—m (28)

Qi

Then, the probability, computed as the likelihood that a pixel value is from each class,

is modeled as a Gaussian function:

(Y (x, y)—ﬂff} 29)

R(xY) =e><p(— 207
where Y is the input image, o; is the standard deviation computed from the luminance
values of those pixels having luminance values in the range [’,, #’,]. Note that

L, issettoOand g, , issetto 255. Since the range [ ., 1,] is larger for those i
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with 1<i<m and thus the corresponding standard deviation is multiplied by 0.75

such that every o is computed from similar range. Fig. 14 illustrates the above

concept.
i 60-] i 60—? i
1 6o, 1
| |
My M 7
0 255

Fig. 14 The luminance range for determining o; with m = 3.

To utilize the fuzzy clustering concept, the well-exposedness value of the pixel in Yy

associated with class Q; is defined as follows:

W, (X, y) =exp [— \f (ZX('Zy;_)Z‘I)Z J fori=12,..,m (30)

Finally, the well-exposedness is defined by:

B (x:y) = Max P (x, y) xW,;; (X,.¥). (31)
where Ex(x, y) denotes the well-exposedness value associated with the pixel located at
(x, y) in virtual exposure image Y. By applying different target luminance values to
different classes, pixels will be adjusted toward different luminance value and thus the
global contrast can be reserved. Fig. 15 and Fig. 16 show the well-exposedness maps
produced by using the exposedness measure computed by using a single target

luminance value 128 proposed by Mertens el al. [22] and the proposed classified
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exposedness measure. From Fig. 15, by observing the sky region, we can see that
those lower exposure dark images have larger weight values than those in the brighter
images. As a result, the luminance of the sky region will decrease in the fused image.
From Fig. 16, however, by using the proposed method, E., has larger weight values in
the sky region and can preserve the luminance much better than Mertens’s method.
Fig. 17 and Fig. 18 show another example of computed well-exposedness maps by
using the exposedness measure proposed by Mertens el al. [22] and the proposed

classified exposedness measure.
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(d) (€) ()

() (k) ()

(m) (n) (0)

Fig. 15 Exposedness maps generated by using the exposedness measure proposed by
Mertens et al. [22] (a) E- (b) E-s (C) E7 (d) E-6 (¢) E-s (f) E4 (9) E-s (h) E-2 (i) E1 (1)
Eo (K) E1 (1) E2 (M) Es (n) E4 (0) Es
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m (©)
Fig. 16 Classified well-exposedness maps (a) E-g (b) Es (¢) E.7 (d) E- (€) E-s (f) E-4 (Q)
Es (h) E-2 (i) B4 (§) Eo (k) E1 (1) E2 (M) Es () E4 (0) Es
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(d) (€) ()

(m) (n) (0)

Fig. 17 Exposedness maps generated by using the exposedness measure proposed by
Mertens et al. [22] (a) E-14 (D) E-13 (€) E-12 (d) E-1a (€) E-10 (f) E9 (9) E-g (h) E7 (i) E6
(1) E-s (k) E-a (1) E-3 (M) E-2 () E1 (0) Eo
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(m) (n) (0)
Fig. 18 Classified well-exposedness maps (a) E.14 (b) E-13 (C) E.12 (d) E.11 (€) E-10 (f)

Eo(9) Es (h) E7 (i) Ex (3) Es (K) E4 (I) E3 (M) E2 (n) E1 (0) Eo
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Finally, W,', denoting the weight map of the virtual exposure image Yi, is
defined as the multiplication of Cy and Ex:

W (%, ¥) = C (%, Y) X Ey (X, ). (32)

Because the fused image is the weighted average of these 2M+1 virtual exposure

images, we normalize each weight map, W,', such that for each pixel (x, y), the sum

of weights among these 2M- ght maps equa

_Wxy) @)

Fig. 19 and Fig. inal wei : y-multiplying
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(d) () ' ()

() (k) (1)

(m) (n) (0)
Fig 19 Weight maps, W, of each exposure image Yy generated by using the proposed

classified exposedness measure. (a) Wy (b) W (c) W (d) W (e) W5 (f) W4 (g) W3
(h) W (i) W.1 () Wo (k) W1 (1) W2 (m) W5 (n) W, (0) Ws
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(m) (n) (0)
Fig 20 Weight maps, W, of each exposure image Yy generated by using the proposed

classified exposedness measure. (a) W.14 (b) W13 (¢) W.12 (d) W1 () Weyo (F) Wo (9)
W.g (h) W.7 (i) W.g () W5 (K) W4 (1) W.3 (M) W_, (n) W.1 (0) Wo
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2.4.4 Classified Image Fusion in the DWT Domain

Mertens et al. [22] have shown that if images are directly fused in the spatial
domain, there will be annoying seams at pixels where weight values change quickly.
To solve this problem, they blend the images in multiple resolutions realized by using
image pyramid decomposition. First, a Laplacian pyramid is built for each exposure
image and a Gaussian pyramid is constructed for each weight map. Then the
coefficients are combined for each level independently. Finally, the combined
coefficients are collapsed. to obtain the fused image. In this thesis, the fusion method
proposed by Malik et al. [26] will be employed to merge the virtual images in discrete
wavelet transform (DWT) domain to avoid annoying seams caused by the rapid
change of weight values. Discrete wavelet transform is a well-known method to
perform multi-resolution decomposition of an image. For one-dimensional (1-D)
DWT, the input signal is filtered by a low-pass filter and a high-pass filter. The
low-pass filtering reserves the coarse information while the high-pass filtering
extracts the detail information of the input signal. Then, the filtering result is
down-sampled by a factor of two. To apply 2-D DWT to an image, 1-D DWT can be
first applied to each row of the input image. Then, 1-D DWT is again applied to each
column of the corresponding two decimated signals. This procedure completes one
level of 2-D DWT decomposition and results in four low-resolution subimages,
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denoted by LL, LH, HL, HH. The subimage LL preserves the coarse information of
the input image while the other subimages, LH, HL, and HH respectively correspond
to vertical, horizontal, and diagonal details. The subimage LL can be further
decomposed to four subimages by applying 2-D DWT to it. Therefore, there will be
3L+1 subimages after applying L-level 2-D DWT on the input image.

In this thesis, we apply L-level 2-D DWT on each virtual exposure image Y in
order to produce 3L+1 wavelet subimages. Let Y,”denotes the wavelet subimage
with direction @ (6 <{LL,LH,HL,HH}) at level |. For each weight map, W, a
Gaussian. pyramid is constructed. Let W,' denote the subimage of weight map at
level | associated with exposure image Y. Then the blending of these virtual exposure
images Is implemented by a weighted sum of the wavelet subimages at level |
(1=1=L) of all virtual images with the coefficients at the same level of the Gaussian

pyramid of the weight map serving as the weights:

anc+M

FY00Y) = D 2 ) < W (x, y). (34)
k=anc-M
where F"’(x, y) denotes the fused wavelet coefficients of pixel (x, y) with direction &

at level I. The final fused image F(x, y) can be obtained by applying the inverse DWT

to the fused wavelet subimages, F"%(x, y).
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2.5 Color Components Reconstruction

Finally, the fused grayscale image, F(x, y), will be used to reconstruct the color

image. Let R, G, and B represent the red, green, blue components of the original

image respectively. To prevent from relevant hue shift and color desaturation, the

color components will be reconstructed by the following equation [23]:

R (XY= %R(x, V) F RO+ (F Y)Y (x,)) |

GI(xY) %G(x, y)+ G(x, ) +(F(y) Y (x. ) |

B (X y)=> %B(x, )+ B0 y) +(F (%, ) ~Y.(x:3) |

where R",G", and B" denote the reconstructed color components.
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CHAPTER 3

EXPERIMENTAL RESULTS

In this thesis, four different types of real-life images will be used to show the
effectiveness of our proposed method:

(1) A normal image with suitable exposure but some regions are

under-exposed,

(2) - Abacklight image with over-exposed and/or under-exposed regions

(3) - Four low contrast images;

(4) A dark scene image.
The proposed CIF method will be compared with the following techniques:

(1) HE[1L;

(2) Local gamma correction (LCC) proposed by Schettini et al. [9];

(3) Exposure correction (EC) proposed by Battiato et al. [10];

(4) Shadow correction (SC) proposed by Safonov et al. [11];

(5) Picasa software [27].

(6) A wavelet image fusion based method proposed by Pei et al. [13]

(7) Exposure Fusion (EF) proposed by Mertens et al. [22]
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3.1 Experimental Results on a Normal Image

Fig. 21 shows an image with proper exposure in most areas and the enhanced
images by applying different contrast enhancement methods. Fig. 21(a) shows the
original image; we can observe that the exposure of the whole image is proper, except
that the central building is under-exposed to some extent. Fig. 21(b) shows the
enhanced image produced by HE; we can see that the central building is still not
well-exposed; however, the sky region is over enhanced. There is no big change in Fig.
21(c) produced by Picasa software [27]. Fig. 21(d) and Fig. 21(e) show the enhanced
results using EC and LCC. Though the contrast of the central building becomes better
compared to the original image, it’s still not sufficient. In Fig. 21(f), though the
central building has a better contrast, the global contrast is not satisfactory. Fig. 21(g)
shows the result using the method proposed by Pei et al. The contrast of center
building is better but still insufficient. In Fig. 21(h), the global contrast decreases. By
using the proposed CIF method, the result shown in Fig. 21(i) has a high contrast than

other enhanced images.

3.2 Experimental Results on a Backlight Image
Fig. 22 shows a backlight image and the enhanced images by applying different
contrast enhancement methods. The original image is shown in Fig. 22(a). We can see
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that the tower and trees in the foreground are almost invisible. Fig. 22(b) and Fig.
22(g) yield a clear foreground. However, the washed-out appearance happens. Picasa
software enhanced very little as shown in Fig 22(c). Battiato’s EC method, Schettini’s
LCC method, and Safonov’s SC method can enhance the foreground tower and trees
to some extent. Nevertheless, the global contrast is not satisfied (see Fig. 22(d), Fig.
22(e) and Fig. 22(f)). In Fig. 22(h), the global contrast decreases severely. From Fig.
22(i), we can see that our proposed CIF method produces an image with clear

foreground and the global contrast is increased.

3.3 Experimental Results on Low Contrast Images

Fig. 23 shows a low contrast image and the enhanced images by applying
different contrast enhancement methods. Fig. 23(a) shows the original image; we can
observe that the advertise board in the left side and the building in the right side is too
dark and is not clear. Fig. 23(b) and Fig. 23(g) show the results produced by using HE
and the method proposed by Pei et al. The contrast increases, however, there is severe
false contour in the sky region. Picasa software enhances very little and the result is
shown in Fig. 23(c). Battiato’s EC method, Schettini’s LCC method, and Safonov’s
SC method can enhance the contrast a bit (see Fig. 23(d), Fig. 23(e) and Fig. 23(f)).
However, the total contrast is still not satisfactory. In Fig. 23(h), the global contrast
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decreases severely. From Fig. 23(i), we can see our proposed CIF method produces a

pleasing, high-contrast image.

Fig. 24 shows another low contrast image and the enhanced images by using

different contrast enhancement methods. The original image is shown in Fig. 24(a).

We can observe that it is an under-exposed, low contrast image. From Fig. 24(b), we

can see that HE produces a high contrast image. However, the saturation in the bright

regions reduced. Schettini’s LCC method produces an enhanced image with

washed-out appearance and thus the enhanced image (see Fig. 24(e)) seems unnatural.

Picasa software and Safonov’s SC method can produce images with slightly better

contrast (see Fig. 24(c) and Fig. 24(f)). From Fig. 24(d) and Fig. 24(g), In Fig. 24(h),

the global contrast decreases severely. Battiato’s EC method, the method proposed by

Pei et al. and the proposed CIF method can yield comparably pleasing images with

higher contrast.

Fig 25 shows a low contrast image and the enhanced images by applying

different contrast enhancement methods. Fig. 25(a) shows the original image; we can

see that the subjects in the foreground are dark while the sky is well-exposed. From

Fig. 25(b) and Fig. 25(g), we can see that there is severe false contour in the sky

region. Fig. 25(c) shows the image produced by using Picasa software. Thought the

contrast in the foreground is better, the sky region is over-exposed and the contrast is
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lost. Battiato’'s EC method, Schettini’s LCC method and Safonov’s SC method can
produce images with a little better contrast (see Fig. 24(d), Fig. 25(e), and Fig. 25(f)).
In Fig. 25(h), the global contrast decreases severely. From Fig. 25(i), we can see that
the proposed CIF method can produce a pleasing image with higher contrast.

Fig. 26 shows another example of low contrast image. Fig. 26(a) shows the
original image; we can see that the foreground subject is dark and in low contrast. By
comparing all the results, the contrast is insufficient for some methods (see Fig. 26(c),
Fig. 26(e), Fig. 26(f) and Fig. 26(g)). The result images produced by using HE and
Battiato’s EC method can enhance the contrast quite well, but the background is
over-exposed (see Fig. 26(b) and Fig. 26(d)). In Fig. 26(h), the global contrast
decreases severely. From Fig. 26(i), the proposed CIF method can produce

comparably pleasing images with higher contrast.

3.4 Experimental Results on a Dark Scene Image

Fig. 27 shows a dark scene image and the enhanced images by applying different
contrast enhancement methods. Fig. 27(a) shows the original image; we can see that
the subjects in the foreground are dark due to the bright neon and the Chinese lanterns.
By comparing all the results, the subjects in the foreground become clear by using HE
and proposed CIF method (see Fig. 27(b) and Fig. 27(Q)).
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(a) Original Image (b) HE

(c) Picasa software (d) EC

(e) LCC (f) SC

(9) Pei’s method (h) EF

(i) Proposed CIF

Fig. 21 Enhanced results of a normal image using different methods
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(a) Original image (b) HE (c) Picasa software

L o T e i

(g) Pei’s method (h) EF (i) Proposed CIF

Fig. 22 Enhanced results of a backlight image using different methods
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(i) Proposed CIF

Fig. 23 Enhanced results of a low contrast image using different methods
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(a) Original Image (b) HE

(c) Picasa software (d) EC

(i) Proposed CIF

Fig. 24 Enhanced results of a low contrast image using different methods
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(a) Original Image (b) HE

(c) Picasa software (d) EC

(e) LCC (f) SC

(9) Pei’s method

(i) Proposed CIF

Fig. 25 Enhanced results of a low contrast image using different methods
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(e) LCC () SC

(i) Proposed CIF

Fig. 26 Enhanced results of a low contrast image using different methods
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(i) Proposed CIF

Fig. 27 Enhanced results of a dark scene image using different methods
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CHAPTER 4

CONCLUSIONS

In this thesis, an image fusion method named classified image fusion (CIF) is

proposed for image contrast enhancement. In the proposed CIF method, several

virtual exposure images with different luminance are generated by using an imitative

“F-stop” function. Then, a classified image fusion method performed in DWT domain

is designed to produce a fused image in which every region is well-exposed. Four

types of .images including a normal image, a backlight image, two low contrast

images, and a dark scene image are used as the test images. The proposed method can

produce a pleasing image with every region well-exposed when comparing the

enhanced results with several methods, including HE, local gamma correction (LCC),

exposure correction (EC), shadow correction (SC), and Picasa software.
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