

國 立 交 通 大 學

多媒體工程研究所

碩 士 論 文

以俯視式環場電腦視覺及行動裝置作擴增實境

式室內導覽

A Study on Indoor Navigation by Augmented Reality and

Down-looking Omni-vision Techniques Using Mobile Devices

研 究 生：謝孟原

指導教授：蔡文祥 教授

中 華 民 國 一 百 零 一 年 六 月

以俯視式環場電腦視覺及行動裝置作擴增實境式室內導覽

A Study on Indoor Navigation by Augmented Reality and

Down-looking Omni-vision Techniques Using Mobile Devices

研 究 生：謝孟原 Student：Meng-Yuan Hsieh

指導教授：蔡文祥 Advisor：Wen-Hsiang Tsai

國 立 交 通 大 學

多 媒 體 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Multimedia Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2012

Hsinchu, Taiwan, Republic of China

中華民國一百零一年六月

i

以俯視式環場電腦視覺及行動裝置

作擴增實境式室內導覽

研究生: 謝孟原 指導教授: 蔡文祥 博士

國立交通大學多媒體工程研究所

摘要

本論文提出了一個結合電腦視覺及擴增實境技術在行動裝置上使用的室內

導覽系統。此系統以在室內環境天花板上安裝的魚眼攝影機作為基礎硬體架構。

在人物定位方面，提出了一個以電腦視覺為基礎的方法，藉由分析魚眼影像來偵

測使用者的活動資訊。為了得到影像中人物的真實空間位置，我們也提出了一個

空間映射的方法，來進行影像座標與真實空間座標的轉換。此外我們也整合了三

項技術來進行人物方向的偵測，分別為(一)分析使用者的移動路徑、(二)利用行

動裝置上的方向感測器、以及(三)藉由行動裝置上所貼一長條色彩標記，在魚眼

影像中分析該標記來進行方向偵測。另亦提出一適用於室內路徑的規劃方法，藉

由分析建築平面圖來得到障礙物區域，並以此為基礎得到障礙物迴避方向來進行

路徑規劃。伺服器會將導覽資訊傳送至行動裝置上的使用者端，此資訊包括了定

位資訊、周遭環境地點及導覽路徑。使用者端接收到的導覽資訊會被覆蓋在行動

裝置影像中對應的真實物件上，來提供擴增實境導覽介面。此外本研究也提出了

一個方法來估測行動裝置上攝影機的可視角，並以此建立一個轉換矩陣來將真實

空間中的點轉換到影像平面上。最後，實驗結果也顯示出了本研究所提出方法的

可行性。同時，定位資訊的精確測量結果也顯示了此系統在提供精確導覽資訊的

能力。

ii

A Study on Indoor Navigation by Augmented Reality

and Down-looking Omni-vision Techniques Using

Mobile Devices

Student: Meng-Yuan Hsieh Advisor: Wen-Hsiang Tsai

Institute of Multimedia Engineering, College of Computer Science

National Chiao Tung University

ABSTRACT

When people visit new indoor places or complicated indoor environments, there

usually needs a navigation system to guide them to desired destinations. In this study,

an indoor navigation system based on augmented reality (AR) and computer vision

techniques by the use of a mobile device like an HTC Flyer or an iPad is proposed.

At first, an indoor vision infra-structure is set up by attaching fisheye cameras on

the ceiling of the navigation environment. The user’s location and orientation are

detected at a server-side system, and the analysis results are sent to the client-side

system. Furthermore, the server-side system also sends the surrounding environment

information and the navigation path to the client-side system, which runs on the user’s

mobile device. The client-side system then displays the information in an AR way,

which provides clear information for a user to conduct the navigation.

For human localization, a vision-based localization technique is proposed, which

analyzes images captured from the fisheye cameras, and detects human activities in

the environment. In order to transform coordinates of image points into the real-world

space, a space-mapping technique is proposed. Furthermore, three techniques are

iii

integrated together to conduct human orientation detection effectively. The first is

analysis of human motions in consecutive images. The second is utilization of the

orientation sensor on the user’s mobile device. The last is localization of the color

edge mark attached on the top of the mobile device using omni-images. These

techniques are integrated together to provide a reliable human orientation detection

system.

A path planning technique for use to generate a path from a spot to a selected

destination via the use of an environment map is also proposed. The environment map

is constructed from a floor plan drawing of the indoor environment. An obstacle

avoidance map is created from the floor plan drawing, which is used to determine the

avoidance direction when a path collides with an obstacle in the environment.

Finally, the navigation information is overlaid onto the image shown on the

mobile device to provide an AR navigation interface. A method for estimation of the

field-of-view of the camera on the mobile device is proposed. The field-of-view is

used to construct a transformation matrix, by which real-world points can be

transformed into the screen plane, so that the navigation information can be overlaid

onto the corresponding real-world objects in the images to accomplish the AR

function of the system.

Good experimental results are also presented to show the feasibility of the

proposed methods for real applications. Precision measures and statistics showing the

system’s effectiveness in producing precise data for accurate visiting target displays

and environment navigations are also included.

iv

ACKNOWLEDGEMENTS

The author is in hearty appreciation of the continuous guidance, discussions, and

support from his advisor, Dr. Wen-Hsiang Tsai, not only in the development of this

thesis, but also in every aspect of his personal growth.

Appreciation is also given to the colleagues of the Computer Vision Laboratory in

the Institute of Computer Science and Engineering at National Chiao Tung University

for their suggestions and help during his thesis study.

Finally, the author also extends his profound thanks to his dear mom and dad for

their lasting love, care, and encouragement.

v

CONTENTS

ABSTRACT (in Chinese) ... i

ABSTRACT (in English) ... ii

ACKNOWLEDGEMENTS ... iv

CONTENTS ... v

LIST OF FIGURES .. viii

LIST OF TABLES .. xiii

Chapter 1 Introduction .. 1

1.1 Background and Motivation .. 1

1.2 Review of Related Works .. 2

1.2.1 Review of Related Indoor Navigation Works 3

1.2.2 Review of Related Augmented Reality Works 4

1.2.3 Review of Related Human Localization Works 4

1.2.4 Review of Related Path Planning Works.................................... 5

1.3 Overview of Proposed Methods .. 6

1.4 Contributions ... 7

1.5 Thesis Organization ... 8

Chapter 2 Ideas of Proposed Methods and System Design 9

2.1 Ideas of Proposed Method ... 9

2.2 Ideas of System Design .. 11

2.2.1 Server-side System ... 11

2.2.2 Client-side System .. 12

2.2.3 Cooperation between Client and Server Sides.......................... 13

2.3 System Configuration .. 14

2.3.1 Hardware Configuration ... 14

2.3.2 Network Configuration ... 16

2.3.3 Software Configuration .. 16

2.4 System Processes ... 17

2.4.1 Learning Process ... 17

2.4.2 Navigation Process ... 19

Chapter 3 Learning of Environments .. 23

3.1 Ideas of Proposed Environment Learning Techniques 23

3.2 Coordinate Systems Used in This Study .. 24

3.3 Construction of Environment Map .. 25

vi

3.3.1 Information of Environment Map ... 26

3.3.2 Finding Walkable Regions in Environment Floor Plan 27

3.3.3 Obstacle Orientation Analysis .. 29

3.3.4 Learning of Magnetic Field Information 32

3.3.5 Algorithm of Environment Construction 33

3.4 Camera Calibration .. 34

3.4.1 Fisheye Camera Calibration and Ground Point Location

Mapping .. 34

3.4.2 Calibration of Camera on Mobile Device 40

3.5 Experimental Results ... 44

Chapter 4 Human Localization in Indoor Environments by

Computer Vision Techniques ... 46

4.1 Idea of Proposed Human Localization Techniques 46

4.2 Human Location Detection .. 47

4.2.1 Background/Foreground Separation ... 47

4.2.2 Human Foot Point Detection and Computation........................ 49

4.3 Human Orientation Detection .. 50

4.3.1 Orientation Detection by Human Motions 50

4.3.2 Orientation Detection by Orientation Sensor on Client Device 54

4.3.3 Orientation Detection by Color Edge Mark on Top of Client

Device ... 56

4.3.4 Algorithm of Orientation Detection.. 60

4.4 Human Tracking .. 61

4.4.1 Idea of Human Tracking ... 61

4.4.2 Camera Hand-off .. 65

4.5 Algorithm of Human Localization and Tracking................................. 67

4.6 Experimental Results ... 68

Chapter 5 Path Planning for Navigation ... 71

5.1 Ideas of Proposed Techniques ... 71

5.2 Obstacle Avoidance ... 72

5.3 Path Finding ... 77

5.4 Path Simplification .. 79

5.5 Path Update .. 86

5.6 Algorithm for Path Planning .. 88

5.7 Experimental Results ... 89

Chapter 6 Augmented Reality for Navigation 92

vii

6.1 Ideas of Proposed Techniques ... 92

6.2 View Mapping between Real World and Client Device 93

6.2.1 Information for Use in Mapping between Real World and Client

Device ... 93

6.2.2 Transformation from Real World Spot to Client Device Screen

 .. 94

6.3 Rendering for Visiting Targets and Navigation Paths 99

6.3.1 Visiting Target Rendering .. 99

6.3.2 Rendering and Geometry Creation of Navigation Paths 104

6.4 Algorithm of Indoor Navigation by Augmented Reality 107

6.5 Experimental Results ... 108

Chapter 7 Experimental Results and Discussions 111

7.1 Experimental Results ... 111

7.1.1 Result of Real Navigations ... 112

7.1.2 Result of Precision Measurement ... 118

7.2 Discussions .. 123

Chapter 8 Conclusions and Suggestions for Future Works 125

8.1 Conclusions .. 125

8.2 Suggestions for Future Works ... 126

References .. 128

viii

LIST OF FIGURES

Figure 1.1 Concept of proposed indoor navigation system using augmented reality

technique .. 3

Figure 2.1 Cooperation between client and server sides. ... 13

Figure 2.2 The camera used in the proposed system. (a) The appearance of the camera.

(b) The camera installed on the ceiling in the indoor environment. 15

Figure 2.3 The HTC flyer used as the client device in this study. 15

Figure 2.4 The network architecture of the proposed system. 16

Figure 2.5 Learning process. .. 19

Figure 2.6 Navigation process. .. 22

Figure 3.1 Four coordinate systems used in this study. (a) The ICS. (b) The MCS. (c)

The relation between the MCS and the GCS. (d) The CCS. 26

Figure 3.2 Floor plan image of the experimental environment map............................ 28

Figure 3.3 Expanded obstacle image of the experimental environment map where the

white regions indicate the obstacle regions. .. 31

Figure 3.4 A part of the obstacle avoidance map of the experimental environment

(shown in green arrows)... 31

Figure 3.5 Calibration box and calibration coordinate system. 35

Figure 3.6 Calibration images. (a) The calibration captured from a fisheye camera. (b)

The calibration points of the calibration image (shown as red circles). .. 36

Figure 3.7 Mapping between the ICS and the CACS of a calibration point. 36

Figure 3.8 Projection of a point in CACS on the (x, y) plane, where Hc is the camera

height, C is the calibration point on the calibration board, and C’ is the

projection point. ... 37

Figure 3.9 Calculating the coordinates of a point between calibration points by

bilinear interpolation. ... 38

Figure 3.10 Superimposing calibration points on an omni-image. 40

Figure 3.11 The projection of calibration point on the ground, where G is the

projection point of C’, and H is the height of the camera affixed on the

ceiling. .. 40

Figure 3.12 Angle between the GCS axis and the CACS axis. The red circles indicate

the positions of calibration points. ... 40

Figure 3.13 View frustum and unit cube. (a) The view frustum. (b) The unit cube. ... 42

Figure 3.14 Field-of-view of the view frustum. ... 43

ix

Figure 3.15 Finding the field of view angle by measuring the visible region in

image. ... 44

Figure 3.16 Environment map of the experimental environment, visiting targets are

shown as green region, and cameras are shown as blue circles. The

interval of the gray grid lines represents one meter in real world. 44

Figure 3.17 Images captured from the two fisheye cameras of the experimental

environment. (a) An image captured from the Camera-1 of the map

shown in Figure 3.16. (b) An image captured from the Camera-2. 45

Figure 3.18 Obstacle avoidance map of the experimental environment. 45

Figure 4.1 Background/foreground separation. (a) The background image. (b) The

image of the environment with a human. (c) The foreground image by

subtracting (a) from (b). ... 48

Figure 4.2 Extended image lines of space lines which are perpendicular to the ground

will pass through the image center. .. 49

Figure 4.3 Detected foot point of a human (shown as red circle). (a) The foreground

image. (b) The original image captured from the camera (c) The foot

point in MCS. ... 51

Figure 4.4 A path of turning to the left where each human foot point is on the

left-hand side of the previous motion vector. ... 52

Figure 4.5 A path of walking forward where all points except P1 are on the left-hand

side of the previous motion vector. .. 52

Figure 4.6 A azimuth a between two azimuth an and a(n+1) mod 4, where V(a) is on the

right-hand side of ()nV a and on the left-hand side of
(1)mod4()nV a 

. 55

Figure 4.7 The color edge mark (The green strip) in the omni-image. 56

Figure 4.8 The red line and the color edge mark (shown as solid green line) are

projected onto identical image points. The vertical projection (shown as

dotted green line) of the color edge mark will be parallel to the red line.

.. 57

Figure 4.9 Orientation detection by color edge mark on top of the mobile device. (a)

The color edge mark region segmented from the omni-image. (b) The

approximating line (shown as green) obtained by applying line

approximation on (a). (c) The detected orientation (shown as green). 60

Figure 4.10 The bounding box distance measure. (a) The distance between A and B is

the lower of the distance from the center of A to the nearest point on B or

from the center of B to the nearest point on A. (b) The distance is zero. . 62

Figure 4.11 Tracking matrix at different situation. (a) A region is close enough to only

a track, and only one region is close enough to the track. (b) Two regions

x

are close enough to a track. (c) Two regions are close enough to two same

tracks. ... 63

Figure 4.12 Human location detection at four different locations. 69

Figure 4.13 Human orientation detection by color edge mark at four different

locations. .. 70

Figure 5.1 The whole direction region is divided to 8 parts, and each part is assigned

an index. ... 73

Figure 5.2 Apply the direction region parts to the neighborhoods of one block, and

each neighborhood is assigned an index. ... 74

Figure 5.3 Avoidance blocks of 8 avoidance ranges, where the avoidance regions are

shown as semi-transparent regions. Each avoidance region is assigned

three blocks, which include the primary avoidance block (shown as red

regions) of the same avoidance range and two secondary avoidance

blocks (shown as blue regions). ... 75

Figure 5.4 Path found in the path finding process. .. 79

Figure 5.5 The redundant point elimination and the distance elimination. The black

points represent the original immediate points of a path (a) The redundant

point elimination, where the two redundant points P2 and P3 can be

removed. (b) The distance elimination, the path length can be eliminated

by substituting P2 by the two red points. ... 80

Figure 5.6 Result of path finding and redundant point elimination. (a) Result of path

finding. (b) Result of applying the redundant point elimination on (a). .. 81

Figure 5.7 Process of distance elimination. The black points are the immediate points

of a path. The gray region represents the region of an obstacle, the line

between the two red points are a shortcut found by the distance

elimination process. ... 82

Figure 5.8 Result of applying the distance elimination on the path of Figure 5.6(b). . 84

Figure 5.9 Result of applying the path simplification on the path of Figure 5.6(a)..... 85

Figure 5.10 Results of the path update process. (green circles indicate the current

point and red circles indicate the last reachable point from the current

point) (a) The original planned path. (b) An updated path. (c) An updated

path which is not of the simplest form. (d) Result of applying the path

simplification on the path of (c). .. 88

Figure 5.11 Result of the path planning. (a) Result of the path finding. (b) Result of

applying the path simplification on the path of (a). 90

Figure 5.12 Result of the path planning. (a) Result of the path finding. (b) Result of

applying the path simplification on the path of (a). 90

Figure 5.13 Result of the path planning. (a) Result of the path finding. (b) Result of

xi

applying the path simplification on the path of (a). 91

Figure 6.1 A visiting target in the environment map and its corresponding location in

the GCS. ... 94

Figure 6.2 A camera in the GCS and the CCS. (a) A camera in the GCS with three

orthonormal vectors up, right, and forward. (b) The CCS....................... 96

Figure 6.3 Camera looks at a pitch angle . The green line indicates a line on the

horizontal plane. ... 97

Figure 6.4 An augmented image overlaid with visiting target information. 99

Figure 6.5 Parameters of a visiting target (shown as the green region). All the

parameters are in the GCS. .. 100

Figure 6.6 Four points transformed from the GCS of a visiting target. (a) Before

clipping to the range of the image size. (b) After clipping to the range of

the image size. .. 100

Figure 6.7 Display the visiting target information on the display position ptext. 101

Figure 6.8 Display point for a visiting target which is outside of the screen range. d

is the orientation of the user, and tard is the vector from the user’s

location to the visiting target. ... 102

Figure 6.9 A path and its display on a screen. (a) The path with three line segments.

The first two line segments are which should be concerned by a user. (b)

The display of the first two line segments of the path of (a). 105

Figure 6.10 The geometry of a display path .. 105

Figure 6.11 An augmented image with visiting target information. (a) An omni-image.

(b) Detected location and orientation. (c) The augmented image shown on

user’s mobile device. ... 108

Figure 6.12 An augmented image with visiting target information. (a) An omni-image.

(b) Detected location and orientation. (c) The augmented image shown on

user’s mobile device. ... 109

Figure 6.13 An augmented image with a navigation path. (a)(b)(c) The augmented

images at three different locations. (d) When the destination is outside of

the screen, the name of the destination will display on the edge of the

screen (shown as the yellow stroke text); this image shows that the

destination is on the rear of the user... 110

Figure 7.1 The environment map of the experimental environment.......................... 111

Figure 7.2 A result of browsing visiting targets at a certain location. The left-hand side

is the images captured from the fisheye cameras, and the right-hand side

is the augmented images shown on the user’s mobile device. 112

Figure 7.3 A result of navigation by a navigation path. (a) A user was at a certain

xii

location. (b) The detected location and orientation. (c) The augmented

image seen by the user. (d) The augmented image shown when the user

searched a visiting target, and there is a yellow stroke text shown on the

right-hand side of the bottom edge of the augmented image, which

indicates the direction of the destination. (e) The augmented image

shown when the user is turning to the right-hand side. (f) The augmented

image shown when the user is turning to the correct direction.............. 116

Figure 7.4 A user following the path shown in Figure 7.3(f) to move. 117

Figure 7.5 The four augmented images corresponding to the four locations as shown

in Figures 7.4(a) through 7.4(d), respectively. 118

Figure 7.6 Locations used for precision measurement in the human location detection

process.. 119

Figure 7.7 Line segments used for the line length measurement. 120

Figure 7.8 Locations used for precision measurement in human orientation detection.

.. 121

xiii

LIST OF TABLES

Table 7.1 Error of human location detection (unit: cm) ... 119

Table 7.2 Error of line length measurement. .. 120

Table 7.3 Error of human orientation detection. .. 122

1

Chapter 1

Introduction

1.1 Background and Motivation

When people visit new places or complicated indoor environments, such as

company buildings, large labs, malls, department stores, etc., there usually needs a

navigation system to guide them to desired destinations. Common navigation systems

use the global positioning system (GPS) to retrieve position data, but the GPS is

generally not suitable for use to acquire indoor locations, since signals will be

attenuated and scattered by roofs, walls, and other objects in indoor environments,

resulting in imprecise localization readings. In this study, it is desired to design an

indoor navigation system using a different localization technique. Specifically, we try

to design a vision-based localization technique to analyze the images captured from

fisheye cameras installed on ceilings in indoor environments and detect human

activities in the environments.

Meanwhile, we try to use mobile devices as user-end devices. Mobile devices are

getting more and more popular nowadays and are used more and more widely in

various applications. In recent years, many mobile devices become commercially

available, such as smart phones and tablets equipped with more advanced function

units like high-speed CPUs, graphics processing units (GPUs), digital cameras, device

orientation sensors, etc. Therefore, application developers can design many

complicated mobile applications or services that assist people in real-life events due to

the high-speed computational and advanced capabilities of the devices.

2

Moreover, as the on-device camera getting cheaper and more common, we can

use them to develop more interesting and useful applications by combining real-world

images captured from cameras with virtual augmentations created by computers. In

other words, the real-world environment can be augmented by computer-generated

objects to enhance the perception of the real world, and this is the so-called

augmented reality (AR) technique. In this study, we try to design an indoor navigation

system by the AR technique using mobile devices. We want to overlay artificial

navigation instructions mentioned above onto the real images captured with the

camera in real-time, so that users can just take their mobile devices and conduct

indoor-environment navigations conveniently. The concept of the proposed system is

shown in Figure 1.1.

In summary, the goal of this study is to develop an indoor navigation system with

the following capabilities.

1. Working in indoor environments, and being able to detect users’ positions and

orientations.

2. Integrating real images with virtual augmentations, such as the current position,

the next moving direction to the desired destination, nearby visiting target

information, etc., to provide users convenient and clear navigation interfaces.

3. Planning a proper path from a user’s location to a desired destination, and

updating the path dynamically when the user moves to a location not in the path.

1.2 Review of Related Works

In this section, we conduct a survey of works about indoor navigation and related

techniques, such as human localization, human orientation detection, navigation path

planning, and AR techniques.

3

Figure 1.1 Concept of proposed indoor navigation system using augmented reality

technique

1.2.1 Review of Related Indoor Navigation Works

In recent years, with outdoor navigation systems become more popular and

widely used, there are more and more researches about indoor navigation trying to

satisfy the demands for indoor environments. Lukianto, et al. [1] proposed an indoor

navigation system for use on the smart phone, which is based on an inertial navigation

system (INS) and provides the position, speed, and orientation of the user. Ozdenizci,

et al. [2] proposed a near field communication (NFC) based system, which detects the

user’s position by touching NFC tags with a smart phone.

Besides the sensor-based navigation systems mentioned above, several systems

using image processing techniques have been proposed. The most common technique

used in image-based systems is marker-based navigation with camera phones [3, 4],

in which a user must point the phone’s camera at a marker, and the system then will

recognize it and know where he/she is located.

Many other systems also use image-based techniques for AR. Werner et al. [5]

proposed a method to detect human positions in indoor environments by a

combination of image processing systems with a distance estimation algorithm using

4

the camera of a mobile device. Hile and Borriello [6] developed an indoor navigation

system that can find the camera pose by detecting the landmark in the phone camera

image and matching it with previously-cached landmarks, and then overlaying the

information onto the images.

1.2.2 Review of Related Augmented Reality Works

Augmented Reality enhances the real world with virtual objects or digital

information, so it has been used in many fields. For example, it can be used to help

mechanics to perform maintenance and repair tasks [7], treatment for psychological

disorders [8], context visualization [9], etc.

We develop our navigation system by the AR technique, and there are also other

systems using AR techniques. Jongbae and Heesung [10] proposed a vision-based

indoor navigation system, which recognizes the location of users by marker detection

and image sequence matching on images captured from a wearable camera, and

display navigation information in the AR way. Miyashita, et al. [11] designed a

museum guide system, which uses a markerless tracking technique and an AR

platform — Unifeye SDK.

1.2.3 Review of Related Human Localization Works

The human localization techniques of navigation systems mentioned in the

previous sections can be roughly classified into the two types of sensor-based and

image-based. Sensor-based localization techniques usually need infrastructures with

infrared, RFID, NFC tags [2], or other customer-designed hardware [1]. Image-based

localization techniques usually use markers attached on the environments or the

features acquired from the images captured by cameras [5] [6].

In this study, we propose an image-based localization technique, which uses

5

fisheye cameras to capture images and detect the user’s location. The fisheye camera

has the advantage of possessing wider fields-of-view, so we can use it to observe

wider regions in many applications. In our system, 2-D image points must be

transformed into the 3-D global space to get the actual position of the user. For this

purpose, we tried to use a space-mapping method proposed in [12]. But this method is

based on the use of fixed cameras. When the positions or other configurations of the

cameras are changed, we have to redo the works again. In this study, we propose a

method to solve this problem and improve the above method for more flexibility and

better usability.

1.2.4 Review of Related Path Planning Works

When a navigation system gets a user’s location and the user wants to reach a

certain destination, then the system should plan a path from the user position to the

destination.

About the path planning technique, Borenstein and Koren [13] proposed a

real-time collision avoidance method using a technique named Vector Field

Histogram, which can detect unknown obstacles and avoid collisions. Hwang, et al.

[14] proposed a path planning method by a path graph optimization technique which

triangulates the world space into a mesh representation, and then extract an optimized

path graph from the mesh. Bruce and Veloso [15] proposed a path planning technique

named rapidly-exploring random trees (RRTs) by waypoint caching and adaptive cost

penalty search, which improve re-planning efficiency and the quality of generated

paths.

6

1.3 Overview of Proposed Methods

The most important part of every navigation system is the localization function.

As discussed previously, we usually need a GPS to retrieve the position data in an

outdoor environment, but the GPS is not suitable for indoor environments due to its

rough localization precision. Therefore, we propose a new method for indoor

localization in this study under the assumption that there is only one user in the indoor

environment taken care of by the system. At first, we have to build a top-down vision

infrastructure in the indoor environment, which has a sufficient number of fisheye

cameras installed on the ceiling. Then, an environment map model is created, which

includes the location information of the cameras and the visiting targets for guidance.

Each visiting target means a place or object in the real environment, such as an exit, a

restroom, a water dispenser, and others that people might be interested in, and this

term will be used in the subsequent sections. The cameras are with fisheye lenses

which have wide fields-of-view. Such cameras can be deployed to monitor the entire

environment with a smaller number of them. Then, we analyze the images captured

from the cameras to detect the user’s position on a server-side system.

After getting the user’s position, his/her orientation must be detected to decide

what the camera on the user’s mobile device “sees.” Then, the system can send

relevant navigation information to the client-side system through a wireless network

in the environment, and the user at the client site can realize what the visiting targets

in sight on the device display screen are or how to get to its desired destination. In our

system, we detect the user’s orientation by integrating three different techniques,

which respectively are human motion analysis, localization by the e-compass data,

and detection of a color edge mark on top of the hand-held client device at the client

site.

7

In order to guide a user to a desired destination, we propose a path planning

technique for indoor navigation. The path planning technique is based on a floor plan

of the indoor environment in the form of a graphic picture. By the technique, we

analyze the floor plan to localize obstacle and walkable regions in the plan, and use

the resulting information to plan paths according to the destination which is taken as

input to the technique.

After getting the user position and orientation, the server system sends the

navigation information to the client system, which then displays the information on

the device screen at the client site. The navigation information data includes the name

and distance of visiting targets in sight of the user, the navigation path to the desired

destination, etc. The client system will map the information from the real world to the

screen of the hand-held device. Then, the visiting target information or the navigation

path can be overlaid onto the real places or objects shown in the current image taken

of the environment by the built-in camera of the device. In other words, the device

displays the navigation information in an AR way. As such, the user can understand

the surrounding environment easily and intuitively.

1.4 Contributions

The major contributions of this study are listed in the following.

1. A new AR-based indoor navigation system using computer vision is proposed to

satisfy the demands of guidance or browsing of indoor environments.

2. An image-based localization method by analyzing the images captured from the

fish-eye cameras affixed on the ceiling is proposed to compensate for the

insufficiency of the GPS in the indoor environment.

3. An augmented reality interface is proposed to provide a user with surrounding

8

navigation information and the navigation path from the position of the user to the

specified destination.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, we introduce

the configuration of the proposed system and the system process in detail. In Chapter

3, we introduce the proposed process for learning of an indoor environment, which

includes the data that we will use in the proposed system. In Chapter 4, the proposed

user localization method for indoor environments and the proposed user orientation

detection method are described. In Chapter 5, we introduce the proposed path

planning technique. In Chapter 6, we describe the proposed AR technique, a method

to conduct the perspective transformation for information displays on the user’s

device, and the adopted technique for rendering augmentations on real images. In

Chapter 7, some experimental results to show the feasibility of the proposed

techniques for indoor navigation are presented. At last, conclusions and some

suggestions for future works are given in Chapter 8.

9

Chapter 2

Ideas of Proposed Methods and

System Design

2.1 Ideas of Proposed Method

We propose an image-based localization technique for AR-based guidance of

indoor environments in this study. The system analyzes the omni-images captured

from the cameras affixed on the ceiling, and then finds the user’s foot points in the

omni-images. When we get the user’s foot points, we transform their coordinates in

the image coordinate system (ICS) into the global coordinate system (GCS) to get the

actual position of the user in the indoor environment. In order to conduct the above

transformation, we construct a mapping table between the ICS and the GCS in

advance.

Next, we must detect the user’s orientation after detecting the user’s location. In

order to accomplish this aim, the simplest way is to track the user’s locations in

consecutively acquired images, and use the resulting motion vectors of the user’s foot

points to compute the user’s orientation. But when the user is not walking, this

method will not work because there is then no more moving vector for use. In this

situation, we propose other techniques to overcome the problem. The first technique is

to utilize the orientation sensor installed in the user’s device mentioned previously.

The orientation sensor measures the azimuth angle of the device by detecting changes

and disturbances in the magnetic field in the surrounding environment. However,

according to our experimental experience, the azimuth values detected are not stable

10

enough for our application due to indoor magnetic interferences from various sources.

Therefore, we propose a second technique to improve the stability of detected

orientations, that is, to attach a color edge mark on the top edge of the user device,

and detect this line mark appearing in the omni-image to compute a more accurate

orientation of the user at each visiting target.

In addition, in order to guide users to their desired destinations, we propose

further a path planning technique for the proposed indoor AR navigation system. An

environment map model is constructed first from a graphic drawing of the floor plan

of the environment. Then, walkable regions in the floor plan are detected by image

processing techniques with the graphic drawing as input. In this way, we can know

where the obstacles are in the environment. The orientations of the obstacles then are

analyzed to decide how to avoid them and where to go next. When a user wants to go

to a destination, the system will search the constructed environment map, and get the

destination point in the map. In the meantime, the system will plan a path starting

from the user position and ending at the destination. When the planned path collides

with any obstacle, it follows the orientation of the obstacle’s boundary to avoid the

collision and go to the next immediate visiting spot. Repeating the above steps until

reaching the appointed destination, we can get a complete navigation path finally as

the desired path planning result.

When the client-side system receives the navigation information sent from the

server, the system will display the information on the device screen. The navigation

information includes the visiting target information and the navigation path itself. The

visiting target information includes the name of the visiting target and its coordinates

in the GCS. The navigation path contains the GCS coordinates of the points on the

path. In order to display the information in an AR manner, the client-side system must

transform the GCS coordinates onto a 2D screen plane. The field-of-view of the

11

camera of the client device must also be estimated to get a perspective projection

matrix. With the matrix, the 3D points of the navigation information can be

transformed into the 2D screen plane. Then, the navigation information can be

overlaid onto the real places or objects in the image taken of the current scene, and the

user can so understand the surrounding environment easily, achieving the major goal

of AR-based indoor environment guidance of this study. This step of navigation

information overlaying on real environment images for displays on the user’s mobile

device will be called display rendering in the sequel of this thesis.

2.2 Ideas of System Design

In this study, the proposed system is of a client-server architecture, which may be

decomposed into two parts: a server side and a client side. The server-side system is

used for conducting complicated works with heavy computations, and it runs on a

centralized computer. The server-side system will be introduced in more detail in

Section 2.2.1. The client-side system runs on the user’s mobile device, which obtains

navigation information from the server-side system and displays it on the screen of

the device. The client-side system will be introduced in more detail in Section 2.2.2.

Finally, the cooperation between the client and server sides will be introduced in

Section 2.2.3.

2.2.1 Server-side System

The server-side system runs on a centralized computer as mentioned, and is

connected to the cameras on the ceiling through a local area network. In the learning

stage, we build an environment map, which includes environment information such as

target locations, target titles, and camera locations. In the navigation stage, the server

12

accesses the omni-images captured from the cameras, and analyzes the omni-images

to detect the user’s location and orientation at each visited spot. After the server

detects a user via images acquired by the cameras, it sends the user’s location,

orientation, and the information of nearby visiting targets to the user’s client-side

system. All of such information will be updated when the user moves. When the user

wants to reach a certain destination, the server will receive a request from the client,

and then plan a path from the user’s location to the destination, and send a set of

intermediate points of the path to the user’s client-side system to display.

As a whole, the server is designed mainly for conducting human localization and

path planning, and these two tasks are both heavy computational works. Because the

client-side system runs on the user’s mobile device, which has lower power and

inferior computational capabilities than the centralized computer, conducting these

heavy computational works on the server can increase the computational performance

and reduce the battery power usage of the client-side system.

2.2.2 Client-side System

The client-side system runs on the user’s mobile device. Because the mobile

device held by the user (like an iPad) has lower power and inferior computational

capabilities than a laptop or desktop computer, the client-side system on it must be

assigned as few works as possible to reduce the power consumption and increase the

computational performance. Therefore, most tasks carried out by the client-side

system are limited to be those related to information displays, such as view projection,

display rendering, and creation of the navigation path’s geometric shape (arrows,

thick line segments, etc).

When a user enters the environment, the user’s client-side system is connected to

the server through a network and receives relevant information from the server. Then,

13

the client-side system just needs to display the information on the screen of the user’s

mobile device.

2.2.3 Cooperation between Client and Server Sides

The server and client side systems are described in Section 2.2.1 and Section

2.2.2. Here we describe the cooperation between the client-side and server-side

systems in more detail. An illustration of the cooperation between the two systems is

shown in Figure 2.1.

When the client is connected to the server, the latter will begin to detect the user’s

location and orientation, and send the location coordinates, the orientation vector, and

the nearby environment information to the user. The information will be updated

continuously to make sure that the user can receive correct and immediate messages.

When the user wants to reach a certain destination, the client-side system will send a

request, which includes the name of the destination, to the server. After server

receives the request, it will plan a path starting from the user’s location and ending at

the destination. Finally, a set of intermediate points of the path will be sent to the

client.

Server

Human localization

Path planning

Client

View projection

Display rendering

Creation of navigation path

shapes

Location, orientation, &

nearby visiting target information

Set of points

of navigation path

Human location

Environment

information

Desired destination

Figure 2.1 Cooperation between client and server sides.

14

2.3 System Configuration

In this section, we will introduce the configuration of the proposed system. The

hardware of the proposed system includes fisheye cameras which we use for human

detection, and the mobile device which we use as the client-side device. It will be

introduced in more detail in Section 2.3.1. In Section 2.3.2, we will describe how to

connect the hardware over the network, and how it operates. Finally, we will

introduce the software development environment and the operating system we use

both in the server-side system and in the client-side system.

2.3.1 Hardware Configuration

The camera we use in this study is of the model of Axis 207MW, which is made

by Axis Communications, and the original lens is replaced with a fisheye lens in this

study to expand its field-of-view. The Axis 207MW camera has a dimension of

855540mm (3.3”2.2”1.6”, not including the antenna), and a weight of 190g

(0.42 lb., not including the power supply). Its appearance is shown in Figure 2.2(a).

The maximum resolution of the images captured with it is up to 12801024 pixels.

For performance efficiency, we use the resolution of 640480 pixels in our system,

and the frame rate is up to 15 fps. The cameras can be accessed through wireless

networks (IEEE 802.11g/b), but for speed improvement, we access the cameras

through the Ethernet.

We build our experimental environment in the Computer Vision Lab at National

Chiao Tung University by installing several fisheye cameras on the ceiling of the lab.

(see Figure 2.2(b)). The images captured from the cameras are analyzed by the

centralized computer to detect the user’s location and orientation. The server sends the

navigation information to the users’ mobile device so that the user can begin the

15

navigation. The mobile device we use in the experiment is a HTC Flyer tablet made

by HTC Corporation. Its appearance is shown in Figure 2.3. The HTC Flyer has a

dimension of 19512213.2mm (7.7”4.8”0.5”) and a weight of 420g (0.93 lb). It

has a screen size of 7 inches, a camera acquiring 5-megapixel images, and an

e-compass that can detect the device orientation in a magnetic field, etc. The user uses

the HTC Flyer as the client device, and connects it to the server through a wireless

network.

(a) (b)

Figure 2.2 The camera used in the proposed system. (a) The appearance of the

camera. (b) The camera installed on the ceiling in the indoor environment.

Figure 2.3 The HTC flyer used as the client device in this study.

16

2.3.2 Network Configuration

Using the Ethernet is more reliable for our application in this study than using a

wireless network. Therefore, the cameras and the centralized computer are connected

through a local area network (LAN) in this study. The server can access the images

captured from the cameras in a more reliable way through the Ethernet, and so one

can make sure that the system always accesses correct and immediate images and

messages.

The client device we use is a mobile device, so it must access the server through

the wireless network. The most commonly-used wireless networks currently are the

Wi-Fi and 3G networks, and the client device can access the server and receive the

navigation information using both of them. For reliability and speed considerations,

we set up a Wi-Fi access point in our experimental environment, and the user can

connect to the server through the Wi-Fi network in the environment. A complete

network architecture is shown in Figure 2.4.

LAN

ServerClient Device

Camera Camera

Wi-Fi Network

Figure 2.4 The network architecture of the proposed system.

2.3.3 Software Configuration

The server-side system is written in C# programming language using the

17

Microsoft Visual Studio 2010 development environment, and the system operates on

the Windows 7 operating system. The server-side system accesses the cameras by the

AXIS Media Control SDK (AMC SDK), which is provided by the manufacturer of the

cameras, Axis Communications. The AMC SDK provides the application

programming interface (API) for developers to access the camera images or control

the cameras using C# and C++ programming languages.

As to the client-side system, it is written in the Java programming language and

operates on the Android 2.3.4 operating system. The client-side system uses the

Qualcomm’s Augmented Reality (QCAR) platform, which provides many useful

functions for AR developments on mobile devices. But in our system, we only use the

QCAR to handle the capturing of camera images. The rendering of 3D augmented

objects is conducted by the Android OpenGL API.

2.4 System Processes

2.4.1 Learning Process

The goal of the learning process of the proposed system is to establish the

environment map, which includes information about the visiting targets, cameras,

magnetic fields, and obstacle orientations. The entire learning process is shown in

Figure 2.5, and more details of it will be described in Chapter 3. Only a brief

description of the process is given here.

First, we establish an environment map in the form of a floor plan drawing. The

floor plan is drawn at a specific ratio relative to the actual size of the environment.

After specifying the ratio, we compute the corresponding size in the unit of pixel. The

use of this scaling ratio is necessary for the transformation between the ICS and the

GCS. Next, the visiting targets of the environment are specified on the environment

18

map. Furthermore, we must also specify the installation information of the fisheye

cameras. The installation information includes the location and height of the cameras,

which is necessary for use in computing the transformation between the image

coordinate system and the map coordinate system.

After the environment map is established, the learning processes can be

decomposed into two phases: learning for path planning and learning for human

localization. Before we perform path planning, the system must know the information

of obstacles. The path planning algorithm can determine how to avoid the obstacles in

the environment by the obstacle information. Therefore, the goal is to analyze the

information of obstacles, which includes obstacle location and obstacle orientation, in

the path planning phase. A more detailed description of obstacle analysis will be given

in Section 3.3.3.

In the human localization phase, we calibrate the cameras, including the

server-side fisheye cameras and the client-side on-device camera, to map the points

between different coordinate systems. A more detailed description of the camera

calibration process will be described in Section 3.4. Furthermore, the system detects

the user’s orientation by aid of the e-compass on the client device. The e-compass, as

mentioned before, is an orientation sensor that measures the azimuth angle of the

device by detecting the changes and disturbances in a magnetic field around the

currently-visited spot. However, the magnetic field will be interfered by the structural

steel elements in a building, so the magnetic field does not have an identical

distribution at every location in the environment. To learn the magnetic field in the

visited environment, we establish an azimuth map, which keeps a record of four

direction azimuth values for every sample location in the environment map. A more

detailed description of the magnetic field learning process will be described in Section

3.3.4.

19

Learning of

human

location

Learning of

path planning

Environment map

establishment

Start of learning

Specify locations of

visiting targets and

cameras

Create floor plan drawing

with a scaling ratio

Obstacle orientation

analysis

Magnetic field

learining

End of learning

Environment map

database

Camera

calibration

Figure 2.5 Learning process.

After the above learning steps, we have completed the preparation works needed

in the navigation stage of the proposed system process. In the next section, we will

describe the works conducted in the navigation stage.

2.4.2 Navigation Process

In the navigation stage, the server analyzes the omni-images captured with the

cameras continuously, and sends the environment information to the client. The

client-side system displays the information on the screen of the user’s mobile device.

When the user wants to reach a certain destination, the server will plan a path, and

20

send a set of intermediate points of the path to the client. The entire navigation

process proposed in this study is shown in Figure 2.6.

At the server side, the first step is human location detection. The proposed

human localization process transforms the detected human location from the ICS into

the GCS using the camera information we have acquired in the learning stage. Then

the user’s location is used in the steps of human tracking and human orientation

detection. The objective of the human tracking step is to identify the same human in

consecutive video frames, and then compute the user’s speed to determine whether

the user is walking or not. In the human orientation detection step, we detect the

orientation by analyzing the color edge mark, which is on the top of the client device,

in the omni-image. However, when the color edge mark is not observable in the

omni-image, another technique must be adopted. For this, we compute the orientation

by use of detected human motions, or by the azimuth map constructed in the learning

stage. Here we also determine the nearby visiting targets seen by the user according to

the user’s location. Finally, the server sends the information of the user’s location and

orientation, and the nearby visiting targets to the user’s mobile device (the client).

Next, if the server receives a request that the client wants to reach a certain

destination, the server begins the path planning process; if not, the server continues to

conduct human localization repetitively. At the first step of path planning, the system

tries to find a path starting from the user location and ending at its desired destination

using the obstacle information analyzed in the learning stage. But the found path may

be not of the simplest form; i.e., there may exist two non-connected points in the path

that can instead be connected together. In such cases, we simplify the path to be of a

simpler form. Finally, a set of resulting intermediate points of the path will be sent to

the client.

When the client receives the navigation information mentioned above, it begins

21

to conduct the work of display rendering by “drawing” the information, which

includes the visiting target information and the navigation path, on the device screen

for the user to inspect. In order to map real world objects onto the mobile device

screen, the first step of the client is to set up a perspective projection by use of the

location and orientation of the user. The orientation detected from the server is an

azimuth angle, which represents a direction in a horizontal plane. However, a user

might tilt the client device to watch the environment at a pitch angle rather than at a

horizontal angle, so we add the pitch angle value to the detected orientation angle to

provide a correct final orientation of the user’s device. The pitch angle can be

obtained from the orientation sensor of the client device.

After the client receives a navigation path, it creates a geometric shape of the

path; specifically, the client will transform the set of intermediate points of the path

into an arrow shape pointing to the destination. Finally, the client begins to draw the

information and overlays the generated virtual objects onto the real image taken of the

current scene to accomplish the display rendering task.

The above processes of both the server side and client side are run repeatedly

until the client terminates the navigation system.

22

Server

Path planning

Human localization

Start of navigation

Human tracking

Human location detection

Path finding

End of navigation

Images

captured

from cameras

Human orientation

detection

Environment

map

information

Path simplification

Does client search

for a destination?

Yes

No

Does client still

need navigation?

No

Yes

Client

Display rendering

Creation of

navigation path

shapeSet of intermediate

points of path

Set up projection

Location,

orientation,

and

nearby visiting target

 information

Image

captured

from

camera

Orientation

sensor data

Still need

navigation?

No

Yes

Figure 2.6 Navigation process.

23

Chapter 3

Learning of Environments

3.1 Ideas of Proposed Environment

Learning Techniques

In the learning stage, we must construct an environment map, which includes

information about the cameras, visiting targets, magnetic field, and obstacles. Then

we can use such information in the processes conducted in the navigation stage, such

as human localization and path planning. Specifically, we use a digital drawing of the

floor plan of the environment to create the environment map, and specify the location

of the cameras and the visiting targets in the map. A more detailed description of map

construction will be introduced in Section 3.3.

After environment map construction, we continue to learn the magnetic field in

the environment. The magnetic field is used for human orientation detection by the

orientation sensor on the client device, and the output of the orientation sensor is an

azimuth value specifying the orientation of the hand-held client device. In the

magnetic field learning stage, we try to construct an azimuth map, which keeps a

record of four-direction azimuth values for every sample location in the environment

map.

Meanwhile, we also analyze the floor plan drawing of the environment to detect

obstacles. The resulting obstacle information is used for collision avoidance in the

path planning process. In the first step of obstacle analysis, we analyze the floor plan

drawing to find the walkable regions in the environment, and detect accordingly the

24

obstacle regions. Next, we compute the orientations of the obstacles, which then are

used in the path planning process to find proper moving directions at each spot for

collision avoidance. These moving directions are called “avoidance directions” in the

sequel of this thesis.

At last, we calibrate the cameras at both the server and client sides. For the

server-side fisheye cameras, instead of calibrating the camera’s intrinsic and extrinsic

parameters, we adopt a space-mapping technique [12] for transformations between the

coordinate systems used in this study, and extend the technique to be more flexible

with better usability for our study. For the client-side camera on the mobile device, we

introduce a simple technique to estimate the field-of-view of the camera, which then

is used to map the locations of real-world objects onto the device screen. The

proposed camera calibration scheme will be described in detail in Section 3.4.

3.2 Coordinate Systems Used in This

Study

In this section, we will introduce the coordinate systems used in this study, which

describe the relations between the used devices and the environment map. The

following are the four coordinate systems used in this study.

(1) Image coordinate system (ICS): denoted as (u, v). The u-v plane of this system

coincides with the image plane of each fisheye camera and the origin is at the

top-left of the image plane.

(2) Map coordinate system (MCS): denoted as (Mx, My). The MCS is used to

represent the environment map. The Mx-My plane coincides with the image plane

of the floor plan. The origin is at the left-top position of the image plane.

(3) Global coordinate system (GCS): denoted as (Wx, Wy, Wz). The Wx-Wy plane of

25

this system coincides with the ground and the z coordinates “grow to the top.”

The origin is at the left-top point in the MCS.

(4) Camera coordinate system (CCS): denoted as (x, y, z). The CCS is used to

represent the real world space with respect to each fisheye camera. The x

coordinates “grow to the right of the camera,” the y coordinates “grow to the top

of the camera,” and the z coordinates “grow to the back of the camera.” The

origin is at the lens center of the camera.

In the proposed system, we use a floor plan drawing of the environment to

establish the environment map, and the MCS is used for describing the geometry of

the map, as mentioned previously. The relationship between the MCS and the GCS is

illustrated in Figure 3.1. As shown in the figure, the origin of the MCS is mapped to a

corresponding point in the real-world space. However, for the MCS the unit of pixel is

used, so the global coordinates should be computed by multiplying the MCS

coordinates by a scaling factor of the floor plan in the following way:

where s is the scaling factor which is found by experiments.

3.3 Construction of Environment Map

In this section, we will introduce the method we propose to construct the

environment map. The environment map is like a database, which contains the

information that we use in the navigation stage. In Section 3.3.1, the information

included in the environment map will be introduced briefly. And other information we

need for the proposed system will be described in more detail in the subsequent

;x x y yW sM W sM  (3.1)

26

sections.

v

u

My

Mx

(a) (b)

My

Mx

Wz

Wx

Wy

GCS

MCS

z
x

y

Camera

(c) (d)

Figure 3.1 Four coordinate systems used in this study. (a) The ICS. (b) The MCS. (c)

The relation between the MCS and the GCS. (d) The CCS.

3.3.1 Information of Environment Map

The information we include in the environment map includes the camera

locations, visiting target information, obstacle information, and magnetic field

information. The environment map we use is 2-D in dimension; in other words, it

contains only one floor structure and 2-D coordinates. But the information contained

in the map can be three-dimensional, that is, it includes height information.

The camera location specifies the position of a fisheye camera and its height. The

27

height of the camera is used for the transformation between the ICS and the GCS. In

addition, a visiting target means a place or object in the real world of interest to

visitors. We can place many visiting targets in the environment. Also, a user can

search his/her desired destination by a keyword. The visiting target information

includes the name of a visiting target, its coordinates in the GCS, and its range. The

visiting target name is used for searching and displays. The location of the visiting

target is specified by 3-D coordinates in the environment map, including its height.

The range of the visiting target represents the visible region of the target in the real

world. So the range is represented as a vertical plane in the real world, and a vertical

plane is described by a height and a width.

The environment map includes the obstacle information as well. The obstacle

information is used for path planning. It includes the regions and orientations of the

obstacles in the environment. The obstacle region is used for collision detection, and

the orientation is used for avoidance direction analysis. A more detailed description of

path planning will be described in Chapter 5.

The last type of information included in environment map is the learned data

about the magnetic field in the environment. The result of the magnetic field learning

process is an azimuth map, which can be used for orientation detection. A more

detailed description of the magnetic field learning process will be described in Section

3.3.4.

3.3.2 Finding Walkable Regions in Environment

Floor Plan

The environment map is created from an image of the digital floor plan drawing,

which we call the floor plan image. The floor plan image is a grayscale bitmap in

28

which walkable regions are drawn with white pixels. Also, we specify a scaling factor

of the floor plan image as mentioned previously, which is used for computing the

actual sizes of real objects from their sizes specified in unit of pixel in the image.

Furthermore, if the floor plan drawing is a paper copy, then we can use a digital

machine like a scanner or a camera to take a picture of it. For the experimental

environment, the floor plan image we use is shown in Figure 3.2, which is created

using the Microsoft Visio 2007 and exported as a bitmap.

Figure 3.2 Floor plan image of the experimental environment map.

After we get a floor plan image, we can begin to construct the environment map.

Here we assume that the walkable regions of the floor plan image are connected with

white pixels, as mentioned previously. Then, we have just one walkable region which

is the largest connected component in the image. Furthermore, we assume that the

obstacle regions and the walkable region are separated by non-white pixels. Finally,

we describe the algorithm we propose to find the walkable region from the floor plan

image.

Algorithm 3.1 Finding the walkable region in the floor plan image.

Input: A floor plan image If, where the walkable region is the largest connected

component and drawn with white pixels, and the obstacle regions and the

walkable region are separated by non-white pixels.

29

Output: A binary walkable region image Iw, where the pixel values of the walkable

region are specified by 1 and those of the obstacle regions by 0.

Steps

Step 1. Apply a threshold value t on If to get a temporary binary image Itmp: if If(x, y)

> t, then regard the pixel at (x, y) as white, and set Itmp(x, y) to 1; else, set

Itmp(x, y) to 0.

Step 2. Find connected components in Itmp using a connected component labeling

algorithm.

Step 3. Select the maximum connected component Cmax from the result of the last

step as the walkable region.

Step 4. For all (x, y) in Iw, set Iw(x, y) to 1 if Cmax contains the pixel at (x, y); else, set

Iw(x, y) to 0.

3.3.3 Obstacle Orientation Analysis

In this section, we introduce the proposed obstacle orientation analysis scheme,

which is used for obstacle avoidance in the path planning process. We can find

avoidance directions from the walkable region image obtained by Algorithm 3.2. The

details are as follows.

Algorithm 3.2 Finding avoidance directions.

Input: A walkable region image Iw, where the pixels of the walkable region are

specified by 1 and those of the obstacle regions by 0.

Output: An obstacle avoidance map A.

Steps

Step 1. Get an obstacle image Iobs from the negative image of Iw

Step 2. Dilate the obstacle image Iobs to expand the obstacle regions

30

Step 3. Calculate the x and y derivatives of Iobs using the Sobel operator, resulting in

two derivative maps Dx and Dy.

Step 4. Calculate the edge orientation and create an orientation map O by the

following steps :

(1) set O(x, y) to the angle between the vector ((,)xD x y , (,)yD x y) and

the vector (1, 0) if (,) 0yD x y  or (,) 0xD x y  .

(2) set (,) 1O x y   , otherwise.

Step 5. Split O into small blocks, and for each block Bij in O, construct a block

orientation map Ob by the following steps:

(1) set (,)b ijO i j m if Bij contains any non-negative value, where mij is

the mean value of all non-negative values in Bij;

(2) set (,)b ijO i j m if Bij contains all negative values and the region of

Bij in O is all walkable, where ijm is the mean value of all

non-negative values whose distances to the center of Bij are smaller

than a threshold d;

(3) set (,) 1bO i j   , otherwise.

Step 6. Add  to each element in Ob in the following way to get the obstacle

avoidance map A:

(,) (,)
2

bA i j O i j


  .

In order to make a planned path not too close to obstacles, we dilate the obstacle

image to expand the obstacle regions in Step 2, and an example of the result is shown

in Figure 3.3. If we collide with an obstacle, we may avoid it by going left or right.

According to this concept, the avoidance directions are the vectors perpendicular to

31

the obstacle orientation vector.

In Step 5, we determine the values of Ob under three conditions based on the

content of the obstacle image: 1) if a block Bij contains edges of obstacle regions, then

the resulting value is the mean of the angle values; 2) if Bij is just the entire walkable

region, the region of Bij in O will be given all negative values, so the resulting value is

set to the mean of the angle values around Bij; and 3) if Bij is just an entire obstacle

region, it means we will never go to the region, so we do not have to compute the

avoidance direction in such a region (marked by the value 1).

Finally, in Step 6, we add to get the angle of the avoidance directions.

Therefore, each element in the map A represents one of two avoidance direction

vectors. An example of the avoidance direction map yielded by the above algorithm is

shown in Figure 3.4.

Figure 3.3 Expanded obstacle image of the experimental environment map where

the white regions indicate the obstacle regions.

Figure 3.4 A part of the obstacle avoidance map of the experimental environment

(shown in green arrows).

32

3.3.4 Learning of Magnetic Field Information

We can determine the human orientation by the orientation sensor on the client

mobile device. The orientation sensor measures the azimuth angle of the device by

detecting changes and disturbances in the magnetic field around the currently-visited

spot. However, according to our experimental experience, the detected azimuth values

are not stable enough for our application due to indoor magnetic interferences from

various sources. The azimuth information is not used alone for human orientation

detection in this study.

In the proposed magnetic field learning process, we measure the azimuth values

at several sample points in the environment and construct an azimuth map, which then

can be used for human orientation detection. The learning process is described as an

algorithm in the following, where the four directions in the environment map are

specified by direction vectors (1, 0), (0, 1), (1, 0), and (0, 1).

Algorithm 3.3 Construction of an azimuth map for the experimental

environment.

Input: Sample points S in the environment.

Output: An azimuth map A.

Steps

Step 1. Take the client device, and go to the first sample point S0 at coordinates (x, y)

in the environment map A.

Step 2. Face toward the direction (1, 0) in A, and measure the azimuth value a0.

Step 3. Face toward the direction (0, 1) in A, and measure the azimuth value a1.

Step 4. Face toward the direction (-1, 0) in A, and measure the azimuth value a2.

Step 5. Face toward the direction (0, -1) in A, and measure the azimuth value a3.

Step 6. Store the value set (x, y, a0, a1, a2, a3) in A.

33

Step 7. Go to the next sample point and repeat Steps 2 through 6 until reaching the

last sample point.

The above algorithm samples four azimuth values at every sample point. At each

same point, four azimuths are measured for four different directions, respectively,

each direction being perpendicular to the next one and the last perpendicular to the

first one.

After we construct the azimuth map, we can use it to determine the human

orientation. A more detailed description of such human orientation detection using the

azimuth map will be described in Chapter 4.

3.3.5 Algorithm of Environment Construction

In this section, we summarize the processes described in the previous sections, as

a total process  the process of environment construction, as described in Algorithm

3.4 below.

Algorithm 3.4 Construction of environment map for the experimental

environment.

Input: A floor plan image I.

Output: An environment map M.

Steps

Step 1. Affix fisheye cameras onto the ceiling at proper locations in the

environment.

Step 2. Create an environment map M by use of the floor plan image I, and specify

a scaling factor.

Step 3. Specify the locations of the cameras on M.

Step 4. Specify the locations and the names of the selected visiting targets on M.

34

Step 5. Find the walkable region in I by Algorithm 3.1.

Step 6. Find obstacle regions and analyze avoidance directions in I by Algorithm

3.2.

Step 7. Construct an azimuth map by Algorithm 3.3.

3.4 Camera Calibration

In the section, we will describe the camera calibration processes proposed in this

study. As mentioned previously, we use fisheye cameras to monitor the environment

and analyze the omni-images to detect the human in the environment. In this study,

we assume that there is only one human walking in the field of view of each fisheye

camera. For the fisheye camera, we propose a space-mapping method for the

transformation between the GCS and the ICS. Beside the fisheye cameras, the camera

on the client mobile device must also be calibrated. A more detailed description of the

camera calibration processes will be described in the following two sections.

3.4.1 Fisheye Camera Calibration and Ground Point

Location Mapping

(A) Construction of a Calibration Box

Before the calibration process, we construct a calibration box first. The

calibration box is a cube with four vertical planes and one horizontal plane. Each of

the vertical and horizontal planes is called a calibration board in the subsequent

sections. The calibration board is drawn to be of a chessboard pattern, which consists

of 81 squares arranged in two alternating colors, namely, black and white. The central

35

square of the calibration board is drawn in the form of a cross pattern. Here we

introduce a calibration coordinate system (CACS), which contains three coordinates

(x, y, z) in the unit of cm. The origin of the CACS is located at the center of the

central square of the horizontal calibration board. The x-y plane of the CACS is the

aforementioned horizontal plane, and the z coordinates grow to the top. Therefore, we

can obtain the coordinates of every corner point of the squares by the square size and

the calibration board size. The calibration box and the CACS are shown in Figure 3.5.

z

x

y

Figure 3.5 Calibration box and calibration coordinate system.

(B) Construction of Mapping Table

After the calibration box is constructed, we affix a fisheye camera to a ceiling

spot right on the top of the calibration box, and make it look straight down at the cross

of the central square of the bottom calibration board to capture a calibration image.

An example of calibration images is shown in Figure 3.6(a). Then, we find the corners

of all the squares in the calibration image (as shown in Figure 3.6(b)). Each corner is

called a calibration point in the subsequent sections. Each calibration point is

specified by their coordinates (u, v) in the ICS. As shown in Figure 3.7, each

calibration point in the calibration image corresponds to one corner in the calibration

box, so we can obtain a mapping table between the ICS and the CACS.

In order to perform the ground point location mapping, at first, the mapped

calibration points of the vertical boards of the calibration box are projected onto the

36

x-y plane of the CACS as shown in Figure 3.8. C is a calibration point on the

calibration board with CACS coordinates (Cx, Cy, Cz), and C’
 is the projection point

with CACS coordinates (C’
x, C

’
y, 0). The relation between C and C’

 can be expressed

by the following expression according to the principle of similar triangles:

yc x

z y y x x

CH C

C C C C C

 
 

  

Rearranging the above expression, we can get the coordinates of C’ as:

c x
x

c z

H C
C

H C


 


;

c y

y

c z

H C
C

H C


 


 (3.2)

For the calibration points on the bottom calibration board, C’ is identical to C.

(a) (b)

Figure 3.6 Calibration images. (a) The calibration captured from a fisheye camera.

(b) The calibration points of the calibration image (shown as red circles).

ICS CACS

z

x

y

v

u

Figure 3.7 Mapping between the ICS and the CACS of a calibration point.

37

x

y

z

C

C’

C’
y

Cz

Cy Cx

Cz

O

Camera

Hc

C’
x

Figure 3.8 Projection of a point in CACS on the (x, y) plane, where Hc is the camera

height, C is the calibration point on the calibration board, and C’ is the projection

point.

(C) Transformation using Mapping Table

So far, we have a mapping from the ICS to the CACS just for the calibration

points only. For other points between them, we apply a bilinear interpolation scheme

to get the corresponding mappings from the ICS to the CACS. As shown in Figure 3.9

Calculating the coordinates of a point between calibration points by bilinear

interpolation., let p be a point in the ICS, and let A, B, C, and D be the four calibration

points surrounding p. Denote s and t as the relative distance between the two end

points within the range of 0 to 1. Suppose p is a point on the line AB , the relative

distance of p can be computed by Ap AB . Then, we try to find the values of s and

t, so that we can compute the CACS coordinates of p, as described in the following.

A B

C
D

p

t

1-s

1-t

s

P

Q

s

38

Figure 3.9 Calculating the coordinates of a point between calibration points by

bilinear interpolation.

At first, P and Q, regarded as vectors of coordinates, can be expressed by the

following expressions:

   1 sP A B A s A Bs      ;

   1Q D C D s D s Cs      .

And p, also regarded as coordinates, can be expressed by the following

expression:

So the two coordinates pu and pv can be expressed as:

Rearranging the above expressions and substituting U A D  , V A D C B    ,

and T p A  into the rearranged results, we get

   () ()u u v v v v v u u uT tU tV B A T tU tV B A        

which may be reduced to be

    2 () 0t U V t T V U B A T B A         

where  means the cross product operator. So the coefficients in the above quadratic

equation may be derived to be:

 

() () () ();

() () () ();

() () ().

a U V A D A D C B A D C B

b T V U B A p A A D C B A D B A

c T B A p A B A

           

              

      

   1

(1)(1) (1) (1)

(1) () ()

(1) () ().

p P Q P t P t Qt

A s t Bs t Cst D s t

A st s t B s st Cst D t st

A Ast As At Bs Bst Cst Dt Dst

s A st A D C B t A D

     

       

        

        

       

 (3.3)

(1) () ();

(1) () ().

u u u u u u u u

v v v v v v v v

p s A st A D C B t A D

p s A st A D C B t A D

       

       
 (3.4)

39

Finally, t may be solved to be:

2 4

2

b b ac
t

a

  


where t will fall within the range of 0 to 1. Then, we may solve s by substituting t into

Equation 3.5. After we obtain s and t, we can substitute the corresponding CACS

coordinates for A, B, C, and D into Equation 3.3 to obtain the CACS coordinates of p

finally.

At last, we want to transform the calibration points further from the CACS to the

GCS to create a mapping from the ICS to the GCS for use in human localization

(described later). As shown in Figure 3.10, we superimpose the calibration points on

the images captured from the fisheye cameras, and then compute the location of pixels

of the image by the mapping table. The heights of the cameras are specified in the

environment map construction stage as mentioned in the previous section. As shown

in Figure 3.11, a camera is affixed on the ceiling at a height of H, and G indicates the

ground point of C’. By the principle of similar triangles, the distance d in the GCS

can be computed by Equation 3.5. Accordingly, the coordinates (Gx, Gy) of G can be

computed by the following equations:

where px and py are the coordinates specifying the location of the camera in the GCS,

and  is the angle between the CACS axis and GCS axis (see Figure 3.12).

c

c

H H
d

d


 ; (3.5)

cos sin

sin cos

c

xx x

y yc

y

H H

CG p

G pH H

C

 

 

 
                  
  

 (3.6)

40

Figure 3.10 Superimposing calibration points on an omni-image.

C’

Hc

Camera

dc

G d

H

Figure 3.11 The projection of calibration point on the ground, where G is the

projection point of C’, and H is the height of the camera affixed on the ceiling.

y

x

y

x



GCS

CACS

Figure 3.12 Angle between the GCS axis and the CACS axis. The red circles

indicate the positions of calibration points.

3.4.2 Calibration of Camera on Mobile Device

Besides the fisheye camera, the camera on the mobile device must also be

calibrated in order to get a projection matrix, by which points in the GCS may be

projected onto the device screen.

In this study, a perspective camera model is used to represent the camera on the

mobile device. In the theory of perspective projection [16], a 3D point in a view

41

frustum (as shown in Figure 3.13(a)) of the CCS is transformed into a unit cube (as

shown in Figure 3.13(b)); the x-coordinate is transformed from the range [l, r] to the

range [1, 1], the y-coordinate is transformed from [b, t] to [1, 1], and the

z-coordinate is transformed from [n, f] to [1, 1]. We can use a matrix M to perform

the transformation from the view frustum to the unit cube in the following way:

1

x x

y y

z z

w

p p

p p
M

p p

p

   
   
    
   
   

   

 (3.7)

where p is a point in the view frustum, p’ is the transformed point of p, and M is the

projection matrix. In this transformation, the original coordinates of p’ and p should

be replaced by homogeneous coordinates, which have the fourth component w; and

the nonhomogeneous coordinates x, y, z can be obtained by dividing by the

w-component. The matrix M of Equation 3.7 can be expressed as follows according to

[16]:

2
0 0

2
0 0

() 2
0 0

0 0 1 0

n r l

r l r l

n t b

t b t b

f n fn

f n f n

 
  
 

 
  
 

   
  
 

 

If the view frustum is symmetric, which means r = l and t = b, then the matrix

can be simplified to be:

0 0 0

0 0 0

() 2
0 0

0 0 1 0

n

r

n

t

f n fn

f n f n

 
 
 
 
 
 

   
  
 

 

. (3.8)

42

z
x

y

CCS

Image Plane (r, t, -n)

(l, b, -n)

(0, 0, -f)

(1, 1, 1)

z

x

y

(-1, -1, -1)

(a) (b)

Figure 3.13 View frustum and unit cube. (a) The view frustum. (b) The unit cube.

In order to obtain this matrix, we need to determine the value of r, t, n, and f. As

shown in Figure 3.14, the field-of-view of the camera in the y direction is denoted as

. Then,
n

t
 can be substituted by cot

2


. And the ratio

h

w
 of the image height h to

the height w is known, so
n

r
 can be substituted by cot

2

h

w


. Finally, the matrix of

(3.8) can be expressed by:

cot 0 0 0
2

0 cot 0 0
2

() 2
0 0

0 0 1 0

h

w

f n fn

f n f n





 
 
 
 
 
 

   
  
 

 

. (3.9)

After obtaining the coordinates in the unit cube by Equation 3.7, we can obtain

the coordinates (u, v) in the ICS by the following equations:

0 0.5 0 0 0.5

0 0 0.5 0 0.5

1

x w

y w

z w

p p

u w p p

v h p p

  
                    
 
 

 (3.10)

where w is the image width in the unit of pixel, and h is the image height. The values

n and f of M only affect the resulting z-coordinate in the unit cube. According to the

above equation, the z-coordinate does not affect the coordinates in the ICS. Actually,

43

the z-coordinate is used to represent the relationship of the distance of a point with

respect to the viewpoint: the value of 1 means it is on the near plane of the view

frustum, and 1 means it is on the far plane. Therefore, we can specify the value of

both n and f arbitrarily, and then we have only one unknown variable , which is the

field-of-view in the y direction.

z
x

y

CCS

Image Plane

n

t



Figure 3.14 Field-of-view of the view frustum.

In this study, we also propose a simple method to estimate the value of . As

shown in Figure 3.15, we direct the camera to face toward the calibration board,

which is drawn of the form of a grid pattern or others as long as it can help us

measure the region. Then, we can observe the region which exactly fills the image

(shown as the dark gray region). Accordingly, we can obtain the real width Rw and

height Rh of the visible region by counting the grids or scale which are drawn on the

calibration board. The distance dR of the calibration board is known, so the value ,

which defines the field of view in the y direction can be obtained by the following

equation:

1 2
2 tan ()h

R

R

d
  
  

 
. (3.11)

44



Calibration Board

Camera

Image Plane

Rw

Rh

dR

Figure 3.15 Finding the field of view angle by measuring the visible region in

image.

3.5 Experimental Results

An environment map of our experimental environment obtained by applying

Algorithm 3.4 is shown in Figure 3.16. The scaling factor of the map is taken to be 40

pixels/m. The environment map includes eight visiting targets (shown as green

regions) and two fisheye cameras (shown as blue circles). Images captured from the

two cameras are shown in Figure 3.17.

出口

馬賽克畫

飲水機

博班區

碩二區碩一區

休息區

Camera-2

Camera-1

電視

Figure 3.16 Environment map of the experimental environment, visiting targets are

shown as green region, and cameras are shown as blue circles. The interval of the

gray grid lines represents one meter in real world.

An obstacle avoidance map of the experimental map obtained by applying

Algorithm 3.2 is shown in Figure 3.18, in which the avoidance directions are shown

as green arrows. Blocks without avoidance directions mean that there are obstacle

regions or regions which are away enough from obstacles.

45

(a) (b)

Figure 3.17 Images captured from the two fisheye cameras of the experimental

environment. (a) An image captured from the Camera-1 of the map shown in Figure

3.16. (b) An image captured from the Camera-2.

Figure 3.18 Obstacle avoidance map of the experimental environment.

46

Chapter 4

Human Localization in Indoor

Environments by Computer Vision

Techniques

4.1 Idea of Proposed Human

Localization Techniques

In this study, we propose a human localization method using image-based

analysis techniques for indoor environments. We have built a vision-based

infrastructure with fisheye cameras affixed on the ceiling. The server-side system can

access the omni-images captured with the cameras, and conduct detections of both the

human location and orientation.

For human location detection, we perform background/foreground separation to

detect the foreground image, and then apply connected component analysis to find the

human activity region. Then, the user’s foot point in this region is analyzed and

transformed into the GCS. A more detailed description of the proposed human

location detection scheme will be described in Section 4.2.

For human orientation detection, we use three different techniques integrally to

obtain the orientation of the user. The first is the simplest way, which is to calculate

the human motion by use of the human locations detected from consecutive video

frames. The second is to use the orientation sensor on the client mobile device to

detect the human orientation. The last is to attach a color edge mark on the mobile

47

device held by the human, and then analyze the omni-image to detect the color edge

mark which is used to determine the orientation of the user. A more detailed

description of the proposed human orientation detection scheme will be described in

Section 4.3.

4.2 Human Location Detection

4.2.1 Background/Foreground Separation

The first step of the proposed human location detection scheme is

background/foreground separation. As shown in Figure 4.1(a), we capture a

background image before running the server-side system. When a user enters the

environment, he/she will be considered as part of the foreground region (as shown in

Figure 4.1 (b) and 4.1(c)). Therefore, we can obtain the human region by finding the

connected components in the foreground image. Algorithm 4.1 below illustrates the

steps to obtain the connected components in an omni-image.

Algorithm 4.1 Finding foreground regions in an omni-image.

Input: An omni-image I captured from a fisheye camera, a background image B

captured beforehand, and a pre-selected threshold value TD.

Output: Foreground regions in I.

Steps

Step 1. Subtract B from I to get a difference image D.

Step 2. Apply the threshold value TD on D to get a foreground image F by the

following steps:

(1) set (,) 1F u v  , if (,) DD u v T ;

(2) set (,) 0F u v  , otherwise.

48

Step 3. Apply the erosion operation to F to eliminate noise.

Step 4. Find connected components in F as the desired foreground regions using a

connected component labeling algorithm.

In Step 3, we reduce noise by applying the erosion operation on the foreground

image. However, the erosion operation will also eliminate the details of the

foreground image. Another way to reduce noise is to set a larger threshold value in

Step 2.

(a) (b)

(c)

Figure 4.1 Background/foreground separation. (a) The background image. (b) The

image of the environment with a human. (c) The foreground image by subtracting (a)

from (b).

49

4.2.2 Human Foot Point Detection and Computation

After obtaining the human region, we continue to find the foot point of the human

in the region to determine the human location. For this aim, we use a property of the

fisheye camera. With a fisheye camera affixed on the ceiling and looking straight

down at the ground, a space line which is perpendicular to the ground will appear in

the omni-image taken by the camera as a radial line passing through the image center,

as shown in Figure 4.2. For example, the image lines of the edges of the pillar, door,

bookcase, or wall in the environment will all appear to be so. We assume that the user

using the proposed indoor AR navigation system is standing on the ground all the time,

and so the axis of the user’s body is perpendicular to the ground, meaning that the

axis will go through the image center according to the above property.

Figure 4.2 Extended image lines of space lines which are perpendicular to the

ground will pass through the image center.

According to the above discussion, the foot point of a user can be obtained by

finding the nearest point in the foreground region of the user to the image center. Here

we assume that the foreground region of the user is the largest connected component

Rmax in the output of Algorithm 4.1. Therefore, we can find the user’s location by the

following algorithm using Rmax as the input.

50

Algorithm 4.2 Computation of the human location.

Input: The foreground region Rmax of a user.

Output: The user’s location in the GCS.

Steps

Step 1. Find the nearest point f to the omni-image center in Rmax.

Step 2. Project f onto the line RCC to obtain a projection point f’, where C is the

omni-image center and CR is the center of the bounding box circumscribing

Rmax.

Step 3. Transform f’ into the GCS as output.

We want to let the foot point detected in Step 1 closer to the line going through

the human’s body axis. Therefore, according to the vertical line property mentioned

previously, we project the detected foot point onto the human’s body axis in Step 2.

Finally, the human location can be computed by the spatial transformation described

in Section 3.4.1. An example of the results is shown in Figure 4.3.

4.3 Human Orientation Detection

4.3.1 Orientation Detection by Human Motions

We detect a user’s location on every omni-image, by which we can obtain a

sequence of human locations, called the location sequence. Then, we use the sequence

to compute the human moving orientation. However, the locations are detected by the

previously-mentioned image-based technique, so the path composed of these locations

may be not smooth. Therefore, if we just use the current human position and its

previous one to calculate the motion vector, the resulting orientation will be unstable.

In this study, we solve this problem by averaging all the motion vectors obtained

51

within a time interval.

(a) (b)

(c)

Figure 4.3 Detected foot point of a human (shown as red circle). (a) The foreground

image. (b) The original image captured from the camera (c) The foot point in MCS.

However, the averaging operation will delay undesirably the orientation

computation results when the human is turning. In other words, the human orientation

will change quickly when the human is turning, but the averaging operation will cause

the trend of the computed orientation changes to become slow. Therefore, we use a

turning flag to determine whether a user is turning or not in the proposed human

orientation detection scheme  if the current location of the user is on the right-hand

side of the previous motion vector, we increment the turning flag by one; otherwise,

we decrement it by one. But if the turning flag is negative when we increment the

52

turning flag, we will reset the turning to be zero. Symmetrically, we will reset it if it is

positive when we decrement it. When the turning flag exceeds a threshold range, we

will determine the human’s turning direction by the sign of the turning flag, and then

remove all the locations in the location sequence except the first one. In this way, the

averaging result of motion vectors will be changing more quickly.

For example, as shown in Figure 4.4, the points p, P1, and P2 are all on the

left-hand side of the previous motion vector. Assume that a turning flag f is zero at P3.

The turning flag f will be 3 at p. Then, we can determine that the human is turning to

the left at p when Tf is smaller than 3. Consider another situation as shown in Figure

4.5. Assume that a turning flag f is zero at P3. When the human reaches P2, f will

become 1, but when the human reaches P1, f will be reset to be 0. So, the human will

be determined to be walking forward instead of turning to the left at p.

p

P1

P2

P3
P4

Figure 4.4 A path of turning to the left where each human foot point is on the

left-hand side of the previous motion vector.

p

P1

P2

P3
P4

Figure 4.5 A path of walking forward where all points except P1 are on the left-hand

side of the previous motion vector.

The complete steps of human orientation detection by human motions are

illustrated as an algorithm in the following.

53

Algorithm 4.3 Computation of the human orientation by human motions.

Input: The current location p of a user, a turning flag f, the location sequence P

composed of the past human locations, where Pi+1 means the previous location

of Pi.

Output: The user’s orientation md .

Steps

Step 1. If the size of the sequence is larger than two, take the following steps.

1.1 Change the turning flag f by the following steps:

(1) increment f by 1, if 0f  and p is on the right-hand side of the

vector 2 1P P ;

(2) decrement f by 1, if 0f  and p is on the left-hand side of the

vector 2 1P P ;

(3) set f to be zero, otherwise.

1.2 If ff T or ff T  , remove P2, P3, …, Pn from P, where Tf is a

pre-selected threshold value.

Step 2. If the size of P is larger than a threshold size TN, remove Pn from P.

Step 3. Compute the following direction vector md as output:

 
1

1 1

1

1 n

m k k

k

d P P p P
n







  
     

  
 .

Step 4. Insert p to the start of P.

In Step 1, we check the size of the location sequence to determine if there is a

previous motion vector. If so, we can use it to detect the human’s turning direction. In

Step 2, in order to average the locations obtained in a certain time interval in the past,

54

we remove a redundant location in the location sequence if its size exceeds a

threshold value. Finally, we compute the orientation by averaging the motion vectors

and then insert the current location into the location sequence for the next cycle of

orientation computation.

4.3.2 Orientation Detection by Orientation Sensor on

Client Device

We determine the orientation of a user by his/her motions when his/her is moving.

However, when the user is not walking, we seek another way to detect his/her

orientation, which is through the use of the orientation sensor on the client mobile

device. As mentioned in the previous sections, the orientation sensor measures the

azimuth angle of the device by detecting changes and disturbances in a magnetic field. In

Chapter 3, we have established an azimuth map for orientation detection. The following

algorithm describes how we determine the orientation using the azimuth map.

Algorithm 4.4 Computation of the human orientation by the orientation sensor.

Input: The current location p of a user, the azimuth value a detected by the client

device held by the user, and an azimuth map A.

Output: The user’s orientation od .

Steps

Step 1. Find the nearest sample point Ap to p in A, and get a value set of Ap, (x, y, a0,

a1, a2, a3), which contains the azimuth values of the four major directions as

described in Section 3.3.4.

Step 2. Find the two azimuth angles an and a(n+1) mod 4 of Ap which a is in between,

by finding a parameter n satisfying the following two constraints:

55

(1) V(a) is on the right-hand side of V(an) where the function V() returns

a vector with the angle , i.e., () (cos , sin)V    ;

(2) V(a) is on the left-hand side of V(a(n+1) mod 4).

(The relation between V(a), V(an), and V(a(n+1) mod 4) is shown in Figure 4.6.)

Step 3. Compute the relative position r of a between an and a(n+1) mod 4 by the

following equations:

(1) mod 4

() ()

() ()

n

n n

P a P a
r

P a P a





.

where the function P() returns a point with the coordinates (cos ,sin)  .

Step 4. Compute the direction vector od as output by interpolation:

(1)mod4 (1)o n nd r v r v    

where xv is the corresponding direction vector with respect to the azimuth

ax, which is defined previously in the learning stage.

aan

() (cos ,sin)n n nV a a a

a(n+1) mod 4

(1)mod4 (1)mod4 (1)mod4() (cos ,sin)n n nV a a a  () (cos ,sin)V a a a

Figure 4.6 A azimuth a between two azimuth an and a(n+1) mod 4, where V(a) is on the

right-hand side of ()nV a and on the left-hand side of
(1)mod4()nV a 

.

Because the sample points in the azimuth map are discrete, we choose the nearest

one in Step 1 to approximate the result. In Step 2, we find the region which the

56

azimuth value a falls on. The region is between two azimuth values at the sample

point we choose, so we obtain the final orientation vector by interpolation as done in

Steps 3 and 4.

4.3.3 Orientation Detection by Color Edge Mark on

Top of Client Device

We introduced two orientation detection techniques in the previous sections.

However, they still have the stability and precision problems, which cause failures in

detecting the human orientation. Specifically, detection by human motions can only

be used when the human moving, and detection by orientation motions is not stable

enough due to magnetic interferences almost everywhere.

Figure 4.7 The color edge mark (The green strip) in the omni-image.

Here we propose a technique to solve the problems by attaching a color edge mark

on the top of the client device. The color of the color edge mark has high saturation and

high lightness, so it can be segmented easily from the omni-images. As shown in Figure

4.7, we can see the green edge color edge mark clearly in the omni-image.

In order to separate the color edge mark from an omni-image, at first we convert the

color space of the omni-image from the RGB color space to the HSV one. The HSV

57

color model assigns three color components to a pixel, which respectively are hue,

saturation, and value. The hue is described with the words we normally think of as

describing color: red, blue, green, etc. The saturation refers to the dominance of hue

in the color. The value is the lightness of the color. By the HSV color model, we can

separate the color edge mark from the omni-image more easily, because the color of

the color edge mark has high saturation and high lightness.

The color edge mark becomes a strip shape in omni-images, so we can apply a

line approximation scheme to the detected color edge mark. Then, we try to compute

the direction vector of the approximating line in order to determine the device

orientation. Under the assumption that the user holds the device horizontally, the color

edge mark becomes parallel to the ground. As shown in Figure 4.8, the color edge

mark is represented as a solid green line, and the red line and the solid green line are

projected onto identical image points; meanwhile, the vertical projection (shown as

the dotted green line) of the color edge mark is parallel to the red line. Therefore, we

can determine the orientation of the color edge mark by the orientation of the red line.

Color edge mark

Camera

Figure 4.8 The red line and the color edge mark (shown as solid green line) are

projected onto identical image points. The vertical projection (shown as dotted green

line) of the color edge mark will be parallel to the red line.

58

The following algorithm describes the process to detect the human orientation by the

color edge mark.

Algorithm 4.5 Computation of the human orientation by the color edge mark on

top of the client device.

Input: An omni-image I, the foreground region R of a user, and the orientation vector

od detected by Algorithm 4.4.

Output: The user’s orientation, cd , and a reliability index rc.

Steps

Step 1. Create an image Ihsv by converting the color space of I from RGB to HSV

by the following equations:

max(, ,)V R G B ;

min(, ,)
if 0;

0 otherwise;

V R G B
V

S V




 


() 60
if ;

() 60
180 if ;

() 60
240 if .

G B
V R

S

B R
H V G

S

R G
V B

S

 



 

  


 
 



If H < 0, then increment H by 360
o
.

Step 2. Create a binary image Ic, and for all (u, v) in Ic, assign values to (,)cI u v by

the following steps:

(1) set (,) 1cI u v  , if the value of (,)hsvI u v , (h, s, v), is between two

threshold values (Hmin , Smin, Vmin) and (Hmax , Smax, Vmax);

(2) set (,) 0cI u v  , otherwise.

Step 3. Find the connected components C in region R of Ic: if there has no

59

connected component in region R, set the reliability index rc to zero and end

the algorithm.

Step 4. Find the bounding box B of C.

Step 5. Apply a line approximation algorithm to the pixels in C, resulting in an

approximated line L.

Step 6. Find the two intersection points p and q of B and L.

Step 7. Get s and t by converting p and q from the ICS to the GCS.

Step 8. Compute the orientation cd as output by the following steps:

(1) set (,)y xcd st st  , if (,) (,)y x y xo ost st d st st d     ;

(2) set (,)y xcd st st  , otherwise.

Step 9. Set the reliability index rc to be the size of C.

We apply two threshold values to extract the region of color edge mark in Step 2,

and an example of the result is shown in Figure 4.9(a). We will get two orientation

vectors which are perpendicular to the vector of the color edge mark, and we have to

determine which one is correct. Here we use the orientation vector od detected by

Algorithm 4.4 to make a decision by choosing the one which is closer to od .

Furthermore, the color edge mark may not be seen in an omni-image due to

obstacle covering or a long distance away from the camera. We set a reliability index

to be the size of the region of the color edge mark for making a decision about

whether the color edge mark will be used or not. A larger value indicates a better

visibility of the color edge mark.

In addition, as mentioned in the previous section, we choose the foreground

region with the largest region as the human region. Here we can also determine this

60

region by checking whether a color edge mark is detected or not.

Figure 4.9 shows an example of the results of applying Algorithm 4.5.

(a) (b)

(c)

Figure 4.9 Orientation detection by color edge mark on top of the mobile device. (a)

The color edge mark region segmented from the omni-image. (b) The approximating

line (shown as green) obtained by applying line approximation on (a). (c) The

detected orientation (shown as green).

4.3.4 Algorithm of Orientation Detection

We introduced three different techniques for orientation detection in the previous

sections. In this section, we will describe how we integrate the three techniques to

61

perform the orientation detection work more reliably.

Algorithm 4.6 Computation of the human orientation.

Input: A user’s location, the foreground region hu of the user, and the omni-image

which contains hu.

Output: The user’s orientation d .

Steps

Step 1. Compute the orientation od by Algorithm 4.4.

Step 2. Use od to compute the orientation cd by Algorithm 4.5, resulting a

reliability index rc.

Step 3. If c rr T , where Tr is a threshold value, then set d to be od as the

output and finish this algorithm.

Step 4. If the human is walking, compute the orientation md by Algorithm 4.3,

and set d to be md as the output. Otherwise, set d to be od as the

output.

4.4 Human Tracking

4.4.1 Idea of Human Tracking

The objective of human tracking is to identify the same human in consecutive

video frames. Consecutive video frames come from the omni-images captured from

the fisheye cameras in the proposed system. In this study, we adopt a human tracking

method, which is called high level tracking, proposed by Newman, et al. [17]. In

62

Algorithm 4.1, we find the foreground regions in a foreground image. Then, we find a

bounding box for each foreground region. For each successive frame, the human

tracking algorithm associates a foreground region with one of the existing tracks. A

track represents an identical object moving in consecutive video frames. This is

achieved by constructing a tracking matrix representing the distance between each of

the foreground regions and all the existing tracks. Each row of the tracking matrix

corresponds to one track, and each column corresponds to one foreground region. The

distance is computed using a bounding box distance measure proposed by the adopted

method by Newman, et al. [17]. As shown in Figure 4.10(a), the distance between

bounding boxes A and B is the lower of 1) the distance from the center of A to the

nearest point on B and 2) that from the center of B to the nearest point on A. If either

center lies within the other bounding box (as shown in Figure 4.10(b)), then the

distance is zero.

A

B

A

B

(a) (b)

Figure 4.10 The bounding box distance measure. (a) The distance between A and B

is the lower of the distance from the center of A to the nearest point on B or from the

center of B to the nearest point on A. (b) The distance is zero.

If we consider a region is close enough to a track, then the value, which is at the

corresponding column of the region and the row of the track, is incremented by one. If

a foreground region is close enough to only one track and only a region is close

63

enough to the track, i.e., if it is a one-to-one correspondence, then the column and the

row will both have one “one” (as shown in Figure 4.11(a)), so we may associate the

region with the track. However, two regions may be both close enough to one track,

and this will cause two “one” at a row (as shown in Figure 4.11(b)), then we associate

both the two regions to the track. Similarly, if a region is close enough to two tracks,

we associate the region with both of the two tracks. If two regions are close enough to

two identical tracks (as shown in Figure 4.11(c)), then we associate the two regions

with both of the two tracks. Based on the above concepts, we can associate regions

with existing tracks, by which we can identify the same human in consecutive video

frames.

Tracks

Regions

0

0

0

0

0

1

0

0 0 0 0 0 0 0 0

...

... ...

...

i

j

Tracks

Regions

0

0

0

0

0

1

0

0 0 0 0 0 0 0
... ...

...

i2

j

0

0

0

0

0

1

0

... ...

...

i1

Tracks

Regions

0

0

0

1

0

1

0

0 0 0 0 0 0 0
... ...

...

i2

j2

0

0

0

1

0

1

0

... ...

...

i1

0 0 0 0 0 0 0 j1

...

(a) (b) (c)

Figure 4.11 Tracking matrix at different situation. (a) A region is close enough to only

a track, and only one region is close enough to the track. (b) Two regions are close

enough to a track. (c) Two regions are close enough to two same tracks.

The human tracking algorithm using the adopted method is described in

Algorithm 4.7.

Algorithm 4.7 Human tracking.

Input: The foreground regions C in a frame and a set of tracks T, with each track

being associated with at least one foreground region, Ti meaning the ith track

64

in T, and Ci meaning the ith foreground region in C.

Output: Tracks T

Steps

Step 1. Create a tracking matrix M with all zero’s with each row of M

corresponding to one track of T, and each column of M corresponding to

one region of C.

Step 2. Compute the bounding box distance dij between each of Ci and R(Tj) using

the bounding box distance measure where the function R(t) returns the

associated region of the track t.

Step 3. For each dij, set M(i, j) to be 1 if dij < TD, where TD is a pre-selected

threshold value.

Step 4. Perform the following steps for M.

4.1. For each column i with only one non-zero element at row j, and row

j has only one non-zero element at column i, associate Ci with Tj.

4.2. For each column i with all zero elements, create a new track tnew,

associate it with Ci, and add tnew into T.

4.3. For each row j with all zero elements, remove Tj from T.

4.4. For the columns i1, i2, …, im which have more than one non-zero

elements at rows j1, j2, …, jn, associate C1, C2, …, Cm with T1, T2, …,

Tn.

In Step 3, we binarize the tracking map by the resulting distance; if two bounding

boxes are close enough, the resulting value is one; otherwise, it is zero. In Step 4.2, if

a foreground region is not associated with any track, then it is regarded as a new

object which we have to track. We remove tracks which are not associated with any

object in Step 4.3.

65

4.4.2 Camera Hand-off

The fisheye camera has a wider field-of-view, and can observe a wider range than

normal cameras. However, if an object is located outside the view of a fisheye camera,

or far away from a fisheye camera, it will be projected onto a small region in the

omni-image captured from the camera. Therefore, the number of pixels of the small

region will be too small to perform analysis mentioned in the previous sections. In

order to track the user around the entire environment, we need more than one camera

to monitor the entire environment. When we have multiple cameras, a user may

“appear” in more than one omni-image captured from different cameras. Therefore,

we have to determine which camera we should use and continue to track the same

user between different cameras, and this is the so-called camera hand-off problem.

To handle the problem, in each human localization and tracking processing, we

obtain a foreground region representing a user. The foreground region belongs to an

omni-image captured from a certain camera. If we have a foreground region obtained

in the previous processing work, then we can obtain the foreground region

representing the same user in the current processing by the following algorithm.

Algorithm 4.8 Camera hand-off.

Input: The foreground region hu of a user, and the tracks (,)T , where (,)T i means

all tracks in omni-image Ii captured from the camera Ci, and (,)T i j means

the jth track in (,)T i .

Output: The human region of the user in the current process work.

Steps

Step 1. Find the track (,)T s u , which is associated with the foreground region hu

Step 2. Set hs to be the associated region of (,)T s u .

Step 3. Compute the location ps of hs in the GCS by Algorithm 4.2.

66

Step 4. Set (,)
i s

T T i


  .

Step 5. Compute the location in the GCS for all foreground regions associated with

T  , resulting in a location set P.

Step 6. Find the foreground region pt with its location pt which is associated with

the track (,)T t and satisfies the following two constraints:

(1) () sd p pp p P  is the minimum for tp p .

(2) t sp p  , where  is a pre-selected threshold value.

Step 7. If pt is found, compute the distance t t td p c and s s sd p c , where ct is

the location of the camera Ct and cs is the location of the camera Cs. If pt is

not found, set hs as output and finish this algorithm.

Step 8. Set hs as the output if s td d ; otherwise, set ht as the output.

The algorithm finds a foreground region representing the same object as the input

foreground region. If we find a foreground region representing a user in the previous

processing work, then we can use the region as input to find the corresponding region

in the next process work.

At first, we find the track which is associated with the input region. The found

track is called a “user track”. And then we find a region which is closest to the region

associated with the user track in Step 4 through 6. Then, we compare each of the

locations of the two regions with each of the locations of its corresponding cameras.

Finally, the one closer to its corresponding camera is chosen to be the output.

67

4.5 Algorithm of Human Localization

and Tracking

In this section, we will describe the complete steps for human localization and

tracking. Under the assumption that there is only one user in the indoor environment

taken care of by the system, we can obtain one foreground region representing a user for

each processing cycle. Therefore, the server-side system will send the location and

orientation to the user’s client-side system. The following algorithm illustrates the

complete steps for this task.

Algorithm 4.9 Algorithm of human localization and tracking.

Input: The foreground region hu of a user in the previous processing cycle, the

omni-images I1, I2, …, In captured from cameras C1, C2, …, Cn, respectively,

where n is the number of the cameras.

Output: The user’s location p, the user’s orientation d , and the foreground region

uh of the user.

Steps

Step 1. Find foreground regions (,)R in each of I1, I2, …, In by Algorithm 4.1,

where (,)R i means all foreground regions in omni-image Ii, and (,)R i j

means the jth foreground region in (,)R i .

Step 2. Track the foreground regions R(1,), R(2,), …, R(n,) by Algorithm 4.7,

resulting in the tracks T(1,), T(2,), …, T(n,), where (,)T i means all tracks

in omni-image Ii, and (,)T i j means the jth track in (,)T i .

Step 3. If hu is set, then find uh by Algorithm 4.8; else, take the following steps.

3.1. Detect the color edge mark by Algorithm 4.5 for R(1,), R(2,), …,

R(n,).

68

3.2. If the color edge mark is detected in any foreground region, apply

Algorithm 4.8 to anyone of the foreground regions with color edge

mark detected to find the human region uh and go to Step 4.

3.3. If the color edge mark is not detected, apply Algorithm 4.8 to the

foreground region with the largest region size in R to find the human

region uh and go to Step 4.

Step 4. Compute the location p of uh as the output by Algorithm 4.2.

Step 5. Compute the orientation d of uh as the output by Algorithm 4.6.

In Step 3, if we have found a human region in the previous processing cycle, we

can find the same human region by performing the camera-off algorithm. Otherwise,

we find the human region by the color edge mark or the region size. Finally, we

compute the location and the orientation of the human region as output. Furthermore,

the human region will be used in the next processing cycle.

4.6 Experimental Results

In this section, we show some experimental results of both human location

detection and orientation detection. Figure 4.12 shows the results of the human

location detection at four different locations. It shows that the proposed method can

actually find the foot point of a human and transform the point from the ICS to the

MCS.

Figure 4.13 shows the results of the human orientation detection by the color

edge mark, where the approximating lines are shown as light green color. It also

shows that the proposed method is feasible.

69

(a)

(b)

(c)

(d)

Figure 4.12 Human location detection at four different locations.

70

(a)

(b)

(c)

(d)

Figure 4.13 Human orientation detection by color edge mark at four different

locations.

71

Chapter 5

Path Planning for Navigation

5.1 Ideas of Proposed Techniques

When a user want to reach a certain destination, the server-side system will find

the location of the user at first, and then find the location of the destination in the

environment map we constructed in the learning stage. Next, the server-side system

will begin to plan a path starting from the user and ending at the destination, and

sends the result to the client-side system.

Here we use an obstacle image obtained in the learning stage to determine

whether a planned path collides with any obstacle or not. If the path starting from the

location of a user and ending at the location of the destination does not collide with

any obstacle, the server-side system directly sends the two locations to the client-side

system, which means that the user may now walk forward to the desired destination.

However, if the path collides with obstacles, we have to determine the immediate

collision points to avoid the obstacles. Here we use an obstacle avoidance map

constructed in the learning stage for this purpose. A more detailed description of the

obstacle avoidance process will be described in Section 5.2. Next, we follow the

avoidance directions to find the immediate points, and finally we will obtain a new

path starting from the user’s location to the destination. The path finding scheme will

be described in Section 5.3. However, the planned path may not be in the simplest

form; in other words, there may exist two non-connected points on the path that can

instead be connected together without any obstacle between the two points. Therefore,

72

we propose a scheme to simplify the planned plan, which will be described in Section

5.4.

After a path is completely planned, it will be send to the client-side system. A

user can follow the path to reach the desired destination. However, if the user moves

to a location which is not on the planned path, the planned path must be updated. A

path update scheme is also proposed in this study, which will be described in Section

5.5.

Finally, we will describe a complete path planning process in Section 5.6. Then

some experimental results will be presented in the last section.

5.2 Obstacle Avoidance

An obstacle avoidance map is created by splitting the MCS into small blocks. A

block is a processing unit in the obstacle avoidance process; in other words, the

planned path “walks” a block at a time, if the planned path walks to a block

containing obstacles, it will find another block to go. Here we introduce a block

coordinate space (BCS), which can be used to locate the position of a block. The BCS

coordinates of a block are denoted as (i, j). A block with the BCS coordinates (0, 0)

means that the block is at the top-left corner; a block with the BCS coordinates (1, 0)

means that it is the one on the right side of the one with coordinates (0, 0), and so on.

The MCS coordinates (Mx, My) of a block with the BCS coordinates (i, j) can be

computed by the following equations:

(0.5);

(0.5),

x

y

M n i

M n j

  

  
 (5.1)

where n is the size of a block in pixels. And the BCS coordinates (i, j) can also be

computed by the following equations:

73

;

.

x

y

M
i

n

M
j

n

 
  
 

 
  
 

 (5.2)

Each element in an obstacle avoidance map represents two opposite avoidance

directions, so we only store the one of the two directions in degrees. As shown in

Figure 5.1, the region of all angle degrees can be divided to 8 parts all with an equal

degree range of 45
o
. Every region part is assigned an index from 0 to 7, where the

degree region of part 0 is from 337.5
o
 to 22.5

o
; the degree region of part 1 is from

22.5
o
 to 67.5

o
, and so on. Therefore, we can determine the region part of an avoidance

direction by the angle of the direction. The region part of an avoidance direction is

called “avoidance region” in the sequel.

337.5∘

22.5∘

67.5∘112.5∘

157.5∘

202.5∘

247.5∘ 292.5∘

0

1

2

3

4

5

6

7

Figure 5.1 The whole direction region is divided to 8 parts, and each part is assigned

an index.

As the 3  3 blocks shown in Figure 5.2, if a planned path walks to the central

block and cannot directly walk to the destination from the block, the proposed system

tries to find the next immediate block in the 7 neighborhoods by the avoidance

direction of the block. Here, we can apply the avoidance regions to the 3  3 blocks,

and then assign each of the 7 neighborhoods an index as shown in Figure 5.2.

74

Therefore, each avoidance direction can map to an avoidance block by the index of

the avoidance region. However, we do not find the immediate point just at one

avoidance block. More specifically, we will assign three avoidance blocks for each

avoidance range. As shown in Figure 5.3, each avoidance range (shown as

semi-transparent regions) is assigned three blocks, which include one primary

avoidance block (shown as red regions) of the same avoidance range and the two

neighborhoods, which are called secondary avoidance blocks (shown as blue regions).

0

123

4

5 6 7

Figure 5.2 Apply the direction region parts to the neighborhoods of one block, and

each neighborhood is assigned an index.

0

12

7

0

1 123 23

4

5

4

3

65

4

5 6 7 6 7

0

75

Figure 5.3 Avoidance blocks of 8 avoidance ranges, where the avoidance regions are

shown as semi-transparent regions. Each avoidance region is assigned three blocks,

which include the primary avoidance block (shown as red regions) of the same

avoidance range and two secondary avoidance blocks (shown as blue regions).

We can find the next immediate point in the three avoidance blocks by the

avoidance direction. More specifically, we have two avoidance directions in one block,

so we will have six avoidance blocks for one block.

The following algorithm describes the processes to find the avoidance points of a

block. It results in a set of avoidance points, which is sorted by the priority of the

avoidance points. The priority of an avoidance point is based on the distance from the

avoidance point to the destination point. An avoidance point with a higher priority

should be considered first as the next immediate point in the path finding process. The

path finding process scheme will be described in the next section.

Algorithm 5.1 Finding avoidance points.

Input: The current position p of a planned path in the MCS, the final destination

position d of the planned path in the MCS, an obstacle image Io, and an

obstacle avoidance map A, where (,)A i j means the angle of the avoidance

direction of the block with BCS coordinates (,)i j .

Output: A set of avoidance points, which is sorted by the priority of the avoidance

block.

Steps

Step 1. Initialize an empty set Sresult for the resulting points.

Step 2. Compute the coordinates (i, j) of p in the BCS by Equation 5.2.

Step 3. If A(i, j) is non-negative, obtain the two avoidance directions 1d and 2d

from A(i, j); otherwise, take the following steps.

76

3.1. Compute the direction v pd .

3.2. Find three avoidance blocks of the avoidance direction v .

3.3. Go to Step 5.

Step 4. Find six avoidance blocks B of 1d and 2d , which include two primary

avoidance blocks and four secondary blocks.

Step 5. Initialize two empty ordered sets Sp and Ss.

Step 6. Take the following steps for each avoidance block b in B.

6.1. Compute the MCS coordinates b of b by Equation 5.1.

6.2. If the line segment pb collides with any obstacle, skip to the next

avoidance block b and go to Step 6 again.

6.3. If b is of a primary avoidance block, add b into Sp; otherwise, add

b into Ss.

Step 7. If Sp is not empty, take the following steps.

7.1. Sort each element b of Sp in the ascending order by the Manhattan

distance from b to d:

| | | |x x y yb d b d    .

7.2. Add the first element of Sp into Sresult, and add the remainder into Ss.

Step 8. Sort Ss by the same scheme of 7.1.

Step 9. Add each element of Ss into Sresult orderly.

Step 10. Take Sresult as the output.

In Step 3, if the current block contains no avoidance direction, the avoidance

direction is set to the one from the current position to the destination. We add each of

the avoidance blocks which are reachable from the current block into two sets. The

primary avoidance blocks will be added into one set, and the secondary will be added

77

into another. Then we sort the sets based on the distance to the final destination in

Step 7 and Step 8. We choose the closest one of the primary avoidance block as the

first priority avoidance block, and add it into a resulting set. Finally, the remainders

are added into the resulting set orderly.

5.3 Path Finding

We introduce the processes of obstacle avoidance in the previous section. In this

section, we describe the path finding scheme by use of avoidance points.

When we want to find a path from the current position to a destination position,

we find the avoidance points of the current position by Algorithm 5.1 at first. Then we

begin to check each avoidance point. We will record it when we check an avoidance

point, and we do not check the same avoidance point twice, which means that a path

do not check a point it has walked before. If an avoidance point has not been walked

before, we try to find a path from the avoidance point to the destination. Therefore,

the process can become recursive. However, if an avoidance point cannot reach the

destination, we continue to try the next avoidance point. If there are no more

avoidance points, we finish the finding process. The following algorithm always

returns a path starting from the input start point and ending at the destination if a path

is found; otherwise, it returns a flag indicating the failure.

Algorithm 5.2 Path finding.

Input: A start point p in the MCS, A final destination point d in the MCS, and a set Sw

which includes the points we have walked before.

Output: A set of points of the found path Sresult, and a flag f indicating whether a path

is found or not.

78

Steps

Step 1. Initialize an empty set Sresult to store the output points.

Step 2. Add p into Sresult and Sw.

Step 3. If p can directly go to d without colliding obstacles, add d into Sresult and

then go to Step 9.

Step 4. Find the avoidance points by Algorithm 5.1, resulting in a set of avoidance

points Sa.

Step 5. Take out the first avoidance point pa in Sa.

Step 6. If pa is contained in Sw, take the following steps.

6.1. If there still is any avoidance point in Sa, go to Step 5; otherwise, set

f to fail and then finish this algorithm.

Step 7. Apply this algorithm recursively with the inputs pa, d, and Sw, resulting in a

set of points of a found path Sad and a flag fa.

Step 8. If flag fa is a success, add each point of Sad into Sresult; otherwise, go to Step

5.

Step 9. Set Sresult as output and set f to be a success.

Because the start point should always be walked and contained in the resulting

path, so we add the start point into the resulting set and the walked point set. In Step 3,

we check whether the start point can be directly connected to the destination point

without colliding obstacles; if so, then return the path which contains only the start

point and the destination point. Otherwise, we have to find a next immediate point by

applying the same algorithm recursively.

In Step 8 we check the returning flag: if the path is found successfully, then we

add all the points of the returning points into the resulting set; otherwise, we try the

next avoidance point again.

79

A result of the path finding process is shown in Figure 5.4. We found a path

starting from the top-left point to the bottom-right point. As mentioned previously, the

path is not of the simplest form. We will describe the processes to simplify the path in

next section.

Figure 5.4 Path found in the path finding process.

5.4 Path Simplification

After a path is found, we begin to conduct the proposed path simplification

process. The process can be decomposed into two parts: redundant point elimination

and distance elimination. The goal of the redundant point elimination is to find two

points which are non-connected and can instead be connected together, and then to

remove the points between the two points; in other words, the goal is to find a

“shortcut” between two points (like the red line shown in Figure 5.5(a)). The goal of

distance elimination is to reduce the total path length by finding two points which are

on different line segments and can be connected together; in other words, the goal is

to find a “shortcut” between two line segments. As shown in Figure 5.5(b), we can

reduce the total length of the path by substituting P2 with two new immediate points

80

(shown as red points).

After the path finding process, we conduct redundant point elimination at first, as

described in Algorithm 5.3. The algorithm iterates over all immediate points in a path,

and finds the last immediate point which can be connected together for each

immediate point.

P1

P2

P3

P4

P1

P2

P3

(a) (b)

Figure 5.5 The redundant point elimination and the distance elimination. The black

points represent the original immediate points of a path (a) The redundant point

elimination, where the two redundant points P2 and P3 can be removed. (b) The

distance elimination, the path length can be eliminated by substituting P2 by the two

red points.

Algorithm 5.3 Redundant point elimination.

Input: A set of points of a path P, where P(i) means the ith point in the set.

Output: A set of points of a simplified version of P.

Steps

Step 1. Initialize a variable i = 1 used to represent the index of the start point of the

shortcut.

Step 2. If i is equal to size(P), go to Step 8, where size(x) means the number of the

points of the set x.

81

Step 3. Initialize a variable j = size(P) used to represent the index of the end point

of the shortcut.

Step 4. If i = j  1, go to Step 7.

Step 5. If P(i) can be directly connected to P(j) without colliding obstacles, remove

P(i+1), P(i+2), …, P(j1) and go to Step 7.

Step 6. Decrement j by 1 and go to Step 4.

Step 7. Increment i by 1 and go to Step 2.

Step 8. Take P as the output.

A result of redundant point elimination using the above algorithm is shown in

Figure 5.6, where Figure 5.6(b) shows the result of applying redundant point

elimination on Figure 5.6(a).

(a) (b)

Figure 5.6 Result of path finding and redundant point elimination. (a) Result of path

finding. (b) Result of applying the redundant point elimination on (a).

However, the result shown in Figure 5.6(b) is still not of the simplest form. We

82

can find a short cut in the region of the red rectangle outline of Figure 5.6(b) by the

distance elimination mentioned previously.

The distance elimination process checks the points on each line segment of a path.

However, if the points on a line segment are continuous, it is impossible to check all

points on the segment. Therefore, the points on a line segment are discretized into

several points with equal distances Td before distance elimination is conducted.

As shown in Figure 5.7, we check two line segments at a time, which are Li and

Li+1, respectively. For each discretized point pi on Li and each pi+1 on Li+1, we check

whether pi and pi+1 can be connected together or not. The checking order of Li is from

the start point to the end point; that of Li+1 is contrarily from the end point to the start

point. We check all discretized points on Li+1 for each pi. If pi (shown as blue points)

cannot be connected to a point on Li+1, it is skipped and the next pi on Li+1 is then

processed. Finally, we will find a shortcut between Li and Li+1 if there exists one

(shown as the red line segment).

P1

P2

P3

pi

pi+1

Td

id

1id 

iL

1iL 

Figure 5.7 Process of distance elimination. The black points are the immediate points

of a path. The gray region represents the region of an obstacle, the line between the

two red points are a shortcut found by the distance elimination process.

83

The following algorithm describes the complete processes to perform the distance

elimination work.

Algorithm 5.4 Distance elimination.

Input: A set of points of a path P, where P(i) means the ith point in the set.

Output: A set of points of a simplified version of P.

Steps

Step 1. Initialize a variable i = 1 used to represent the index of the first checking

line segment.

Step 2. If () 2i size P  , regard that the last line segment has been reached, and go

to Step 4; otherwise, take the following steps, where size(x) means the

number of the points of the set x.

2.1 Initialize two vectors of the two checked line segments

() (1)iL P i P i  and 1 (2) (1)iL P i P i    .

2.2 Compute the vectors id and 1id  by the following equations:

1
1

1

;i i
i d i d

i i

L L
d T d T

L L






 

where Td is a predefined distance between two neighboring

discretized points.

2.3 Initialize two variables pi = P(i) and pi+1 = P(i+2), which are used to

represent the two end points of the shortcut, respectively.

2.4 Add 1id  to pi+1.

2.5 If 1 (1)ip P i  is in the opposite direction of Li+1 or 1 (1)ip P i  = 0,

then go to Step 3 to check the next two line segments.

2.6 If pi can be connected directly to pi+1 without colliding obstacles, take

84

the following steps.

2.6.1. Insert pi and pi+1 into P before the position of P(i+1).

2.6.2. Remove P(i+1) from P.

2.6.3. Go to Step 3 to check the next two line segments.

2.7 Add id to pi.

2.8 If i ip L , go to Step 3; otherwise, go to 2.4.

Step 3. Increment i by 1 and go to Step 2.

Step 4. Take P as the output.

The result of applying the distance elimination algorithm described above on

Figure 5.6(b) is shown in Figure 5.8. However, there still exist redundant points in the

path of Figure 5.8. Therefore, we have to apply Algorithm 5.3 on the resulting path to

reduce redundant points again. More specifically, we apply the redundant point

elimination and distance elimination processes on a path until the points of the path

are not changed. Algorithm 5.5 describes the above process.

Figure 5.8 Result of applying the distance elimination on the path of Figure 5.6(b).

85

Algorithm 5.5 Path simplification.

Input: A set of points of a path P, where P(i) means the ith point in the set.

Output: A set of points of the simplified path.

Steps

Step 1. Make a copy of P, and denote it by P’.

Step 2. Apply Algorithm 5.3 on P’.

Step 3. Apply Algorithm 5.4 on P’.

Step 4. If the points of P’are different than the points of P, clear P, copy all points

of P’ into P, and go to Step 2; otherwise, finish this algorithm.

We can directly apply Algorithm 5.5 on the resulting points of the path finding

process. Figure 5.9 shows the result of applying the above path simplification process

on the path of Figure 5.6(a).

Figure 5.9 Result of applying the path simplification on the path of Figure 5.6(a).

86

5.5 Path Update

The set of the immediate points of a path will be sent to a client-side system.

However, a user might not always move by following the planned path. Instead, the

user might walk away from the planned path, so that the planned path becomes

invalid. Therefore, we have to update a planned path when a user walks away from

the planned path.

Algorithm 5.6 Path update.

Input: The current point p of a user, and a set of points of a planned path P, where P(i)

means the ith point in the set.

Output: A set of points of the updated path.

Steps

Step 1. Initialize an empty set Pnew.

Step 2. Find the last point ps of P which can be reached from p, if ps is not found,

take the following steps to re-plan a path.

2.1. Find a path starting from p and ending at the last point of P by

Algorithm 5.2 and Algorithm 5.5, resulting in a set of points P
’
.

2.2. Add all points of P’ into Pnew, and go to 5.2.

Step 3. Add p into Pnew.

Step 4. Add P(i), P(i+2), …, P(n) into Pnew, where i is the index of ps in P and n is

the size of Pnew.

Step 5. If Pnew contains at least 3 points, take the following steps.

5.1. Compute the angle  between the two vectors (2) (1)new newP P and

(2) (3)new newP P of the first two line segments of Pnew.

87

5.2. If
2


  , take the following steps to simplify the first two line

segments of Pnew.

5.2.1. on the first two line segments of Pnew, resulting a set of points

Pstart.

5.2.2. Remove the first two line segments from Pnew.

5.2.3. Insert Pstart to the beginning of Pnew.

Step 6. Take Pnew as the output.

An example of the results of applying the above algorithm is shown in Figure

5.10. When a user moves away from a planned path (as shown in Figure 5.10(a)), we

find the last reachable point (shown as red circles) of the planned path from the

current point (shown as green circles).

(a)

(b)

(c)

88

(d)

Figure 5.10 Results of the path update process. (green circles indicate the current

point and red circles indicate the last reachable point from the current point) (a) The

original planned path. (b) An updated path. (c) An updated path which is not of the

simplest form. (d) Result of applying the path simplification on the path of (c).

After applying this algorithm, we will add at most one new point to the resulting

set; in other words, the resulting set contains only one new point, which is the current

point of the user, and the remainders are the points of the original planned path

Therefore, we have to check whether the new line segment is of the simplest form or

not. In Step 5.1, we compute the angle between the new line segment and the first old

line segment. If the angle is greater than 90
o
 (as shown in Figure 5.10(c)), it means

that the two line segments have opposite directions and there may exist a shortcut

between the two line segments. Therefore, we apply the path simplification process to

the two line segments (as shown in Figure 5.10(d)). Finally, the algorithm will yield

an updated path.

5.6 Algorithm for Path Planning

We describe the processes for tasks involved in path planning in the previous

sections. In this section, we integrate these processes to form a complete algorithm for

path planning.

Algorithm 5.7 Path planning.

Input: A start point p in the MCS, and a final destination point d in the MCS.

89

Output: A set of points of the planned path.

Steps

Step 1. If there exists a planned path P’ and the destination of P’ is identical to d,

take the following steps.

1.1. Update P’ by Algorithm 5.6, resulting in a set P of the immediate

points of a path.

1.2. Go to Step 4.

Step 2. Find a path starting from p and ending at d by Algorithm 5.2, resulting in a

set P of immediate points of the path.

Step 3. Apply Algorithm 5.5 on P to simplify the found path.

Step 4. Take P as the output.

This algorithm is applied in each navigation process cycle. If a user wants to

reach a certain destination and he/she never searched the same destination before, the

algorithm will plan a new path. Otherwise, the algorithm will update the planned path.

5.7 Experimental Results

Figure 5.11, 5.12, and 5.13 show three examples of the results of the path

planning work conducted by the above algorithm. Each result contains a figure of the

original planned path yielded by Algorithm 5.2, and a figure of the final simplified

path yielded by Algorithm 5.5.

90

(a)

(b)

Figure 5.11 Result of the path planning. (a) Result of the path finding. (b) Result of

applying the path simplification on the path of (a).

(a) (b)

Figure 5.12 Result of the path planning. (a) Result of the path finding. (b) Result of

applying the path simplification on the path of (a).

91

(a) (b)

Figure 5.13 Result of the path planning. (a) Result of the path finding. (b) Result of

applying the path simplification on the path of (a).

92

Chapter 6

Augmented Reality for Navigation

6.1 Ideas of Proposed Techniques

In this chapter, we will describe the AR techniques used in the proposed system. The

AR techniques are used in the client-side system. We overlay navigation information onto

the real images taken of the current scene, so that users can just take their mobile devices

and conduct the navigation conveniently. The real images taken of the current scene will

be called “scene images” in the subsequent sections, and scene images overlaid with

navigation information will be called “augmented images.”

After detections of the user’s location and orientation are completed, the

navigation information will be sent to the user’s mobile device. The navigation

information includes the visiting target information and the navigation path. The

client-side system will display the information on the device screen. A more detailed

description of the navigation information we use in the display rendering will be

given in Section 6.2.1. The visiting target information includes the name of the

visiting target and its coordinates in the GCS. The navigation path contains the GCS

coordinates of the points consisting of the path. In order to display the information in

an AR way, the client-side system must transform the GCS coordinates onto a 2D

screen plane. The calibration of the camera on the mobile device is described in

Chapter 3. In Section 6.2.2, we will describe the process to perform the

transformation between the GCS and the screen plane by the calibration result.

In Section 6.3, we will describe the display rendering for the navigation

93

information. We display the names and distances of visiting targets on the

corresponding objects in scene images. So we will illustrate how to determine the

display position in the scene image in Section 6.3.1. In Section 6.3.2, we will describe

the creation of the navigation path’s geometric shape (arrows, thick line segments, etc.)

for the navigation path to be overlaid onto the scene image to provide the guidance

information.

6.2 View Mapping between Real World

and Client Device

6.2.1 Information for Use in Mapping between Real

World and Client Device

In Chapter 3, we described the construction of the environment map. We specify

the visiting target information on the environment map, which includes the name, the

region, and the coordinates of the visiting target. As shown in Figure 6.1, the light

green region on the floor plan is a specified visiting target. The visiting target is

specified by a vector f indicating the front direction of the visiting target, the

region width w and height h, and the location p. The coordinates of the location

include the z-coordinate, which represents the distance between the ground plane and

the bottom of the visiting target region. The coordinates and the size are specified in

the MCS, and it will be transformed into the GCS before sending to the client-side

system.

Besides the visiting targets, a navigation path may be sent to the client-side

system when a user wants to reach a certain destination. The navigation path is a set

which contains the immediate points of the path, and the immediate points will be

94

transformed into the GCS before being sent to the client-side system. In addition, a

path might contain more than one turning; in other words, a user might have to turn

more than once to reach the destination. However, a user should pay attention only to

the next turning; the second turning is not so important to the user at the current time.

Therefore, we only display two line segments of the path at a time.

Wz

Wx
Wy

GCS

My

Mx

MCS

h

w

p

f

Figure 6.1 A visiting target in the environment map and its corresponding location in

the GCS.

6.2.2 Transformation from Real World Spot to Client

Device Screen

Recall the results derived from Section 3.4.2. A point p in the CCS can be

transformed to be a point q in the ICS by the following equations:

cot 0 0 0
2

0 cot 0 0
2

() 2
0 0 1

0 0 1 0

x x

y y

z z

w

h

w
p p

p p

p p
f n fn

p f n f n





 
 

    
    
    
     

      
      

 
 

; (6.1)

95

where w is the width of the scene image in the unit of pixel, h is the height, and  is

the angle range of the field-of-view of the camera. The view region is restricted by the

two parameters n and f; n restricts the smallest distance we can see, and f restricts the

largest distance, so the two parameters can be specified arbitrarily. Equation 6.2 is a

little different from the one in Section 3.4.2. The additional z-coordinate is only used

to determine whether a point is outside of the screen range or not. A point with the z

coordinate outside of the range [0, 1] is considered to be outside the screen range. The

ICS coordinates are composed by (qu, qv).

However, the coordinates sent from the server-side is in the GCS, but the

coordinates we use in Equation 6.1 are in the CCS. Therefore, we have to transform

the coordinates from the GCS into the CCS at first. The transformation can be

expressed by the following equation:

where a is a point in the GCS, p is the transformed point of a in the CCS, and Mc is

the transformation matrix. In this transformation, the original coordinates of a are

replaced by homogeneous coordinates.

Because the transformation will preserve the length of vectors after

transformation, the transformation is so called orthogonal transformation. The

columns of the transformation matrix of an orthogonal transformation will form an

orthonormal basis of the transformed space. As shown in Figure 6.2(a), a camera is at

the point c in the GCS, and the basis of the CCS of the camera can be represented by

0 0 0.5 0 0 0.5

0 0 0 0.5 0 0.5

0 0 1 0 0 0.5 0.5
1

x w

u

y w

v

z w

z

p p
q w

p p
q h

p p
q

  
                          

     
 

. (6.2)

1

x

y

c

z

a

a
p M

a

 
 
  
 
 
 

 (6.3)

96

three vectors up, right, and forward, where up is the up direction of the camera, right

is the right direction, and forward is the front direction. In the CCS defined in Chapter

3 shown in Figure 6.2(b), we can express the transformation matrix as follows:

0 0 0 1

x x x x

y y y y

c

z z z z

right up forward c

right up forward c
M

right up forward c

  
 

  
  
 
 

 (6.4)

where the rightmost column is the coordinates of the camera, it used to translate the

origin to the camera position, and it is actually the user’s location detected from the

server-side system. The z-coordinate of the camera position is a predefined parameter;

in other words, the height of a camera is fixed to about the height of the eyes of an

adult in the proposed system.

Wz

Wx

Wy

GCS

c

Camera

up

right

forward

z

x

y

Camera

(a) (b)

Figure 6.2 A camera in the GCS and the CCS. (a) A camera in the GCS with three

orthonormal vectors up, right, and forward. (b) The CCS.

Therefore, we can determine the transformation matrix Mc by finding the three

vectors up, right, and forward. By the GCS defined in Chapter 3, the up direction is

the +z direction, so the vector up is (0, 0, 1).

Also, we assume that the camera orientation is in the same direction of the user’s

orientation. Therefore, the vector forward can be obtained by using the user’s

97

orientation. However, a user might tilt the client device to watch the environment at a

pitch angle. As shown in Figure 6.3, the camera looks at a pitch angle, but the

orientation detected from the server-side is from a horizontal direction (shown as the

green arrow). Therefore, we have to obtain the pitch angle so that we can obtain the

correct orientation by Equation 6.5 below:

Camera



Wz

Wx

Wy

GCS

sin

Figure 6.3 Camera looks at a pitch angle . The green line indicates a line on the

horizontal plane.

where d is the user’s orientation detected from the server-side system, and  is the

pitch angle which can be obtained from the orientation sensor of the client device.

And then forward can be obtained by:

The value forward is normalized to be a unit vector in the equation above. The

last vector right can then be obtained by the vector which is orthogonal to up and

sin

x

y

d

d d



 
    
 
 

 (6.5)

d

forward

d





.

(6.6)

98

forward. We can get the vector by the cross product of forward and up according to

the following equations.

However, forward might not be orthogonal to up which is the direction (0, 0, 1)

because we had added a z-direction to the vector forward. Therefore, we correct the

up by the cross product of right and forward:

Now, we have obtained all the needed variables to perform the transformation.

We summarize all the processes of transformations discussed above by the following

algorithm.

Algorithm 6.1 Transformation between the GCS and the ICS.

Input: A user’s orientation d , the user’s location c, the pitch angle  obtained from

the orientation sensor of the client device, and the point a in the GCS to

transform.

Output: A transformed point q in the ICS.

Steps

Step 1. Initialize a vector up with the direction (0, 0, 1).

Step 2. Use d and  to compute the vector d  by Equation 6.5.

Step 3. Use d  to compute the vector forward by Equation 6.6.

Step 4. Compute a vector right by Equation 6.7.

Step 5. Correct a vector up by Equation 6.8.

Step 6. Construct the matrix Mc using up, forward, right, and c by the matrix of

(6.4).

;

.

r forward up

r
right

r

 


 (6.7)

 up right forward  (6.8)

99

Step 7. Use Mc to transform a from the GCS to the CCS by Equation 6.3 and result

in p.

Step 8. Transform p from the CCS to the ICS by Equations 6.1 and 6.2.

6.3 Rendering for Visiting Targets and

Navigation Paths

In this section, we describe the schemes we propose to display visiting targets and

navigation paths on the device screen.

6.3.1 Visiting Target Rendering

As shown in Figure 6.4, we try to overlay the name and the distance of visiting

targets onto the corresponding objects in the real world, which appear in the image

taken with the camera on the user-held mobile device. In order to accomplish this aim,

we have to determine where to display the text on the device screen.

As shown in Figure 6.5, the visiting target is defined by four parameters which

are described in the previous section. Then, the four points of the region of a visiting

target can be computed by the following equations:

Figure 6.4 An augmented image overlaid with visiting target information.

100

Then we can compute the ICS coordinates of a, b, c, and d by Algorithm 6.1,

resulting in four new values a’, b’, c’, and d’ as shown in Figure 6.6(a).

f

h

w

p

a
b

c

d

Wz

Wx

Wy

GCS

Figure 6.5 Parameters of a visiting target (shown as the green region). All the

parameters are in the GCS.

Image Planeu

v

ICS

a'

b'

c'

d'

wimg

himg

Image Planeu

v

ICS

a'

b'

c'

d'

wimg

himg

(a) (b)

Figure 6.6 Four points transformed from the GCS of a visiting target. (a) Before

clipping to the range of the image size. (b) After clipping to the range of the image

size.

However, the transformed points might exceed the region of the scene image.

Therefore, we clip the points by the following equation:

(,);
2

(, ,);

(, ,);

(, ,);

(, ,).

y x

x y zx y

x y zx y

x y zy

x y zx y

w
f f f

a p f p f p h

b p f p f p h

c p f p f p

d p f p f p

  

    

    

   

   

 (6.9)

101

where p is the point to clip, p’is the point after clipping, wimg is the width of the scene

image, and himg is the height. The range of u coordinates is between [1, wimg+1] and v

is between [1, himg+1]. We can determine whether a point p is inside the screen

region or not by checking [0,]u imgp w  and [0,]v imgp h  . Then, we can obtain the

display position of the text of the visiting target information by the following

equation:

And then we can display the text on the display position textp as shown in

Figure 6.7, where wtext is the width of the text, and htext is the height.

ptext

htext

wtext

Figure 6.7 Display the visiting target information on the display position ptext.

Furthermore, when a user has searched a destination, he/she must know which

direction to go. We want to let the user always know the direction of the destination

target even the target is outside the range of screen. As shown in Figure 6.8, if a

  

  

max min , 1 , 1

max min , 1 , 1

u img
u

v
v img

p wp

p p h

             
 

 (6.10)

4

text

a b c d
p

     
 (6.11)

102

destination target is outside the range of screen, we should display the visiting target

on the edge of the screen (shown as the red point). Then, the user can understand what

the direction the destination is in.



du

dv

tard

d

Figure 6.8 Display point for a visiting target which is outside of the screen range. d

is the orientation of the user, and tard is the vector from the user’s location to the

visiting target.

We summarize all the processes of visiting target display rendering discussed

above by the following algorithm.

Algorithm 6.2 Display rendering of a visiting target.

Input: An image I which is to be drawn, with the width wimg and the height himg; a

user’s location e, and his/her orientation d ; a visiting target tar with a vector

f indicating the front direction of the visiting target, the region with width w

and height h, and its location p; a text t to display with the width wtext and the

height htext.

Output: An augmented image.

Steps

Step 1. Compute four points a, b, c, and d by Equation 6.9.

103

Step 2. Transform a, b, c, and d from the GCS into the ICS by Algorithm 6.1,

resulting in a’, b’, c’, and d’.

Step 3. Clip a’, b’, c’, and d’ into the range of the size of I by Equation 6.10.

Step 4. Compute the display position ptext by Equation 6.11.

Step 5. If [0,]
utext imgp w or [0,]

vtext imgp h or [0,1]
ztextp  , take the following

steps.

5.1 If tar is not the destination target of the user, finish this algorithm.

5.2 Compute the direction vector of tar by tard ep ep and the angle 

between tard and d (as shown in Figure 6.8).

5.3 Compute the diagonal length of the screen 2 2

dia img imgd w h  .

5.4 Compute du and dv by the following equations:

cos();
2 2

sin().
2 2

dia

dia

d
du

d
dv







 

 

5.5 Compute ptext by the following equations if
2 2

img imgh h
dv


  :

sign() tan() ;
2 2 2

sign()
0.5 .

2

v

u

img img

text

text img

h w
p dv

du
p w


  

 
  

 

where the function sign(x) returns 1 if x is negative; otherwise, it

returns 1. If
2 2

img imgw w
du


  , then compute:

1
sign() ;

2 2 tan(2)

sign()
0.5 ;

2

u

v

img img

text

text img

w h
p du

dv
p h

 
 



 
  

 

Otherwise compute:

104

;
2

.
2

u

v

img

text

img

text

w
p du

h
p dv

 

 

Step 6. Correct ptext to make the drawn text not exceeding the range of I by the

following equation:

max min , ,
2 2

max min , ,
2 2

x

x

y

y

text text
text img

text

text text text
text img

w w
p w

p

p h h
p h

   
         

           
   

.

Step 7. Draw t on I at the point textp .

Step 8. Take I as the output.

As mentioned previously, if a user’s destination is outside the screen range, we

display it on the edge of the screen. Therefore, we compute the appropriate display

point (as shown by the red point in Figure 6.8) in the sub-steps of Step 5.

6.3.2 Rendering and Geometry Creation of

Navigation Paths

As mentioned previously, only two line segments of a path will be displayed at a

time. If a user receives a path sent from the server-side system as shown in Figure

6.9(a), then the first two line segments are what we are going to display. The path

composed of the first two line segments will be called “display path” in the

subsequent sections. Figure 6.9(b) shows the expected result of overlaying the display

path onto a scene image. The display path in Figure 6.9(b) is composed of thick line

segments and an arrow. Therefore, we have to create the geometric shape of a path

before conducting display rendering for them.

A display path is a 3D augmented object. As mentioned in Chapter 2, the

105

rendering of 3D augmented objects is conducted by the OpenGL API. The OpenGL

API processes 3D objects composed by triangles or quadrangles, which are called

“geometric primitives.” As shown in Figure 6.10, the geometric shape of a display

path is composed by 11 points, and we can get the geometric primitives of the display

path by the 11 points of a path. Accordingly, we can perform the display rendering for

a navigation path by Algorithm 6.3.

p1

p2

p3

p4

(a) (b)

Figure 6.9 A path and its display on a screen. (a) The path with three line segments.

The first two line segments are which should be concerned by a user. (b) The display

of the first two line segments of the path of (a).

p1

p2

p3

harr

wpath

warr

p1a p1b

p1cp1d

p2a

p2b

p2c

p2d

p3a

p3b

Figure 6.10 The geometry of a display path

106

Algorithm 6.3 Display rendering for a navigation path.

Input: A set P of points of a planned path, an image I to draw, the width wpath of the

display path, the width warr of the arrow of the display path, and the length harr

of the arrow.

Output: An augmented image.

Steps

Step 1. Take the first three points p1, p2, and p3 of P.

Step 2. Compute 1 2
1

1 2

p p
v

p p
 , 2 3

2

2 3

p p
v

p p
 ,

1 1 1(, , 0)
2

path

y x

w
v v v   , and

2 2 2(, , 0)
2

path

y x

w
v v v   .

Step 3. Compute p1a, p1b, p1c, p1d by the following equations:

1 1 1

1 1 1

1 2 1

1 2 1

;

;

;

.

a

b

c

d

p p v

p p v

p p v

p p v

 

 

 

 

Step 4. If
2 3 arrp p h , then set arrh to 2 3p p .

Step 5. Compute p2a, p2b, p2c, p2d by the following equations:

2 2 2

2 2 2

2 3 2 2

2 3 2 2

;

;

;

.

a

b

c arr

d arr

p p v

p p v

p p h v v

p p h v v

 

 

  

  

Step 6. Compute p3a, p3b by the following equations:

3 3 2 2

3 3 2 2

;

.

arr
a arr

path

arr
b arr

path

w
p p h v v

w

w
p p h v v

w

  

  

107

Step 7. Draw the geometric primitives, which include two quadrangles

1 1 1 1a b c dp p p p , 2 2 2 2a b c dp p p p
 and three triangles 1 2d ap p p , 1 2c bp p p ,

3 3 3a bp p p using the OpenGL API.

In Step 4, in order to prevent the arrow from exceeding the second line segment,

we set the length of the arrow to be the length of the second line segment of the

display path if the arrow length is larger than the line segment.

6.4 Algorithm of Indoor Navigation by

Augmented Reality

In this section, we summarize the processes described in the previous sections as

a total process  the process of indoor navigation by augmented reality, as described

in Algorithm 6.4 below.

Algorithm 6.4 Indoor navigation by augmented reality.

Input: A scene image.

Output: An augmented image.

Steps

Step 1. Obtain the user’s orientation, and the user’s location from the server-side

system.

Step 2. Obtain the pitch angle from the orientation sensor of the client device.

Step 3. Create the projection matrix by the method described in Algorithm 6.1.

Step 4. Obtain visiting target information from the server-side system.

Step 5. Display all visiting targets by Algorithm 6.2.

Step 6. Search the desired destination by a keyword to obtain a planned path.

Step 7. Display the planned path by Algorithm 6.3.

108

6.5 Experimental Results

Figure 6.11 and Figure 6.12 show two results of overlaying visiting target

information on scene images. The figure includes an omni-image captured from a

fisheye camera, the detected location and orientation, and the augmented image

shown on the user’s mobile device. A user can understand the surrounding

environment by the visiting target information on the augmented image.

(a) (b)

(c)

Figure 6.11 An augmented image with visiting target information. (a) An

omni-image. (b) Detected location and orientation. (c) The augmented image shown

on user’s mobile device.

109

(a) (b)

(c)

Figure 6.12 An augmented image with visiting target information. (a) An

omni-image. (b) Detected location and orientation. (c) The augmented image shown

on user’s mobile device.

Figure 6.13 shows a result of overlaying a navigation path on scene images. The

figure includes four augmented images which are at different locations and in

different orientations. A user can understand how to reach the desired destination by

following the navigation path shown by the arrow and the line segment. When the

destination is out of the screen, the navigation path may be invisible in an augmented

image. At that time, the system will display the destination on the edge of the screen

to indicate the correct direction.

110

(a) (b)

(c) (d)

Figure 6.13 An augmented image with a navigation path. (a)(b)(c) The augmented

images at three different locations. (d) When the destination is outside of the screen,

the name of the destination will display on the edge of the screen (shown as the

yellow stroke text); this image shows that the destination is on the rear of the user.

111

Chapter 7

Experimental Results and

Discussions

7.1 Experimental Results

In this section, we will show some experimental results of the proposed indoor

AR navigation system. The experimental environment is in the Computer Vision Lab

at National Chiao Tung University. The environment map is shown in Figure 7.1,

which includes eight visiting targets (shown as green regions) and two fisheye

cameras (shown as blue circles).

出口

馬賽克畫

飲水機

博班區

碩二區碩一區

休息區

Camera-2

Camera-1

電視

Figure 7.1 The environment map of the experimental environment.

112

7.1.1 Result of Real Navigations

A. Browsing visiting targets at a certain location

Figure 7.2 shows a result of browsing surrounding visiting targets at a certain

location. The omni-images captured from the fisheye cameras are shown on the

left-hand side of this figure, and the augmented images shown on the user’s mobile

device are shown on the right-hand side. At first, the user faced the left side of the

experimental environment, where we can see two visiting targets displayed on the

screen (as shown in Figure 7.2(a)). Then, the user began to turn to the left-hand side,

and we can see that the overlaying texts are moving to the right-hand side as the user

was turning (as shown in Figure 7.2(b)-(j)).

(a)

(b)

 Figure 7.2 A result of browsing visiting targets at a certain location. The left-hand

side is the images captured from the fisheye cameras, and the right-hand side is the

augmented images shown on the user’s mobile device.

113

(c)

(d)

(e)

(f)

Figure 7.2 A result of browsing visiting targets at a certain location. The left-hand

side is the images captured from the fisheye cameras, and the right-hand side is the

augmented images shown on the user’s mobile device (cont’d).

114

(g)

(h)

(i)

(j)

Figure 7.2 A result of browsing visiting targets at a certain location. The left-hand

side is the images captured from the fisheye cameras, and the right-hand side is the

augmented images shown on the user’s mobile device (cont’d).

115

B. Navigation by a navigation path.

In this section, we show a result of navigation according to a navigation path. A

user stood at a location as shown in Figure 7.3(a), and the detected location and

orientation are shown in Figure 7.3(b). Figure 7.3(c) shows the augmented image seen

by the user. Then, the user searched the environment map for a visiting target, and

there appeared a yellow stroke text on the right-hand side of the bottom edge of the

augmented image (as shown in Figure 7.3(d)). The user could then understand that the

destination is on the right rear, so the user began to turn to the right-hand side. As the

user was turning, we can see that the destination was moving to the right-hand side of

the user (as shown in Figure 7.3(e)). Finally, the user saw the destination and the

navigation path when he turned to the correct direction (as shown in Figure 7.3(f)).

Therefore, the user began to follow the navigation path to move. As shown in

Figure 7.4, the user faced the left-hand side of the environment to move. When the

user moved to the location as shown in Figure 7.4(b), he was closer to another camera

of the environment. Therefore, the system shifted to use the other camera to track the

user as shown in Figures 7.4(c) and 7.4(d). Figure 7.5 shows the four augmented

images corresponding to the four locations as shown in Figures 7.4(a) through 7.4(d),

respectively.

116

(a) (b)

(c) (d)

(e) (f)

Figure 7.3 A result of navigation by a navigation path. (a) A user was at a certain

location. (b) The detected location and orientation. (c) The augmented image seen

by the user. (d) The augmented image shown when the user searched a visiting

target, and there is a yellow stroke text shown on the right-hand side of the

bottom edge of the augmented image, which indicates the direction of the

destination. (e) The augmented image shown when the user is turning to the

right-hand side. (f) The augmented image shown when the user is turning to the

correct direction.

117

(a)

(b)

(c)

(d)

Figure 7.4 A user following the path shown in Figure 7.3(f) to move.

118

(a) (b)

(c) (d)

Figure 7.5 The four augmented images corresponding to the four locations as shown

in Figures 7.4(a) through 7.4(d), respectively.

7.1.2 Result of Precision Measurement

We show a result of precision measurement of human location detection in this

section. As shown in Figure 7.6, we chose several locations in the experimental

environment, and we let a person stand at these locations and detect the locations by

the proposed human location detection method. The result is shown in Table 7.1,

which includes the actual locations of the chosen locations which are measured

manually and the detected locations by the proposed method. The average error of the

computed locations is 15cm, which is small enough for the proposed system to locate

a user.

119

1

2

3

4

5

6

78

91011
121314

15
16

17
1819

20

Figure 7.6 Locations used for precision measurement in the human location

detection process.

Table 7.1 Error of human location detection (unit: cm)

Location #
(1) Actual (2) Computed

Distance Error (1)(2)
x y x y

1 10.04 2.13 9.77 2.13 0.27

2 8.82 1.22 8.69 1.20 0.14

3 8.22 2.13 8.16 2.17 0.04

4 7.30 1.22 7.14 1.13 0.17

5 6.09 2.13 6.04 2.00 0.09

6 5.17 2.74 4.89 2.73 0.25

7 4.56 2.13 4.29 2.15 0.24

8 2.13 1.83 1.92 1.80 0.17

9 10.04 2.74 9.67 2.73 0.36

10 9.13 2.74 8.74 2.75 0.37

11 8.22 2.74 8.19 2.75 0.02

12 7.61 2.74 7.59 2.728 0.02

13 6.69 2.74 6.64 2.753 0.04

14 5.78 2.74 5.77 2.753 0.01

15 5.48 3.35 5.42 3.253 0.10

16 4.56 3.35 5.22 3.228 0.47

17 6.09 1.22 5.97 1.278 0.10

18 5.17 1.22 5.09 1.253 0.07

19 4.26 1.22 4.22 1.203 0.05

20 3.35 1.22 3.27 1.228 0.07

Average 0.15

120

Table 7.2 shows another result of precision measurement in the transformation

from the ICS to GCS. We measured 11 line segments on the ground, and computed

the length by transforming the two end points of each line from the ICS to the GCS.

These lines segments we chose are shown in Figure 7.7. The average error rate is

2.79%, which is small enough and shows that the proposed transformation technique

actually works for real applications.

1
2

3
4 5

67 8 9

10
11

Figure 7.7 Line segments used for the line length measurement.

Table 7.2 Error of line length measurement.

Line #

(1)

Actual Length

(cm)

(2)

Computed Length

(cm)

Error (3)

|(1)-(2)|
Error %

(3)

(1)

1 93 96.45 3.45 3.71%

2 121 121.08 0.08 0.06%

3 48 46.50 1.50 3.13%

4 31 28.60 2.40 7.75%

5 44 41.00 3.00 6.82%

6 90 89.89 0.11 0.13%

7 30 29.56 0.44 1.47%

8 30 30.46 0.46 1.55%

9 30 30.90 0.90 3.00%

10 70 67.92 2.08 2.97%

11 121 120.87 0.13 0.11%

Average 1.32 2.79%

121

Table 7.3 shows the result of precision measurement for the proposed process of

human orientation detection by the color edge mark. We choose six locations in the

experimental environment to for this experiment. We let a person stand at these

locations, and the person faced towards the mobile device to four directions at each

location. Finally, we computed the orientation vector by the proposed method, and the

error is the angle between the actual orientation vector and the computed orientation

vector. As shown in the result, we can see that the errors are almost below 8
o
, and the

average is below 4
o
. This shows that the proposed method actually works for ral

applications. However, the errors of some cases exceed 8
o
. The main cause of these

higher errors is that the color edge mark will be projected into a small region in the

omni-image when the distance between the color edge mark and the camera becomes

larger, so it will not always be segmented successfully from the image completely.

1

2

3
5

4

6

Figure 7.8 Locations used for precision measurement in human orientation

detection.

122

Table 7.3 Error of human orientation detection.

Location #

Actual Orientation

Vector

Computed Orientation

Vector
Angle

Error
x y x y

1 -1 0 -1 -0.07 4.00
o

1 0 1 0.04 1 2.29
o

1 1 0 1 -0.03 1.72
o

1 0 -1 -0.06 -1 3.43
o

2 -1 0 -1 -0.001 0.06
o

2 0 1 0.02 1 1.15
o

2 1 0 1 -0.03 1.72
o

2 0 -1 -0.15 -0.99 8.62
o

3 -1 0 -1 -0.05 2.86
o

3 0 1 -0.04 1 2.29
o

3 1 0 1 -0.04 2.29
o

3 0 -1 -0.03 -1 1.72
o

4 -1 0 -1 -0.03 1.72
o

4 0 1 -0.04 1 2.29
o

4 1 0 0.99 0.1 5.77
o

4 0 -1 -0.06 -1 3.43
o

5 -1 0 -1 0.03 1.72
o

5 0 1 0.05 1 2.86
o

5 1 0 0.98 -0.2 11.53
o

5 0 -1 0.02 -1 1.15
o

6 -1 0 Not Detected

6 0 1 0.06 1 3.43
o

6 1 0 0.99 -0.17 9.74
o

6 0 -1 -0.06 -1 3.43
o

Average 3.44
o

123

7.2 Discussions

The experimental results of the proposed indoor navigation system presented

previously show that we can utilize fisheye cameras to detect the user’s location and

orientation. Meanwhile, a user can understand the surrounding environment and

conduct the navigation by the proposed AR techniques.

However, the proposed system still has some problems. As a user is moving far

away from a fisheye camera, the detected locations will become more and more

unstable. This is because the detected locations are computed by interpolation of four

calibration points, but the pixels of farer objects will have higher distortion. Therefore,

the actual distance between two neighboring pixels become larger at a far location

from the camera, and the error of a few pixels might cause the interpolation result to

be inaccurate. A similar problem will occur on the color edge mark detection. As the

user is moving away from a fisheye camera, the region of the color edge mark in the

omni-image will become smaller and hard to detect. A possible way to solve these

problems is to use more cameras in the environment. Therefore, when a user moves

away from a camera, it can be detected from another camera which is closer to the

user. Furthermore, when a user’s feet are covered by obstacles, cameras may not be

able to detect correct foot locations and may result in incorrect detected locations.

This problem can be solved by the same solution mentioned above, which is to use

more cameras. Another possible way is to detect the head point of the user, and then

we can use the height of the user to estimate the foot location.

Furthermore, our experimental environment is just a small region, so the

client-side system can be connected to the server-side system through the Wi-Fi

wireless network, which has a smaller access range. However, if we want to apply the

proposed system in a larger environment, we might have to use a mobile

124

telecommunication network, such as a 3G or 4G network, to connect the both sides.

The mobile telecommunication network has a larger access range than the Wi-Fi

wireless network. Using mobile telecommunication networks can also reduce the

costs of building Wi-Fi wireless networks.

Finally, the proposed system can handle only one user at a time. If we want to

enhance the capability for multiple user usages, we have to distinguish different users

in the environment. A possible solution is to analyze images captured from the mobile

device, and detect the features in the images to identify different users at different

locations.

125

Chapter 8

Conclusions and Suggestions for

Future Works

8.1 Conclusions

An indoor navigation system by augmented reality and down-looking

omni-vision techniques using mobile devices has been proposed. To design such a

system, several techniques have been proposed as summarized in the following.

1. A modified method for point transformation from an omni-image to the global

coordinate system has been proposed, which is modified from a space-mapping

technique [16]. The proposed method can provide point transformation for larger

pixel region in omni-images than the adopted method, by which we can increase

the utilization of the pixels of the omni-image.

2. A method for human localization in indoor environments has been proposed, by

which we can obtain a user’s location and orientation in an indoor environment.

The orientation detection algorithm integrates three different techniques to detect

the orientation of a user, and each of the techniques can make up the deficiencies

of the others.

3. A method for path planning for indoor environments has been proposed, which is

based on the analysis of the floor plan drawing of an indoor environment. By this

method, the system can provide a navigation path starting from a user’s location

to his/her desired destination.

4. A method for indoor AR navigation by overlaying visiting target information on

126

the real objects in scene images has been proposed, by which a user can

understand the surrounding environment in an AR way from the overlaying

visiting target information.

5. A method for indoor AR navigation by overlaying a navigation path on the floor

in scene images has been proposed, by which a user can follow a navigation path

shown on the screen and reach his/her desired destination in an AR way.

The experimental results shown in the previous chapters have revealed the

feasibility of the proposed system.

8.2 Suggestions for Future Works

According to our experience obtained in this study, several issues and possible

extensions of the proposed system worth further studies are listed in the following:

1. Designing a background/foreground separation algorithm which can adapt to

different lighting conditions and moving styles of non-human objects.

2. Seeking a solution to the problem of human location detection in the situation

that a user’s feet are covered with obstacles.

3. Proposing a method for human orientation detection with higher precision and

better stability, which can be accomplished by matching the image captured from

the user’s mobile device with a pre-learned database to determine the orientation.

4. Providing the capability for processing multiple environment maps, which can

provide human localization in different floors of an indoor environment.

5. Enhancing the system capability for indoor environments with multiple system

users, which can distinguish different users in an indoor environment.

6. Including more useful information in an environment map, such as merchandise,

food, etc. A user can search by a keyword for what he/she wants rather than just

127

searching for the name of a visiting target.

7. Collecting the images captured from cameras on users’ mobile devices, and using

them to establish a virtual environment database, by which users can browse an

indoor environment without going there.

128

References

[1] C. Lukianto, C. Honniger, and H. Sternberg, "Pedestrian Smartphone-Based

Indoor Navigation Using Ultra Portable Sensory Equipment," in Proceedings of

International Conference on Indoor Positioning and Indoor Navigation (IPIN),

Zurich, Switzerland, 2010, pp. 1-5.

[2] B. Ozdenizci, K. Ok, V. Coskun, and M. N. Aydin, "Development of an Indoor

Navigation System Using NFC Technology," in Proceedings of Fourth

International Conference on Information and Computing (ICIC), Phuket Island,

Thailand, 2011, pp. 11-14.

[3] L. C. Huey, P. Sebastian, and M. Drieberg, "Augmented Reality Based Indoor

Positioning Navigation Tool," in Proceedings of IEEE Conference on Open

Systems (ICOS), Langkawi, Malaysia, 2011, pp. 256 - 260.

[4] A. Mulloni, D. Wagner, D. Schmalsteig, and I. Barakonyi, "Indoor Positioning

and Navigation with Camera Phones," Pervasive Computing, IEEE, vol. 8, pp.

22-31, 2009.

[5] M. Werner, M. Kessel, and C. Marouane, "Indoor positioning using smartphone

camera," in Proceedings of International Conference on Indoor Positioning and

Indoor Navigation (IPIN), Guimaraes, Portugal, 2011, pp. 1-6.

[6] H. Hile and G. Borriello, "Positioning and Orientation in Indoor Environments

Using Camera Phones," IEEE Computer Graphics and Applications, vol. 28, pp.

32-39, 2008.

[7] S. Henderson and S. Feiner, "Exploring the Benefits of Augmented Reality

Documentation for Maintenance and Repair," IEEE Transactions on

129

Visualization and Computer Graphics, vol. 17, pp. 1355 - 1368, 2011.

[8] M. C. Juan, C. Botella, M. Alcaniz, R. Banos, C. Carrion, M. Melero, and J. A.

Lozano, "An Augmented Reality System for treating psychological disorders:

Application to phobia to cockroaches," in Proceedings of the Third IEEE and

ACM International Symposium on Mixed and Augmented Reality, Arlington,

USA, 2004, pp. 256 - 257.

[9] D. Kalkofen, E. Mendez, and D. Schmalstieg, "Interactive Focus and Context

Visualization for Augmented Reality," in Proceedings of IEEE and ACM

International Symposium on Mixed and Augmented Reality, Nara, Japan, 2007,

pp. 191-201.

[10] K. Jongbae and J. Heesung, "Vision-Based Location Positioning using

Augmented Reality for Indoor Navigation," IEEE Transactions on Consumer

Electronics, vol. 54, pp. 954-962, 2008.

[11] T. Miyashita, P. Meier, T. Tachikawa, S. Orlic, T. Eble, V. Scholz, A. Gapel, O.

Gerl, S. Arnaudov, and S. Lieberknecht, "An Augmented Reality Museum

Guide," in Proceedings of IEEE International Symposium on Mixed and

Augmented Reality, Cambridge, United Kingdom, 2008, pp. 103-106.

[12] H. C. Chen and W. H. Tsai, "Optimal security patrolling by multiple vision-based

autonomous vehicles with omni-monitoring from the ceiling," in Proceedings of

2008 International Computer Symposium, Taipei, Taiwan, Republic of China,

2008, pp. 196-201.

[13] J. Borenstein and Y. Koren, "The Vector Field Histogram-Fast Obstacle

Avoidance for Mobile Robots," IEEE Transactions on Robotics and Automation,

vol. 7, pp. 278-288, 1991.

[14] J. Y. Hwang, J. S. Kim, S. S. Lim, and K. H. Park, "A Fast Path Planning by Path

Graph Optimization," IEEE Transactions on Systems, Man and Cybernetics, Part

130

A: Systems and Humans, vol. 33, pp. 121-129, 2003.

[15] J. Bruce and M. Veloso, "Real-Time Randomized Path Planning for Robot

Navigation," in IEEE/RSJ International Conference on Intelligent Robots and

Systems, Lausanne, Switzerland, 2002, pp. 2383 - 2388.

[16] T. Akenine-Moller, E. Haines, and N. Hoffman, "Pespective Projection," in

Real-Time Rendering, Third Edition, T. Akenine-Moller, ed., 2008, pp. 92-97.

[17] A. Senior, A. Hampapur, Y.-l. Tian, L. Brown, S. Pankanti, and R. Bolle,

"Appearance Models for Occlusion Handling," in Proceedings of 2nd IEEE

Workshop on Performance Evaluation of Tracking and Surveillance, Hawaii,

USA, 2001.

