R AL NIRRT 2 TR R RN R B
FEPMNER

A Study on Indoor Navigation by-Augmented Reality and

Down-looking Omni-vision Techniques Using Mobile Devices

opoA L HE R

TR SRR S A

MRS RS T AL R TR R TR T RSN ET

A Study on Indoor Navigation by Augmented Reality and

Down-looking Omni-vision Techniques Using Mobile Devices

) Student : Meng-Yuan Hsieh

EFR BV Advisor : Wen-Hsiang Tsali

Fl ot s #
A Y= & Y
AL @<
A Thesis

Submitted to Institute of Multimedia Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer Science
June 2012

Hsinchu, Taiwan, Republic of China

PEAR-FE- &£

RN RFT R E R (TRER
THHREZSZPEF

Frd: HER IR Feal L

#e

AN - BEERTGREE HHA AT EAH LR PR H3
EI0 h ot R AN EE NREAS TR X XD R L AAAEAER -
BAYRED G0 - BRI S A A 2 o i d e 4T AR R
Pl H Jﬁﬁv;‘éiﬁ?ﬁgn cH TEFIFGR ALHE R TR AP B - B
FREp S F R TR RFEE R Z R R o AL R

==

BRI F A B3 e R A G (<) R K OB I~ (2)1

IR EE SRR -2 A TR SV € Sl s R R S

=

-\

Bl WREEHETFRREL FREE L hig » Faho R H0 R
FCPERESBE ETRE R AR NETFRAERRT LA
EEROGS HROEFH A AREFHFRET A5 0 AF LY KD
- BEERGRAREYL P EP POV RE T P - BREEEL DR

TR BRI T G b o bl TSRS B N AT RS

=

Ao b TEFA AR ERS Y B2 AR R ERRET T

=
Eb 4 o

A Study on Indoor Navigation by Augmented Reality
and Down-looking Omni-vision Techniques Using

Mobile Devices

Student: Meng-Yuan Hsieh Advisor: Wen-Hsiang Tsai

Institute of Multimedia Engineering, College of Computer Science

National Chiao Tung University

ABSTRACT

When people visit new indoor places or complicated indoor environments, there
usually needs a navigation system to guide them to desired destinations. In this study,
an indoor navigation system based on augmented reality (AR) and computer vision
techniques by the use of a mobile device like an HTC Flyer or an iPad is proposed.

At first, an indoor vision infra-structure is set up by attaching fisheye cameras on
the ceiling of the navigation environment..The user’s location and orientation are
detected at a server-side system, and the analysis results are sent to the client-side
system. Furthermore, the server-side system also sends the surrounding environment
information and the navigation path to the client-side system, which runs on the user’s
mobile device. The client-side system then displays the information in an AR way,
which provides clear information for a user to conduct the navigation.

For human localization, a vision-based localization technique is proposed, which
analyzes images captured from the fisheye cameras, and detects human activities in
the environment. In order to transform coordinates of image points into the real-world

space, a space-mapping technique is proposed. Furthermore, three techniques are

integrated together to conduct human orientation detection effectively. The first is
analysis of human motions in consecutive images. The second is utilization of the
orientation sensor on the user’s mobile device. The last is localization of the color
edge mark attached on the top of the mobile device using omni-images. These
techniques are integrated together to provide a reliable human orientation detection
system.

A path planning technique for use to generate a path from a spot to a selected
destination via the use of an environment map is also proposed. The environment map
is constructed from a floor plan drawing of the indoor environment. An obstacle
avoidance map is created from the floor plan drawing, which is used to determine the
avoidance direction when a path-collides with an obstacle in the environment.

Finally, the ‘navigation information is overlaid onto the image shown on the
mobile device to provide an AR navigation interface. A method for estimation of the
field-of-view of the camera on the mobile device is proposed. The field-of-view is
used to construct a transformation matrix; by which real-world points can be
transformed into the screen plane, so that the navigation information can be overlaid
onto the corresponding real-world objectsin the images to accomplish the AR
function of the system.

Good experimental results are also presented to show the feasibility of the
proposed methods for real applications. Precision measures and statistics showing the
system’s effectiveness in producing precise data for accurate visiting target displays

and environment navigations are also included.

ACKNOWLEDGEMENTS

The author is in hearty appreciation of the continuous guidance, discussions, and
support from his advisor, Dr. Wen-Hsiang Tsai, not only in the development of this
thesis, but also in every aspect of his personal growth.

Appreciation is also given to the colleagues of the Computer Vision Laboratory in
the Institute of Computer Science and Engineering at National Chiao Tung University
for their suggestions and help during his thesis study.

Finally, the author also extends his profound thanks.to his dear mom and dad for

their lasting love, care, and encouragement.

CONTENTS

ABSTRACT (1N CRINESE) ...veieieiieee ettt st sne e I
ABSTRACT (in ENGHSN) .ccviiiiiieee e I
ACKNOWLEDGEMENTS ..ottt iv
CONTENTS oottt st et e e s e esa e e et e sbeseesbeereenen v
LIST OF FIGUREScoooiiiiese ettt viii
LIST OF TABLES ...ttt Xiii
Chapter 1 INtrodUCTIONccviiieiiiieece e 1
1.1 Background and MOtIVatioNccccoeiiiiiiie i 1

1.2 Review of Related WOIKSco it ieieniniiieieeese s 2

1.2.1 Review of Related Indoor Navigation Workscccceeue..e. 3

1.2.2 Review of Related Augmented Reality Works..............c.ceen..... 4

1.2.3 Review of Related Human Localization Worksccccc...... 4

1.2.4 Review of Related-Path-Planning Works...c.c.........cccccoveveiieennenn, 5

1.3 Qverview of Proposed Methodscccccceiiiiiiiicieeise e 6

1.4 CONIIIDUTIONS ...viviitiireiueaseasnasiaeseaibsanessesssasssnsesessessbasseseessessessessesseeneenes 7

1.5 ThesSiS OrganiZationcceeociieiiueieeereiieiiainesieeianneseesreeaesseesreeneeanes 8
Chapter 2 Ideas of Proposed Methods and System Design................ 9
2.1 Ideas of Proposed Method ..ot e e, 9

2.2 1deas.of SYSIEM DESIGN.......cccieiereeiierie st st atbie e 11

2.2.1 SErVer-Side SYSLEMcc.ooueuiaiitemibine st eeieseesie e 11

2.2.2 Client-SIde SYSIEM o ociiiit it iabeeeeieee e 12

2.2.3 Cooperation between Client and Server Sides...........c.ccocvevenne. 13

2.3 System ConfIQUIAtIoNccooveieiierieiene e 14

2.3.1 Hardware Configurationc.ccocuvveeieieninene e 14

2.3.2 Network Configuration...........ccoceveeerinieienese e 16

2.3.3 Software Configurationc.ccoeeerieieienene e 16

2.4 SYSEEIM PIOCESSESoiuviiieiieieesieete sttt 17

2.4.1 Learning PrOCESS.......coouiiiiiiiisieiiesieeieie et 17

2.4.2 NaVIQation PrOCESScoviiiiiiiiiiiiiiiieieeieie e 19

Chapter 3 Learning of ENVIFONMENTSccoovviieieiieneiene e 23
3.1 Ideas of Proposed Environment Learning Techniques........................ 23

3.2 Coordinate Systems Used in This Study...........cccoevevviiienieiiec e, 24

3.3 Construction of Environment Mapcccooveeviieiiiciie e 25

3.4

35
Chapter 4

4.1
4.2

4.3

4.4

4.5
4.6

Chapter 5

5.1
5.2
5.3
54
5.5
5.6
5.7

Chapter 6

3.3.1 Information of Environment Map.........ccccccevvvienieeresieeseennenns 26

3.3.2 Finding Walkable Regions in Environment Floor Plan............ 27
3.3.3 Obstacle Orientation ANalYSIS.......ccccveveivereiiieseeie e 29
3.3.4 Learning of Magnetic Field Information.............ccccccoevvennne. 32
3.3.5 Algorithm of Environment Construction..........c.cccccvevvevivenenne. 33
Camera Calibrationocoeiiiiiiees e 34
3.4.1 Fisheye Camera Calibration and Ground Point Location

A= o] o] [o ST 34
3.4.2 Calibration of Camera on Mobile DevVice...........ccocvvvrivrinnnnnn. 40
Experimental RESUILSc.coveiieiiiie e 44

Human Localization in Indoor Environments by

Computer Vision TechniqUESccccccvvevveveeiieiiecn, 46
Idea of Proposed Human Localization Techniques................ccccvvene.... 46
Human LoCation Detectionooi i s catiinnenenienie e 47
4.2.1 Background/Foreground Separationcc..cccccevvvevereiveinennnn, 47
4.2.2. Human Foot Point'Detection and Computation........................ 49
Human Orientation DeteCLION ric.......ctviuuiaiesiveree i sirsssse e siesieaneeneeeens 50
4.3.1 Orientation Detection by Human Motionsc..ccccevenen, 50

4.3.2 Orientation Detection by Orientation Sensor on Client Device54
4,3.3 Orientation Detection by Color Edge Mark on Top of Client

Revica e ... A, 56
4.3.4 Algorithm of Orientation Detection...........cccc.ocovevvevreieceennenn, 60
HUMAN TFACKINGeovveieeie ettt 61
4.4.1 ldeaof Human Tracking .. i e, 61
4.4.2 Camera Hand-off ... i 65
Algorithm of Human Localization and Tracking...........c.ccccceeeveiveenenn. 67
Experimental RESUILScoveiieiiiic e 68
Path Planning for Navigationccccecevviiniieennennn, 71
Ideas of Proposed TEChNIQUEScooeierieiiniiieee e 71
ODBStaCle AVOIHANCEcocvveieciieiieie e 72
Path FINGING ...veieiiieeieee e 77
Path SIMPHTICALION ..o, 79
Path UPJate......c..oiviiiiiiiicieee e 86
Algorithm for Path PIanning..........ccccocevviiiiiniic e 88
Experimental RESUITScovviiiiiiiee e, 89
Augmented Reality for Navigation..............cccceevveverinnnenn, 92

Vi

6.1
6.2

6.3

6.4
6.5

Chapter 7
7.1

7.2

Chapter 8

8.1
8.2

References

Ideas of Proposed TEChNIQUESccveveieeriveie e 92

View Mapping between Real World and Client Device...................... 93
6.2.1 Information for Use in Mapping between Real World and Client

DBVICE ...ttt e 93
6.2.2 Transformation from Real World Spot to Client Device Screen

.. 94
Rendering for Visiting Targets and Navigation Paths.......................... 99
6.3.1 Visiting Target Renderingccccovevvvvieivenesieseece e 99
6.3.2 Rendering and Geometry Creation of Navigation Paths 104
Algorithm of Indoor Navigation by Augmented Reality 107
Experimental RESUILScocoeiieiice e 108
Experimental Results and Discussions............ccccceevenee. 111
Experimental RESUIES ..cc..oi it 111
7.1.1 Result of Real Navigations ... i i, 112
7.1.2 - Result of Precision Measurement ...c......ccieevvereeeeseerenieenenns 118
DiSCURSENS . Bl S DO, 123
Conclusions-and Suggestions for Future Works........... 125
CONCIUSIONS. ..ttt st st askaes e asdenneanasneanesnseseanensbanbeseesbesseaseeneeneans 125
Suggestions for FUture WOrks «.....ccc......ooveiioieciee i e 126
.. 128

Vil

LIST OF FIGURES

Figure 1.1 Concept of proposed indoor navigation system using augmented reality

TECRNIQUE ... e 3
Figure 2.1 Cooperation between client and Server Sides..........cccoovevvvieieeresiieveeniene 13
Figure 2.2 The camera used in the proposed system. (a) The appearance of the camera.
(b) The camera installed on the ceiling in the indoor environment. 15
Figure 2.3 The HTC flyer used as the client device in this study.cccccccevevvenenne. 15
Figure 2.4 The network architecture of the proposed system.cccccvevviievvenenne. 16
FIgUre 2.5 Learning PrOCESS.ite.iee ess esseeseeaseeibiesseassesseessesseesseessesssessesssesssssssssesses 19
Figure 2.6 NaVIgation PrOCESS. ... cussivisriisiiieiinnssessssnseidienseseesseessesseseessesssssssessesses 22
Figure 3.1 Four coordinate systems used in this study.(a) The ICS. (b) The MCS. (c)
The relation between the MCS and the GCS. (d) The CCS..................... 26
Figure 3.2 Floor plan image of the experimental environment map..............c.cccco.... 28
Figure 3.3 Expanded obstacle image of the experimental environment map where the
white regions indicate the obstacle regions.cice e, 31
Figure 3.4 A part of the obstacle avoidance map of the experimental environment
(SNOWN IN GreEN ArTOWS)....ciieiueeeesreeiseassinneeeeeseesseesaesrassbhesseeseesseesseasessens 31
Figure 3.5 Calibration box and calibration coordinate system.c.........cccccccevevvennenne. 35

Figure 3.6 Calibration images. (a) The calibration captured from a fisheye camera. (b)
The calibration points of the calibration image (shown as red circles). ..36
Figure 3.7 Mapping between the ICS and the CACS of a calibration point................ 36
Figure 3.8 Projection of a point in CACS on the (x, y) plane, where H. is the camera
height, C is the calibration point on the calibration board, and C” is the

PrOJECLION POINT. ...oiiviiiecii ettt 37
Figure 3.9 Calculating the coordinates of a point between calibration points by
bilinear iNterpolation.cccvoie i 38
Figure 3.10 Superimposing calibration points on an omni-image.ccccceevevuvenne. 40

Figure 3.11 The projection of calibration point on the ground, where G is the
projection point of C’, and H is the height of the camera affixed on the

(01 1 10T TSSO OPRUPRRS 40
Figure 3.12 Angle between the GCS axis and the CACS axis. The red circles indicate
the positions of calibration pPoiINts.cccccvviiieiiiii e, 40
Figure 3.13 View frustum and unit cube. (a) The view frustum. (b) The unit cube. ...42
Figure 3.14 Field-of-view of the view frustum...........ccccooeiiiiiiiiii e 43

viii

Figure 3.15 Finding the field of view angle by measuring the visible region in
[0 T -SSRSO 44
Figure 3.16 Environment map of the experimental environment, visiting targets are
shown as green region, and cameras are shown as blue circles. The
interval of the gray grid lines represents one meter in real world. 44
Figure 3.17 Images captured from the two fisheye cameras of the experimental
environment. (a) An image captured from the Camera-1 of the map
shown in Figure 3.16. (b) An image captured from the Camera-2. 45
Figure 3.18 Obstacle avoidance map of the experimental environment.................... 45
Figure 4.1 Background/foreground separation. (a) The background image. (b) The
image of the environment with a human. (c) The foreground image by

subtracting (a) from (D). ..o 48
Figure 4.2 Extended image lines of space lines which are perpendicular to the ground
will pass through the image Center.........cciviir e, 49

Figure 4.3 Detected foot point of a human (shown as red circle). (a) The foreground
image. (b) The original image captured from the camera (c) The foot
pointiVlifS. . . Bl B vl Kol ... N8 ... 51

Figure 4.4 A path of turning to the left where each human foot point is on the
left-hand side of the previous motion VECIO...............cicieeeceecve e, 52

Figure 4.5 A path of walking forward where all points except P; are on the left-hand
side of the previous MOtiION VECLOL.ciu...oovveeecie ettt 52

Figure 4.6 A azimuth a between two azimuth a, and a1y med 4, Where V(@) is on the

right-hand side of V(a,) and on the left-hand side of V (8p,1ymoga) oo 55

Figure 4.7 The color edge mark (The green strip)-in the omni-image...............c........ 56
Figure 4.8 The red line and the color edge mark (shown as solid green line) are
projected onto identical image points. The vertical projection (shown as
dotted green line) of the color edge mark will be parallel to the red line.

Figure 4.9 Orientation detection by color edge mark on top of the mobile device. (a)
The color edge mark region segmented from the omni-image. (b) The
approximating line (shown as green) obtained by applying line
approximation on (a). (c) The detected orientation (shown as green).60

Figure 4.10 The bounding box distance measure. (a) The distance between A and B is
the lower of the distance from the center of A to the nearest point on B or
from the center of B to the nearest point on A. (b) The distance is zero..62

Figure 4.11 Tracking matrix at different situation. (a) A region is close enough to only
a track, and only one region is close enough to the track. (b) Two regions

are close enough to a track. (c) Two regions are close enough to two same

EFACKS. vttt bbbt 63
Figure 4.12 Human location detection at four different locations.cccccccvvenenne. 69
Figure 4.13 Human orientation detection by color edge mark at four different
JOCALIONS. ..ttt 70
Figure 5.1 The whole direction region is divided to 8 parts, and each part is assigned
AN INABX. ittt bbb 73
Figure 5.2 Apply the direction region parts to the neighborhoods of one block, and
each neighborhood is assigned an iNAeX.cccoevevverenieeneeresie e 74

Figure 5.3 Avoidance blocks of 8 avoidance ranges, where the avoidance regions are
shown as semi-transparent regions. Each avoidance region is assigned
three blocks, which include the primary avoidance block (shown as red
regions) of the same avoidance range and two secondary avoidance
blocks (Shown:as bIUE FEGIONS). iiiiian i vvirtee sttt eieeie et 75

Figure 5.4 Path found in the path finding process. ... ccitiniieiiiicie e 79

Figure 5.5 The redundant point elimination and the distance elimination. The black
points represent the originalrimmediate points of a path (a) The redundant
point_elimination, where the two redundant points P, and P3 can be
removed. (b) The distance elimination, the path length can be eliminated
by substituting P, by the two red points.cococoeiimneieeenieneeeenn, 80

Figure 5.6 Result of path finding and redundant point elimination. (a) Result of path
finding. (b) Result of applying the redundant point elimination on (a)...81

Figure 5.7 Process of distance elimination. The black points are the immediate points
of a path. The gray region represents the region of an obstacle, the line
between the two red. points are-a shortcut found by the distance
EliMINALION PrOCESS. cueeieiert et ittt ettt e re e 82

Figure 5.8 Result of applying the distance elimination on the path of Figure 5.6(b)..84

Figure 5.9 Result of applying the path simplification on the path of Figure 5.6(a).....85

Figure 5.10 Results of the path update process. (green circles indicate the current
point and red circles indicate the last reachable point from the current
point) (a) The original planned path. (b) An updated path. (c) An updated
path which is not of the simplest form. (d) Result of applying the path
simplification on the path of (C).....c.cccoceiiiiiiiii e, 88

Figure 5.11 Result of the path planning. (a) Result of the path finding. (b) Result of
applying the path simplification on the path of (2).........cccccoevveviviieennnns 90

Figure 5.12 Result of the path planning. (a) Result of the path finding. (b) Result of
applying the path simplification on the path of (a)...........cccceeveviviiiennnn, 90

Figure 5.13 Result of the path planning. (a) Result of the path finding. (b) Result of

applying the path simplification on the path of (2).........cccccevviiveivernenne. 91
Figure 6.1 A visiting target in the environment map and its corresponding location in

thE GCS. it 94
Figure 6.2 A camera in the GCS and the CCS. (a) A camera in the GCS with three
orthonormal vectors up, right, and forward. (b) The CCS.........c..ccoenee... 96
Figure 6.3 Camera looks at a pitch angle . The green line indicates a line on the
hOFiZONtal PIANE.........ocieeecee e 97
Figure 6.4 An augmented image overlaid with visiting target information................. 99
Figure 6.5 Parameters of a visiting target (shown as the green region). All the
parameters are iNthe GCS. ..., 100

Figure 6.6 Four points transformed from the GCS of a visiting target. (a) Before
clipping to the range of the image size. (b) After clipping to the range of
the TMAQE SIZE......eie it et e et et e ettt sbe e nre e sre s 100
Figure 6.7 Display the visiting target information on the display position prext......... 101
Figure 6.8 Display point for a visiting target which i1s outside of the screen range. d

is the ‘orientation of the user, and d._ is the vector from the user’s

tar

location to the VISItING target.... ..o coiiiieeii ot 102
Figure 6.9 A path-and its display on a screen. (a) The path with three line segments.
The first two line segments are which should be concerned by a user. (b)
The display of the first two line segments of the path of .(a). 105
Figure 6.10 The geometry of adisplay path ... 105
Figure 6.11 An augmented image with visiting target information. (a) An omni-image.
(b) Detected location and orientation. (c) The augmented image shown on
USET’S MODIIE AEVICE. tiiirurrrvvreeiieesiiie s astieserasieeessiieesieeesieeesnieeeeiaeens 108
Figure 6.12 An augmented image with visiting target information. (a) An omni-image.
(b) Detected location and orientation. (c) The augmented image shown on
USEr’s MODIIE AEVICE. .oiiivvriiiiiiiiiec e e 109
Figure 6.13 An augmented image with a navigation path. (a)(b)(c) The augmented
images at three different locations. (d) When the destination is outside of
the screen, the name of the destination will display on the edge of the
screen (shown as the yellow stroke text); this image shows that the
destination is on the rear of the USEr..........cccooviiiiiiiiiiie s 110
Figure 7.1 The environment map of the experimental environment.......................... 111
Figure 7.2 A result of browsing visiting targets at a certain location. The left-hand side
is the images captured from the fisheye cameras, and the right-hand side
is the augmented images shown on the user’s mobile device................ 112
Figure 7.3 A result of navigation by a navigation path. (a) A user was at a certain

Xi

location. (b) The detected location and orientation. (c) The augmented
image seen by the user. (d) The augmented image shown when the user
searched a visiting target, and there is a yellow stroke text shown on the
right-hand side of the bottom edge of the augmented image, which
indicates the direction of the destination. (e) The augmented image
shown when the user is turning to the right-hand side. (f) The augmented

image shown when the user is turning to the correct direction.............. 116
Figure 7.4 A user following the path shown in Figure 7.3(f) to move....................... 117
Figure 7.5 The four augmented images corresponding to the four locations as shown
in Figures 7.4(a) through 7.4(d), respectively.c.ccccoovviveieiininennene, 118
Figure 7.6 Locations used for precision measurement in the human location detection
PTOCESS. 1ttt ettt ettt et e e sttt e ekt e ekt e e b e e et e e et e e e bt e e et e e e be e e n b e e e a e e nnnes 119
Figure 7.7 Line segments used for-the line length measurement..............c.ccccceevenee. 120
Figure 7.8 Locations used. for precision-measurement in-human orientation detection.
.. 121

Xii

LIST OF TABLES

Table 7.1 Error of human location detection (UNit: CM)......ccoevveveiieeiecie e 119
Table 7.2 Error of line length MeasuremMent............cccoeoeiveieeie s s 120
Table 7.3 Error of human orientation deteCtion.ccccovevevenininiinieieeese e 122

Xiii

Chapter 1
Introduction

1.1 Background and Motivation

When people visit new places or complicated indoor environments, such as
company buildings, large labs, malls, .department stores, etc., there usually needs a
navigation system to guide them to desired destinations. Common navigation systems
use the global positioning system (GPS) to retrieve position data, but the GPS is
generally not suitable for use to acquire indoor locations, since signals will be
attenuated and scattered by roofs, walls, and other objects in indoor environments,
resulting in imprecise localization readings. In this study, it is desired to design an
indoor navigation system using a different localization technique. Specifically, we try
to design a vision-based localization technique to analyze the images captured from
fisheye cameras installed on ceilings in indoor environments and detect human
activities in the environments.

Meanwhile, we try to use mobile devices as user-end devices. Mobile devices are
getting more and more popular nowadays and are used more and more widely in
various applications. In recent years, many mobile devices become commercially
available, such as smart phones and tablets equipped with more advanced function
units like high-speed CPUs, graphics processing units (GPUs), digital cameras, device
orientation sensors, etc. Therefore, application developers can design many
complicated mobile applications or services that assist people in real-life events due to

the high-speed computational and advanced capabilities of the devices.

Moreover, as the on-device camera getting cheaper and more common, we can
use them to develop more interesting and useful applications by combining real-world
images captured from cameras with virtual augmentations created by computers. In
other words, the real-world environment can be augmented by computer-generated
objects to enhance the perception of the real world, and this is the so-called
augmented reality (AR) technique. In this study, we try to design an indoor navigation
system by the AR technique using mobile devices. We want to overlay artificial
navigation instructions mentioned above onto the real images captured with the
camera in real-time, so that users can just take their mobile devices and conduct
indoor-environment navigations conveniently. The concept of the proposed system is
shown in Figure 1.1.

In summary, the goal of this-study is to develop an indoor navigation system with
the following capabilities.

1. Working in_indoor environments, and being able to detect users’ positions and
orientations.

2. Integrating real images with virtual augmentations, such as the current position,
the next moving direction to the desired destination, nearby visiting target
information, etc., to provide users convenient and clear navigation interfaces.

3. Planning a proper path from a user’s location to a desired destination, and

updating the path dynamically when the user moves to a location not in the path.

1.2 Review of Related Works

In this section, we conduct a survey of works about indoor navigation and related
techniques, such as human localization, human orientation detection, navigation path

planning, and AR techniques.

Figure 1.1 Concept of proposed indoor navigation system using augmented reality
technique

1.2.1 Review of Related Indoor Navigation Works

In recent years, with outdoor navigation systems become more popular and
widely used, there are more and more researches about indoor navigation trying to
satisfy the demands for indoor environments. Lukianto, et'al. [1] proposed an indoor
navigation system for use on the smart phone; which-is-based on an inertial navigation
system (INS) and provides the position, speed, and orientation of the user. Ozdenizci,
et al. [2] proposed a near field communication (NFC) based system, which detects the
user’s position by touching NFC tags with a smart phone.

Besides the sensor-based navigation systems mentioned above, several systems
using image processing techniques have been proposed. The most common technique
used in image-based systems is marker-based navigation with camera phones [3, 4],
in which a user must point the phone’s camera at a marker, and the system then will
recognize it and know where he/she is located.

Many other systems also use image-based techniques for AR. Werner et al. [5]
proposed a method to detect human positions in indoor environments by a

combination of image processing systems with a distance estimation algorithm using

the camera of a mobile device. Hile and Borriello [6] developed an indoor navigation
system that can find the camera pose by detecting the landmark in the phone camera
image and matching it with previously-cached landmarks, and then overlaying the

information onto the images.

1.2.2 Review of Related Augmented Reality Works

Augmented Reality enhances the real world with virtual objects or digital
information, so it has been used in many fields. For example, it can be used to help
mechanics to perform maintenance and repair tasks [7], treatment for psychological
disorders [8], context visualization [9], etc.

We develop our navigation system by the AR technique, and there are also other
systems using AR techniques.-Jongbae and Heesung [10] proposed a vision-based
indoor navigation system, which recognizes the location of users by marker detection
and image sequence matching on images captured from a wearable camera, and
display navigation information in the AR way. Miyashita, et al. [11] designed a
museum guide system, which uses a markerless tracking technique and an AR

platform — Unifeye SDK.

1.2.3 Review of Related Human Localization Works

The human localization techniques of navigation systems mentioned in the
previous sections can be roughly classified into the two types of sensor-based and
image-based. Sensor-based localization techniques usually need infrastructures with
infrared, RFID, NFC tags [2], or other customer-designed hardware [1]. Image-based
localization techniques usually use markers attached on the environments or the
features acquired from the images captured by cameras [5] [6].

In this study, we propose an image-based localization technique, which uses

fisheye cameras to capture images and detect the user’s location. The fisheye camera
has the advantage of possessing wider fields-of-view, so we can use it to observe
wider regions in many applications. In our system, 2-D image points must be
transformed into the 3-D global space to get the actual position of the user. For this
purpose, we tried to use a space-mapping method proposed in [12]. But this method is
based on the use of fixed cameras. When the positions or other configurations of the
cameras are changed, we have to redo the works again. In this study, we propose a
method to solve this problem and improve the above method for more flexibility and

better usability.

1.2.4 Review of Related Path Planning Works

When a navigation system-gets a user’s location and the user wants to reach a
certain destination, then the system should plan a path from the user position to the
destination.

About the path planning technique, Borenstein and Koren [13] proposed a
real-time collision “avoidance method using a technigue named Vector Field
Histogram, which can detect unknown.obstacles and avoid collisions. Hwang, et al.
[14] proposed a path planning method by a path graph optimization technique which
triangulates the world space into a mesh representation, and then extract an optimized
path graph from the mesh. Bruce and Veloso [15] proposed a path planning technique
named rapidly-exploring random trees (RRTs) by waypoint caching and adaptive cost
penalty search, which improve re-planning efficiency and the quality of generated

paths.

1.3 Overview of Proposed Methods

The most important part of every navigation system is the localization function.
As discussed previously, we usually need a GPS to retrieve the position data in an
outdoor environment, but the GPS is not suitable for indoor environments due to its
rough localization precision. Therefore, we propose a new method for indoor
localization in this study under the assumption that there is only one user in the indoor
environment taken care of by the system. At first, we have to build a top-down vision
infrastructure in the indoor environment, which has a sufficient number of fisheye
cameras installed on the ceiling. Then, an environment map. model is created, which
includes the location information of the cameras and the visiting targets for guidance.
Each visiting target means a place-or object in the real environment, such as an exit, a
restroom, a water dispenser, and others that people might be interested in, and this
term will be used in the subsequent sections. The cameras are with fisheye lenses
which have wide fields-of-view. Such cameras can be deployed to monitor the entire
environment with a 'smaller number of them. Then, we analyze the images captured
from the cameras to detect the user’s position-on a server-side system.

After getting the user’s position, his/her orientation must be detected to decide
what the camera on the user’s mobile device “sees.” Then, the system can send
relevant navigation information to the client-side system through a wireless network
in the environment, and the user at the client site can realize what the visiting targets
in sight on the device display screen are or how to get to its desired destination. In our
system, we detect the user’s orientation by integrating three different techniques,
which respectively are human motion analysis, localization by the e-compass data,
and detection of a color edge mark on top of the hand-held client device at the client

site.

In order to guide a user to a desired destination, we propose a path planning
technique for indoor navigation. The path planning technique is based on a floor plan
of the indoor environment in the form of a graphic picture. By the technique, we
analyze the floor plan to localize obstacle and walkable regions in the plan, and use
the resulting information to plan paths according to the destination which is taken as
input to the technique.

After getting the user position and orientation, the server system sends the
navigation information to the client system, which then displays the information on
the device screen at the client site. The navigation information data includes the name
and distance of visiting targets in sight of the user, the navigation path to the desired
destination, etc. The client system will map the information from the real world to the
screen of the hand-held device. - Then, the visiting target information or the navigation
path can be overlaid onto the real places or objects shown in the current image taken
of the environment by the built-in camera of the device. In other words, the device
displays the navigation information in an AR way. As such, the user can understand

the surrounding environment easily and intuitively.

1.4 Contributions

The major contributions of this study are listed in the following.

1. A new AR-based indoor navigation system using computer vision is proposed to
satisfy the demands of guidance or browsing of indoor environments.

2. An image-based localization method by analyzing the images captured from the
fish-eye cameras affixed on the ceiling is proposed to compensate for the
insufficiency of the GPS in the indoor environment.

3. An augmented reality interface is proposed to provide a user with surrounding

navigation information and the navigation path from the position of the user to the

specified destination.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, we introduce
the configuration of the proposed system and the system process in detail. In Chapter
3, we introduce the proposed process for learning of an indoor environment, which
includes the data that we will use in.the proposed system. In Chapter 4, the proposed
user localization method for indoor environments and the proposed user orientation
detection method are described. In Chapter 5, we introduce the proposed path
planning technique. In Chapter 6, we describe the proposed AR technique, a method
to conduct the perspective transformation for information displays on the user’s
device, and the.adopted technigue for rendering augmentations on real images. In
Chapter 7, some experimental results to show the feasibility of the proposed
techniques for indoor navigation are presented. At last, conclusions and some

suggestions for future works are given in Chapter 8.

Chapter 2
Ideas of Proposed Methods and
System Design

2.1 ldeas of Proposed Method

We propose an image-based localization technique for AR-based guidance of
indoor environments in this study. The system analyzes the omni-images captured
from the cameras affixed on the ceiling, and then finds the user’s foot points in the
omni-images. When we get the-user’s foot points, we transform their coordinates in
the image coordinate system (ICS) into the global coordinate system (GCS) to get the
actual position of the user in the indoor environment. In order to conduct the above
transformation, we construct a mapping table -between the ICS and the GCS in
advance.

Next, we must detect the user’s orientation after detecting the user’s location. In
order to accomplish this aim, the simplest way is to track the user’s locations in
consecutively acquired images, and use the resulting motion vectors of the user’s foot
points to compute the user’s orientation. But when the user is not walking, this
method will not work because there is then no more moving vector for use. In this
situation, we propose other techniques to overcome the problem. The first technique is
to utilize the orientation sensor installed in the user’s device mentioned previously.
The orientation sensor measures the azimuth angle of the device by detecting changes
and disturbances in the magnetic field in the surrounding environment. However,

according to our experimental experience, the azimuth values detected are not stable

enough for our application due to indoor magnetic interferences from various sources.
Therefore, we propose a second technique to improve the stability of detected
orientations, that is, to attach a color edge mark on the top edge of the user device,
and detect this line mark appearing in the omni-image to compute a more accurate
orientation of the user at each visiting target.

In addition, in order to guide users to their desired destinations, we propose
further a path planning technique for the proposed indoor AR navigation system. An
environment map model is constructed first from a graphic drawing of the floor plan
of the environment. Then, walkable regions in the floor plan are detected by image
processing techniques with the graphic drawing as input. In this way, we can know
where the obstacles are in the environment. The orientations of the obstacles then are
analyzed to decide how to avoid-them and where to go next. When a user wants to go
to a destination, the system will search the constructed environment map, and get the
destination point.in the map. In the meantime, the system will plan a path starting
from the user position and ending at the destination.. When the planned path collides
with any obstacle, it follows the orientation of the obstacle’s boundary to avoid the
collision and go to the next immediate-visiting spot. Repeating the above steps until
reaching the appointed destination, we can get a complete navigation path finally as
the desired path planning result.

When the client-side system receives the navigation information sent from the
server, the system will display the information on the device screen. The navigation
information includes the visiting target information and the navigation path itself. The
visiting target information includes the name of the visiting target and its coordinates
in the GCS. The navigation path contains the GCS coordinates of the points on the
path. In order to display the information in an AR manner, the client-side system must

transform the GCS coordinates onto a 2D screen plane. The field-of-view of the

10

camera of the client device must also be estimated to get a perspective projection
matrix. With the matrix, the 3D points of the navigation information can be
transformed into the 2D screen plane. Then, the navigation information can be
overlaid onto the real places or objects in the image taken of the current scene, and the
user can so understand the surrounding environment easily, achieving the major goal
of AR-based indoor environment guidance of this study. This step of navigation
information overlaying on real environment images for displays on the user’s mobile

device will be called display rendering in the sequel of this thesis.

2.2 ldeas of System Design

In this study, the proposed system is of a client-server architecture, which may be
decomposed into. two parts: a server side and a client side. The server-side system is
used for condueting complicated works with heavy computations; and it runs on a
centralized computer. The server-side system- will-be- introduced in more detail in
Section 2.2.1. The client-side system runs on the user’s mobile device, which obtains
navigation information from the server-side system and displays it on the screen of
the device. The client-side system will be introduced in more detail in Section 2.2.2.
Finally, the cooperation between the client and server sides will be introduced in

Section 2.2.3.

2.2.1 Server-side System

The server-side system runs on a centralized computer as mentioned, and is
connected to the cameras on the ceiling through a local area network. In the learning
stage, we build an environment map, which includes environment information such as

target locations, target titles, and camera locations. In the navigation stage, the server

11

accesses the omni-images captured from the cameras, and analyzes the omni-images
to detect the user’s location and orientation at each visited spot. After the server
detects a user via images acquired by the cameras, it sends the user’s location,
orientation, and the information of nearby visiting targets to the user’s client-side
system. All of such information will be updated when the user moves. When the user
wants to reach a certain destination, the server will receive a request from the client,
and then plan a path from the user’s location to the destination, and send a set of
intermediate points of the path to the user’s client-side system to display.

As a whole, the server is designed mainly for conducting human localization and
path planning, and these two tasks are both heavy computational works. Because the
client-side system runs on the-user’s mobile device, which has lower power and
inferior computational capabilities- than the centralized computer, conducting these
heavy computational works on the server can increase the computational performance

and reduce the battery power usage of the client-side system.

2.2.2 Client-side System

The client-side system runs.on-the user’s mobile device. Because the mobile
device held by the user (like an iPad) has lower power and inferior computational
capabilities than a laptop or desktop computer, the client-side system on it must be
assigned as few works as possible to reduce the power consumption and increase the
computational performance. Therefore, most tasks carried out by the client-side
system are limited to be those related to information displays, such as view projection,
display rendering, and creation of the navigation path’s geometric shape (arrows,
thick line segments, etc).

When a user enters the environment, the user’s client-side system is connected to

the server through a network and receives relevant information from the server. Then,

12

the client-side system just needs to display the information on the screen of the user’s

mobile device.

2.2.3 Cooperation between Client and Server Sides

The server and client side systems are described in Section 2.2.1 and Section
2.2.2. Here we describe the cooperation between the client-side and server-side
systems in more detail. An illustration of the cooperation between the two systems is
shown in Figure 2.1.

When the client is connected to the server, the latter will begin to detect the user’s
location and orientation, and send the location coordinates, the orientation vector, and
the nearby environment information to the user. The information will be updated
continuously to make sure that the-user can receive correct and immediate messages.
When the user wants to reach a certain destination, the client-side system will send a
request, which includes the name of the destination, to the server. After server
receives the request, it will plan a path starting from-the user’s location and ending at
the destination. Finally, a set of intermediate points of the path will be sent to the

client.

Server Client

Environment
information

h 4

Location, orientation, &

e e nearby visiting target information

View projection —

/ Human location

Desired destination

Path planning Creation of navigation path

» shapes
Set of points
of navigation path *
Display rendering ¢

Figure 2.1 Cooperation between client and server sides.

13

2.3 System Configuration

In this section, we will introduce the configuration of the proposed system. The
hardware of the proposed system includes fisheye cameras which we use for human
detection, and the mobile device which we use as the client-side device. It will be
introduced in more detail in Section 2.3.1. In Section 2.3.2, we will describe how to
connect the hardware over the network, and how it operates. Finally, we will
introduce the software development environment and the operating system we use

both in the server-side system and in the client-side system.

2.3.1 Hardware Configuration

The camera we use in this-study is of the model of Axis 207MW, which is made
by Axis Communications, and the original lens is replaced with a fisheye lens in this
study to expand its field-of-view. The Axis 207MW camera has a dimension of
85x55x40mm (3.37x2.2”x1.6”, not including the antenna), and a weight of 190g
(0.42 Ib., not including the power supply). Its appearance is shown in Figure 2.2(a).
The maximum resolution of the images-captured with it'is up to 1280x1024 pixels.
For performance efficiency, we use the resolution of 640x480 pixels in our system,
and the frame rate is up to 15 fps. The cameras can be accessed through wireless
networks (IEEE 802.11g/b), but for speed improvement, we access the cameras
through the Ethernet.

We build our experimental environment in the Computer Vision Lab at National
Chiao Tung University by installing several fisheye cameras on the ceiling of the lab.
(see Figure 2.2(b)). The images captured from the cameras are analyzed by the
centralized computer to detect the user’s location and orientation. The server sends the

navigation information to the users’ mobile device so that the user can begin the

14

navigation. The mobile device we use in the experiment is a HTC Flyer tablet made
by HTC Corporation. Its appearance is shown in Figure 2.3. The HTC Flyer has a
dimension of 195x122x13.2mm (7.7”x4.8”x0.5”) and a weight of 420g (0.93 Ib). It
has a screen size of 7 inches, a camera acquiring 5-megapixel images, and an
e-compass that can detect the device orientation in a magnetic field, etc. The user uses
the HTC Flyer as the client device, and connects it to the server through a wireless

network.

(a) (b)
Figure 2.2 The camera used in the proposed system. (a) The appearance of the
camera. (b) The camera installed on.the ceiling in the indoor environment.

Figure 2.3 The HTC flyer used as the client device in this study.

15

2.3.2 Network Configuration

Using the Ethernet is more reliable for our application in this study than using a
wireless network. Therefore, the cameras and the centralized computer are connected
through a local area network (LAN) in this study. The server can access the images
captured from the cameras in a more reliable way through the Ethernet, and so one
can make sure that the system always accesses correct and immediate images and
messages.

The client device we use is a mobile device, so it must access the server through
the wireless network. The most commonly-used wireless networks currently are the
Wi-Fi and 3G networks, and the client device can access the server and receive the
navigation information using-both-of them. For reliability and speed considerations,
we set up a Wi=Fi access point in our experimental environment, and the user can
connect to the 'server through the Wi-Fi network in the environment. A complete

network architecture is shown in Figure 2.4.

Camera Camera

Wi-Fi Network
Client Device

Figure 2.4 The network architecture of the proposed system.

2.3.3 Software Configuration

The server-side system is written in C# programming language using the

16

Microsoft Visual Studio 2010 development environment, and the system operates on
the Windows 7 operating system. The server-side system accesses the cameras by the
AXIS Media Control SDK (AMC SDK), which is provided by the manufacturer of the
cameras, Axis Communications. The AMC SDK provides the application
programming interface (API) for developers to access the camera images or control
the cameras using C# and C++ programming languages.

As to the client-side system, it is written in the Java programming language and
operates on the Android 2.3.4 operating system. The client-side system uses the
Qualcomm's Augmented Reality (QCAR) platform, which provides many useful
functions for AR developments on mobile devices. But in our system, we only use the
QCAR to handle the capturing of camera images. The rendering of 3D augmented

objects is conducted by the Android OpenGL API.

2.4 System Processes

2.4.1 Learning Process

The goal of the learning process.of the proposed system is to establish the
environment map, which includes information about the visiting targets, cameras,
magnetic fields, and obstacle orientations. The entire learning process is shown in
Figure 2.5, and more details of it will be described in Chapter 3. Only a brief
description of the process is given here.

First, we establish an environment map in the form of a floor plan drawing. The
floor plan is drawn at a specific ratio relative to the actual size of the environment.
After specifying the ratio, we compute the corresponding size in the unit of pixel. The
use of this scaling ratio is necessary for the transformation between the ICS and the

GCS. Next, the visiting targets of the environment are specified on the environment

17

map. Furthermore, we must also specify the installation information of the fisheye
cameras. The installation information includes the location and height of the cameras,
which is necessary for use in computing the transformation between the image
coordinate system and the map coordinate system.

After the environment map is established, the learning processes can be
decomposed into two phases: learning for path planning and learning for human
localization. Before we perform path planning, the system must know the information
of obstacles. The path planning algorithm can determine how to avoid the obstacles in
the environment by the obstacle information. Therefore, the goal is to analyze the
information of obstacles, which includes obstacle location and obstacle orientation, in
the path planning phase. A more detailed description of obstacle analysis will be given
in Section 3.3.3.

In the human localization phase, we calibrate the cameras, including the
server-side fisheye cameras and the client-side on-device camera, to map the points
between different coordinate systems. A more -detailed description of the camera
calibration process will be described in Section 3.4. Furthermore, the system detects
the user’s orientation by aid of the e-compass on the client device. The e-compass, as
mentioned before, is an orientation sensor that measures the azimuth angle of the
device by detecting the changes and disturbances in a magnetic field around the
currently-visited spot. However, the magnetic field will be interfered by the structural
steel elements in a building, so the magnetic field does not have an identical
distribution at every location in the environment. To learn the magnetic field in the
visited environment, we establish an azimuth map, which keeps a record of four
direction azimuth values for every sample location in the environment map. A more
detailed description of the magnetic field learning process will be described in Section

3.3.4.

18

Environment map
establishment

Start of learning

Create floor plan drawing
with a scaling ratio

Specify locations of
visiting targets and
cameras

v

v

Camera
calibration

Obstacle orientation Magnetic field
analysis learining
Learning of
Learning of human

path planning

location

Figure 2.5 Learning process.

After the above learning steps, we have completed the preparation works needed

in the navigation stage of the proposed system process. In the next section, we will

Environment map
database

End of learning

describe the works conducted in the navigation stage.

2.4.2 Navigation Process

In the navigation stage, the server analyzes the omni-images captured with the
cameras continuously, and sends the environment information to the client. The
client-side system displays the information on the screen of the user’s mobile device.

When the user wants to reach a certain destination, the server will plan a path, and

19

send a set of intermediate points of the path to the client. The entire navigation
process proposed in this study is shown in Figure 2.6.

At the server side, the first step is human location detection. The proposed
human localization process transforms the detected human location from the ICS into
the GCS using the camera information we have acquired in the learning stage. Then
the user’s location is used in the steps of human tracking and human orientation
detection. The objective of the human tracking step is to identify the same human in
consecutive video frames, and then compute the user’s speed to determine whether
the user is walking or not. In-the human orientation detection step, we detect the
orientation by analyzing the color edge mark, which'is on the top of the client device,
in the omni-image. However, when-the color edge mark is not observable in the
omni-image, another technique-must be adopted. For this, we compute the orientation
by use of detected human motions, or by the azimuth map constructed in the learning
stage. Here we also determine the nearby visiting targets seen by the user according to
the user’s location. Finally, the server sends the information of the user’s location and
orientation, and the nearby visiting targets to the user’s mobile device (the client).

Next, if the server receives a request-that the client wants to reach a certain
destination, the server begins the path planning process; if not, the server continues to
conduct human localization repetitively. At the first step of path planning, the system
tries to find a path starting from the user location and ending at its desired destination
using the obstacle information analyzed in the learning stage. But the found path may
be not of the simplest form; i.e., there may exist two non-connected points in the path
that can instead be connected together. In such cases, we simplify the path to be of a
simpler form. Finally, a set of resulting intermediate points of the path will be sent to
the client.

When the client receives the navigation information mentioned above, it begins

20

to conduct the work of display rendering by “drawing” the information, which
includes the visiting target information and the navigation path, on the device screen
for the user to inspect. In order to map real world objects onto the mobile device
screen, the first step of the client is to set up a perspective projection by use of the
location and orientation of the user. The orientation detected from the server is an
azimuth angle, which represents a direction in a horizontal plane. However, a user
might tilt the client device to watch the environment at a pitch angle rather than at a
horizontal angle, so we add the pitch angle value to the detected orientation angle to
provide a correct final orientation of the user’s device. The pitch angle can be
obtained from the orientation sensor of the client device.

After the client receives-a navigation path, it creates a geometric shape of the
path; specifically, the client will-transform the set of intermediate points of the path
into an arrow shape pointing to the destination. Finally, the client begins to draw the
information and overlays the generated virtual objects onto the real image taken of the
current scene to accomplish the display rendering task.

The above processes of both the server side and client side are run repeatedly

until the client terminates the navigation system.

21

Start of navigation

Server Client
Images Environment
captured map
from cameras information
< Orientation
Human localization sensor data
> Human location detection |« y
» Set up projection 4
* * 4 Location, <
Human trackin Human orientation orientation,
9 detection and
nearby visiting target
information
Y
Ny@ent search
for a destination?
Yes
v '
< Creation of
Path finding » navigation path
Set of intermediate shape
¢ points of path
Image
Path simplification captured
from
. camera
Path planning
Display rendering 1«
Does client still
need navigation?]
Still need

navigation?

‘No

End of navigation

Figure 2.6 Navigation process.

22

Chapter 3
L_earning of Environments

3.1 Ideas of Proposed Environment
Learning Techniques

In the learning stage, we must construct an environment map, which includes
information about the cameras, visiting targets, magnetic field, and obstacles. Then
we can use such information in the processes conducted in the navigation stage, such
as human localization and path-planning. Specifically, we use a digital drawing of the
floor plan of the environment to create the environment map, and specify the location
of the cameras and the visiting targets in the map. A more detailed description of map
construction will be introduced in Section 3.3.

After environment map construction, we continue to learn the magnetic field in
the environment. The magnetic field is used for human orientation detection by the
orientation sensor on the client device, and the output of the orientation sensor is an
azimuth value specifying the orientation of the hand-held client device. In the
magnetic field learning stage, we try to construct an azimuth map, which keeps a
record of four-direction azimuth values for every sample location in the environment
map.

Meanwhile, we also analyze the floor plan drawing of the environment to detect
obstacles. The resulting obstacle information is used for collision avoidance in the
path planning process. In the first step of obstacle analysis, we analyze the floor plan

drawing to find the walkable regions in the environment, and detect accordingly the

23

obstacle regions. Next, we compute the orientations of the obstacles, which then are
used in the path planning process to find proper moving directions at each spot for
collision avoidance. These moving directions are called “avoidance directions” in the
sequel of this thesis.

At last, we calibrate the cameras at both the server and client sides. For the
server-side fisheye cameras, instead of calibrating the camera’s intrinsic and extrinsic
parameters, we adopt a space-mapping technique [12] for transformations between the
coordinate systems used in this study, and extend the technique to be more flexible
with better usability for our study. For the client-side camera on the mobile device, we
introduce a simple technigue to estimate the field-of-view of the camera, which then
is used to map the locations of real-world objects onto the device screen. The

proposed camera calibration scheme will be described in detail in'Section 3.4.

3.2 Coordinate Systems Used in This
Study

In this section, we will introduce the coordinate systems used in this study, which
describe the relations between the used devices and the environment map. The
following are the four coordinate systems used in this study.

(1) Image coordinate system (ICS): denoted as (u, v). The u-v plane of this system
coincides with the image plane of each fisheye camera and the origin is at the
top-left of the image plane.

(2) Map coordinate system (MCS): denoted as (M, My). The MCS is used to
represent the environment map. The My-My plane coincides with the image plane
of the floor plan. The origin is at the left-top position of the image plane.

(3) Global coordinate system (GCS): denoted as (Wy, Wy, W;). The W,-W, plane of

24

this system coincides with the ground and the z coordinates “grow to the top.”
The origin is at the left-top point in the MCS.

(4) Camera coordinate system (CCS): denoted as (x, Y, z). The CCS is used to
represent the real world space with respect to each fisheye camera. The x
coordinates “grow to the right of the camera,” the y coordinates “grow to the top
of the camera,” and the z coordinates “grow to the back of the camera.” The

origin is at the lens center of the camera.

In the proposed system, we use a floor plan.drawing of the environment to
establish the environment map, and the MCS is used. for describing the geometry of
the map, as mentioned previously. The relationship between the MCS and the GCS is
illustrated in Figure 3.1. As shown-in the figure, the origin of the MCS is mapped to a
corresponding point in the real-world space. However, for the MCS the unit of pixel is
used, so the global coordinates should be computed by multiplying the MCS

coordinates by a scaling factor of the floor plan in the following way:
W, =sM; W, =sM, (3.2)

where s is the scaling factor which is found by experiments.

3.3 Construction of Environment Map

In this section, we will introduce the method we propose to construct the
environment map. The environment map is like a database, which contains the
information that we use in the navigation stage. In Section 3.3.1, the information
included in the environment map will be introduced briefly. And other information we

need for the proposed system will be described in more detail in the subsequent

25

sections.

(c) (d)

Figure 3.1 Four coordinate systems used in this study. (a) The ICS. (b) The MCS. (c)
The relation between the MCS and-the GCS. (d) The CCS.

3.3.1 Information of Environment Map

The information we include in the environment map includes the camera
locations, visiting target information, obstacle information, and magnetic field
information. The environment map we use is 2-D in dimension; in other words, it
contains only one floor structure and 2-D coordinates. But the information contained
in the map can be three-dimensional, that is, it includes height information.

The camera location specifies the position of a fisheye camera and its height. The

26

height of the camera is used for the transformation between the ICS and the GCS. In
addition, a visiting target means a place or object in the real world of interest to
visitors. We can place many visiting targets in the environment. Also, a user can
search his/her desired destination by a keyword. The visiting target information
includes the name of a visiting target, its coordinates in the GCS, and its range. The
visiting target name is used for searching and displays. The location of the visiting
target is specified by 3-D coordinates in the environment map, including its height.
The range of the visiting target represents the visible region of the target in the real
world. So the range is represented as a vertical plane in the real world, and a vertical
plane is described by a height and a width.

The environment map includes the obstacle information as well. The obstacle
information is used for path planning. It includes the regions and orientations of the
obstacles in the environment. The obstacle region is used for collision detection, and
the orientation is used for avoidance direction analysis. A more detailed description of
path planning will be described in Chapter 5.

The last type of information included in environment map is the learned data
about the magnetic field in the environment.. The result of the magnetic field learning
process is an azimuth map, which can ‘be used for orientation detection. A more
detailed description of the magnetic field learning process will be described in Section

3.3.4.

3.3.2 Finding Walkable Regions in Environment

Floor Plan

The environment map is created from an image of the digital floor plan drawing,

which we call the floor plan image. The floor plan image is a grayscale bitmap in

27

which walkable regions are drawn with white pixels. Also, we specify a scaling factor
of the floor plan image as mentioned previously, which is used for computing the
actual sizes of real objects from their sizes specified in unit of pixel in the image.
Furthermore, if the floor plan drawing is a paper copy, then we can use a digital
machine like a scanner or a camera to take a picture of it. For the experimental
environment, the floor plan image we use is shown in Figure 3.2, which is created

using the Microsoft Visio 2007 and exported as a bitmap.

Figure 3.2 Floor plan image of the experimental environment map.

After we get a floor plan image, we can begin to construct the environment map.
Here we assume that the walkable regions of the floor plan image are connected with
white pixels, as mentioned previously. Then, we have just one walkable region which
is the largest connected component in the image. Furthermore, we assume that the
obstacle regions and the walkable region are separated by non-white pixels. Finally,
we describe the algorithm we propose to find the walkable region from the floor plan

image.

Algorithm 3.1 Finding the walkable region in the floor plan image.
Input: A floor plan image ls, where the walkable region is the largest connected
component and drawn with white pixels, and the obstacle regions and the

walkable region are separated by non-white pixels.

28

Output: A binary walkable region image I, where the pixel values of the walkable
region are specified by 1 and those of the obstacle regions by 0.

Steps

Step 1. Apply a threshold value t on I; to get a temporary binary image limp: if I«(X, y)
> t, then regard the pixel at (x, y) as white, and set lymp(X, y) to 1; else, set
limp(X, y) to O.

Step 2. Find connected components in Iy, using a connected component labeling
algorithm.

Step 3. Select the maximum connected component Cnax from the result of the last
step as the walkable region.

Step 4. Forall (x,y) in 1, set ly(x;y) to 1 if Cpax contains the pixel at (x, y); else, set

lw(X, y) 10 0.

3.3.3 Obstacle Orientation Analysis

In this section, we introduce the proposed obstacle orientation analysis scheme,
which is used for obstacle avoidance in the path planning process. We can find
avoidance directions from the walkable region image obtained by Algorithm 3.2. The

details are as follows.

Algorithm 3.2 Finding avoidance directions.

Input: A walkable region image I, where the pixels of the walkable region are
specified by 1 and those of the obstacle regions by 0.

Output: An obstacle avoidance map A.

Steps

Step 1. Get an obstacle image lops from the negative image of |,

Step 2. Dilate the obstacle image lons to expand the obstacle regions

29

Step 3.

Step 4.

Step 5.

Step 6.

Calculate the x and y derivatives of Iy, using the Sobel operator, resulting in
two derivative maps Dy and D,.
Calculate the edge orientation and create an orientation map O by the

following steps :

(1) set O(x, y) to the angle between the vector (D,(x,y),D,(x,y)) and

the vector (1, 0) if D,(x,y)=0 or D,(x,y)=0.

(2) set O(x,y)=-1, otherwise.
Split O into small blocks, and for each block Bj in O, construct a block

orientation map Oy, by the following steps:
(1) set O,(i, j)=m; if Bj contains any non-negative value, where mj; is
the mean value of all non-negative values in Bjj;

(2) set O, (i, jy=mj if Bj contains all negative values and the region of

Bjj.in O is all walkable, where m; is the mean value of all

non-negative values whose distances to the center of Bj are smaller
than a threshold d;

(3) set O,(i, j)=-1, otherwise.

Add 772 to each element in Oy in the following way to get the obstacle

avoidance map A:

.. .. T
A, J) =0, (I, J)+5-

In order to make a planned path not too close to obstacles, we dilate the obstacle

image to expand the obstacle regions in Step 2, and an example of the result is shown

in Figure 3.3. If we collide with an obstacle, we may avoid it by going left or right.

According to this concept, the avoidance directions are the vectors perpendicular to

30

the obstacle orientation vector.

In Step 5, we determine the values of O, under three conditions based on the
content of the obstacle image: 1) if a block B;j; contains edges of obstacle regions, then
the resulting value is the mean of the angle values; 2) if B;; is just the entire walkable
region, the region of B;; in O will be given all negative values, so the resulting value is
set to the mean of the angle values around Bjj; and 3) if Bjj is just an entire obstacle
region, it means we will never go to the region, so we do not have to compute the
avoidance direction in such a region (marked by the value -1).

Finally, in Step 6, we add #/2 to get the angle of the avoidance directions.
Therefore, each element in the map A represents one of two avoidance direction
vectors. An example of the avoidance direction map yielded by the above algorithm is

shown in Figure 3.4.

Figure 3.3 Expanded obstacle‘image of the experimental environment map where
the white regions indicate the obstacle regions.

: Hifi]

Figure 3.4 A part of the obstacle avoidance map of the experimental environment
(shown in green arrows).

31

3.3.4 Learning of Magnetic Field Information

We can determine the human orientation by the orientation sensor on the client
mobile device. The orientation sensor measures the azimuth angle of the device by
detecting changes and disturbances in the magnetic field around the currently-visited
spot. However, according to our experimental experience, the detected azimuth values
are not stable enough for our application due to indoor magnetic interferences from
various sources. The azimuth information is not used alone for human orientation
detection in this study.

In the proposed magnetic field learning process, we measure the azimuth values
at several sample points in the environment and construct an azimuth map, which then
can be used for human orientation-detection. The learning process is described as an
algorithm in the following, where the four directions in the environment map are

specified by direction vectors (1, 0), (0, 1), (-1, 0), and (0, -1).

Algorithm 3.3 .Construction -of an azimuth--map for the experimental
environment.

Input: Sample points S in‘the environment.

Output: An azimuth map A.

Steps

Step 1. Take the client device, and go to the first sample point Sy at coordinates (X, y)
in the environment map A.

Step 2. Face toward the direction (1, 0) in A, and measure the azimuth value ay.

Step 3. Face toward the direction (0, 1) in A, and measure the azimuth value a;.

Step 4. Face toward the direction (-1, 0) in A, and measure the azimuth value a,.

Step 5. Face toward the direction (0, -1) in A, and measure the azimuth value as.

Step 6. Store the value set (x, y, ap a1, @, az) in A.

32

Step 7. Go to the next sample point and repeat Steps 2 through 6 until reaching the

last sample point.

The above algorithm samples four azimuth values at every sample point. At each
same point, four azimuths are measured for four different directions, respectively,
each direction being perpendicular to the next one and the last perpendicular to the
first one.

After we construct the azimuth map, we can use it to determine the human
orientation. A more detailed description of such human orientation detection using the

azimuth map will be described in Chapter 4.

3.3.5 Algorithm of Environment Construction

In this section, we summarize the processes described in the previous sections, as
a total process — the process of environment construction, as described in Algorithm

3.4 below.

Algorithm 3.4 Construction of environment map for the experimental
environment.

Input: A floor plan image 1.

Output: An environment map M.

Steps

Step 1. Affix fisheye cameras onto the ceiling at proper locations in the
environment.

Step 2. Create an environment map M by use of the floor plan image I, and specify
a scaling factor.

Step 3. Specify the locations of the cameras on M.

Step 4. Specify the locations and the names of the selected visiting targets on M.

33

Step 5. Find the walkable region in | by Algorithm 3.1.
Step 6. Find obstacle regions and analyze avoidance directions in | by Algorithm
3.2.

Step 7. Construct an azimuth map by Algorithm 3.3.

3.4 Camera Calibration

In the section, we will describe the camera calibration processes proposed in this
study. As mentioned previously, we use fisheye cameras to monitor the environment
and analyze the omni-images to detect the human in the environment. In this study,
we assume that there is only one human walking in the field of view of each fisheye
camera. For the fisheye camera, we propose a space-mapping method for the
transformation between the GCS and the ICS. Beside the fisheye cameras, the camera
on the client mobile device must also be calibrated. A-more detailed description of the

camera calibration processes will be described in the following two sections.

3.4.1 Fisheye Camera Calibration and Ground Point

Location Mapping

(A) Construction of a Calibration Box

Before the calibration process, we construct a calibration box first. The
calibration box is a cube with four vertical planes and one horizontal plane. Each of
the vertical and horizontal planes is called a calibration board in the subsequent
sections. The calibration board is drawn to be of a chessboard pattern, which consists

of 81 squares arranged in two alternating colors, namely, black and white. The central

34

square of the calibration board is drawn in the form of a cross pattern. Here we
introduce a calibration coordinate system (CACS), which contains three coordinates
(X, ¥y, 2) in the unit of cm. The origin of the CACS is located at the center of the
central square of the horizontal calibration board. The x-y plane of the CACS is the
aforementioned horizontal plane, and the z coordinates grow to the top. Therefore, we
can obtain the coordinates of every corner point of the squares by the square size and

the calibration board size. The calibration box and the CACS are shown in Figure 3.5.

Figure 3.5 Calibration box and calibration coordinate system.

(B) Construction of Mapping Table

After the calibration box is constructed, we affix a fisheye camera to a ceiling
spot right on the top of the calibration box, and make it look straight down at the cross
of the central square of the bottom calibration board to capture a calibration image.
An example of calibration images is shown in Figure 3.6(a). Then, we find the corners
of all the squares in the calibration image (as shown in Figure 3.6(b)). Each corner is
called a calibration point in the subsequent sections. Each calibration point is
specified by their coordinates (u, v) in the ICS. As shown in Figure 3.7, each
calibration point in the calibration image corresponds to one corner in the calibration
box, so we can obtain a mapping table between the ICS and the CACS.

In order to perform the ground point location mapping, at first, the mapped

calibration points of the vertical boards of the calibration box are projected onto the

35

x-y plane of the CACS as shown in Figure 3.8. C is a calibration point on the
calibration board with CACS coordinates (Cy, C,, C,), and C"is the projection point
with CACS coordinates (C'y, C'y, 0). The relation between C and C” can be expressed

by the following expression according to the principle of similar triangles:

H C, C,

Rearranging the above expression, we can get the coordinates of C” as:

Cl:HcXCx . Cr:HCXCY
“ H,-C,”) H,-C,

(3.2)

For the calibration points on the bottom calibration board, C” is identical to C.

(b)
Figure 3.6 Calibration images. (a) The calibration captured from a fisheye camera.
(b) The calibration points of the calibration image (shown as red circles).

Figure 3.7 Mapping between the ICS and the CACS of a calibration point.

36

Figure 3.8 Projection of a point in CACS on the (X, y) plane, where H. is the camera
height, C is the calibration point.on the calibration board, and C” is the projection
point.
(C) Transformation using Mapping Table

So far, we have a mapping from the ICS to the CACS just for the calibration
points only. For-other points between them, we apply a bilinear interpolation scheme
to get the corresponding mappings from the ICS to the CACS. As shown in Figure 3.9
Calculating the “coordinates of a point between calibration points by bilinear
interpolation., let p be a pointin the ICS, and let A, B, C, and D be the four calibration
points surrounding p. Denote s and.t as the relative distance between the two end

points within the range of 0 to 1. Suppose p is a point on the line AB, the relative

distance of p can be computed by ‘A_p‘ / ‘E‘ . Then, we try to find the values of s and

t, so that we can compute the CACS coordinates of p, as described in the following.

37

Figure 3.9 Calculating the coordinates of a point between calibration points by
bilinear interpolation.

At first, P and Q, regarded as vectors of coordinates, can be expressed by the

following expressions:
P=A+(B-A)s=A(1-s)+Bs;
Q=D+(C-D)s=D(1-s)+Cs.
And p, also regarded as coordinates, can be expressed by the following
expression:
p=P+(Q-P)t=P(1-1)+Qt
=A(l-s)(1-t)+Bs(l-t)+Cst+D(1—-9)t
= A(l+ st —s—t)+ B(s— st) + Cst + D(t —st) (3.3)

= A+ Ast —As—At + Bs — Bst + Cst + Dt — Dst
=(1-s)A+st(A-D+C-B)-t(A-D).

So the two coordinates p, and py can be expressed as:

Py = (1_S)AJ +St(Aj — Du +Cu 4 Bu)_t(Aj y Du)’
p, =@-9)A +st(A, -D,+C,-B,))-t(A,—-D,).

Rearranging the above expressions and substituting U=A-D, V=A-D+C-B,

(3.4)

and T =p—A into the rearranged results, we get
(T, +tU,) x Vv, +B, - A) =(T, +tU,) x (tV, + B, - A))
which may be reduced to be
?(UBV)+t(T®V+U®(B-A))+T®(B-A)=0

where ® means the cross product operator. So the coefficients in the above quadratic

equation may be derived to be:
a=U®V =(A-D)®(A-D+C-B)=(A-D)®(C-B);
b=T®V+U®(B-A)=(p-A)®(A-D+C-B)+(A-D)®(B- A);
c=T®B-A)=(p-A)®B-A).

38

Finally, t may be solved to be:

_ b Jb? —4ac

2a

t

where t will fall within the range of 0 to 1. Then, we may solve s by substituting t into
Equation 3.5. After we obtain s and t, we can substitute the corresponding CACS
coordinates for A, B, C, and D into Equation 3.3 to obtain the CACS coordinates of p
finally.

At last, we want to transform the calibration points further from the CACS to the
GCS to create a mapping from the ICS to the GCS for use in human localization
(described later). As shown in Figure 3.10, we superimpose.the calibration points on
the images captured from the fisheye cameras, and then compute the location of pixels
of the image by the mapping-table. The heights of the cameras are specified in the
environment map construction stage as mentioned in the previous section. As shown
in Figure 3.11, a camera is affixed on the ceiling at a height of H, and G indicates the
ground point of C". By the principle of similar triangles, the distance d in the GCS
can be computed by Equation 3.5. Accordingly, the coordinates (G, Gy) of G can be

computed by the following equations:

d_H><Hc_ 35
dc ! ()
HxH,
G, | [cos@ -—sing C, .\ P, 26
G,| |sin@ cosd ||HxH | |p, (36)

C

where py and py are the coordinates specifying the location of the camera in the GCS,

and @is the angle between the CACS axis and GCS axis (see Figure 3.12).

39

Figure 3.10 Superimposing calibration points on an omni-image.

CarTJera

Figure 3.11 The projection of calibration point on the ground, where G is the
projection point of C*, and H is the height of the camera affixed on the ceiling.

GCS
I o °

Figure 3.12 Angle between the GCS axis and the CACS axis. The red circles
indicate the positions of calibration points.

3.4.2 Calibration of Camera on Mobile Device

Besides the fisheye camera, the camera on the mobile device must also be
calibrated in order to get a projection matrix, by which points in the GCS may be
projected onto the device screen.

In this study, a perspective camera model is used to represent the camera on the

mobile device. In the theory of perspective projection [16], a 3D point in a view

40

frustum (as shown in Figure 3.13(a)) of the CCS is transformed into a unit cube (as
shown in Figure 3.13(b)); the x-coordinate is transformed from the range [, r] to the
range [-1, 1], the y-coordinate is transformed from [b, t] to [-1, 1], and the
z-coordinate is transformed from [n, f] to [-1, 1]. We can use a matrix M to perform

the transformation from the view frustum to the unit cube in the following way:

P P,
Ef M- Ey (3.7)
Pu 1

where p is a point in the view frustum, p" is the transformed point of p, and M is the
projection matrix. In this transformation, the original coordinates of p" and p should
be replaced by homogeneous-coordinates, which have the fourth component w; and
the nonhomogeneous .coordinates x, y, z can be obtained by dividing by the

w-component. The matrix M of Equation 3.7 can be expressed as follows according to

[16]:
on g ks
r=I r—I
t—b t—b
0 0 —(f+n) -2fn
f-n f-n
0 0 -1 0
If the view frustum is symmetric, which means r = —I| and t = —b, then the matrix
can be simplified to be:
LU 0
r
o M o 0
t : (3.8)
0 0 —(f+n) -2fn
f—n f—n
0 0 -1 0

41

Image Plahe

(1,0, -n

y

(-1,-1,-1)

(a) (b)

1,1,1)

Figure 3.13 View frustum and unit cube. (a) The view frustum. (b) The unit cube.

In order to obtain this matrix, we need to determine the value of r, t, n, and f. As

shown in Figure 3.14, the field-of-view of the camera in the y direction is denoted as

a. Then, % can be substituted by cot%.And the ratio Uk of the image height h to
w

the height w is known, so s can be substituted by Ecot%. Finally, the matrix of
w

r

(3.8) can be expressed by:

h WP 0 0
w 2
0. cotZ 0 0
2
0 0 —(f+n) =2fn
f—n f-n
0 0 A | 0

(3.9)

After obtaining the coordinates in the unit cube by Equation 3.7, we can obtain

the coordinates (u, v) in the ICS by the following equations:

P/ Py

u) (w 0)05 0 0 05)|p;/p,
v) 0 h)lo -05 0 05)|p./p,

1

(3.10)

where w is the image width in the unit of pixel, and h is the image height. The values

n and f of M only affect the resulting z-coordinate in the unit cube. According to the

above equation, the z-coordinate does not affect the coordinates in the ICS. Actually,

42

the z-coordinate is used to represent the relationship of the distance of a point with
respect to the viewpoint: the value of —1 means it is on the near plane of the view
frustum, and 1 means it is on the far plane. Therefore, we can specify the value of
both n and f arbitrarily, and then we have only one unknown variable «, which is the

field-of-view in the y direction.

Figure 3.14 Field-of-view of the view frustum.

In this study, we also propose a simple method to estimate the value of «. As
shown in Figure 3.15, we direct the camera to face toward the calibration board,
which is drawn of the form of a grid pattern or others as long as it can help us
measure the region. Then, we can observe the region which exactly fills the image
(shown as the dark gray region). Accordingly, we can obtain the real width R,, and
height Ry, of the visible region by counting the grids or scale which are drawn on the
calibration board. The distance dg of the calibration board is known, so the value «,
which defines the field of view in the y direction can be obtained by the following

equation:

a= Z{tanl(R(;—/Z)j. (3.11)

43

Calibration Board

Ry

dR) / | A -
) h
/ Image Rlane

Camera

Figure 3.15 Finding the field of view angle a by measuring the visible region in
image.

3.5 Experimental Results

An environment map of our-experimental environment obtained by applying
Algorithm 3.4 is shown in Figure-3.16. The scaling factor of the map is taken to be 40
pixels/m. The environment map includes eight visiting targets (shown as green
regions) and two_ fisheye cameras (shown as blue circles). Images captured from the

two cameras are shown in Figure 3.17.

B O L‘:m_%I
B 1 P
| Camera-1
@ Camera-2 h EHH
s e Py
FERE [(hEe] :
|

| | e
H E—E

L1101

Figure 3.16 Environment map of the experimental environment, visiting targets are

—

shown as green region, and cameras are shown as blue circles. The interval of the
gray grid lines represents one meter in real world.

An obstacle avoidance map of the experimental map obtained by applying
Algorithm 3.2 is shown in Figure 3.18, in which the avoidance directions are shown
as green arrows. Blocks without avoidance directions mean that there are obstacle

regions or regions which are away enough from obstacles.

44

(a) (b)

Figure 3.17 Images captured from the two fisheye cameras of the experimental
environment. (a) An image captured from the Camera-1 of the map shown in Figure
3.16. (b) An image captured from the Camera-2.

e raw o4 o aw (o aw| B oo a4k e aw1ow e {ow e an{owt

45

Chapter 4

Human Localization in Indoor
Environments by Computer Vision
Techniques

4.1 ldea of Proposed Human
Localization Techniques

In this study, we propose a human localization method using image-based
analysis techniques for indoor environments. \WWe have built a vision-based
infrastructure with fisheye cameras affixed on the ceiling. The server-side system can
access the omni-images captured with the cameras; and-conduct detections of both the
human location and orientation.

For human location detection, we perform background/foreground separation to
detect the foreground image, and then apply connected component analysis to find the
human activity region. Then, the user’s foot point in this region is analyzed and
transformed into the GCS. A more detailed description of the proposed human
location detection scheme will be described in Section 4.2.

For human orientation detection, we use three different techniques integrally to
obtain the orientation of the user. The first is the simplest way, which is to calculate
the human motion by use of the human locations detected from consecutive video
frames. The second is to use the orientation sensor on the client mobile device to

detect the human orientation. The last is to attach a color edge mark on the mobile

46

device held by the human, and then analyze the omni-image to detect the color edge
mark which is used to determine the orientation of the user. A more detailed
description of the proposed human orientation detection scheme will be described in

Section 4.3.

4.2 Human Location Detection

4.2.1 Background/Foreground Separation

The first step of the proposed human -location detection scheme is
background/foreground “separation. As shown in- Figure 4.1(a), we capture a
background image before running the server-side system. When a user enters the
environment, he/she will be considered as part of the foreground region (as shown in
Figure 4.1 (b) and 4.1(c)). Therefore, we can obtain the human region by finding the
connected components in the foreground image. Algorithm 4.1 below illustrates the

steps to obtain the connected components in an omni-image.

Algorithm 4.1 Finding foreground regions in an.omni-image.

Input: An omni-image | captured from a fisheye camera, a background image B
captured beforehand, and a pre-selected threshold value Tp.

Output: Foreground regions in I.

Steps

Step 1. Subtract B from | to get a difference image D.

Step 2. Apply the threshold value Tp on D to get a foreground image F by the

following steps:
(1) set F(u,v)=1,if |D(u,v)|>Tpy;
(2) set F(u,v)=0, otherwise.

47

Step 3. Apply the erosion operation to F to eliminate noise.
Step 4. Find connected components in F as the desired foreground regions using a

connected component labeling algorithm.

In Step 3, we reduce noise by applying the erosion operation on the foreground
image. However, the erosion operation will also eliminate the details of the
foreground image. Another way to reduce noise is to set a larger threshold value in

Step 2.

(©)

Figure 4.1 Background/foreground separation. (a) The background image. (b) The
image of the environment with a human. (c) The foreground image by subtracting (a)
from (b).

48

4.2.2 Human Foot Point Detection and Computation

After obtaining the human region, we continue to find the foot point of the human
in the region to determine the human location. For this aim, we use a property of the
fisheye camera. With a fisheye camera affixed on the ceiling and looking straight
down at the ground, a space line which is perpendicular to the ground will appear in
the omni-image taken by the camera as a radial line passing through the image center,
as shown in Figure 4.2. For example, the image lines of the edges of the pillar, door,
bookcase, or wall in the environment will all appear to be so. We assume that the user
using the proposed indoor AR navigation system is standing on the ground all the time,
and so the axis of the user’s body is perpendicular to the ground, meaning that the

axis will go through the image center according to the above property.

Figure 4.2 Extended image lines of space lines which are perpendicular to the
ground will pass through the image center.

According to the above discussion, the foot point of a user can be obtained by
finding the nearest point in the foreground region of the user to the image center. Here
we assume that the foreground region of the user is the largest connected component
Rmax In the output of Algorithm 4.1. Therefore, we can find the user’s location by the

following algorithm using Rmax as the input.

49

Algorithm 4.2 Computation of the human location.
Input: The foreground region Rmax Of a user.

Output: The user’s location in the GCS.

Steps

Step 1. Find the nearest point f to the omni-image center in Ryax.
Step 2. Project f onto the line CC, to obtain a projection point f’, where C is the

omni-image center and Cg is the center of the bounding box circumscribing

Rmax-

Step 3. Transform f’ into the GCS as output.

We want to let the foot point detected in Step 1 closer to the line going through
the human’s body axis. Therefore;-according to the vertical line property mentioned
previously, we project the detected foot point onto the human’s body axis in Step 2.
Finally, the human location can be computed by the spatial transformation described

in Section 3.4.1. An example of the results is shown in Figure 4.3.

4.3 Human Orilentation Detection

4.3.1 Orientation Detection by Human Motions

We detect a user’s location on every omni-image, by which we can obtain a
sequence of human locations, called the location sequence. Then, we use the sequence
to compute the human moving orientation. However, the locations are detected by the
previously-mentioned image-based technique, so the path composed of these locations
may be not smooth. Therefore, if we just use the current human position and its
previous one to calculate the motion vector, the resulting orientation will be unstable.

In this study, we solve this problem by averaging all the motion vectors obtained

50

within a time interval.

-~

P
C

ok kkokok
===

mas(Eas|

1
()

Figure 4.3 Detected foot point of a human (shown as red circle). (a) The foreground
image. (b) The original image captured from the camera (c) The foot point in MCS.

However, the averaging operation will delay undesirably the orientation
computation results when the human is turning. In other words, the human orientation
will change quickly when the human is turning, but the averaging operation will cause
the trend of the computed orientation changes to become slow. Therefore, we use a
turning flag to determine whether a user is turning or not in the proposed human
orientation detection scheme — if the current location of the user is on the right-hand
side of the previous motion vector, we increment the turning flag by one; otherwise,

we decrement it by one. But if the turning flag is negative when we increment the

51

turning flag, we will reset the turning to be zero. Symmetrically, we will reset it if it is
positive when we decrement it. When the turning flag exceeds a threshold range, we
will determine the human’s turning direction by the sign of the turning flag, and then
remove all the locations in the location sequence except the first one. In this way, the
averaging result of motion vectors will be changing more quickly.

For example, as shown in Figure 4.4, the points p, P;, and P, are all on the
left-hand side of the previous motion vector. Assume that a turning flag f is zero at Ps.
The turning flag f will be —3 at p. Then, we can determine that the human is turning to
the left at p when T; is smaller.than 3. Consider another situation as shown in Figure
4.5. Assume that a turning flag f is zero at P3. When the human reaches P,, f will
become -1, but when the human reaches P, f will be reset to be 0. So, the human will

be determined to be walking forward instead of turning to the left at p.

Figure 4.4 A path of turning to the left where each human foot point is on the
left-hand side of the previous motion vector.

%

Figure 4.5 A path of walking forward where all points except P; are on the left-hand
side of the previous motion vector.

The complete steps of human orientation detection by human motions are

illustrated as an algorithm in the following.

52

Algorithm 4.3 Computation of the human orientation by human motions.
Input: The current location p of a user, a turning flag f, the location sequence P
composed of the past human locations, where Pj:; means the previous location

of P;.

Output: The user’s orientation d,

Steps
Step 1. If the size of the sequence is larger than two, take the following steps.
1.1 Change the turning flag f by the following steps:

(1) increment fby 1, if >0 and p is on the right-hand side of the
vector PP, ;

(2) decrement f-by 1, if f <0 and p is on the left-hand side of the
vector PP ;

(3) setfto be zero, otherwise.

1.2 Iff>T, or f<-T,, remove Py, P3 ..., Py from P, where Tris a

pre-selected threshold value.

Step 2. If the size of P is larger thana threshold size Ty, remove P, from P.

Step 3. Compute the following direction vector d_ as output:
o 1 n-1
dy =_HZ P - Pk+lj+(P- H)} :
N\
Step 4. Insert p to the start of P.

In Step 1, we check the size of the location sequence to determine if there is a
previous motion vector. If so, we can use it to detect the human’s turning direction. In

Step 2, in order to average the locations obtained in a certain time interval in the past,

53

we remove a redundant location in the location sequence if its size exceeds a
threshold value. Finally, we compute the orientation by averaging the motion vectors
and then insert the current location into the location sequence for the next cycle of

orientation computation.

4.3.2 Orientation Detection by Orientation Sensor on

Client Device

We determine the orientation of a user by his/her motions when his/her is moving.
However, when the user is not walking, we seek another way to detect his/her
orientation, which is through the use of the orientation sensor on the client mobile
device. As mentioned in the-previous sections, the orientation sensor measures the
azimuth angle of the device by detecting changes and disturbances in'a magnetic field. In
Chapter 3, we have established an azimuth map for orientation detection. The following

algorithm describes how we determine the orientation using the azimuth map.

Algorithm 4.4 Computation of the human orientation by the orientation sensor.
Input: The current location p of a user, the-azimuth value a detected by the client

device held by the user, and an azimuth map A.

Output: The user’s orientation d

Steps

Step 1. Find the nearest sample point A,to p in A, and get a value set of Ay, (X, Y, ao,
a; ap, as), which contains the azimuth values of the four major directions as
described in Section 3.3.4.

Step 2. Find the two azimuth angles a, and ag+1ymod4 Of Ay Which a is in between,

by finding a parameter n satisfying the following two constraints:

54

Step 3.

Step 4.

V(a,)=(cosa,,sina,)

(1) V(a) is on the right-hand side of V(a,) where the function V() returns
a vector with the angle 6, i.e., V(0) =(cos0, sind).

(2) V(a) is on the left-hand side of V(an+1) mod 4)-

(The relation between V(a), V(an), and V(a(n+1) mod 4) 1S Shown in Figure 4.6.)

Compute the relative position r of a between a, and an+1) mod 4 by the

following equations:

_ |P@-P@,)
‘P(a(n+l)mod4) - P(an)

where the function P(6) returns a point with the coordinates (cos 8,sin 6) .

Compute the direction vector d, as output by interpolation:
do =4 ‘V(n+1)mod4 T (1_ r) Vi

where \7; is the corresponding direction vector with respect to the azimuth

ax, which is defined previously in the learning stage.

\% (a) 5 (COS a,Sin a) v (a(n+1)mod4) @ (COS a‘(n+1)mod4’SirI a(n+l)m0d4)

ari a(n+1) mod 4

- \\
\

Figure 4.6 A azimuth a between two azimuth a, and agn+1) mod 4, Where V(a) is on the

right-hand side of Vv (a,)and on the left-hand side of V (@ .1ymods) -

Because the sample points in the azimuth map are discrete, we choose the nearest

one in Step 1 to approximate the result. In Step 2, we find the region which the

55

azimuth value a falls on. The region is between two azimuth values at the sample
point we choose, so we obtain the final orientation vector by interpolation as done in

Steps 3 and 4.

4.3.3 Orientation Detection by Color Edge Mark on

Top of Client Device
We introduced two orientation detection techniques in the previous sections.
However, they still have the stability and precision problems, which cause failures in
detecting the human orientation. Specifically, detection by human motions can only
be used when the human moving, and detection by orientation motions is not stable

enough due to magnetic interferences almost everywhere.

Figure 4.7 The color edge mark (The green strip) in the omni-image.

Here we propose a technique to solve the problems by attaching a color edge mark
on the top of the client device. The color of the color edge mark has high saturation and
high lightness, so it can be segmented easily from the omni-images. As shown in Figure
4.7, we can see the green edge color edge mark clearly in the omni-image.

In order to separate the color edge mark from an omni-image, at first we convert the

color space of the omni-image from the RGB color space to the HSV one. The HSV

56

color model assigns three color components to a pixel, which respectively are hue,
saturation, and value. The hue is described with the words we normally think of as
describing color: red, blue, green, etc. The saturation refers to the dominance of hue
in the color. The value is the lightness of the color. By the HSV color model, we can
separate the color edge mark from the omni-image more easily, because the color of
the color edge mark has high saturation and high lightness.

The color edge mark becomes a strip shape in omni-images, so we can apply a
line approximation scheme to the detected color edge mark. Then, we try to compute
the direction vector of the approximating line in order to determine the device
orientation. Under the assumption that the user holds the device horizontally, the color
edge mark becomes parallel to-the ground. As shown in Figure 4.8, the color edge
mark is represented as a solid-green lineg, and the red line and the solid green line are
projected onto identical image points; meanwhile, the vertical projection (shown as
the dotted green line) of the color edge mark is parallel to the red line. Therefore, we

can determine the orientation of the color edge mark by the orientation of the red line.

Camera

Color edge mark

Figure 4.8 The red line and the color edge mark (shown as solid green line) are
projected onto identical image points. The vertical projection (shown as dotted green
line) of the color edge mark will be parallel to the red line.

57

The following algorithm describes the process to detect the human orientation by the

color edge mark.

Algorithm 4.5 Computation of the human orientation by the color edge mark on
top of the client device.

Input: An omni-image I, the foreground region R of a user, and the orientation vector

d, detected by Algorithm 4.4,

Output: The user’s orientation, d—C , and a reliability index .

Steps
Step 1. Create an image lnsy by converting the color space of |1 from RGB to HSV

by the following equations:

V =max(R,G,B);
V —min(R,G, B) iV 2 0:
S= V
0 otherwise;
(G- B)x60 if v < R:
S
2404 B=CIX60 oy g

If H < 0, then increment H by 360°.
Step 2. Create a binary image I, and for all (u, v) in I, assign valuesto 1 (u,v) by
the following steps:
(1) set I (u,v)=1, if the value of I, (u,v), (h, s, v), is between two
threshold values (Hmin , Smin, Vimin) @nd (Hmax , Smax, Vimax);
(2) set I (u,v)=0, otherwise.

Step 3. Find the connected components C in region R of I.: if there has no

58

connected component in region R, set the reliability index r. to zero and end
the algorithm.

Step 4. Find the bounding box B of C.

Step 5. Apply a line approximation algorithm to the pixels in C, resulting in an
approximated line L.

Step 6. Find the two intersection points p and g of B and L.

Step 7. Get s and t by converting p and q from the ICS to the GCS.

Step 8. Compute the orientation d—c as output by the following steps:
(1) set d, = (=Sty,Sty), if (=sty,sty)-d, < (sty,—stx)-d, ;
(2) set d,=(sty,—stx), otherwise.

Step 9. Set the reliability index r¢ to be the size of C.

We apply two threshold values to extract the region of color edge mark in Step 2,
and an example of the result is shown in Figure 4.9(a). We will get two orientation

vectors which are perpendicular to the vector of the color edge mark, and we have to

determine which one is correct. Here we use the-orientation vector d, detected by

Algorithm 4.4 to make a decision by choosing the one which is closer to d—0 .

Furthermore, the color edge mark may not be seen in an omni-image due to
obstacle covering or a long distance away from the camera. We set a reliability index
to be the size of the region of the color edge mark for making a decision about
whether the color edge mark will be used or not. A larger value indicates a better
visibility of the color edge mark.

In addition, as mentioned in the previous section, we choose the foreground

region with the largest region as the human region. Here we can also determine this

59

region by checking whether a color edge mark is detected or not.

Figure 4.9 shows an example of the results of applying Algorithm 4.5,

B0 S SRR
[iS'=s=s==1

(©)

Figure 4.9 Orientation detection by color edge mark on top of the mobile device. (a)
The color edge mark region segmented from the omni-image. (b) The approximating
line (shown as green) obtained by applying line approximation on (a). (c) The
detected orientation (shown as green).

4.3.4 Algorithm of Orientation Detection

We introduced three different techniques for orientation detection in the previous

sections. In this section, we will describe how we integrate the three techniques to

60

perform the orientation detection work more reliably.

Algorithm 4.6 Computation of the human orientation.
Input: A user’s location, the foreground region h, of the user, and the omni-image

which contains hy.

Output: The user’s orientation d .

Steps

Step 1. Compute the orientation d_ by Algorithm 4.4,

Step2. Use d, to compute the orientation d, by Algorithm 4.5, resulting a
reliability index re.

Step3. If r, >T, where T, is a threshold value, then set-d to be d, as the
output and finish this algorithm.

Step 4. If the’human is walking, compute the orientation d_ by Algorithm 4.3,

and set"d to be. d_ as the output. Otherwise, set d to be d, as the

output.

4.4 Human Tracking

4.4.1 Idea of Human Tracking

The objective of human tracking is to identify the same human in consecutive
video frames. Consecutive video frames come from the omni-images captured from
the fisheye cameras in the proposed system. In this study, we adopt a human tracking

method, which is called high level tracking, proposed by Newman, et al. [17]. In

61

Algorithm 4.1, we find the foreground regions in a foreground image. Then, we find a
bounding box for each foreground region. For each successive frame, the human
tracking algorithm associates a foreground region with one of the existing tracks. A
track represents an identical object moving in consecutive video frames. This is
achieved by constructing a tracking matrix representing the distance between each of
the foreground regions and all the existing tracks. Each row of the tracking matrix
corresponds to one track, and each column corresponds to one foreground region. The
distance is computed using a bounding box distance measure proposed by the adopted
method by Newman, et al. [17]."As shown in Figure 4.10(a), the distance between
bounding boxes A and B is the lower of 1) the distance from the center of A to the
nearest point on B and 2) that from the center of B to the nearest point on A. If either
center lies within the other bounding box (as shown in Figure 4.10(b)), then the

distance is zero.

(a) (b)

Figure 4.10 The bounding box distance measure. (a) The distance between A and B
is the lower of the distance from the center of A to the nearest point on B or from the
center of B to the nearest point on A. (b) The distance is zero.

If we consider a region is close enough to a track, then the value, which is at the
corresponding column of the region and the row of the track, is incremented by one. If

a foreground region is close enough to only one track and only a region is close

62

enough to the track, i.e., if it is a one-to-one correspondence, then the column and the
row will both have one “one” (as shown in Figure 4.11(a)), so we may associate the
region with the track. However, two regions may be both close enough to one track,
and this will cause two “one” at a row (as shown in Figure 4.11(b)), then we associate
both the two regions to the track. Similarly, if a region is close enough to two tracks,
we associate the region with both of the two tracks. If two regions are close enough to
two identical tracks (as shown in Figure 4.11(c)), then we associate the two regions
with both of the two tracks. Based on the above concepts, we can associate regions

with existing tracks, by which we can identify the same human in consecutive video

frames.
Regions Regions Regions
| il iz i1 i2
0 0 0 0 0
0 0.0 0 = 0
0 - 0 - 0 Tracks 0 0
Tracks 0 Tracks 0 O jif 000100100
0 Fr— w0 0 e
jl0000001200 Jj1 000100100 200010010
Qg L = A 00
(@) (b) (©)

Figure 4.11 Tracking matrix at different situation. (a) A region is close enough to only
a track, and only one region is close enough to the track. (b) Two regions are close
enough to a track. (c) Two regions are close enough to two same tracks.

The human tracking algorithm using the adopted method is described in

Algorithm 4.7.

Algorithm 4.7 Human tracking.
Input: The foreground regions C in a frame and a set of tracks T, with each track

being associated with at least one foreground region, T; meaning the ith track

63

in T, and C; meaning the ith foreground region in C.

Output: Tracks T

Steps

Step 1.

Step 2.

Step 3.

Step 4.

Create a tracking matrix M with all zero’s with each row of M

corresponding to one track of T, and each column of M corresponding to

one region of C.

Compute the bounding box distance d;j between each of C; and R(T;) using

the bounding box distance measure where the function R(t) returns the

associated region of the track t.

For each djj, set M(i, J) to be 1 if dj < Tp, where Tp is a pre-selected

threshold value.

Perform the following steps for M.

4.1. For each column i with only one non-zero element at row j, and row
J has only one non-zero element at column i, associate C; with T;.

4.2. For each column i with all-zero elements, create a new track tpew,
associate it with C;, and add t,e into T.

4.3. For each row j with all zero-elements, remove T; from T.

4.4. For the columns iy, Iz, ..., In which have more than one non-zero
elements at rows jy, jo, ..., jn, associate Cy, Co, ..., Cn with Ty, To, ...,

Th.

In Step 3, we binarize the tracking map by the resulting distance; if two bounding

boxes are close enough, the resulting value is one; otherwise, it is zero. In Step 4.2, if

a foreground region is not associated with any track, then it is regarded as a new

object which we have to track. We remove tracks which are not associated with any

object in Step 4.3.

64

4.4.2 Camera Hand-off

The fisheye camera has a wider field-of-view, and can observe a wider range than
normal cameras. However, if an object is located outside the view of a fisheye camera,
or far away from a fisheye camera, it will be projected onto a small region in the
omni-image captured from the camera. Therefore, the number of pixels of the small
region will be too small to perform analysis mentioned in the previous sections. In
order to track the user around the entire environment, we need more than one camera
to monitor the entire environment. When we have multiple cameras, a user may
“appear” in more than one omni-image captured from different cameras. Therefore,
we have to determine which camera we should use and continue to track the same
user between different cameras,-and this is the so-called camera hand-off problem.

To handle the problem, in each human localization and tracking processing, we
obtain a foreground region representing a user. The foreground region belongs to an
omni-image captured from a certain camera. If we have a foreground region obtained
in the previous processing work, then we can obtain the foreground region

representing the same user inthe current processing by the following algorithm.

Algorithm 4.8 Camera hand-off.

Input: The foreground region h, of a user, and the tracks T¢(,), where T(i,) means
all tracks in omni-image I; captured from the camera C;, and T (i, j) means
the jth track inT (i,) .

Output: The human region of the user in the current process work.

Steps

Step 1. Find the track T (s,u), which is associated with the foreground region h,

Step 2. Set hs to be the associated region of T(s,u).

Step 3. Compute the location ps of hg in the GCS by Algorithm 4.2.

65

Step4. Set T'=(JT(,) .

[E

Step 5. Compute the location in the GCS for all foreground regions associated with
T', resulting in a location set P.
Step 6. Find the foreground region p; with its location p; which is associated with

the tracke T (t,) and satisfies the following two constraints:

(1) d(p)=‘p_pS peP isthe minimum for p=p,.

<A,where A isa pre-selected threshold value.

@ |pps

p.C.|, where ¢ is

andd, =

Step 7. If p is found, compute the distance d, =|p.c,

the location of the camera C; and cs is the location of the camera C. If p; is
not found, set hs as output and finish this algorithm.

Step 8. Set hs as the output if d < d,; otherwise, set h; as the output.

The algorithm finds a foreground region representing the same object as the input
foreground region. If we find a foreground region representing a user in the previous
processing work, then we can use the region as input to find the corresponding region
in the next process work.

At first, we find the track which is associated with the input region. The found
track is called a “user track”. And then we find a region which is closest to the region
associated with the user track in Step 4 through 6. Then, we compare each of the
locations of the two regions with each of the locations of its corresponding cameras.

Finally, the one closer to its corresponding camera is chosen to be the output.

66

4.5 Algorithm of Human Localization
and Tracking

In this section, we will describe the complete steps for human localization and
tracking. Under the assumption that there is only one user in the indoor environment
taken care of by the system, we can obtain one foreground region representing a user for
each processing cycle. Therefore, the server-side system will send the location and
orientation to the user’s client-side system. The following algorithm illustrates the

complete steps for this task.

Algorithm 4.9 Algorithm of human localization and tracking.
Input: The foreground region-hy-of a user in the previous processing cycle, the
omni-images Iy, I», ..., I, captured from cameras C;, C,, ..., C, respectively,

where n is. the number of the cameras.

Output: The user’s location p, the user’s orientation d , and the foreground region

h, of the user.

Steps

Step 1. Find foreground regions R(,) "in"each of Iy, I, ..., I, by Algorithm 4.1,
where R(i,) means all foreground regions in omni-image l;, and R(i, j)
means the jth foreground region in R(i,) .

Step 2. Track the foreground regions R(1,), R(2,), ..., R(n,) by Algorithm 4.7,
resulting in the tracks T(1,), T(2,), ..., T(n,), where T(i,) means all tracks
in omni-image I;, and T(i, j) means the jth track inT(i,).

Step 3. If hyis set, then find h by Algorithm 4.8; else, take the following steps.
3.1. Detect the color edge mark by Algorithm 4.5 for R(1,), R(2), ...,

R(n,).

67

3.2. If the color edge mark is detected in any foreground region, apply
Algorithm 4.8 to anyone of the foreground regions with color edge
mark detected to find the human region h; and go to Step 4.

3.3. If the color edge mark is not detected, apply Algorithm 4.8 to the
foreground region with the largest region size in R to find the human
region h, and go to Step 4.

Step 4. Compute the location p of h| as the output by Algorithm 4.2.

Step5. Compute the orientation d of h, as the output by Algorithm 4.6.

In Step 3, if we have found a human region in the previous processing cycle, we
can find the same human region by performing the camera-off algorithm. Otherwise,
we find the human region by-the color edge mark or the region size. Finally, we
compute the location and the orientation of the human region as output. Furthermore,

the human region will be used in the next processing cycle.

4.6 Experimental Results

In this section, we show some experimental results of both human location
detection and orientation detection. Figure 4.12 shows the results of the human
location detection at four different locations. It shows that the proposed method can
actually find the foot point of a human and transform the point from the ICS to the
MCS.

Figure 4.13 shows the results of the human orientation detection by the color
edge mark, where the approximating lines are shown as light green color. It also

shows that the proposed method is feasible.

68

Figure 4.12 Human location detection at four different locations.

69

(a)

(b)

Figure 4.13 Human orientation detection by color edge mark at four different
locations.

70

Chapter 5
Path Planning for Navigation

5.1 Ildeas of Proposed Techniques

When a user want to reach a certain destination, the server-side system will find
the location of the user at first, and then find the location of the destination in the
environment map we constructed in the learning stage. Next, the server-side system
will begin to plan a path starting from the user and ending at the destination, and
sends the result to the client-side system.

Here we use an obstacle image obtained in the learning stage to determine
whether a planned path collides with any obstacle or not. If the path starting from the
location of a user and ending at the location of the destination does not collide with
any obstacle, the server-side system directly sends the two locations to the client-side
system, which means that the user may now walk forward to the desired destination.
However, if the path collides with obstacles, we have to determine the immediate
collision points to avoid the obstacles. Here we use an obstacle avoidance map
constructed in the learning stage for this purpose. A more detailed description of the
obstacle avoidance process will be described in Section 5.2. Next, we follow the
avoidance directions to find the immediate points, and finally we will obtain a new
path starting from the user’s location to the destination. The path finding scheme will
be described in Section 5.3. However, the planned path may not be in the simplest
form; in other words, there may exist two non-connected points on the path that can

instead be connected together without any obstacle between the two points. Therefore,

71

we propose a scheme to simplify the planned plan, which will be described in Section
5.4.

After a path is completely planned, it will be send to the client-side system. A
user can follow the path to reach the desired destination. However, if the user moves
to a location which is not on the planned path, the planned path must be updated. A
path update scheme is also proposed in this study, which will be described in Section
5.5.

Finally, we will describe a complete path planning process in Section 5.6. Then

some experimental results will be presented in the last section.

5.2 Obstacle Avoidance

An obstacle avoidance map is created by splitting the MCS into small blocks. A
block is a processing unit in the obstacle avoidance process; in-other words, the
planned path “walks” a block at a time, if the planned path walks to a block
containing obstacles, it will find another block to go. Here we introduce a block
coordinate space (BCS), which can be used to locate the position of a block. The BCS
coordinates of a block are denoted as (I, j). A block with the BCS coordinates (0, 0)
means that the block is at the top-left corner; a block with the BCS coordinates (1, 0)
means that it is the one on the right side of the one with coordinates (0, 0), and so on.
The MCS coordinates (My, My) of a block with the BCS coordinates (i, j) can be

computed by the following equations:
M, =n-(i+0.5);

M, =n-(j+05), (6.1)

where n is the size of a block in pixels. And the BCS coordinates (i, j) can also be

computed by the following equations:

72

(5.2)

Each element in an obstacle avoidance map represents two opposite avoidance
directions, so we only store the one of the two directions in degrees. As shown in
Figure 5.1, the region of all angle degrees can be divided to 8 parts all with an equal
degree range of 45°. Every region part is assigned an index from 0 to 7, where the
degree region of part 0 is from 337.5° to 22.5°% the degree region of part 1 is from
22.5° to 67.5° and so on. Therefore, we can determine the region part of an avoidance
direction by the angle of the direction. The region part of an avoidance direction is

called “avoidance region ” in the sequel.

247.5° 292.5°

202.5° 337.5°

157.5° 22.5°

112.5° 67.5°

Figure 5.1 The whole direction region is divided to 8 parts, and each part is assigned
an index.

As the 3 x 3 blocks shown in Figure 5.2, if a planned path walks to the central
block and cannot directly walk to the destination from the block, the proposed system
tries to find the next immediate block in the 7 neighborhoods by the avoidance
direction of the block. Here, we can apply the avoidance regions to the 3 x 3 blocks,

and then assign each of the 7 neighborhoods an index as shown in Figure 5.2.

73

Therefore, each avoidance direction can map to an avoidance block by the index of
the avoidance region. However, we do not find the immediate point just at one
avoidance block. More specifically, we will assign three avoidance blocks for each
avoidance range. As shown in Figure 5.3, each avoidance range (shown as
semi-transparent regions) is assigned three blocks, which include one primary
avoidance block (shown as red regions) of the same avoidance range and the two

neighborhoods, which are called secondary avoidance blocks (shown as blue regions).

5 6 Vg
4 0
3 2 1

Figure 5.2 Apply the direction region parts to the neighborhoods of one block, and
each neighborhood is assigned an index.

74

Figure 5.3 Avoidance blocks of 8 avoidance ranges, where the avoidance regions are
shown as semi-transparent regions. Each avoidance region is assigned three blocks,
which include the primary avoidance block (shown as red regions) of the same
avoidance range and two secondary avoidance blocks (shown as blue regions).

We can find the next immediate point in the three avoidance blocks by the
avoidance direction. More specifically, we have two avoidance directions in one block,
so we will have six avoidance blocks for one block.

The following algorithm describes the processes to find the avoidance points of a
block. It results in a set of avoidance points, which is sorted by the priority of the
avoidance points. The priority of an avoidance point is based on the distance from the
avoidance point to the destination point. An avoidance point with a higher priority
should be considered first as the-next immediate point in the path finding process. The

path finding process scheme will be described in the next section.

Algorithm 5.1 Finding avoidance points.

Input: The current position p of a planned-path in the MCS, the final destination
position d of the planned path in the MCS, an obstacle image I,, and an
obstacle avoidance map A, where. A(i; j) means the angle of the avoidance
direction of the block with BCS coordinates (i, j).

Output: A set of avoidance points, which is sorted by the priority of the avoidance

block.

Steps

Step 1. Initialize an empty set Syesui: fOr the resulting points.

Step 2. Compute the coordinates (i, j) of p in the BCS by Equation 5.2.

Step 3. If A(i, j) is non-negative, obtain the two avoidance directions d—l and d,

from A(i, j); otherwise, take the following steps.

75

3.1. Compute the direction v=pd.

3.2. Find three avoidance blocks of the avoidance direction V.

3.3. Goto Step 5.
Step 4. Find six avoidance blocks B of d—1 and d—2 which include two primary

avoidance blocks and four secondary blocks.
Step 5. Initialize two empty ordered sets S, and Ss.
Step 6. Take the following steps for each avoidance block b in B.

6.1. Compute the MCS coordinates b’ of b by Equation 5.1.
6.2. If the line segment p_b’ collides with any obstacle, skip to the next

avoidance block b-and go to Step 6 again.
6.3. Ifbis of a primary avoidance block, add b" into Sy; otherwise, add
b" into S;.
Step 7. If Sy is.not empty, take the following steps.
7.1. Sort each element b" of Syin the ascending order by the Manhattan

distance from b" tod:
|b;—dX|+|b;—dy|.

7.2. Add the first element of S, into Sresuir, and add the remainder into S.
Step 8. Sort S by the same scheme of 7.1.
Step 9. Add each element of Ss into Syesyic Orderly.

Step 10. Take Sresuit @s the output.

In Step 3, if the current block contains no avoidance direction, the avoidance
direction is set to the one from the current position to the destination. We add each of
the avoidance blocks which are reachable from the current block into two sets. The

primary avoidance blocks will be added into one set, and the secondary will be added

76

into another. Then we sort the sets based on the distance to the final destination in
Step 7 and Step 8. We choose the closest one of the primary avoidance block as the
first priority avoidance block, and add it into a resulting set. Finally, the remainders

are added into the resulting set orderly.

5.3 Path Finding

We introduce the processes of obstacle avoidance in the previous section. In this
section, we describe the path finding scheme by use of avoidance points.

When we want to find a path from the current position to a destination position,
we find the avoidance points of the current position by Algorithm 5.1 at first. Then we
begin to check each avoidance point. We will record it when we check an avoidance
point, and we do.not check the same avoidance point twice, which means that a path
do not check a point it has walked before. If an avoidance point has not been walked
before, we try to find a path from the avoidance point to the destination. Therefore,
the process can become recursive. However, if an avoidance point cannot reach the
destination, we continue to- try. the next avoidance point. If there are no more
avoidance points, we finish the finding process. The following algorithm always
returns a path starting from the input start point and ending at the destination if a path

is found; otherwise, it returns a flag indicating the failure.

Algorithm 5.2 Path finding.

Input: A start point p in the MCS, A final destination point d in the MCS, and a set Sy
which includes the points we have walked before.

Output: A set of points of the found path Srsuit, and a flag f indicating whether a path

is found or not.

77

Steps

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Initialize an empty set Sresuir tO Store the output points.

Add p into Sresuit and Sy

If p can directly go to d without colliding obstacles, add d into Sresr and

then go to Step 9.

Find the avoidance points by Algorithm 5.1, resulting in a set of avoidance

points S,.

Take out the first avoidance point p, in S,.

If p, is contained in Sy, take the following steps.

6.1. If there still is'any avoidance point'in S, go to Step 5; otherwise, set
f to fail and then finish this algorithm.

Apply this algorithm-recursively with the inputs p,, d, and Sy, resulting in a

set of points of a found path S,q and a flag fa.

If flag fa Is a success, add each point of S,q into Sresuir; Otherwise, go to Step

5.

Set Sresuir @S OUtput and set f to be a success.

Because the start point should always be walked and contained in the resulting

path, so we add the start point into the resulting set and the walked point set. In Step 3,

we check whether the start point can be directly connected to the destination point

without colliding obstacles; if so, then return the path which contains only the start

point and the destination point. Otherwise, we have to find a next immediate point by

applying the same algorithm recursively.

In Step 8 we check the returning flag: if the path is found successfully, then we

add all the points of the returning points into the resulting set; otherwise, we try the

next avoidance point again.

78

A result of the path finding process is shown in Figure 5.4. We found a path
starting from the top-left point to the bottom-right point. As mentioned previously, the
path is not of the simplest form. We will describe the processes to simplify the path in

next section.

 — =

ok foRok

Figure 5.4 Path found in the path finding process.

5.4 Path Simplification

After a path is found, we begin to conduct the proposed path simplification
process. The process can be decomposed. into two parts: redundant point elimination
and distance elimination. The goal of the redundant point elimination is to find two
points which are non-connected and can instead be connected together, and then to
remove the points between the two points; in other words, the goal is to find a
“shortcut” between two points (like the red line shown in Figure 5.5(a)). The goal of
distance elimination is to reduce the total path length by finding two points which are
on different line segments and can be connected together; in other words, the goal is
to find a “shortcut” between two line segments. As shown in Figure 5.5(b), we can

reduce the total length of the path by substituting P, with two new immediate points

79

(shown as red points).

After the path finding process, we conduct redundant point elimination at first, as
described in Algorithm 5.3. The algorithm iterates over all immediate points in a path,
and finds the last immediate point which can be connected together for each

immediate point.

(a) (b)
Figure 5.5 The redundant point elimination and the distance elimination. The black
points represent the original immediate points of a path (a) The redundant point
elimination, where the two redundant points P, and Ps; can be removed. (b) The
distance elimination, the path length can be eliminated by substituting P, by the two
red points.

Algorithm 5.3 Redundant point elimination.

Input: A set of points of a path P, where P(i) means the ith point in the set.

Output: A set of points of a simplified version of P.

Steps

Step 1. Initialize a variable i = 1 used to represent the index of the start point of the
shortcut.

Step 2. If i is equal to size(P), go to Step 8, where size(x) means the number of the

points of the set x.

80

Step 3.

Step 4.

Step 5.

Step 6.
Step 7.

Step 8.

Initialize a variable j = size(P) used to represent the index of the end point
of the shortcut.

Ifi=j—1,goto Step 7.

If P(i) can be directly connected to P(j) without colliding obstacles, remove
P(i+1), P(i+2), ..., P(j—1) and go to Step 7.

Decrement j by 1 and go to Step 4.

Increment i by 1 and go to Step 2.

Take P as the output.

A result of redundant point elimination using the above algorithm is shown in

Figure 5.6, where ‘Figure 5.6(b) shows the result of applying redundant point

elimination on Figure 5.6(a).

L'— B/ E—

kR koRok b

= o

(a) (b)

Figure 5.6 Result of path finding and redundant point elimination. (a) Result of path
finding. (b) Result of applying the redundant point elimination on (a).

However, the result shown in Figure 5.6(b) is still not of the simplest form. We

81

can find a short cut in the region of the red rectangle outline of Figure 5.6(b) by the
distance elimination mentioned previously.

The distance elimination process checks the points on each line segment of a path.
However, if the points on a line segment are continuous, it is impossible to check all
points on the segment. Therefore, the points on a line segment are discretized into
several points with equal distances T4 before distance elimination is conducted.

As shown in Figure 5.7, we check two line segments at a time, which are L; and
Li+1, respectively. For each discretized point p; on Ljand each pi.1 on L1, we check
whether p; and pi+1 can be connected together or not. The checking order of L; is from
the start point to the end point; that of L;.; is contrarily from.the end point to the start
point. We check all discretized-points on Lis; for each p;. If p; (shown as blue points)
cannot be connected to a point-on-Lisy, it Is skipped and the next p; on L. is then
processed. Finally, we will find a shortcut between L;and L., if there exists one

(shown as the red line segment).

Figure 5.7 Process of distance elimination. The black points are the immediate points
of a path. The gray region represents the region of an obstacle, the line between the
two red points are a shortcut found by the distance elimination process.

82

The following algorithm describes the complete processes to perform the distance

elimination work.

Algorithm 5.4 Distance elimination.

Input: A set of points of a path P, where P(i) means the ith point in the set.

Output: A set of points of a simplified version of P.

Steps

Step 1.

Step 2.

Initialize a variable i = 1 used to represent the index of the first checking
line segment.

If i>size(P)-—2, regard that the last line segment has been reached, and go
to Step 4; otherwise, take the following steps, where size(x) means the
number of the points of the set x.

2.1 Initialize two vectors of the two checked line segments

L =P(i)P(@+1) and L, =P@i+2)P>i+1).

2.2 Compute the vectors d, and- d,, by the following equations:

i+1

d =T,

-

L
di+l :Td e

i+1

where Ty is a predefined distance between two neighboring

.y

discretized points.
2.3 Initialize two variables p; = P(i) and pi+; = P(i+2), which are used to

represent the two end points of the shortcut, respectively.
2.4 Add d_, tOpis.
25 If p,,P(i+1)is in the opposite direction of L. or ‘pMP(i +1)‘ =0,

then go to Step 3 to check the next two line segments.

2.6 If p;j can be connected directly to pi.1 without colliding obstacles, take

83

the following steps.
2.6.1. Insert pj and pi.+1 into P before the position of P(i+1).
2.6.2. Remove P(i+1) from P.

2.6.3. Go to Step 3 to check the next two line segments.
2.7 Add d. top
28 If ‘E‘ > ‘q , go to Step 3; otherwise, go to 2.4.

Step 3. Increment i by 1 and go to Step 2.

Step 4. Take P as the output.

The result of applying the distance elimination algorithm described above on
Figure 5.6(b) is shown in Figure 5.8. However, there still exist redundant points in the
path of Figure 5.8. Therefore, we have to apply Algorithm 5.3 on the resulting path to
reduce redundant points again. More specifically, we apply the redundant point
elimination and distance elimination processes on a path until the points of the path

are not changed. Algorithm 5.5 describes the above process.

s

N\
Sk feok

~
|

Figure 5.8 Result of applying the distance elimination on the path of Figure 5.6(b).

84

Algorithm 5.5 Path simplification.

Input: A set of points of a path P, where P(i) means the ith point in the set.

Output: A set of points of the simplified path.

Steps

Step 1.
Step 2.
Step 3.

Step 4.

Make a copy of P, and denote it by P".

Apply Algorithm 5.3 on P’.

Apply Algorithm 5.4 on P,

If the points of P are different than the points of P, clear P, copy all points

of P” into P, and go to Step 2; otherwiseg, finish this algorithm.

We can directly apply Algorithm 5.5 on the resulting points of the path finding

process. Figure 5.9 shows the result of applying the above path simplification process

on the path of Figure 5.6(a).

%

skkokskokok \

I

Figure 5.9 Result of applying the path simplification on the path of Figure 5.6(a).

85

5.5 Path Update

The set of the immediate points of a path will be sent to a client-side system.
However, a user might not always move by following the planned path. Instead, the
user might walk away from the planned path, so that the planned path becomes
invalid. Therefore, we have to update a planned path when a user walks away from

the planned path.

Algorithm 5.6 Path update.
Input: The current point p of a user, and a set of points of a planned path P, where P(i)
means the ith'point in the set.

Output: A set of points of the updated path.

Steps

Step 1. Initialize an empty set Ppew-

Step 2. Find the last point ps of P which can be reached from p, if ps is not found,
take the following steps to re-plan a path.
2.1. Find a path starting from p and ending at the last point of P by

Algorithm 5.2 and Algorithm 5.5, resulting in a set of points P .

2.2. Add all points of P” into Ppew, and go to 5.2.

Step 3. Add p into Ppey.

Step 4. Add P(i), P(i+2), ..., P(n) into Ppey, Where i is the index of ps in P and n is
the size of Ppew.

Step 5. If Pyey CONtains at least 3 points, take the following steps.

5.1. Compute the angle @ between the two vectors P, (2)P,, (@) and

eEw

P (2P, (3) of the first two line segments of Ppey.

86

52. If 0>%, take the following steps to simplify the first two line

segments of Ppew.

5.2.1. on the first two line segments of Ppey, resulting a set of points
Pstart-

5.2.2. Remove the first two line segments from Pyey.

5.2.3. Insert Pyt to the beginning of Ppey.

Step 6. Take Ppew as the output.

An example of the results of applying the above algorithm is shown in Figure
5.10. When a user moves away from a planned path(as shown in Figure 5.10(a)), we
find the last reachable point-(shown as red circles) of the planned path from the

current point (shown as green-circles).

umm— e N —— A
’ o |\
I

. .
o)
0 << L —

(b)

87

(d) P H
I |

Figure 5.10 Results of the path update process. (green circles indicate the current

point and red circles indicate the last reachable point from the current point) (a) The

original planned path. (b) An updated path. (c) An updated path which is not of the
simplest form. (d) Result of applying the path simplification on the path of (c).

After applying this algorithm, we will add at most one new point to the resulting
set; in other words, the resulting set contains only one new point, which is the current
point of the user, and the remainders are the points of the original planned path
Therefore, we have to check whether the new line segment is of the simplest form or
not. In Step 5.1, we compute the angle between the new line segment and the first old
line segment. If the angle is greater than 90° (as shown in Figure 5.10(c)), it means
that the two line segments have opposite directions and there may exist a shortcut
between the two line segments. Therefore, we apply the path simplification process to
the two line segments (as shown in Figure 5.10(d)). Finally, the algorithm will yield

an updated path.

5.6 Algorithm for Path Planning

We describe the processes for tasks involved in path planning in the previous
sections. In this section, we integrate these processes to form a complete algorithm for

path planning.

Algorithm 5.7 Path planning.

Input: A start point p in the MCS, and a final destination point d in the MCS.

88

Output: A set of points of the planned path.

Steps

Step 1. If there exists a planned path P” and the destination of P” is identical to d,
take the following steps.
1.1. Update P’ by Algorithm 5.6, resulting in a set P of the immediate

points of a path.

1.2. Go to Step 4.

Step 2. Find a path starting from p and ending at d by Algorithm 5.2, resulting in a
set P of immediate points of the path.

Step 3. Apply Algorithm 5.5 0n P to simplify the found path.

Step 4. Take P as the output.

This algorithm is applied in each navigation process cycle. If a user wants to
reach a certain destination and he/she never searched the same destination before, the

algorithm will plan a new path. Otherwise, the algorithm will update the planned path.

5.7 EXxperimental Results

Figure 5.11, 5.12, and 5.13 show three examples of the results of the path
planning work conducted by the above algorithm. Each result contains a figure of the
original planned path yielded by Algorithm 5.2, and a figure of the final simplified

path yielded by Algorithm 5.5.

89

(a)

(b)

Figure 5.11 Result of the p ing. (b) Result of

applying the path simplificatio
A\

Il

ol

(a) (b)
Figure 5.12 Result of the path planning. (a) Result of the path finding. (b) Result of
applying the path simplification on the path of (a).

90

|_|_|_
it AT

(b)
inding. (b) Result of

Figure 5.13 Resul the path planning. (a
applying the path sir ¢

91

Chapter 6
Augmented Reality for Navigation

6.1 ldeas of Proposed Techniques

In this chapter, we will describe the AR techniques used in the proposed system. The
AR techniques are used in the client-side system. \e overlay navigation information onto
the real images taken of the current scene, so that users can just take their mobile devices
and conduct the navigation conveniently. The real images taken of the current scene will
be called “scene images” in the subsequent sections, and scene images overlaid with
navigation information will be called “augmented images.”

After detections of the user’s location and orientation are completed, the
navigation information will be sent to the user’s-mobile device. The navigation
information includes. the visiting target information and the navigation path. The
client-side system will display the information on the device screen. A more detailed
description of the navigation information we use in the display rendering will be
given in Section 6.2.1. The visiting target information includes the name of the
visiting target and its coordinates in the GCS. The navigation path contains the GCS
coordinates of the points consisting of the path. In order to display the information in
an AR way, the client-side system must transform the GCS coordinates onto a 2D
screen plane. The calibration of the camera on the mobile device is described in
Chapter 3. In Section 6.2.2, we will describe the process to perform the
transformation between the GCS and the screen plane by the calibration result.

In Section 6.3, we will describe the display rendering for the navigation

92

information. We display the names and distances of visiting targets on the
corresponding objects in scene images. So we will illustrate how to determine the
display position in the scene image in Section 6.3.1. In Section 6.3.2, we will describe
the creation of the navigation path’s geometric shape (arrows, thick line segments, etc.)
for the navigation path to be overlaid onto the scene image to provide the guidance

information.

6.2 View Mapping between Real World
and Client Device

6.2.1 Information for Use in Mapping between Real

World and Client Device

In Chapter 3, we described the construction of the environment map. We specify
the visiting target information on the environment map; which includes the name, the
region, and the coordinates of the visiting target. As shown in Figure 6.1, the light

green region on the floor plan-is a specified visiting target. The visiting target is
specified by a vector f indicating the front direction of the visiting target, the

region width w and height h, and the location p. The coordinates of the location
include the z-coordinate, which represents the distance between the ground plane and
the bottom of the visiting target region. The coordinates and the size are specified in
the MCS, and it will be transformed into the GCS before sending to the client-side
system.

Besides the visiting targets, a navigation path may be sent to the client-side
system when a user wants to reach a certain destination. The navigation path is a set

which contains the immediate points of the path, and the immediate points will be

93

transformed into the GCS before being sent to the client-side system. In addition, a
path might contain more than one turning; in other words, a user might have to turn
more than once to reach the destination. However, a user should pay attention only to
the next turning; the second turning is not so important to the user at the current time.
Therefore, we only display two line segments of the path at a time.

- |\/], T
I;}MCS .

My

Figure 6.1 A visiting target in the environment map and its corresponding location in
the GCS.

6.2.2 Transformation.from Real World Spot to Client

Device Screen
Recall the results derived from Section 3.4.2. A point p in the CCS can be
transformed to be a point g in the ICS by the following equations:

htg

—Co 0 0 0
;) |V 3 P,
! 0 cot— 0 0
p¥ 2 Py, (6.1)
P —(f+n) —2fn || P
: 0 0 1
Py f-n f-n
0 0 -1 0

94

P/ P,

q) (w 0 005 0 0 05)| ™
q |=/0 h 0l 0 -05 0 05| p¥?pf“ . (6.2)
q,) lo o 1)lo 0o 05 05 pzlpw

where w is the width of the scene image in the unit of pixel, h is the height, and « is
the angle range of the field-of-view of the camera. The view region is restricted by the
two parameters n and f; n restricts the smallest distance we can see, and f restricts the
largest distance, so the two parameters can be specified arbitrarily. Equation 6.2 is a
little different from the one in Section 3.4.2. The additional z-coordinate is only used
to determine whether a point is outside of the screen range or not. A point with the z
coordinate outside of the range [0, 1] is considered to be outside the screen range. The
ICS coordinates are composed by (qu, Qv)-

However, the coordinates sent from the server-side is in the GCS, but the
coordinates we use in Equation 6.1 are in the CCS. Therefore, we have to transform
the coordinates, from the GCS into the CCS at first. The transformation can be

expressed by the following equation:

O o

p=M, .| (6.3)

-

where a is a point in the GCS, p is the transformed point of a in the CCS, and M. is
the transformation matrix. In this transformation, the original coordinates of a are
replaced by homogeneous coordinates.

Because the transformation will preserve the length of vectors after
transformation, the transformation is so called orthogonal transformation. The
columns of the transformation matrix of an orthogonal transformation will form an
orthonormal basis of the transformed space. As shown in Figure 6.2(a), a camera is at

the point ¢ in the GCS, and the basis of the CCS of the camera can be represented by

95

three vectors up, right, and forward, where up is the up direction of the camera, right
is the right direction, and forward is the front direction. In the CCS defined in Chapter

3 shown in Figure 6.2(b), we can express the transformation matrix as follows:

right, up, -—forward, —c
M = right, up, -—forward, -c, (6.4)
° |right, up, —forward, -c '

0 0 0 1

X

z

where the rightmost column is the coordinates of the camera, it used to translate the
origin to the camera position, and it is actually the user’s location detected from the
server-side system. The z-coordinate of the camera position is a predefined parameter;
in other words, the height of a camera is fixed to about the height of the eyes of an

adult in the proposed system.
W,
GCS Wy

up

right
Wy Camera

forwar

(a) (b)

Figure 6.2 A camera in the GCS and the CCS. (a) A camera in the GCS with three
orthonormal vectors up, right, and forward. (b) The CCS.

Therefore, we can determine the transformation matrix M. by finding the three
vectors up, right, and forward. By the GCS defined in Chapter 3, the up direction is
the +z direction, so the vector up is (0, 0O, 1).

Also, we assume that the camera orientation is in the same direction of the user’s

orientation. Therefore, the vector forward can be obtained by using the user’s

96

orientation. However, a user might tilt the client device to watch the environment at a
pitch angle. As shown in Figure 6.3, the camera looks at a pitch angle £, but the
orientation detected from the server-side is from a horizontal direction (shown as the
green arrow). Therefore, we have to obtain the pitch angle so that we can obtain the

correct orientation by Equation 6.5 below:

Camera

Figure 6.3 Camera looks at a pitch angle £. The green line indicates a line on the
horizontal plane.

—

dy
d =| d, (6.5)
sin 3

where d is the user’s orientation detected from the server-side system, and 3 is the
pitch angle which can be obtained from the orientation sensor of the client device.

And then forward can be obtained by:

!

‘ : (6.6)

|

‘ o

forward =

Q)

The value forward is normalized to be a unit vector in the equation above. The

last vector right can then be obtained by the vector which is orthogonal to up and

97

forward. We can get the vector by the cross product of forward and up according to

the following equations.

r = forward ®up;

right = ;
[

However, forward might not be orthogonal to up which is the direction (0, 0, 1)

(6.7)

because we had added a z-direction to the vector forward. Therefore, we correct the
up by the cross product of right and forward:

up =right ® forward (6.8)

Now, we have obtained all the needed variables to perform the transformation.

We summarize all the processes of transformations discussed above by the following

algorithm.

Algorithm 6.1 Transformation between the GCS and the ICS.

Input: A user’s orientation d , the user’s location c, the pitch angle S obtained from
the orientation sensor of .the client device, and the point a in the GCS to
transform.

Output: A transformed point g in the ICS.

Steps

Step 1. Initialize a vector up with the direction (0, 0, 1).
Step2. Use d and fto compute the vector d by Equation 6.5.

Step 3. Use d to compute the vector forward by Equation 6.6.

Step 4. Compute a vector right by Equation 6.7.

Step 5. Correct a vector up by Equation 6.8.

Step 6. Construct the matrix M. using up, forward, right, and ¢ by the matrix of
(6.4).

98

Step 7. Use M, to transform a from the GCS to the CCS by Equation 6.3 and result
inp.
Step 8. Transform p f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>