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以俯視式環場電腦視覺及行動裝置 

作擴增實境式室內導覽 

 

研究生: 謝孟原 指導教授: 蔡文祥 博士 

 

國立交通大學多媒體工程研究所 

摘要 

本論文提出了一個結合電腦視覺及擴增實境技術在行動裝置上使用的室內

導覽系統。此系統以在室內環境天花板上安裝的魚眼攝影機作為基礎硬體架構。

在人物定位方面，提出了一個以電腦視覺為基礎的方法，藉由分析魚眼影像來偵

測使用者的活動資訊。為了得到影像中人物的真實空間位置，我們也提出了一個

空間映射的方法，來進行影像座標與真實空間座標的轉換。此外我們也整合了三

項技術來進行人物方向的偵測，分別為(一)分析使用者的移動路徑、(二)利用行

動裝置上的方向感測器、以及(三)藉由行動裝置上所貼一長條色彩標記，在魚眼

影像中分析該標記來進行方向偵測。另亦提出一適用於室內路徑的規劃方法，藉

由分析建築平面圖來得到障礙物區域，並以此為基礎得到障礙物迴避方向來進行

路徑規劃。伺服器會將導覽資訊傳送至行動裝置上的使用者端，此資訊包括了定

位資訊、周遭環境地點及導覽路徑。使用者端接收到的導覽資訊會被覆蓋在行動

裝置影像中對應的真實物件上，來提供擴增實境導覽介面。此外本研究也提出了

一個方法來估測行動裝置上攝影機的可視角，並以此建立一個轉換矩陣來將真實

空間中的點轉換到影像平面上。最後，實驗結果也顯示出了本研究所提出方法的

可行性。同時，定位資訊的精確測量結果也顯示了此系統在提供精確導覽資訊的

能力。 
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ABSTRACT 

When people visit new indoor places or complicated indoor environments, there 

usually needs a navigation system to guide them to desired destinations. In this study, 

an indoor navigation system based on augmented reality (AR) and computer vision 

techniques by the use of a mobile device like an HTC Flyer or an iPad is proposed. 

At first, an indoor vision infra-structure is set up by attaching fisheye cameras on 

the ceiling of the navigation environment. The user’s location and orientation are 

detected at a server-side system, and the analysis results are sent to the client-side 

system. Furthermore, the server-side system also sends the surrounding environment 

information and the navigation path to the client-side system, which runs on the user’s 

mobile device. The client-side system then displays the information in an AR way, 

which provides clear information for a user to conduct the navigation. 

For human localization, a vision-based localization technique is proposed, which 

analyzes images captured from the fisheye cameras, and detects human activities in 

the environment. In order to transform coordinates of image points into the real-world 

space, a space-mapping technique is proposed. Furthermore, three techniques are 
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integrated together to conduct human orientation detection effectively. The first is 

analysis of human motions in consecutive images. The second is utilization of the 

orientation sensor on the user’s mobile device. The last is localization of the color 

edge mark attached on the top of the mobile device using omni-images. These 

techniques are integrated together to provide a reliable human orientation detection 

system. 

A path planning technique for use to generate a path from a spot to a selected 

destination via the use of an environment map is also proposed. The environment map 

is constructed from a floor plan drawing of the indoor environment. An obstacle 

avoidance map is created from the floor plan drawing, which is used to determine the 

avoidance direction when a path collides with an obstacle in the environment. 

Finally, the navigation information is overlaid onto the image shown on the 

mobile device to provide an AR navigation interface. A method for estimation of the 

field-of-view of the camera on the mobile device is proposed. The field-of-view is 

used to construct a transformation matrix, by which real-world points can be 

transformed into the screen plane, so that the navigation information can be overlaid 

onto the corresponding real-world objects in the images to accomplish the AR 

function of the system. 

Good experimental results are also presented to show the feasibility of the 

proposed methods for real applications. Precision measures and statistics showing the 

system’s effectiveness in producing precise data for accurate visiting target displays 

and environment navigations are also included. 
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Chapter 1  

Introduction 

1.1 Background and Motivation 

When people visit new places or complicated indoor environments, such as 

company buildings, large labs, malls, department stores, etc., there usually needs a 

navigation system to guide them to desired destinations. Common navigation systems 

use the global positioning system (GPS) to retrieve position data, but the GPS is 

generally not suitable for use to acquire indoor locations, since signals will be 

attenuated and scattered by roofs, walls, and other objects in indoor environments, 

resulting in imprecise localization readings. In this study, it is desired to design an 

indoor navigation system using a different localization technique. Specifically, we try 

to design a vision-based localization technique to analyze the images captured from 

fisheye cameras installed on ceilings in indoor environments and detect human 

activities in the environments. 

Meanwhile, we try to use mobile devices as user-end devices. Mobile devices are 

getting more and more popular nowadays and are used more and more widely in 

various applications. In recent years, many mobile devices become commercially 

available, such as smart phones and tablets equipped with more advanced function 

units like high-speed CPUs, graphics processing units (GPUs), digital cameras, device 

orientation sensors, etc. Therefore, application developers can design many 

complicated mobile applications or services that assist people in real-life events due to 

the high-speed computational and advanced capabilities of the devices. 
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Moreover, as the on-device camera getting cheaper and more common, we can 

use them to develop more interesting and useful applications by combining real-world 

images captured from cameras with virtual augmentations created by computers. In 

other words, the real-world environment can be augmented by computer-generated 

objects to enhance the perception of the real world, and this is the so-called 

augmented reality (AR) technique. In this study, we try to design an indoor navigation 

system by the AR technique using mobile devices. We want to overlay artificial 

navigation instructions mentioned above onto the real images captured with the 

camera in real-time, so that users can just take their mobile devices and conduct 

indoor-environment navigations conveniently. The concept of the proposed system is 

shown in Figure 1.1. 

In summary, the goal of this study is to develop an indoor navigation system with 

the following capabilities. 

1. Working in indoor environments, and being able to detect users’ positions and 

orientations. 

2. Integrating real images with virtual augmentations, such as the current position, 

the next moving direction to the desired destination, nearby visiting target 

information, etc., to provide users convenient and clear navigation interfaces. 

3. Planning a proper path from a user’s location to a desired destination, and 

updating the path dynamically when the user moves to a location not in the path. 

1.2 Review of Related Works 

In this section, we conduct a survey of works about indoor navigation and related 

techniques, such as human localization, human orientation detection, navigation path 

planning, and AR techniques. 
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Figure 1.1 Concept of proposed indoor navigation system using augmented reality 

technique 

1.2.1 Review of Related Indoor Navigation Works 

In recent years, with outdoor navigation systems become more popular and 

widely used, there are more and more researches about indoor navigation trying to 

satisfy the demands for indoor environments. Lukianto, et al. [1] proposed an indoor 

navigation system for use on the smart phone, which is based on an inertial navigation 

system (INS) and provides the position, speed, and orientation of the user. Ozdenizci, 

et al. [2] proposed a near field communication (NFC) based system, which detects the 

user’s position by touching NFC tags with a smart phone. 

Besides the sensor-based navigation systems mentioned above, several systems 

using image processing techniques have been proposed. The most common technique 

used in image-based systems is marker-based navigation with camera phones [3, 4], 

in which a user must point the phone’s camera at a marker, and the system then will 

recognize it and know where he/she is located. 

Many other systems also use image-based techniques for AR. Werner et al. [5] 

proposed a method to detect human positions in indoor environments by a 

combination of image processing systems with a distance estimation algorithm using 
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the camera of a mobile device. Hile and Borriello [6] developed an indoor navigation 

system that can find the camera pose by detecting the landmark in the phone camera 

image and matching it with previously-cached landmarks, and then overlaying the 

information onto the images. 

1.2.2 Review of Related Augmented Reality Works 

Augmented Reality enhances the real world with virtual objects or digital 

information, so it has been used in many fields. For example, it can be used to help 

mechanics to perform maintenance and repair tasks [7], treatment for psychological 

disorders [8], context visualization [9], etc. 

We develop our navigation system by the AR technique, and there are also other 

systems using AR techniques. Jongbae and Heesung [10] proposed a vision-based 

indoor navigation system, which recognizes the location of users by marker detection 

and image sequence matching on images captured from a wearable camera, and 

display navigation information in the AR way. Miyashita, et al. [11] designed a 

museum guide system, which uses a markerless tracking technique and an AR 

platform — Unifeye SDK. 

1.2.3 Review of Related Human Localization Works 

The human localization techniques of navigation systems mentioned in the 

previous sections can be roughly classified into the two types of sensor-based and 

image-based. Sensor-based localization techniques usually need infrastructures with 

infrared, RFID, NFC tags [2], or other customer-designed hardware [1]. Image-based 

localization techniques usually use markers attached on the environments or the 

features acquired from the images captured by cameras [5] [6]. 

In this study, we propose an image-based localization technique, which uses 
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fisheye cameras to capture images and detect the user’s location. The fisheye camera 

has the advantage of possessing wider fields-of-view, so we can use it to observe 

wider regions in many applications. In our system, 2-D image points must be 

transformed into the 3-D global space to get the actual position of the user. For this 

purpose, we tried to use a space-mapping method proposed in [12]. But this method is 

based on the use of fixed cameras. When the positions or other configurations of the 

cameras are changed, we have to redo the works again. In this study, we propose a 

method to solve this problem and improve the above method for more flexibility and 

better usability. 

1.2.4 Review of Related Path Planning Works 

When a navigation system gets a user’s location and the user wants to reach a 

certain destination, then the system should plan a path from the user position to the 

destination. 

About the path planning technique, Borenstein and Koren [13] proposed a 

real-time collision avoidance method using a technique named Vector Field 

Histogram, which can detect unknown obstacles and avoid collisions. Hwang, et al. 

[14] proposed a path planning method by a path graph optimization technique which 

triangulates the world space into a mesh representation, and then extract an optimized 

path graph from the mesh. Bruce and Veloso [15] proposed a path planning technique 

named rapidly-exploring random trees (RRTs) by waypoint caching and adaptive cost 

penalty search, which improve re-planning efficiency and the quality of generated 

paths. 
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1.3 Overview of Proposed Methods 

The most important part of every navigation system is the localization function. 

As discussed previously, we usually need a GPS to retrieve the position data in an 

outdoor environment, but the GPS is not suitable for indoor environments due to its 

rough localization precision. Therefore, we propose a new method for indoor 

localization in this study under the assumption that there is only one user in the indoor 

environment taken care of by the system. At first, we have to build a top-down vision 

infrastructure in the indoor environment, which has a sufficient number of fisheye 

cameras installed on the ceiling. Then, an environment map model is created, which 

includes the location information of the cameras and the visiting targets for guidance. 

Each visiting target means a place or object in the real environment, such as an exit, a 

restroom, a water dispenser, and others that people might be interested in, and this 

term will be used in the subsequent sections. The cameras are with fisheye lenses 

which have wide fields-of-view. Such cameras can be deployed to monitor the entire 

environment with a smaller number of them. Then, we analyze the images captured 

from the cameras to detect the user’s position on a server-side system.  

After getting the user’s position, his/her orientation must be detected to decide 

what the camera on the user’s mobile device “sees.” Then, the system can send 

relevant navigation information to the client-side system through a wireless network 

in the environment, and the user at the client site can realize what the visiting targets 

in sight on the device display screen are or how to get to its desired destination. In our 

system, we detect the user’s orientation by integrating three different techniques, 

which respectively are human motion analysis, localization by the e-compass data, 

and detection of a color edge mark on top of the hand-held client device at the client 

site. 
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In order to guide a user to a desired destination, we propose a path planning 

technique for indoor navigation. The path planning technique is based on a floor plan 

of the indoor environment in the form of a graphic picture. By the technique, we 

analyze the floor plan to localize obstacle and walkable regions in the plan, and use 

the resulting information to plan paths according to the destination which is taken as 

input to the technique. 

After getting the user position and orientation, the server system sends the 

navigation information to the client system, which then displays the information on 

the device screen at the client site. The navigation information data includes the name 

and distance of visiting targets in sight of the user, the navigation path to the desired 

destination, etc. The client system will map the information from the real world to the 

screen of the hand-held device. Then, the visiting target information or the navigation 

path can be overlaid onto the real places or objects shown in the current image taken 

of the environment by the built-in camera of the device. In other words, the device 

displays the navigation information in an AR way. As such, the user can understand 

the surrounding environment easily and intuitively. 

1.4 Contributions 

The major contributions of this study are listed in the following. 

1. A new AR-based indoor navigation system using computer vision is proposed to 

satisfy the demands of guidance or browsing of indoor environments. 

2. An image-based localization method by analyzing the images captured from the 

fish-eye cameras affixed on the ceiling is proposed to compensate for the 

insufficiency of the GPS in the indoor environment. 

3. An augmented reality interface is proposed to provide a user with surrounding 
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navigation information and the navigation path from the position of the user to the 

specified destination. 

1.5 Thesis Organization 

The remainder of this thesis is organized as follows. In Chapter 2, we introduce 

the configuration of the proposed system and the system process in detail. In Chapter 

3, we introduce the proposed process for learning of an indoor environment, which 

includes the data that we will use in the proposed system. In Chapter 4, the proposed 

user localization method for indoor environments and the proposed user orientation 

detection method are described. In Chapter 5, we introduce the proposed path 

planning technique. In Chapter 6, we describe the proposed AR technique, a method 

to conduct the perspective transformation for information displays on the user’s 

device, and the adopted technique for rendering augmentations on real images. In 

Chapter 7, some experimental results to show the feasibility of the proposed 

techniques for indoor navigation are presented. At last, conclusions and some 

suggestions for future works are given in Chapter 8. 
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Chapter 2  

Ideas of Proposed Methods and 

System Design 

2.1 Ideas of Proposed Method 

We propose an image-based localization technique for AR-based guidance of 

indoor environments in this study. The system analyzes the omni-images captured 

from the cameras affixed on the ceiling, and then finds the user’s foot points in the 

omni-images. When we get the user’s foot points, we transform their coordinates in 

the image coordinate system (ICS) into the global coordinate system (GCS) to get the 

actual position of the user in the indoor environment. In order to conduct the above 

transformation, we construct a mapping table between the ICS and the GCS in 

advance. 

Next, we must detect the user’s orientation after detecting the user’s location. In 

order to accomplish this aim, the simplest way is to track the user’s locations in 

consecutively acquired images, and use the resulting motion vectors of the user’s foot 

points to compute the user’s orientation. But when the user is not walking, this 

method will not work because there is then no more moving vector for use. In this 

situation, we propose other techniques to overcome the problem. The first technique is 

to utilize the orientation sensor installed in the user’s device mentioned previously. 

The orientation sensor measures the azimuth angle of the device by detecting changes 

and disturbances in the magnetic field in the surrounding environment. However, 

according to our experimental experience, the azimuth values detected are not stable 
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enough for our application due to indoor magnetic interferences from various sources. 

Therefore, we propose a second technique to improve the stability of detected 

orientations, that is, to attach a color edge mark on the top edge of the user device, 

and detect this line mark appearing in the omni-image to compute a more accurate 

orientation of the user at each visiting target. 

In addition, in order to guide users to their desired destinations, we propose 

further a path planning technique for the proposed indoor AR navigation system. An 

environment map model is constructed first from a graphic drawing of the floor plan 

of the environment. Then, walkable regions in the floor plan are detected by image 

processing techniques with the graphic drawing as input. In this way, we can know 

where the obstacles are in the environment. The orientations of the obstacles then are 

analyzed to decide how to avoid them and where to go next. When a user wants to go 

to a destination, the system will search the constructed environment map, and get the 

destination point in the map. In the meantime, the system will plan a path starting 

from the user position and ending at the destination. When the planned path collides 

with any obstacle, it follows the orientation of the obstacle’s boundary to avoid the 

collision and go to the next immediate visiting spot. Repeating the above steps until 

reaching the appointed destination, we can get a complete navigation path finally as 

the desired path planning result. 

When the client-side system receives the navigation information sent from the 

server, the system will display the information on the device screen. The navigation 

information includes the visiting target information and the navigation path itself. The 

visiting target information includes the name of the visiting target and its coordinates 

in the GCS. The navigation path contains the GCS coordinates of the points on the 

path. In order to display the information in an AR manner, the client-side system must 

transform the GCS coordinates onto a 2D screen plane. The field-of-view of the 
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camera of the client device must also be estimated to get a perspective projection 

matrix. With the matrix, the 3D points of the navigation information can be 

transformed into the 2D screen plane. Then, the navigation information can be 

overlaid onto the real places or objects in the image taken of the current scene, and the 

user can so understand the surrounding environment easily, achieving the major goal 

of AR-based indoor environment guidance of this study. This step of navigation 

information overlaying on real environment images for displays on the user’s mobile 

device will be called display rendering in the sequel of this thesis. 

2.2 Ideas of System Design 

In this study, the proposed system is of a client-server architecture, which may be 

decomposed into two parts: a server side and a client side. The server-side system is 

used for conducting complicated works with heavy computations, and it runs on a 

centralized computer. The server-side system will be introduced in more detail in 

Section 2.2.1. The client-side system runs on the user’s mobile device, which obtains 

navigation information from the server-side system and displays it on the screen of 

the device. The client-side system will be introduced in more detail in Section 2.2.2. 

Finally, the cooperation between the client and server sides will be introduced in 

Section 2.2.3. 

2.2.1 Server-side System 

The server-side system runs on a centralized computer as mentioned, and is 

connected to the cameras on the ceiling through a local area network. In the learning 

stage, we build an environment map, which includes environment information such as 

target locations, target titles, and camera locations. In the navigation stage, the server 
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accesses the omni-images captured from the cameras, and analyzes the omni-images 

to detect the user’s location and orientation at each visited spot. After the server 

detects a user via images acquired by the cameras, it sends the user’s location, 

orientation, and the information of nearby visiting targets to the user’s client-side 

system. All of such information will be updated when the user moves. When the user 

wants to reach a certain destination, the server will receive a request from the client, 

and then plan a path from the user’s location to the destination, and send a set of 

intermediate points of the path to the user’s client-side system to display. 

As a whole, the server is designed mainly for conducting human localization and 

path planning, and these two tasks are both heavy computational works. Because the 

client-side system runs on the user’s mobile device, which has lower power and 

inferior computational capabilities than the centralized computer, conducting these 

heavy computational works on the server can increase the computational performance 

and reduce the battery power usage of the client-side system. 

2.2.2 Client-side System 

The client-side system runs on the user’s mobile device. Because the mobile 

device held by the user (like an iPad) has lower power and inferior computational 

capabilities than a laptop or desktop computer, the client-side system on it must be 

assigned as few works as possible to reduce the power consumption and increase the 

computational performance. Therefore, most tasks carried out by the client-side 

system are limited to be those related to information displays, such as view projection, 

display rendering, and creation of the navigation path’s geometric shape (arrows, 

thick line segments, etc). 

When a user enters the environment, the user’s client-side system is connected to 

the server through a network and receives relevant information from the server. Then, 
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the client-side system just needs to display the information on the screen of the user’s 

mobile device. 

2.2.3 Cooperation between Client and Server Sides 

The server and client side systems are described in Section 2.2.1 and Section 

2.2.2. Here we describe the cooperation between the client-side and server-side 

systems in more detail. An illustration of the cooperation between the two systems is 

shown in Figure 2.1. 

When the client is connected to the server, the latter will begin to detect the user’s 

location and orientation, and send the location coordinates, the orientation vector, and 

the nearby environment information to the user. The information will be updated 

continuously to make sure that the user can receive correct and immediate messages. 

When the user wants to reach a certain destination, the client-side system will send a 

request, which includes the name of the destination, to the server. After server 

receives the request, it will plan a path starting from the user’s location and ending at 

the destination. Finally, a set of intermediate points of the path will be sent to the 

client.  

Server
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Path planning

Client

View projection

Display rendering

Creation of navigation path 
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Figure 2.1 Cooperation between client and server sides. 
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2.3 System Configuration 

In this section, we will introduce the configuration of the proposed system. The 

hardware of the proposed system includes fisheye cameras which we use for human 

detection, and the mobile device which we use as the client-side device. It will be 

introduced in more detail in Section 2.3.1. In Section 2.3.2, we will describe how to 

connect the hardware over the network, and how it operates. Finally, we will 

introduce the software development environment and the operating system we use 

both in the server-side system and in the client-side system. 

2.3.1 Hardware Configuration 

The camera we use in this study is of the model of Axis 207MW, which is made 

by Axis Communications, and the original lens is replaced with a fisheye lens in this 

study to expand its field-of-view. The Axis 207MW camera has a dimension of 

855540mm (3.3”2.2”1.6”, not including the antenna), and a weight of 190g 

(0.42 lb., not including the power supply). Its appearance is shown in Figure 2.2(a). 

The maximum resolution of the images captured with it is up to 12801024 pixels. 

For performance efficiency, we use the resolution of 640480 pixels in our system, 

and the frame rate is up to 15 fps. The cameras can be accessed through wireless 

networks (IEEE 802.11g/b), but for speed improvement, we access the cameras 

through the Ethernet. 

We build our experimental environment in the Computer Vision Lab at National 

Chiao Tung University by installing several fisheye cameras on the ceiling of the lab. 

(see Figure 2.2(b)). The images captured from the cameras are analyzed by the 

centralized computer to detect the user’s location and orientation. The server sends the 

navigation information to the users’ mobile device so that the user can begin the 
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navigation. The mobile device we use in the experiment is a HTC Flyer tablet made 

by HTC Corporation. Its appearance is shown in Figure 2.3. The HTC Flyer has a 

dimension of 19512213.2mm (7.7”4.8”0.5”) and a weight of 420g (0.93 lb). It 

has a screen size of 7 inches, a camera acquiring 5-megapixel images, and an 

e-compass that can detect the device orientation in a magnetic field, etc. The user uses 

the HTC Flyer as the client device, and connects it to the server through a wireless 

network. 

  

(a) (b) 

Figure 2.2 The camera used in the proposed system. (a) The appearance of the 

camera. (b) The camera installed on the ceiling in the indoor environment. 

 

Figure 2.3 The HTC flyer used as the client device in this study. 
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2.3.2 Network Configuration 

Using the Ethernet is more reliable for our application in this study than using a 

wireless network. Therefore, the cameras and the centralized computer are connected 

through a local area network (LAN) in this study. The server can access the images 

captured from the cameras in a more reliable way through the Ethernet, and so one 

can make sure that the system always accesses correct and immediate images and 

messages. 

The client device we use is a mobile device, so it must access the server through 

the wireless network. The most commonly-used wireless networks currently are the 

Wi-Fi and 3G networks, and the client device can access the server and receive the 

navigation information using both of them. For reliability and speed considerations, 

we set up a Wi-Fi access point in our experimental environment, and the user can 

connect to the server through the Wi-Fi network in the environment. A complete 

network architecture is shown in Figure 2.4. 

LAN

ServerClient Device

Camera Camera

Wi-Fi Network

 

Figure 2.4 The network architecture of the proposed system. 

2.3.3 Software Configuration 

The server-side system is written in C# programming language using the 
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Microsoft Visual Studio 2010 development environment, and the system operates on 

the Windows 7 operating system. The server-side system accesses the cameras by the 

AXIS Media Control SDK (AMC SDK), which is provided by the manufacturer of the 

cameras, Axis Communications. The AMC SDK provides the application 

programming interface (API) for developers to access the camera images or control 

the cameras using C# and C++ programming languages. 

As to the client-side system, it is written in the Java programming language and 

operates on the Android 2.3.4 operating system. The client-side system uses the 

Qualcomm’s Augmented Reality (QCAR) platform, which provides many useful 

functions for AR developments on mobile devices. But in our system, we only use the 

QCAR to handle the capturing of camera images. The rendering of 3D augmented 

objects is conducted by the Android OpenGL API. 

2.4 System Processes 

2.4.1 Learning Process 

The goal of the learning process of the proposed system is to establish the 

environment map, which includes information about the visiting targets, cameras, 

magnetic fields, and obstacle orientations. The entire learning process is shown in 

Figure 2.5, and more details of it will be described in Chapter 3. Only a brief 

description of the process is given here. 

First, we establish an environment map in the form of a floor plan drawing. The 

floor plan is drawn at a specific ratio relative to the actual size of the environment. 

After specifying the ratio, we compute the corresponding size in the unit of pixel. The 

use of this scaling ratio is necessary for the transformation between the ICS and the 

GCS. Next, the visiting targets of the environment are specified on the environment 
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map. Furthermore, we must also specify the installation information of the fisheye 

cameras. The installation information includes the location and height of the cameras, 

which is necessary for use in computing the transformation between the image 

coordinate system and the map coordinate system. 

After the environment map is established, the learning processes can be 

decomposed into two phases: learning for path planning and learning for human 

localization. Before we perform path planning, the system must know the information 

of obstacles. The path planning algorithm can determine how to avoid the obstacles in 

the environment by the obstacle information. Therefore, the goal is to analyze the 

information of obstacles, which includes obstacle location and obstacle orientation, in 

the path planning phase. A more detailed description of obstacle analysis will be given 

in Section 3.3.3. 

In the human localization phase, we calibrate the cameras, including the 

server-side fisheye cameras and the client-side on-device camera, to map the points 

between different coordinate systems. A more detailed description of the camera 

calibration process will be described in Section 3.4. Furthermore, the system detects 

the user’s orientation by aid of the e-compass on the client device. The e-compass, as 

mentioned before, is an orientation sensor that measures the azimuth angle of the 

device by detecting the changes and disturbances in a magnetic field around the 

currently-visited spot. However, the magnetic field will be interfered by the structural 

steel elements in a building, so the magnetic field does not have an identical 

distribution at every location in the environment. To learn the magnetic field in the 

visited environment, we establish an azimuth map, which keeps a record of four 

direction azimuth values for every sample location in the environment map. A more 

detailed description of the magnetic field learning process will be described in Section 

3.3.4. 
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Figure 2.5 Learning process. 

After the above learning steps, we have completed the preparation works needed 

in the navigation stage of the proposed system process. In the next section, we will 

describe the works conducted in the navigation stage. 

2.4.2 Navigation Process 

In the navigation stage, the server analyzes the omni-images captured with the 

cameras continuously, and sends the environment information to the client. The 

client-side system displays the information on the screen of the user’s mobile device. 

When the user wants to reach a certain destination, the server will plan a path, and 
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send a set of intermediate points of the path to the client. The entire navigation 

process proposed in this study is shown in Figure 2.6. 

At the server side, the first step is human location detection. The proposed 

human localization process transforms the detected human location from the ICS into 

the GCS using the camera information we have acquired in the learning stage. Then 

the user’s location is used in the steps of human tracking and human orientation 

detection. The objective of the human tracking step is to identify the same human in 

consecutive video frames, and then compute the user’s speed to determine whether 

the user is walking or not. In the human orientation detection step, we detect the 

orientation by analyzing the color edge mark, which is on the top of the client device, 

in the omni-image. However, when the color edge mark is not observable in the 

omni-image, another technique must be adopted. For this, we compute the orientation 

by use of detected human motions, or by the azimuth map constructed in the learning 

stage. Here we also determine the nearby visiting targets seen by the user according to 

the user’s location. Finally, the server sends the information of the user’s location and 

orientation, and the nearby visiting targets to the user’s mobile device (the client). 

Next, if the server receives a request that the client wants to reach a certain 

destination, the server begins the path planning process; if not, the server continues to 

conduct human localization repetitively. At the first step of path planning, the system 

tries to find a path starting from the user location and ending at its desired destination 

using the obstacle information analyzed in the learning stage. But the found path may 

be not of the simplest form; i.e., there may exist two non-connected points in the path 

that can instead be connected together. In such cases, we simplify the path to be of a 

simpler form. Finally, a set of resulting intermediate points of the path will be sent to 

the client. 

When the client receives the navigation information mentioned above, it begins 
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to conduct the work of display rendering by “drawing” the information, which 

includes the visiting target information and the navigation path, on the device screen 

for the user to inspect. In order to map real world objects onto the mobile device 

screen, the first step of the client is to set up a perspective projection by use of the 

location and orientation of the user. The orientation detected from the server is an 

azimuth angle, which represents a direction in a horizontal plane. However, a user 

might tilt the client device to watch the environment at a pitch angle rather than at a 

horizontal angle, so we add the pitch angle value to the detected orientation angle to 

provide a correct final orientation of the user’s device. The pitch angle can be 

obtained from the orientation sensor of the client device. 

After the client receives a navigation path, it creates a geometric shape of the 

path; specifically, the client will transform the set of intermediate points of the path 

into an arrow shape pointing to the destination. Finally, the client begins to draw the 

information and overlays the generated virtual objects onto the real image taken of the 

current scene to accomplish the display rendering task. 

The above processes of both the server side and client side are run repeatedly 

until the client terminates the navigation system. 
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Figure 2.6 Navigation process. 
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Chapter 3  

Learning of Environments 

3.1 Ideas of Proposed Environment 

Learning Techniques 

In the learning stage, we must construct an environment map, which includes 

information about the cameras, visiting targets, magnetic field, and obstacles. Then 

we can use such information in the processes conducted in the navigation stage, such 

as human localization and path planning. Specifically, we use a digital drawing of the 

floor plan of the environment to create the environment map, and specify the location 

of the cameras and the visiting targets in the map. A more detailed description of map 

construction will be introduced in Section 3.3. 

After environment map construction, we continue to learn the magnetic field in 

the environment. The magnetic field is used for human orientation detection by the 

orientation sensor on the client device, and the output of the orientation sensor is an 

azimuth value specifying the orientation of the hand-held client device. In the 

magnetic field learning stage, we try to construct an azimuth map, which keeps a 

record of four-direction azimuth values for every sample location in the environment 

map. 

Meanwhile, we also analyze the floor plan drawing of the environment to detect 

obstacles. The resulting obstacle information is used for collision avoidance in the 

path planning process. In the first step of obstacle analysis, we analyze the floor plan 

drawing to find the walkable regions in the environment, and detect accordingly the 
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obstacle regions. Next, we compute the orientations of the obstacles, which then are 

used in the path planning process to find proper moving directions at each spot for 

collision avoidance. These moving directions are called “avoidance directions” in the 

sequel of this thesis. 

At last, we calibrate the cameras at both the server and client sides. For the 

server-side fisheye cameras, instead of calibrating the camera’s intrinsic and extrinsic 

parameters, we adopt a space-mapping technique [12] for transformations between the 

coordinate systems used in this study, and extend the technique to be more flexible 

with better usability for our study. For the client-side camera on the mobile device, we 

introduce a simple technique to estimate the field-of-view of the camera, which then 

is used to map the locations of real-world objects onto the device screen. The 

proposed camera calibration scheme will be described in detail in Section 3.4. 

3.2 Coordinate Systems Used in This 

Study 

In this section, we will introduce the coordinate systems used in this study, which 

describe the relations between the used devices and the environment map. The 

following are the four coordinate systems used in this study. 

(1) Image coordinate system (ICS): denoted as (u, v). The u-v plane of this system 

coincides with the image plane of each fisheye camera and the origin is at the 

top-left of the image plane. 

(2) Map coordinate system (MCS): denoted as (Mx, My). The MCS is used to 

represent the environment map. The Mx-My plane coincides with the image plane 

of the floor plan. The origin is at the left-top position of the image plane. 

(3) Global coordinate system (GCS): denoted as (Wx, Wy, Wz). The Wx-Wy plane of 
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this system coincides with the ground and the z coordinates “grow to the top.” 

The origin is at the left-top point in the MCS. 

(4) Camera coordinate system (CCS): denoted as (x, y, z). The CCS is used to 

represent the real world space with respect to each fisheye camera. The x 

coordinates “grow to the right of the camera,” the y coordinates “grow to the top 

of the camera,” and the z coordinates “grow to the back of the camera.” The 

origin is at the lens center of the camera. 

 

In the proposed system, we use a floor plan drawing of the environment to 

establish the environment map, and the MCS is used for describing the geometry of 

the map, as mentioned previously. The relationship between the MCS and the GCS is 

illustrated in Figure 3.1. As shown in the figure, the origin of the MCS is mapped to a 

corresponding point in the real-world space. However, for the MCS the unit of pixel is 

used, so the global coordinates should be computed by multiplying the MCS 

coordinates by a scaling factor of the floor plan in the following way: 

where s is the scaling factor which is found by experiments. 

3.3 Construction of Environment Map 

In this section, we will introduce the method we propose to construct the 

environment map. The environment map is like a database, which contains the 

information that we use in the navigation stage. In Section 3.3.1, the information 

included in the environment map will be introduced briefly. And other information we 

need for the proposed system will be described in more detail in the subsequent 

;x x y yW sM W sM   (3.1) 
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Figure 3.1 Four coordinate systems used in this study. (a) The ICS. (b) The MCS. (c) 

The relation between the MCS and the GCS. (d) The CCS. 

3.3.1 Information of Environment Map 

The information we include in the environment map includes the camera 

locations, visiting target information, obstacle information, and magnetic field 

information. The environment map we use is 2-D in dimension; in other words, it 

contains only one floor structure and 2-D coordinates. But the information contained 

in the map can be three-dimensional, that is, it includes height information. 

The camera location specifies the position of a fisheye camera and its height. The 
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height of the camera is used for the transformation between the ICS and the GCS. In 

addition, a visiting target means a place or object in the real world of interest to 

visitors. We can place many visiting targets in the environment. Also, a user can 

search his/her desired destination by a keyword. The visiting target information 

includes the name of a visiting target, its coordinates in the GCS, and its range. The 

visiting target name is used for searching and displays. The location of the visiting 

target is specified by 3-D coordinates in the environment map, including its height. 

The range of the visiting target represents the visible region of the target in the real 

world. So the range is represented as a vertical plane in the real world, and a vertical 

plane is described by a height and a width. 

The environment map includes the obstacle information as well. The obstacle 

information is used for path planning. It includes the regions and orientations of the 

obstacles in the environment. The obstacle region is used for collision detection, and 

the orientation is used for avoidance direction analysis. A more detailed description of 

path planning will be described in Chapter 5. 

The last type of information included in environment map is the learned data 

about the magnetic field in the environment. The result of the magnetic field learning 

process is an azimuth map, which can be used for orientation detection. A more 

detailed description of the magnetic field learning process will be described in Section 

3.3.4. 

3.3.2 Finding Walkable Regions in Environment 

Floor Plan 

The environment map is created from an image of the digital floor plan drawing, 

which we call the floor plan image. The floor plan image is a grayscale bitmap in 
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which walkable regions are drawn with white pixels. Also, we specify a scaling factor 

of the floor plan image as mentioned previously, which is used for computing the 

actual sizes of real objects from their sizes specified in unit of pixel in the image. 

Furthermore, if the floor plan drawing is a paper copy, then we can use a digital 

machine like a scanner or a camera to take a picture of it. For the experimental 

environment, the floor plan image we use is shown in Figure 3.2, which is created 

using the Microsoft Visio 2007 and exported as a bitmap. 

 

Figure 3.2 Floor plan image of the experimental environment map. 

After we get a floor plan image, we can begin to construct the environment map. 

Here we assume that the walkable regions of the floor plan image are connected with 

white pixels, as mentioned previously. Then, we have just one walkable region which 

is the largest connected component in the image. Furthermore, we assume that the 

obstacle regions and the walkable region are separated by non-white pixels. Finally, 

we describe the algorithm we propose to find the walkable region from the floor plan 

image. 

Algorithm 3.1 Finding the walkable region in the floor plan image. 

Input: A floor plan image If, where the walkable region is the largest connected 

component and drawn with white pixels, and the obstacle regions and the 

walkable region are separated by non-white pixels. 
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Output: A binary walkable region image Iw, where the pixel values of the walkable 

region are specified by 1 and those of the obstacle regions by 0. 

Steps 

Step 1. Apply a threshold value t on If to get a temporary binary image Itmp: if If(x, y) 

> t, then regard the pixel at (x, y) as white, and set Itmp(x, y) to 1; else, set 

Itmp(x, y) to 0. 

Step 2. Find connected components in Itmp using a connected component labeling 

algorithm. 

Step 3. Select the maximum connected component Cmax from the result of the last 

step as the walkable region. 

Step 4. For all (x, y) in Iw, set Iw(x, y) to 1 if Cmax contains the pixel at (x, y); else, set 

Iw(x, y) to 0. 

3.3.3 Obstacle Orientation Analysis  

In this section, we introduce the proposed obstacle orientation analysis scheme, 

which is used for obstacle avoidance in the path planning process. We can find 

avoidance directions from the walkable region image obtained by Algorithm 3.2. The 

details are as follows. 

Algorithm 3.2 Finding avoidance directions. 

Input: A walkable region image Iw, where the pixels of the walkable region are 

specified by 1 and those of the obstacle regions by 0. 

Output: An obstacle avoidance map A. 

Steps 

Step 1. Get an obstacle image Iobs from the negative image of Iw 

Step 2. Dilate the obstacle image Iobs to expand the obstacle regions 
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Step 3. Calculate the x and y derivatives of Iobs using the Sobel operator, resulting in 

two derivative maps Dx and Dy. 

Step 4. Calculate the edge orientation and create an orientation map O by the 

following steps : 

(1) set O(x, y) to the angle between the vector ( ( , )xD x y , ( , )yD x y ) and 

the vector (1, 0) if ( , ) 0yD x y   or ( , ) 0xD x y  . 

(2) set ( , ) 1O x y   , otherwise. 

Step 5. Split O into small blocks, and for each block Bij in O, construct a block 

orientation map Ob by the following steps: 

(1) set ( , )b ijO i j m  if Bij contains any non-negative value, where mij is 

the mean value of all non-negative values in Bij; 

(2) set ( , )b ijO i j m  if Bij contains all negative values and the region of 

Bij in O is all walkable, where ijm  is the mean value of all 

non-negative values whose distances to the center of Bij are smaller 

than a threshold d; 

(3) set ( , ) 1bO i j   , otherwise. 

Step 6. Add  to each element in Ob in the following way to get the obstacle 

avoidance map A: 

( , ) ( , )
2

bA i j O i j


  . 

In order to make a planned path not too close to obstacles, we dilate the obstacle 

image to expand the obstacle regions in Step 2, and an example of the result is shown 

in Figure 3.3. If we collide with an obstacle, we may avoid it by going left or right. 

According to this concept, the avoidance directions are the vectors perpendicular to 
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the obstacle orientation vector. 

In Step 5, we determine the values of Ob under three conditions based on the 

content of the obstacle image: 1) if a block Bij contains edges of obstacle regions, then 

the resulting value is the mean of the angle values; 2) if Bij is just the entire walkable 

region, the region of Bij in O will be given all negative values, so the resulting value is 

set to the mean of the angle values around Bij; and 3) if Bij is just an entire obstacle 

region, it means we will never go to the region, so we do not have to compute the 

avoidance direction in such a region (marked by the value 1). 

Finally, in Step 6, we add to get the angle of the avoidance directions. 

Therefore, each element in the map A represents one of two avoidance direction 

vectors. An example of the avoidance direction map yielded by the above algorithm is 

shown in Figure 3.4. 

  

Figure 3.3 Expanded obstacle image of the experimental environment map where 

the white regions indicate the obstacle regions. 

 

Figure 3.4 A part of the obstacle avoidance map of the experimental environment 

(shown in green arrows). 
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3.3.4 Learning of Magnetic Field Information 

We can determine the human orientation by the orientation sensor on the client 

mobile device. The orientation sensor measures the azimuth angle of the device by 

detecting changes and disturbances in the magnetic field around the currently-visited 

spot. However, according to our experimental experience, the detected azimuth values 

are not stable enough for our application due to indoor magnetic interferences from 

various sources. The azimuth information is not used alone for human orientation 

detection in this study. 

In the proposed magnetic field learning process, we measure the azimuth values 

at several sample points in the environment and construct an azimuth map, which then 

can be used for human orientation detection. The learning process is described as an 

algorithm in the following, where the four directions in the environment map are 

specified by direction vectors (1, 0), (0, 1), (1, 0), and (0, 1). 

Algorithm 3.3 Construction of an azimuth map for the experimental 

environment. 

Input: Sample points S in the environment. 

Output: An azimuth map A. 

Steps 

Step 1. Take the client device, and go to the first sample point S0 at coordinates (x, y) 

in the environment map A. 

Step 2. Face toward the direction (1, 0) in A, and measure the azimuth value a0. 

Step 3. Face toward the direction (0, 1) in A, and measure the azimuth value a1. 

Step 4. Face toward the direction (-1, 0) in A, and measure the azimuth value a2. 

Step 5. Face toward the direction (0, -1) in A, and measure the azimuth value a3. 

Step 6. Store the value set (x, y, a0, a1, a2, a3) in A. 
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Step 7. Go to the next sample point and repeat Steps 2 through 6 until reaching the 

last sample point. 

The above algorithm samples four azimuth values at every sample point. At each 

same point, four azimuths are measured for four different directions, respectively, 

each direction being perpendicular to the next one and the last perpendicular to the 

first one. 

After we construct the azimuth map, we can use it to determine the human 

orientation. A more detailed description of such human orientation detection using the 

azimuth map will be described in Chapter 4. 

3.3.5 Algorithm of Environment Construction 

In this section, we summarize the processes described in the previous sections, as 

a total process  the process of environment construction, as described in Algorithm 

3.4 below. 

Algorithm 3.4 Construction of environment map for the experimental 

environment. 

Input: A floor plan image I. 

Output: An environment map M. 

Steps 

Step 1. Affix fisheye cameras onto the ceiling at proper locations in the 

environment. 

Step 2. Create an environment map M by use of the floor plan image I, and specify 

a scaling factor. 

Step 3. Specify the locations of the cameras on M. 

Step 4. Specify the locations and the names of the selected visiting targets on M. 
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Step 5. Find the walkable region in I by Algorithm 3.1. 

Step 6. Find obstacle regions and analyze avoidance directions in I by Algorithm 

3.2. 

Step 7. Construct an azimuth map by Algorithm 3.3. 

 

3.4 Camera Calibration 

In the section, we will describe the camera calibration processes proposed in this 

study. As mentioned previously, we use fisheye cameras to monitor the environment 

and analyze the omni-images to detect the human in the environment. In this study, 

we assume that there is only one human walking in the field of view of each fisheye 

camera. For the fisheye camera, we propose a space-mapping method for the 

transformation between the GCS and the ICS. Beside the fisheye cameras, the camera 

on the client mobile device must also be calibrated. A more detailed description of the 

camera calibration processes will be described in the following two sections. 

3.4.1 Fisheye Camera Calibration and Ground Point 

Location Mapping 

(A) Construction of a Calibration Box 

Before the calibration process, we construct a calibration box first. The 

calibration box is a cube with four vertical planes and one horizontal plane. Each of 

the vertical and horizontal planes is called a calibration board in the subsequent 

sections. The calibration board is drawn to be of a chessboard pattern, which consists 

of 81 squares arranged in two alternating colors, namely, black and white. The central 
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square of the calibration board is drawn in the form of a cross pattern. Here we 

introduce a calibration coordinate system (CACS), which contains three coordinates 

(x, y, z) in the unit of cm. The origin of the CACS is located at the center of the 

central square of the horizontal calibration board. The x-y plane of the CACS is the 

aforementioned horizontal plane, and the z coordinates grow to the top. Therefore, we 

can obtain the coordinates of every corner point of the squares by the square size and 

the calibration board size. The calibration box and the CACS are shown in Figure 3.5. 

z

x

y  

Figure 3.5 Calibration box and calibration coordinate system. 

(B) Construction of Mapping Table 

After the calibration box is constructed, we affix a fisheye camera to a ceiling 

spot right on the top of the calibration box, and make it look straight down at the cross 

of the central square of the bottom calibration board to capture a calibration image. 

An example of calibration images is shown in Figure 3.6(a). Then, we find the corners 

of all the squares in the calibration image (as shown in Figure 3.6(b)). Each corner is 

called a calibration point in the subsequent sections. Each calibration point is 

specified by their coordinates (u, v) in the ICS. As shown in Figure 3.7, each 

calibration point in the calibration image corresponds to one corner in the calibration 

box, so we can obtain a mapping table between the ICS and the CACS. 

In order to perform the ground point location mapping, at first, the mapped 

calibration points of the vertical boards of the calibration box are projected onto the 
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x-y plane of the CACS as shown in Figure 3.8. C is a calibration point on the 

calibration board with CACS coordinates (Cx, Cy, Cz), and C’
 is the projection point 

with CACS coordinates (C’
x, C

’
y, 0). The relation between C and C’

 can be expressed 

by the following expression according to the principle of similar triangles: 

yc x

z y y x x

CH C

C C C C C

 
 

  
  

Rearranging the above expression, we can get the coordinates of C’ as: 

c x
x

c z

H C
C

H C


 


;  

c y

y

c z

H C
C

H C


 


 (3.2) 

For the calibration points on the bottom calibration board, C’ is identical to C. 

 

  

(a) (b) 

Figure 3.6 Calibration images. (a) The calibration captured from a fisheye camera. 

(b) The calibration points of the calibration image (shown as red circles). 
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Figure 3.7 Mapping between the ICS and the CACS of a calibration point. 
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Figure 3.8 Projection of a point in CACS on the (x, y) plane, where Hc is the camera 

height, C is the calibration point on the calibration board, and C’ is the projection 

point. 

(C) Transformation using Mapping Table 

So far, we have a mapping from the ICS to the CACS just for the calibration 

points only. For other points between them, we apply a bilinear interpolation scheme 

to get the corresponding mappings from the ICS to the CACS. As shown in Figure 3.9 

Calculating the coordinates of a point between calibration points by bilinear 

interpolation., let p be a point in the ICS, and let A, B, C, and D be the four calibration 

points surrounding p. Denote s and t as the relative distance between the two end 

points within the range of 0 to 1. Suppose p is a point on the line AB , the relative 

distance of p can be computed by Ap AB . Then, we try to find the values of s and 

t, so that we can compute the CACS coordinates of p, as described in the following. 

A B

C
D

p

t

1-s

1-t

s

P

Q

s
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Figure 3.9 Calculating the coordinates of a point between calibration points by 

bilinear interpolation. 

At first, P and Q, regarded as vectors of coordinates, can be expressed by the 

following expressions: 

   1 sP A B A s A Bs      ; 

   1Q D C D s D s Cs      . 

And p, also regarded as coordinates, can be expressed by the following 

expression: 

So the two coordinates pu and pv can be expressed as: 

Rearranging the above expressions and substituting U A D  , V A D C B    , 

and T p A   into the rearranged results, we get 

   ( ) ( )u u v v v v v u u uT tU tV B A T tU tV B A          

which may be reduced to be 

    2 ( ) 0t U V t T V U B A T B A           

where  means the cross product operator. So the coefficients in the above quadratic 

equation may be derived to be: 

 

( ) ( ) ( ) ( );

( ) ( ) ( ) ( );

( ) ( ) ( ).

a U V A D A D C B A D C B

b T V U B A p A A D C B A D B A

c T B A p A B A

           

              

      

 

   1

(1 )(1 ) (1 ) (1 )

(1 ) ( ) ( )

(1 ) ( ) ( ).

p P Q P t P t Qt

A s t Bs t Cst D s t

A st s t B s st Cst D t st

A Ast As At Bs Bst Cst Dt Dst

s A st A D C B t A D

     

       

        

        

       

 (3.3) 

(1 ) ( ) ( );

(1 ) ( ) ( ).

u u u u u u u u

v v v v v v v v

p s A st A D C B t A D

p s A st A D C B t A D

       

       
 (3.4) 
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Finally, t may be solved to be: 

2 4

2

b b ac
t

a

  
  

where t will fall within the range of 0 to 1. Then, we may solve s by substituting t into 

Equation 3.5. After we obtain s and t, we can substitute the corresponding CACS 

coordinates for A, B, C, and D into Equation 3.3 to obtain the CACS coordinates of p 

finally. 

At last, we want to transform the calibration points further from the CACS to the 

GCS to create a mapping from the ICS to the GCS for use in human localization 

(described later). As shown in Figure 3.10, we superimpose the calibration points on 

the images captured from the fisheye cameras, and then compute the location of pixels 

of the image by the mapping table. The heights of the cameras are specified in the 

environment map construction stage as mentioned in the previous section. As shown 

in Figure 3.11, a camera is affixed on the ceiling at a height of H, and G indicates the 

ground point of C’. By the principle of similar triangles, the distance d in the GCS 

can be computed by Equation 3.5. Accordingly, the coordinates (Gx, Gy) of G can be 

computed by the following equations: 

where px and py are the coordinates specifying the location of the camera in the GCS, 

and  is the angle between the CACS axis and GCS axis (see Figure 3.12). 

c

c

H H
d

d


 ; (3.5) 

cos sin

sin cos

c

xx x

y yc

y

H H

CG p

G pH H

C

 

 

 
                  
  

 (3.6) 
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Figure 3.10 Superimposing calibration points on an omni-image. 
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Figure 3.11 The projection of calibration point on the ground, where G is the 

projection point of C’, and H is the height of the camera affixed on the ceiling. 
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Figure 3.12 Angle between the GCS axis and the CACS axis. The red circles 

indicate the positions of calibration points. 

3.4.2 Calibration of Camera on Mobile Device 

Besides the fisheye camera, the camera on the mobile device must also be 

calibrated in order to get a projection matrix, by which points in the GCS may be 

projected onto the device screen. 

In this study, a perspective camera model is used to represent the camera on the 

mobile device. In the theory of perspective projection [16], a 3D point in a view 
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frustum (as shown in Figure 3.13(a)) of the CCS is transformed into a unit cube (as 

shown in Figure 3.13(b)); the x-coordinate is transformed from the range [l, r] to the 

range [1, 1], the y-coordinate is transformed from [b, t] to [1, 1], and the 

z-coordinate is transformed from [n, f] to [1, 1]. We can use a matrix M to perform 

the transformation from the view frustum to the unit cube in the following way: 

 

1

x x

y y

z z

w

p p

p p
M

p p

p

   
   
    
   
   

   

 (3.7) 

where p is a point in the view frustum, p’ is the transformed point of p, and M is the 

projection matrix. In this transformation, the original coordinates of p’ and p should 

be replaced by homogeneous coordinates, which have the fourth component w; and 

the nonhomogeneous coordinates x, y, z can be obtained by dividing by the 

w-component. The matrix M of Equation 3.7 can be expressed as follows according to 

[16]: 

2
0 0

2
0 0

( ) 2
0 0

0 0 1 0

n r l

r l r l

n t b

t b t b

f n fn

f n f n

 
  
 

 
  
 

   
  
 

 

 

If the view frustum is symmetric, which means r = l and t = b, then the matrix 

can be simplified to be: 

 

0 0 0

0 0 0

( ) 2
0 0

0 0 1 0

n

r

n

t

f n fn

f n f n

 
 
 
 
 
 

   
  
 

 

. (3.8) 
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(a) (b) 

Figure 3.13 View frustum and unit cube. (a) The view frustum. (b) The unit cube. 

In order to obtain this matrix, we need to determine the value of r, t, n, and f. As 

shown in Figure 3.14, the field-of-view of the camera in the y direction is denoted as 

. Then, 
n

t
 can be substituted by cot

2


. And the ratio 

h

w
 of the image height h to 

the height w is known, so 
n

r
 can be substituted by cot

2

h

w


. Finally, the matrix of 

(3.8) can be expressed by: 

 

cot 0 0 0
2

0 cot 0 0
2

( ) 2
0 0

0 0 1 0

h

w

f n fn

f n f n





 
 
 
 
 
 

   
  
 

 

. (3.9) 

After obtaining the coordinates in the unit cube by Equation 3.7, we can obtain 

the coordinates (u, v) in the ICS by the following equations: 

 
0 0.5 0 0 0.5

0 0 0.5 0 0.5

1

x w

y w

z w

p p

u w p p

v h p p

  
                    
 
 

 (3.10) 

where w is the image width in the unit of pixel, and h is the image height. The values 

n and f of M only affect the resulting z-coordinate in the unit cube. According to the 

above equation, the z-coordinate does not affect the coordinates in the ICS. Actually, 
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the z-coordinate is used to represent the relationship of the distance of a point with 

respect to the viewpoint: the value of 1 means it is on the near plane of the view 

frustum, and 1 means it is on the far plane. Therefore, we can specify the value of 

both n and f arbitrarily, and then we have only one unknown variable , which is the 

field-of-view in the y direction. 

z
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Image Plane

n
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

 

Figure 3.14 Field-of-view of the view frustum. 

In this study, we also propose a simple method to estimate the value of . As 

shown in Figure 3.15, we direct the camera to face toward the calibration board, 

which is drawn of the form of a grid pattern or others as long as it can help us 

measure the region. Then, we can observe the region which exactly fills the image 

(shown as the dark gray region). Accordingly, we can obtain the real width Rw and 

height Rh of the visible region by counting the grids or scale which are drawn on the 

calibration board. The distance dR of the calibration board is known, so the value , 

which defines the field of view in the y direction can be obtained by the following 

equation: 

1 2
2 tan ( )h

R

R

d
  
  

 
. (3.11) 
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Figure 3.15 Finding the field of view angle by measuring the visible region in 

image. 

3.5 Experimental Results 

An environment map of our experimental environment obtained by applying 

Algorithm 3.4 is shown in Figure 3.16. The scaling factor of the map is taken to be 40 

pixels/m. The environment map includes eight visiting targets (shown as green 

regions) and two fisheye cameras (shown as blue circles). Images captured from the 

two cameras are shown in Figure 3.17. 
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Figure 3.16 Environment map of the experimental environment, visiting targets are 

shown as green region, and cameras are shown as blue circles. The interval of the 

gray grid lines represents one meter in real world. 

An obstacle avoidance map of the experimental map obtained by applying 

Algorithm 3.2 is shown in Figure 3.18, in which the avoidance directions are shown 

as green arrows. Blocks without avoidance directions mean that there are obstacle 

regions or regions which are away enough from obstacles. 
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(a) (b) 

Figure 3.17 Images captured from the two fisheye cameras of the experimental 

environment. (a) An image captured from the Camera-1 of the map shown in Figure 

3.16. (b) An image captured from the Camera-2. 

 
Figure 3.18 Obstacle avoidance map of the experimental environment. 
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Chapter 4  

Human Localization in Indoor 

Environments by Computer Vision 

Techniques 

4.1 Idea of Proposed Human 

Localization Techniques 

In this study, we propose a human localization method using image-based 

analysis techniques for indoor environments. We have built a vision-based 

infrastructure with fisheye cameras affixed on the ceiling. The server-side system can 

access the omni-images captured with the cameras, and conduct detections of both the 

human location and orientation. 

For human location detection, we perform background/foreground separation to 

detect the foreground image, and then apply connected component analysis to find the 

human activity region. Then, the user’s foot point in this region is analyzed and 

transformed into the GCS. A more detailed description of the proposed human 

location detection scheme will be described in Section 4.2. 

For human orientation detection, we use three different techniques integrally to 

obtain the orientation of the user. The first is the simplest way, which is to calculate 

the human motion by use of the human locations detected from consecutive video 

frames. The second is to use the orientation sensor on the client mobile device to 

detect the human orientation. The last is to attach a color edge mark on the mobile 
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device held by the human, and then analyze the omni-image to detect the color edge 

mark which is used to determine the orientation of the user. A more detailed 

description of the proposed human orientation detection scheme will be described in 

Section 4.3. 

4.2 Human Location Detection 

4.2.1 Background/Foreground Separation 

The first step of the proposed human location detection scheme is 

background/foreground separation. As shown in Figure 4.1(a), we capture a 

background image before running the server-side system. When a user enters the 

environment, he/she will be considered as part of the foreground region (as shown in 

Figure 4.1 (b) and 4.1(c)). Therefore, we can obtain the human region by finding the 

connected components in the foreground image. Algorithm 4.1 below illustrates the 

steps to obtain the connected components in an omni-image. 

Algorithm 4.1 Finding foreground regions in an omni-image. 

Input: An omni-image I captured from a fisheye camera, a background image B 

captured beforehand, and a pre-selected threshold value TD. 

Output: Foreground regions in I. 

Steps 

Step 1. Subtract B from I to get a difference image D. 

Step 2. Apply the threshold value TD on D to get a foreground image F by the 

following steps: 

(1) set ( , ) 1F u v  , if ( , ) DD u v T ; 

(2) set ( , ) 0F u v  , otherwise. 
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Step 3. Apply the erosion operation to F to eliminate noise. 

Step 4. Find connected components in F as the desired foreground regions using a 

connected component labeling algorithm. 

In Step 3, we reduce noise by applying the erosion operation on the foreground 

image. However, the erosion operation will also eliminate the details of the 

foreground image. Another way to reduce noise is to set a larger threshold value in 

Step 2. 

  

(a) (b) 

 

(c) 

Figure 4.1 Background/foreground separation. (a) The background image. (b) The 

image of the environment with a human. (c) The foreground image by subtracting (a) 

from (b). 



 

49 

 

4.2.2 Human Foot Point Detection and Computation 

After obtaining the human region, we continue to find the foot point of the human 

in the region to determine the human location. For this aim, we use a property of the 

fisheye camera. With a fisheye camera affixed on the ceiling and looking straight 

down at the ground, a space line which is perpendicular to the ground will appear in 

the omni-image taken by the camera as a radial line passing through the image center, 

as shown in Figure 4.2. For example, the image lines of the edges of the pillar, door, 

bookcase, or wall in the environment will all appear to be so. We assume that the user 

using the proposed indoor AR navigation system is standing on the ground all the time, 

and so the axis of the user’s body is perpendicular to the ground, meaning that the 

axis will go through the image center according to the above property. 

 

Figure 4.2 Extended image lines of space lines which are perpendicular to the 

ground will pass through the image center. 

According to the above discussion, the foot point of a user can be obtained by 

finding the nearest point in the foreground region of the user to the image center. Here 

we assume that the foreground region of the user is the largest connected component 

Rmax in the output of Algorithm 4.1. Therefore, we can find the user’s location by the 

following algorithm using Rmax as the input. 
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Algorithm 4.2 Computation of the human location. 

Input: The foreground region Rmax of a user. 

Output: The user’s location in the GCS. 

Steps 

Step 1. Find the nearest point f to the omni-image center in Rmax. 

Step 2. Project f onto the line RCC  to obtain a projection point f’, where C is the 

omni-image center and CR is the center of the bounding box circumscribing 

Rmax. 

Step 3. Transform f’ into the GCS as output. 

We want to let the foot point detected in Step 1 closer to the line going through 

the human’s body axis. Therefore, according to the vertical line property mentioned 

previously, we project the detected foot point onto the human’s body axis in Step 2. 

Finally, the human location can be computed by the spatial transformation described 

in Section 3.4.1. An example of the results is shown in Figure 4.3. 

4.3 Human Orientation Detection 

4.3.1 Orientation Detection by Human Motions 

We detect a user’s location on every omni-image, by which we can obtain a 

sequence of human locations, called the location sequence. Then, we use the sequence 

to compute the human moving orientation. However, the locations are detected by the 

previously-mentioned image-based technique, so the path composed of these locations 

may be not smooth. Therefore, if we just use the current human position and its 

previous one to calculate the motion vector, the resulting orientation will be unstable. 

In this study, we solve this problem by averaging all the motion vectors obtained 
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within a time interval. 

  

(a) (b) 

 
(c) 

Figure 4.3 Detected foot point of a human (shown as red circle). (a) The foreground 

image. (b) The original image captured from the camera (c) The foot point in MCS. 

However, the averaging operation will delay undesirably the orientation 

computation results when the human is turning. In other words, the human orientation 

will change quickly when the human is turning, but the averaging operation will cause 

the trend of the computed orientation changes to become slow. Therefore, we use a 

turning flag to determine whether a user is turning or not in the proposed human 

orientation detection scheme  if the current location of the user is on the right-hand 

side of the previous motion vector, we increment the turning flag by one; otherwise, 

we decrement it by one. But if the turning flag is negative when we increment the 
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turning flag, we will reset the turning to be zero. Symmetrically, we will reset it if it is 

positive when we decrement it. When the turning flag exceeds a threshold range, we 

will determine the human’s turning direction by the sign of the turning flag, and then 

remove all the locations in the location sequence except the first one. In this way, the 

averaging result of motion vectors will be changing more quickly. 

For example, as shown in Figure 4.4, the points p, P1, and P2 are all on the 

left-hand side of the previous motion vector. Assume that a turning flag f is zero at P3. 

The turning flag f will be 3 at p. Then, we can determine that the human is turning to 

the left at p when Tf is smaller than 3. Consider another situation as shown in Figure 

4.5. Assume that a turning flag f is zero at P3. When the human reaches P2, f will 

become 1, but when the human reaches P1, f will be reset to be 0. So, the human will 

be determined to be walking forward instead of turning to the left at p. 

p

P1

P2

P3
P4

 
Figure 4.4 A path of turning to the left where each human foot point is on the 

left-hand side of the previous motion vector. 

p

P1

P2

P3
P4

 
Figure 4.5 A path of walking forward where all points except P1 are on the left-hand 

side of the previous motion vector. 

The complete steps of human orientation detection by human motions are 

illustrated as an algorithm in the following. 
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Algorithm 4.3 Computation of the human orientation by human motions. 

Input: The current location p of a user, a turning flag f, the location sequence P 

composed of the past human locations, where Pi+1 means the previous location 

of Pi. 

Output: The user’s orientation md . 

Steps 

Step 1. If the size of the sequence is larger than two, take the following steps. 

1.1 Change the turning flag f by the following steps: 

(1) increment f by 1, if 0f   and p is on the right-hand side of the 

vector 2 1P P ; 

(2) decrement f by 1, if 0f   and p is on the left-hand side of the 

vector 2 1P P ; 

(3) set f to be zero, otherwise. 

1.2 If ff T  or ff T  , remove P2, P3, …, Pn from P, where Tf is a 

pre-selected threshold value. 

Step 2. If the size of P is larger than a threshold size TN, remove Pn from P. 

Step 3. Compute the following direction vector md  as output: 

 
1

1 1

1

1 n

m k k

k

d P P p P
n







  
     

  
 . 

Step 4. Insert p to the start of P. 

In Step 1, we check the size of the location sequence to determine if there is a 

previous motion vector. If so, we can use it to detect the human’s turning direction. In 

Step 2, in order to average the locations obtained in a certain time interval in the past, 
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we remove a redundant location in the location sequence if its size exceeds a 

threshold value. Finally, we compute the orientation by averaging the motion vectors 

and then insert the current location into the location sequence for the next cycle of 

orientation computation. 

4.3.2 Orientation Detection by Orientation Sensor on 

Client Device 

We determine the orientation of a user by his/her motions when his/her is moving. 

However, when the user is not walking, we seek another way to detect his/her 

orientation, which is through the use of the orientation sensor on the client mobile 

device. As mentioned in the previous sections, the orientation sensor measures the 

azimuth angle of the device by detecting changes and disturbances in a magnetic field. In 

Chapter 3, we have established an azimuth map for orientation detection. The following 

algorithm describes how we determine the orientation using the azimuth map. 

Algorithm 4.4 Computation of the human orientation by the orientation sensor. 

Input: The current location p of a user, the azimuth value a detected by the client 

device held by the user, and an azimuth map A. 

Output: The user’s orientation od . 

Steps 

Step 1. Find the nearest sample point Ap to p in A, and get a value set of Ap, (x, y, a0, 

a1, a2, a3), which contains the azimuth values of the four major directions as 

described in Section 3.3.4. 

Step 2. Find the two azimuth angles an and a(n+1) mod 4 of Ap which a is in between, 

by finding a parameter n satisfying the following two constraints: 
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(1) V(a) is on the right-hand side of V(an) where the function V() returns 

a vector with the angle , i.e., ( ) (cos , sin )V    ; 

(2) V(a) is on the left-hand side of V(a(n+1) mod 4). 

(The relation between V(a), V(an), and V(a(n+1) mod 4) is shown in Figure 4.6.) 

Step 3. Compute the relative position r of a between an and a(n+1) mod 4 by the 

following equations: 

( 1) mod 4

( ) ( )

( ) ( )

n

n n

P a P a
r

P a P a





. 

where the function P() returns a point with the coordinates (cos ,sin )  . 

Step 4. Compute the direction vector od  as output by interpolation: 

( 1)mod4 (1 )o n nd r v r v      

where xv  is the corresponding direction vector with respect to the azimuth 

ax, which is defined previously in the learning stage. 

 

aan

( ) (cos ,sin )n n nV a a a

a(n+1) mod 4

( 1)mod4 ( 1)mod4 ( 1)mod4( ) (cos ,sin )n n nV a a a  ( ) (cos ,sin )V a a a

 

 

Figure 4.6 A azimuth a between two azimuth an and a(n+1) mod 4, where V(a) is on the 

right-hand side of ( )nV a and on the left-hand side of 
( 1)mod4( )nV a 

. 

Because the sample points in the azimuth map are discrete, we choose the nearest 

one in Step 1 to approximate the result. In Step 2, we find the region which the 
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azimuth value a falls on. The region is between two azimuth values at the sample 

point we choose, so we obtain the final orientation vector by interpolation as done in 

Steps 3 and 4. 

4.3.3 Orientation Detection by Color Edge Mark on 

Top of Client Device 

We introduced two orientation detection techniques in the previous sections. 

However, they still have the stability and precision problems, which cause failures in 

detecting the human orientation. Specifically, detection by human motions can only 

be used when the human moving, and detection by orientation motions is not stable 

enough due to magnetic interferences almost everywhere. 

 

Figure 4.7 The color edge mark (The green strip) in the omni-image. 

Here we propose a technique to solve the problems by attaching a color edge mark 

on the top of the client device. The color of the color edge mark has high saturation and 

high lightness, so it can be segmented easily from the omni-images. As shown in Figure 

4.7, we can see the green edge color edge mark clearly in the omni-image. 

In order to separate the color edge mark from an omni-image, at first we convert the 

color space of the omni-image from the RGB color space to the HSV one. The HSV 
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color model assigns three color components to a pixel, which respectively are hue, 

saturation, and value. The hue is described with the words we normally think of as 

describing color: red, blue, green, etc. The saturation refers to the dominance of hue 

in the color. The value is the lightness of the color. By the HSV color model, we can 

separate the color edge mark from the omni-image more easily, because the color of 

the color edge mark has high saturation and high lightness. 

The color edge mark becomes a strip shape in omni-images, so we can apply a 

line approximation scheme to the detected color edge mark. Then, we try to compute 

the direction vector of the approximating line in order to determine the device 

orientation. Under the assumption that the user holds the device horizontally, the color 

edge mark becomes parallel to the ground. As shown in Figure 4.8, the color edge 

mark is represented as a solid green line, and the red line and the solid green line are 

projected onto identical image points; meanwhile, the vertical projection (shown as 

the dotted green line) of the color edge mark is parallel to the red line. Therefore, we 

can determine the orientation of the color edge mark by the orientation of the red line. 

 

Color edge mark

Camera

 

Figure 4.8 The red line and the color edge mark (shown as solid green line) are 

projected onto identical image points. The vertical projection (shown as dotted green 

line) of the color edge mark will be parallel to the red line. 
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The following algorithm describes the process to detect the human orientation by the 

color edge mark. 

Algorithm 4.5 Computation of the human orientation by the color edge mark on 

top of the client device. 

Input: An omni-image I, the foreground region R of a user, and the orientation vector 

od  detected by Algorithm 4.4. 

Output: The user’s orientation, cd , and a reliability index rc. 

Steps 

Step 1. Create an image Ihsv by converting the color space of I from RGB to HSV 

by the following equations: 

max( , , )V R G B ; 

min( , , )
if 0;

0 otherwise;

V R G B
V

S V




 


 

( ) 60
if ;

( ) 60
180 if ;

( ) 60
240 if .

G B
V R

S

B R
H V G

S

R G
V B

S

 



 

  


 
 



 

If H < 0, then increment H by 360
o
. 

Step 2. Create a binary image Ic, and for all (u, v) in Ic, assign values to ( , )cI u v  by 

the following steps: 

(1) set ( , ) 1cI u v  , if the value of ( , )hsvI u v , (h, s, v), is between two 

threshold values (Hmin , Smin, Vmin) and (Hmax , Smax, Vmax); 

(2) set ( , ) 0cI u v  , otherwise. 

Step 3. Find the connected components C in region R of Ic: if there has no 
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connected component in region R, set the reliability index rc to zero and end 

the algorithm. 

Step 4. Find the bounding box B of C. 

Step 5. Apply a line approximation algorithm to the pixels in C, resulting in an 

approximated line L. 

Step 6. Find the two intersection points p and q of B and L. 

Step 7. Get s and t by converting p and q from the ICS to the GCS. 

Step 8. Compute the orientation cd  as output by the following steps: 

(1) set ( , )y xcd st st  , if ( , ) ( , )y x y xo ost st d st st d     ; 

(2) set ( , )y xcd st st  , otherwise. 

Step 9. Set the reliability index rc to be the size of C. 

We apply two threshold values to extract the region of color edge mark in Step 2, 

and an example of the result is shown in Figure 4.9(a). We will get two orientation 

vectors which are perpendicular to the vector of the color edge mark, and we have to 

determine which one is correct. Here we use the orientation vector od  detected by 

Algorithm 4.4 to make a decision by choosing the one which is closer to od . 

Furthermore, the color edge mark may not be seen in an omni-image due to 

obstacle covering or a long distance away from the camera. We set a reliability index 

to be the size of the region of the color edge mark for making a decision about 

whether the color edge mark will be used or not. A larger value indicates a better 

visibility of the color edge mark. 

In addition, as mentioned in the previous section, we choose the foreground 

region with the largest region as the human region. Here we can also determine this 
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region by checking whether a color edge mark is detected or not. 

Figure 4.9 shows an example of the results of applying Algorithm 4.5. 

  

(a) (b) 

 

(c) 

Figure 4.9 Orientation detection by color edge mark on top of the mobile device. (a) 

The color edge mark region segmented from the omni-image. (b) The approximating 

line (shown as green) obtained by applying line approximation on (a). (c) The 

detected orientation (shown as green). 

4.3.4 Algorithm of Orientation Detection 

We introduced three different techniques for orientation detection in the previous 

sections. In this section, we will describe how we integrate the three techniques to 
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perform the orientation detection work more reliably. 

Algorithm 4.6 Computation of the human orientation. 

Input: A user’s location, the foreground region hu of the user, and the omni-image 

which contains hu. 

Output: The user’s orientation d . 

Steps 

Step 1. Compute the orientation od  by Algorithm 4.4. 

Step 2. Use od  to compute the orientation cd  by Algorithm 4.5, resulting a 

reliability index rc. 

Step 3. If c rr T , where Tr is a threshold value, then set d  to be od  as the 

output and finish this algorithm. 

Step 4. If the human is walking, compute the orientation md  by Algorithm 4.3, 

and set d  to be md  as the output. Otherwise, set d  to be od  as the 

output. 

 

4.4 Human Tracking 

4.4.1 Idea of Human Tracking 

The objective of human tracking is to identify the same human in consecutive 

video frames. Consecutive video frames come from the omni-images captured from 

the fisheye cameras in the proposed system. In this study, we adopt a human tracking 

method, which is called high level tracking, proposed by Newman, et al. [17]. In 
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Algorithm 4.1, we find the foreground regions in a foreground image. Then, we find a 

bounding box for each foreground region. For each successive frame, the human 

tracking algorithm associates a foreground region with one of the existing tracks. A 

track represents an identical object moving in consecutive video frames. This is 

achieved by constructing a tracking matrix representing the distance between each of 

the foreground regions and all the existing tracks. Each row of the tracking matrix 

corresponds to one track, and each column corresponds to one foreground region. The 

distance is computed using a bounding box distance measure proposed by the adopted 

method by Newman, et al. [17]. As shown in Figure 4.10(a), the distance between 

bounding boxes A and B is the lower of 1) the distance from the center of A to the 

nearest point on B and 2) that from the center of B to the nearest point on A. If either 

center lies within the other bounding box (as shown in Figure 4.10(b)), then the 

distance is zero. 

  

A

B

 

  

A

B

 

(a) (b) 

Figure 4.10 The bounding box distance measure. (a) The distance between A and B 

is the lower of the distance from the center of A to the nearest point on B or from the 

center of B to the nearest point on A. (b) The distance is zero. 

If we consider a region is close enough to a track, then the value, which is at the 

corresponding column of the region and the row of the track, is incremented by one. If 

a foreground region is close enough to only one track and only a region is close 
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enough to the track, i.e., if it is a one-to-one correspondence, then the column and the 

row will both have one “one” (as shown in Figure 4.11(a)), so we may associate the 

region with the track. However, two regions may be both close enough to one track, 

and this will cause two “one” at a row (as shown in Figure 4.11(b)), then we associate 

both the two regions to the track. Similarly, if a region is close enough to two tracks, 

we associate the region with both of the two tracks. If two regions are close enough to 

two identical tracks (as shown in Figure 4.11(c)), then we associate the two regions 

with both of the two tracks. Based on the above concepts, we can associate regions 

with existing tracks, by which we can identify the same human in consecutive video 

frames. 
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(a) (b) (c) 

Figure 4.11 Tracking matrix at different situation. (a) A region is close enough to only 

a track, and only one region is close enough to the track. (b) Two regions are close 

enough to a track. (c) Two regions are close enough to two same tracks. 

The human tracking algorithm using the adopted method is described in 

Algorithm 4.7. 

Algorithm 4.7 Human tracking. 

Input: The foreground regions C in a frame and a set of tracks T, with each track 

being associated with at least one foreground region, Ti meaning the ith track 
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in T, and Ci meaning the ith foreground region in C. 

Output: Tracks T 

Steps 

Step 1. Create a tracking matrix M with all zero’s with each row of M 

corresponding to one track of T, and each column of M corresponding to 

one region of C. 

Step 2. Compute the bounding box distance dij between each of Ci and R(Tj) using 

the bounding box distance measure where the function R(t) returns the 

associated region of the track t. 

Step 3. For each dij, set M(i, j) to be 1 if dij < TD, where TD is a pre-selected 

threshold value. 

Step 4. Perform the following steps for M. 

4.1. For each column i with only one non-zero element at row j, and row 

j has only one non-zero element at column i, associate Ci with Tj. 

4.2. For each column i with all zero elements, create a new track tnew, 

associate it with Ci, and add tnew into T. 

4.3. For each row j with all zero elements, remove Tj from T. 

4.4. For the columns i1, i2, …, im which have more than one non-zero 

elements at rows j1, j2, …, jn, associate C1, C2, …, Cm with T1, T2, …, 

Tn. 

In Step 3, we binarize the tracking map by the resulting distance; if two bounding 

boxes are close enough, the resulting value is one; otherwise, it is zero. In Step 4.2, if 

a foreground region is not associated with any track, then it is regarded as a new 

object which we have to track. We remove tracks which are not associated with any 

object in Step 4.3. 
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4.4.2 Camera Hand-off 

The fisheye camera has a wider field-of-view, and can observe a wider range than 

normal cameras. However, if an object is located outside the view of a fisheye camera, 

or far away from a fisheye camera, it will be projected onto a small region in the 

omni-image captured from the camera. Therefore, the number of pixels of the small 

region will be too small to perform analysis mentioned in the previous sections. In 

order to track the user around the entire environment, we need more than one camera 

to monitor the entire environment. When we have multiple cameras, a user may 

“appear” in more than one omni-image captured from different cameras. Therefore, 

we have to determine which camera we should use and continue to track the same 

user between different cameras, and this is the so-called camera hand-off problem. 

To handle the problem, in each human localization and tracking processing, we 

obtain a foreground region representing a user. The foreground region belongs to an 

omni-image captured from a certain camera. If we have a foreground region obtained 

in the previous processing work, then we can obtain the foreground region 

representing the same user in the current processing by the following algorithm. 

Algorithm 4.8 Camera hand-off. 

Input: The foreground region hu of a user, and the tracks (, )T , where ( , )T i  means 

all tracks in omni-image Ii captured from the camera Ci, and ( , )T i j  means 

the jth track in ( , )T i . 

Output: The human region of the user in the current process work. 

Steps 

Step 1. Find the track ( , )T s u , which is associated with the foreground region hu 

Step 2. Set hs to be the associated region of ( , )T s u . 

Step 3. Compute the location ps of hs in the GCS by Algorithm 4.2. 
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Step 4. Set ( , )
i s

T T i


  . 

Step 5. Compute the location in the GCS for all foreground regions associated with 

T  , resulting in a location set P. 

Step 6. Find the foreground region pt with its location pt which is associated with 

the track ( , )T t  and satisfies the following two constraints: 

(1) ( )     sd p pp p P   is the minimum for tp p . 

(2) t sp p  , where   is a pre-selected threshold value. 

Step 7. If pt is found, compute the distance t t td p c  and s s sd p c , where ct is 

the location of the camera Ct and cs is the location of the camera Cs. If pt is 

not found, set hs as output and finish this algorithm. 

Step 8. Set hs as the output if s td d ; otherwise, set ht as the output. 

The algorithm finds a foreground region representing the same object as the input 

foreground region. If we find a foreground region representing a user in the previous 

processing work, then we can use the region as input to find the corresponding region 

in the next process work. 

At first, we find the track which is associated with the input region. The found 

track is called a “user track”. And then we find a region which is closest to the region 

associated with the user track in Step 4 through 6. Then, we compare each of the 

locations of the two regions with each of the locations of its corresponding cameras. 

Finally, the one closer to its corresponding camera is chosen to be the output. 
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4.5 Algorithm of Human Localization 

and Tracking 

In this section, we will describe the complete steps for human localization and 

tracking. Under the assumption that there is only one user in the indoor environment 

taken care of by the system, we can obtain one foreground region representing a user for 

each processing cycle. Therefore, the server-side system will send the location and 

orientation to the user’s client-side system. The following algorithm illustrates the 

complete steps for this task. 

Algorithm 4.9 Algorithm of human localization and tracking. 

Input: The foreground region hu of a user in the previous processing cycle, the 

omni-images I1, I2, …, In captured from cameras C1, C2, …, Cn, respectively, 

where n is the number of the cameras. 

Output: The user’s location p, the user’s orientation d , and the foreground region 

uh  of the user. 

Steps 

Step 1. Find foreground regions (, )R  in each of I1, I2, …, In by Algorithm 4.1, 

where ( , )R i  means all foreground regions in omni-image Ii, and ( , )R i j  

means the jth foreground region in ( , )R i . 

Step 2. Track the foreground regions R(1,), R(2,), …, R(n,) by Algorithm 4.7, 

resulting in the tracks T(1,), T(2,), …, T(n,), where ( , )T i  means all tracks 

in omni-image Ii, and ( , )T i j  means the jth track in ( , )T i .  

Step 3. If hu is set, then find uh  by Algorithm 4.8; else, take the following steps. 

3.1. Detect the color edge mark by Algorithm 4.5 for R(1,), R(2,), …, 

R(n,). 
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3.2. If the color edge mark is detected in any foreground region, apply 

Algorithm 4.8 to anyone of the foreground regions with color edge 

mark detected to find the human region uh  and go to Step 4. 

3.3. If the color edge mark is not detected, apply Algorithm 4.8 to the 

foreground region with the largest region size in R to find the human 

region uh  and go to Step 4. 

Step 4. Compute the location p of uh  as the output by Algorithm 4.2. 

Step 5. Compute the orientation d  of uh  as the output by Algorithm 4.6. 

In Step 3, if we have found a human region in the previous processing cycle, we 

can find the same human region by performing the camera-off algorithm. Otherwise, 

we find the human region by the color edge mark or the region size. Finally, we 

compute the location and the orientation of the human region as output. Furthermore, 

the human region will be used in the next processing cycle. 

 

4.6 Experimental Results 

In this section, we show some experimental results of both human location 

detection and orientation detection. Figure 4.12 shows the results of the human 

location detection at four different locations. It shows that the proposed method can 

actually find the foot point of a human and transform the point from the ICS to the 

MCS. 

Figure 4.13 shows the results of the human orientation detection by the color 

edge mark, where the approximating lines are shown as light green color. It also 

shows that the proposed method is feasible. 
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(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

 

 

Figure 4.12 Human location detection at four different locations. 
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(a) 

 
 

(b) 

 
 

(c) 

 
 

(d) 

 
 

Figure 4.13 Human orientation detection by color edge mark at four different 

locations. 
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Chapter 5  

Path Planning for Navigation 

5.1 Ideas of Proposed Techniques 

When a user want to reach a certain destination, the server-side system will find 

the location of the user at first, and then find the location of the destination in the 

environment map we constructed in the learning stage. Next, the server-side system 

will begin to plan a path starting from the user and ending at the destination, and 

sends the result to the client-side system. 

Here we use an obstacle image obtained in the learning stage to determine 

whether a planned path collides with any obstacle or not. If the path starting from the 

location of a user and ending at the location of the destination does not collide with 

any obstacle, the server-side system directly sends the two locations to the client-side 

system, which means that the user may now walk forward to the desired destination. 

However, if the path collides with obstacles, we have to determine the immediate 

collision points to avoid the obstacles. Here we use an obstacle avoidance map 

constructed in the learning stage for this purpose. A more detailed description of the 

obstacle avoidance process will be described in Section 5.2. Next, we follow the 

avoidance directions to find the immediate points, and finally we will obtain a new 

path starting from the user’s location to the destination. The path finding scheme will 

be described in Section 5.3. However, the planned path may not be in the simplest 

form; in other words, there may exist two non-connected points on the path that can 

instead be connected together without any obstacle between the two points. Therefore, 
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we propose a scheme to simplify the planned plan, which will be described in Section 

5.4. 

After a path is completely planned, it will be send to the client-side system. A 

user can follow the path to reach the desired destination. However, if the user moves 

to a location which is not on the planned path, the planned path must be updated. A 

path update scheme is also proposed in this study, which will be described in Section 

5.5. 

Finally, we will describe a complete path planning process in Section 5.6. Then 

some experimental results will be presented in the last section. 

5.2 Obstacle Avoidance 

An obstacle avoidance map is created by splitting the MCS into small blocks. A 

block is a processing unit in the obstacle avoidance process; in other words, the 

planned path “walks” a block at a time, if the planned path walks to a block 

containing obstacles, it will find another block to go. Here we introduce a block 

coordinate space (BCS), which can be used to locate the position of a block. The BCS 

coordinates of a block are denoted as (i, j). A block with the BCS coordinates (0, 0) 

means that the block is at the top-left corner; a block with the BCS coordinates (1, 0) 

means that it is the one on the right side of the one with coordinates (0, 0), and so on. 

The MCS coordinates (Mx, My) of a block with the BCS coordinates (i, j) can be 

computed by the following equations: 

( 0.5);

( 0.5),

x

y

M n i

M n j

  

  
 (5.1) 

where n is the size of a block in pixels. And the BCS coordinates (i, j) can also be 

computed by the following equations: 
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 (5.2) 

Each element in an obstacle avoidance map represents two opposite avoidance 

directions, so we only store the one of the two directions in degrees. As shown in 

Figure 5.1, the region of all angle degrees can be divided to 8 parts all with an equal 

degree range of 45
o
. Every region part is assigned an index from 0 to 7, where the 

degree region of part 0 is from 337.5
o
 to 22.5

o
; the degree region of part 1 is from 

22.5
o
 to 67.5

o
, and so on. Therefore, we can determine the region part of an avoidance 

direction by the angle of the direction. The region part of an avoidance direction is 

called “avoidance region” in the sequel. 

337.5∘

22.5∘

67.5∘112.5∘

157.5∘

202.5∘

247.5∘ 292.5∘

0

1

2

3

4

5

6

7

 

Figure 5.1 The whole direction region is divided to 8 parts, and each part is assigned 

an index. 

As the 3  3 blocks shown in Figure 5.2, if a planned path walks to the central 

block and cannot directly walk to the destination from the block, the proposed system 

tries to find the next immediate block in the 7 neighborhoods by the avoidance 

direction of the block. Here, we can apply the avoidance regions to the 3  3 blocks, 

and then assign each of the 7 neighborhoods an index as shown in Figure 5.2. 
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Therefore, each avoidance direction can map to an avoidance block by the index of 

the avoidance region. However, we do not find the immediate point just at one 

avoidance block. More specifically, we will assign three avoidance blocks for each 

avoidance range. As shown in Figure 5.3, each avoidance range (shown as 

semi-transparent regions) is assigned three blocks, which include one primary 

avoidance block (shown as red regions) of the same avoidance range and the two 

neighborhoods, which are called secondary avoidance blocks (shown as blue regions). 

0

123

4

5 6 7

 

Figure 5.2 Apply the direction region parts to the neighborhoods of one block, and 

each neighborhood is assigned an index. 
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Figure 5.3 Avoidance blocks of 8 avoidance ranges, where the avoidance regions are 

shown as semi-transparent regions. Each avoidance region is assigned three blocks, 

which include the primary avoidance block (shown as red regions) of the same 

avoidance range and two secondary avoidance blocks (shown as blue regions). 

We can find the next immediate point in the three avoidance blocks by the 

avoidance direction. More specifically, we have two avoidance directions in one block, 

so we will have six avoidance blocks for one block. 

The following algorithm describes the processes to find the avoidance points of a 

block. It results in a set of avoidance points, which is sorted by the priority of the 

avoidance points. The priority of an avoidance point is based on the distance from the 

avoidance point to the destination point. An avoidance point with a higher priority 

should be considered first as the next immediate point in the path finding process. The 

path finding process scheme will be described in the next section. 

Algorithm 5.1 Finding avoidance points. 

Input: The current position p of a planned path in the MCS, the final destination 

position d of the planned path in the MCS, an obstacle image Io, and an 

obstacle avoidance map A, where ( , )A i j  means the angle of the avoidance 

direction of the block with BCS coordinates ( , )i j . 

Output: A set of avoidance points, which is sorted by the priority of the avoidance 

block. 

Steps 

Step 1. Initialize an empty set Sresult for the resulting points. 

Step 2. Compute the coordinates (i, j) of p in the BCS by Equation 5.2. 

Step 3. If A(i, j) is non-negative, obtain the two avoidance directions 1d  and 2d  

from A(i, j); otherwise, take the following steps. 
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3.1. Compute the direction v pd . 

3.2. Find three avoidance blocks of the avoidance direction v . 

3.3. Go to Step 5. 

Step 4. Find six avoidance blocks B of 1d  and 2d , which include two primary 

avoidance blocks and four secondary blocks. 

Step 5. Initialize two empty ordered sets Sp and Ss. 

Step 6. Take the following steps for each avoidance block b in B. 

6.1. Compute the MCS coordinates b  of b by Equation 5.1. 

6.2. If the line segment pb  collides with any obstacle, skip to the next 

avoidance block b and go to Step 6 again. 

6.3. If b is of a primary avoidance block, add b  into Sp; otherwise, add 

b  into Ss. 

Step 7. If Sp is not empty, take the following steps. 

7.1. Sort each element b  of Sp in the ascending order by the Manhattan 

distance from b  to d: 

| | | |x x y yb d b d    . 

7.2. Add the first element of Sp into Sresult, and add the remainder into Ss. 

Step 8. Sort Ss by the same scheme of 7.1. 

Step 9. Add each element of Ss into Sresult orderly. 

Step 10. Take Sresult as the output. 

In Step 3, if the current block contains no avoidance direction, the avoidance 

direction is set to the one from the current position to the destination. We add each of 

the avoidance blocks which are reachable from the current block into two sets. The 

primary avoidance blocks will be added into one set, and the secondary will be added 
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into another. Then we sort the sets based on the distance to the final destination in 

Step 7 and Step 8. We choose the closest one of the primary avoidance block as the 

first priority avoidance block, and add it into a resulting set. Finally, the remainders 

are added into the resulting set orderly. 

5.3 Path Finding 

We introduce the processes of obstacle avoidance in the previous section. In this 

section, we describe the path finding scheme by use of avoidance points. 

When we want to find a path from the current position to a destination position, 

we find the avoidance points of the current position by Algorithm 5.1 at first. Then we 

begin to check each avoidance point. We will record it when we check an avoidance 

point, and we do not check the same avoidance point twice, which means that a path 

do not check a point it has walked before. If an avoidance point has not been walked 

before, we try to find a path from the avoidance point to the destination. Therefore, 

the process can become recursive. However, if an avoidance point cannot reach the 

destination, we continue to try the next avoidance point. If there are no more 

avoidance points, we finish the finding process. The following algorithm always 

returns a path starting from the input start point and ending at the destination if a path 

is found; otherwise, it returns a flag indicating the failure. 

Algorithm 5.2 Path finding. 

Input: A start point p in the MCS, A final destination point d in the MCS, and a set Sw 

which includes the points we have walked before. 

Output: A set of points of the found path Sresult, and a flag f indicating whether a path 

is found or not. 
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Steps 

Step 1. Initialize an empty set Sresult to store the output points. 

Step 2. Add p into Sresult and Sw. 

Step 3. If p can directly go to d without colliding obstacles, add d into Sresult and 

then go to Step 9. 

Step 4. Find the avoidance points by Algorithm 5.1, resulting in a set of avoidance 

points Sa. 

Step 5. Take out the first avoidance point pa in Sa. 

Step 6. If pa is contained in Sw, take the following steps.  

6.1. If there still is any avoidance point in Sa, go to Step 5; otherwise, set 

f to fail and then finish this algorithm. 

Step 7. Apply this algorithm recursively with the inputs pa, d, and Sw, resulting in a 

set of points of a found path Sad and a flag fa. 

Step 8. If flag fa is a success, add each point of Sad into Sresult; otherwise, go to Step 

5. 

Step 9. Set Sresult as output and set f to be a success. 

Because the start point should always be walked and contained in the resulting 

path, so we add the start point into the resulting set and the walked point set. In Step 3, 

we check whether the start point can be directly connected to the destination point 

without colliding obstacles; if so, then return the path which contains only the start 

point and the destination point. Otherwise, we have to find a next immediate point by 

applying the same algorithm recursively. 

In Step 8 we check the returning flag: if the path is found successfully, then we 

add all the points of the returning points into the resulting set; otherwise, we try the 

next avoidance point again. 
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A result of the path finding process is shown in Figure 5.4. We found a path 

starting from the top-left point to the bottom-right point. As mentioned previously, the 

path is not of the simplest form. We will describe the processes to simplify the path in 

next section. 

 

Figure 5.4 Path found in the path finding process. 

5.4 Path Simplification 

After a path is found, we begin to conduct the proposed path simplification 

process. The process can be decomposed into two parts: redundant point elimination 

and distance elimination. The goal of the redundant point elimination is to find two 

points which are non-connected and can instead be connected together, and then to 

remove the points between the two points; in other words, the goal is to find a 

“shortcut” between two points (like the red line shown in Figure 5.5(a)). The goal of 

distance elimination is to reduce the total path length by finding two points which are 

on different line segments and can be connected together; in other words, the goal is 

to find a “shortcut” between two line segments. As shown in Figure 5.5(b), we can 

reduce the total length of the path by substituting P2 with two new immediate points 
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(shown as red points). 

After the path finding process, we conduct redundant point elimination at first, as 

described in Algorithm 5.3. The algorithm iterates over all immediate points in a path, 

and finds the last immediate point which can be connected together for each 

immediate point. 

P1

P2

P3

P4

 

P1

P2

P3

 

(a) (b) 

Figure 5.5 The redundant point elimination and the distance elimination. The black 

points represent the original immediate points of a path (a) The redundant point 

elimination, where the two redundant points P2 and P3 can be removed. (b) The 

distance elimination, the path length can be eliminated by substituting P2 by the two 

red points. 

Algorithm 5.3 Redundant point elimination. 

Input: A set of points of a path P, where P(i) means the ith point in the set. 

Output: A set of points of a simplified version of P. 

Steps 

Step 1. Initialize a variable i = 1 used to represent the index of the start point of the 

shortcut. 

Step 2. If i is equal to size(P), go to Step 8, where size(x) means the number of the 

points of the set x. 
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Step 3. Initialize a variable j = size(P) used to represent the index of the end point 

of the shortcut. 

Step 4. If i = j  1, go to Step 7. 

Step 5. If P(i) can be directly connected to P(j) without colliding obstacles, remove 

P(i+1), P(i+2), …, P(j1) and go to Step 7. 

Step 6. Decrement j by 1 and go to Step 4. 

Step 7. Increment i by 1 and go to Step 2. 

Step 8. Take P as the output. 

A result of redundant point elimination using the above algorithm is shown in 

Figure 5.6, where Figure 5.6(b) shows the result of applying redundant point 

elimination on Figure 5.6(a). 

 

  

(a) (b) 

Figure 5.6 Result of path finding and redundant point elimination. (a) Result of path 

finding. (b) Result of applying the redundant point elimination on (a). 

However, the result shown in Figure 5.6(b) is still not of the simplest form. We 
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can find a short cut in the region of the red rectangle outline of Figure 5.6(b) by the 

distance elimination mentioned previously. 

The distance elimination process checks the points on each line segment of a path. 

However, if the points on a line segment are continuous, it is impossible to check all 

points on the segment. Therefore, the points on a line segment are discretized into 

several points with equal distances Td before distance elimination is conducted. 

As shown in Figure 5.7, we check two line segments at a time, which are Li and 

Li+1, respectively. For each discretized point pi on Li and each pi+1 on Li+1, we check 

whether pi and pi+1 can be connected together or not. The checking order of Li is from 

the start point to the end point; that of Li+1 is contrarily from the end point to the start 

point. We check all discretized points on Li+1 for each pi. If pi (shown as blue points) 

cannot be connected to a point on Li+1, it is skipped and the next pi on Li+1 is then 

processed. Finally, we will find a shortcut between Li and Li+1 if there exists one 

(shown as the red line segment). 

P1

P2

P3

pi

pi+1

Td

id

1id 

iL

1iL 

 

Figure 5.7 Process of distance elimination. The black points are the immediate points 

of a path. The gray region represents the region of an obstacle, the line between the 

two red points are a shortcut found by the distance elimination process. 
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The following algorithm describes the complete processes to perform the distance 

elimination work. 

Algorithm 5.4 Distance elimination. 

Input: A set of points of a path P, where P(i) means the ith point in the set. 

Output: A set of points of a simplified version of P. 

Steps 

Step 1. Initialize a variable i = 1 used to represent the index of the first checking 

line segment. 

Step 2. If ( ) 2i size P  , regard that the last line segment has been reached, and go 

to Step 4; otherwise, take the following steps, where size(x) means the 

number of the points of the set x. 

2.1 Initialize two vectors of the two checked line segments 

( ) ( 1)iL P i P i   and 1 ( 2) ( 1)iL P i P i    . 

2.2 Compute the vectors id  and 1id   by the following equations: 

1
1

1

;i i
i d i d

i i

L L
d T d T

L L






   

where Td is a predefined distance between two neighboring 

discretized points. 

2.3 Initialize two variables pi = P(i) and pi+1 = P(i+2), which are used to 

represent the two end points of the shortcut, respectively. 

2.4 Add 1id   to pi+1. 

2.5 If 1 ( 1)ip P i  is in the opposite direction of Li+1 or 1 ( 1)ip P i   = 0, 

then go to Step 3 to check the next two line segments. 

2.6 If pi can be connected directly to pi+1 without colliding obstacles, take 
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the following steps. 

2.6.1. Insert pi and pi+1 into P before the position of P(i+1). 

2.6.2. Remove P(i+1) from P. 

2.6.3. Go to Step 3 to check the next two line segments. 

2.7 Add id  to pi. 

2.8 If i ip L , go to Step 3; otherwise, go to 2.4. 

Step 3. Increment i by 1 and go to Step 2. 

Step 4. Take P as the output. 

The result of applying the distance elimination algorithm described above on 

Figure 5.6(b) is shown in Figure 5.8. However, there still exist redundant points in the 

path of Figure 5.8. Therefore, we have to apply Algorithm 5.3 on the resulting path to 

reduce redundant points again. More specifically, we apply the redundant point 

elimination and distance elimination processes on a path until the points of the path 

are not changed. Algorithm 5.5 describes the above process. 

 

 
Figure 5.8 Result of applying the distance elimination on the path of Figure 5.6(b). 
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Algorithm 5.5 Path simplification. 

Input: A set of points of a path P, where P(i) means the ith point in the set. 

Output: A set of points of the simplified path. 

Steps 

Step 1. Make a copy of P, and denote it by P’. 

Step 2. Apply Algorithm 5.3 on P’. 

Step 3. Apply Algorithm 5.4 on P’. 

Step 4. If the points of P’are different than the points of P, clear P, copy all points 

of P’ into P, and go to Step 2; otherwise, finish this algorithm. 

We can directly apply Algorithm 5.5 on the resulting points of the path finding 

process. Figure 5.9 shows the result of applying the above path simplification process 

on the path of Figure 5.6(a). 

 

Figure 5.9 Result of applying the path simplification on the path of Figure 5.6(a). 
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5.5 Path Update 

The set of the immediate points of a path will be sent to a client-side system. 

However, a user might not always move by following the planned path. Instead, the 

user might walk away from the planned path, so that the planned path becomes 

invalid. Therefore, we have to update a planned path when a user walks away from 

the planned path. 

Algorithm 5.6 Path update. 

Input: The current point p of a user, and a set of points of a planned path P, where P(i) 

means the ith point in the set. 

Output: A set of points of the updated path. 

Steps 

Step 1. Initialize an empty set Pnew. 

Step 2. Find the last point ps of P which can be reached from p, if ps is not found, 

take the following steps to re-plan a path. 

2.1. Find a path starting from p and ending at the last point of P by 

Algorithm 5.2 and Algorithm 5.5, resulting in a set of points P
’
. 

2.2. Add all points of P’ into Pnew, and go to 5.2. 

Step 3. Add p into Pnew. 

Step 4. Add P(i), P(i+2), …, P(n) into Pnew, where i is the index of ps in P and n is 

the size of Pnew. 

Step 5. If Pnew contains at least 3 points, take the following steps. 

5.1. Compute the angle  between the two vectors (2) (1)new newP P  and 

(2) (3)new newP P  of the first two line segments of Pnew. 
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5.2. If 
2


  , take the following steps to simplify the first two line 

segments of Pnew. 

5.2.1. on the first two line segments of Pnew, resulting a set of points 

Pstart. 

5.2.2. Remove the first two line segments from Pnew. 

5.2.3. Insert Pstart to the beginning of Pnew. 

Step 6.  Take Pnew as the output. 

An example of the results of applying the above algorithm is shown in Figure 

5.10. When a user moves away from a planned path (as shown in Figure 5.10(a)), we 

find the last reachable point (shown as red circles) of the planned path from the 

current point (shown as green circles).  

(a) 

 

(b) 

 

(c) 
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(d) 

 

Figure 5.10 Results of the path update process. (green circles indicate the current 

point and red circles indicate the last reachable point from the current point) (a) The 

original planned path. (b) An updated path. (c) An updated path which is not of the 

simplest form. (d) Result of applying the path simplification on the path of (c). 

After applying this algorithm, we will add at most one new point to the resulting 

set; in other words, the resulting set contains only one new point, which is the current 

point of the user, and the remainders are the points of the original planned path 

Therefore, we have to check whether the new line segment is of the simplest form or 

not. In Step 5.1, we compute the angle between the new line segment and the first old 

line segment. If the angle is greater than 90
o
 (as shown in Figure 5.10(c)), it means 

that the two line segments have opposite directions and there may exist a shortcut 

between the two line segments. Therefore, we apply the path simplification process to 

the two line segments (as shown in Figure 5.10(d)). Finally, the algorithm will yield 

an updated path. 

5.6 Algorithm for Path Planning 

We describe the processes for tasks involved in path planning in the previous 

sections. In this section, we integrate these processes to form a complete algorithm for 

path planning. 

Algorithm 5.7 Path planning. 

Input: A start point p in the MCS, and a final destination point d in the MCS. 
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Output: A set of points of the planned path. 

Steps 

Step 1. If there exists a planned path P’ and the destination of P’ is identical to d, 

take the following steps. 

1.1. Update P’ by Algorithm 5.6, resulting in a set P of the immediate 

points of a path. 

1.2. Go to Step 4. 

Step 2. Find a path starting from p and ending at d by Algorithm 5.2, resulting in a 

set P of immediate points of the path. 

Step 3. Apply Algorithm 5.5 on P to simplify the found path. 

Step 4. Take P as the output. 

This algorithm is applied in each navigation process cycle. If a user wants to 

reach a certain destination and he/she never searched the same destination before, the 

algorithm will plan a new path. Otherwise, the algorithm will update the planned path. 

5.7 Experimental Results 

Figure 5.11, 5.12, and 5.13 show three examples of the results of the path 

planning work conducted by the above algorithm. Each result contains a figure of the 

original planned path yielded by Algorithm 5.2, and a figure of the final simplified 

path yielded by Algorithm 5.5. 
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(a) 

 

(b) 

 

Figure 5.11 Result of the path planning. (a) Result of the path finding. (b) Result of 

applying the path simplification on the path of (a). 

  

(a) (b) 

Figure 5.12 Result of the path planning. (a) Result of the path finding. (b) Result of 

applying the path simplification on the path of (a). 
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(a) (b) 

Figure 5.13 Result of the path planning. (a) Result of the path finding. (b) Result of 

applying the path simplification on the path of (a). 
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Chapter 6  

Augmented Reality for Navigation 

6.1 Ideas of Proposed Techniques 

In this chapter, we will describe the AR techniques used in the proposed system. The 

AR techniques are used in the client-side system. We overlay navigation information onto 

the real images taken of the current scene, so that users can just take their mobile devices 

and conduct the navigation conveniently. The real images taken of the current scene will 

be called “scene images” in the subsequent sections, and scene images overlaid with 

navigation information will be called “augmented images.” 

After detections of the user’s location and orientation are completed, the 

navigation information will be sent to the user’s mobile device. The navigation 

information includes the visiting target information and the navigation path. The 

client-side system will display the information on the device screen. A more detailed 

description of the navigation information we use in the display rendering will be 

given in Section 6.2.1. The visiting target information includes the name of the 

visiting target and its coordinates in the GCS. The navigation path contains the GCS 

coordinates of the points consisting of the path. In order to display the information in 

an AR way, the client-side system must transform the GCS coordinates onto a 2D 

screen plane. The calibration of the camera on the mobile device is described in 

Chapter 3. In Section 6.2.2, we will describe the process to perform the 

transformation between the GCS and the screen plane by the calibration result. 

In Section 6.3, we will describe the display rendering for the navigation 
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information. We display the names and distances of visiting targets on the 

corresponding objects in scene images. So we will illustrate how to determine the 

display position in the scene image in Section 6.3.1. In Section 6.3.2, we will describe 

the creation of the navigation path’s geometric shape (arrows, thick line segments, etc.) 

for the navigation path to be overlaid onto the scene image to provide the guidance 

information. 

6.2 View Mapping between Real World 

and Client Device 

6.2.1 Information for Use in Mapping between Real 

World and Client Device 

In Chapter 3, we described the construction of the environment map. We specify 

the visiting target information on the environment map, which includes the name, the 

region, and the coordinates of the visiting target. As shown in Figure 6.1, the light 

green region on the floor plan is a specified visiting target. The visiting target is 

specified by a vector f  indicating the front direction of the visiting target, the 

region width w and height h, and the location p. The coordinates of the location 

include the z-coordinate, which represents the distance between the ground plane and 

the bottom of the visiting target region. The coordinates and the size are specified in 

the MCS, and it will be transformed into the GCS before sending to the client-side 

system. 

Besides the visiting targets, a navigation path may be sent to the client-side 

system when a user wants to reach a certain destination. The navigation path is a set 

which contains the immediate points of the path, and the immediate points will be 
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transformed into the GCS before being sent to the client-side system. In addition, a 

path might contain more than one turning; in other words, a user might have to turn 

more than once to reach the destination. However, a user should pay attention only to 

the next turning; the second turning is not so important to the user at the current time. 

Therefore, we only display two line segments of the path at a time. 

Wz

Wx
Wy

GCS

My

Mx

MCS

h

w

p

f

 
Figure 6.1 A visiting target in the environment map and its corresponding location in 

the GCS. 

6.2.2 Transformation from Real World Spot to Client 

Device Screen 

Recall the results derived from Section 3.4.2. A point p in the CCS can be 

transformed to be a point q in the ICS by the following equations: 
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where w is the width of the scene image in the unit of pixel, h is the height, and  is 

the angle range of the field-of-view of the camera. The view region is restricted by the 

two parameters n and f; n restricts the smallest distance we can see, and f restricts the 

largest distance, so the two parameters can be specified arbitrarily. Equation 6.2 is a 

little different from the one in Section 3.4.2. The additional z-coordinate is only used 

to determine whether a point is outside of the screen range or not. A point with the z 

coordinate outside of the range [0, 1] is considered to be outside the screen range. The 

ICS coordinates are composed by (qu, qv). 

However, the coordinates sent from the server-side is in the GCS, but the 

coordinates we use in Equation 6.1 are in the CCS. Therefore, we have to transform 

the coordinates from the GCS into the CCS at first. The transformation can be 

expressed by the following equation: 

where a is a point in the GCS, p is the transformed point of a in the CCS, and Mc is 

the transformation matrix. In this transformation, the original coordinates of a are 

replaced by homogeneous coordinates. 

Because the transformation will preserve the length of vectors after 

transformation, the transformation is so called orthogonal transformation. The 

columns of the transformation matrix of an orthogonal transformation will form an 

orthonormal basis of the transformed space. As shown in Figure 6.2(a), a camera is at 

the point c in the GCS, and the basis of the CCS of the camera can be represented by 
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three vectors up, right, and forward, where up is the up direction of the camera, right 

is the right direction, and forward is the front direction. In the CCS defined in Chapter 

3 shown in Figure 6.2(b), we can express the transformation matrix as follows: 

0 0 0 1

x x x x

y y y y

c

z z z z

right up forward c

right up forward c
M

right up forward c

  
 

  
  
 
 

 (6.4) 

where the rightmost column is the coordinates of the camera, it used to translate the 

origin to the camera position, and it is actually the user’s location detected from the 

server-side system. The z-coordinate of the camera position is a predefined parameter; 

in other words, the height of a camera is fixed to about the height of the eyes of an 

adult in the proposed system. 
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z
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Camera

 

(a) (b) 

Figure 6.2 A camera in the GCS and the CCS. (a) A camera in the GCS with three 

orthonormal vectors up, right, and forward. (b) The CCS. 

Therefore, we can determine the transformation matrix Mc by finding the three 

vectors up, right, and forward. By the GCS defined in Chapter 3, the up direction is 

the +z direction, so the vector up is (0, 0, 1). 

Also, we assume that the camera orientation is in the same direction of the user’s 

orientation. Therefore, the vector forward can be obtained by using the user’s 
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orientation. However, a user might tilt the client device to watch the environment at a 

pitch angle. As shown in Figure 6.3, the camera looks at a pitch angle, but the 

orientation detected from the server-side is from a horizontal direction (shown as the 

green arrow). Therefore, we have to obtain the pitch angle so that we can obtain the 

correct orientation by Equation 6.5 below: 

Camera



Wz

Wx

Wy

GCS

sin

 

Figure 6.3 Camera looks at a pitch angle . The green line indicates a line on the 

horizontal plane. 

 

where d  is the user’s orientation detected from the server-side system, and  is the 

pitch angle which can be obtained from the orientation sensor of the client device. 

And then forward can be obtained by: 

The value forward is normalized to be a unit vector in the equation above. The 

last vector right can then be obtained by the vector which is orthogonal to up and 
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forward. We can get the vector by the cross product of forward and up according to 

the following equations. 

However, forward might not be orthogonal to up which is the direction (0, 0, 1) 

because we had added a z-direction to the vector forward. Therefore, we correct the 

up by the cross product of right and forward: 

Now, we have obtained all the needed variables to perform the transformation. 

We summarize all the processes of transformations discussed above by the following 

algorithm. 

Algorithm 6.1 Transformation between the GCS and the ICS. 

Input: A user’s orientation d , the user’s location c, the pitch angle  obtained from 

the orientation sensor of the client device, and the point a in the GCS to 

transform. 

Output: A transformed point q in the ICS. 

Steps 

Step 1. Initialize a vector up with the direction (0, 0, 1). 

Step 2. Use d  and  to compute the vector d   by Equation 6.5. 

Step 3. Use d   to compute the vector forward by Equation 6.6. 

Step 4. Compute a vector right by Equation 6.7. 

Step 5. Correct a vector up by Equation 6.8. 

Step 6. Construct the matrix Mc using up, forward, right, and c by the matrix of 

(6.4). 
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 up right forward   (6.8) 
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Step 7. Use Mc to transform a from the GCS to the CCS by Equation 6.3 and result 

in p. 

Step 8. Transform p from the CCS to the ICS by Equations 6.1 and 6.2. 

6.3 Rendering for Visiting Targets and 

Navigation Paths 

In this section, we describe the schemes we propose to display visiting targets and 

navigation paths on the device screen. 

6.3.1 Visiting Target Rendering 

As shown in Figure 6.4, we try to overlay the name and the distance of visiting 

targets onto the corresponding objects in the real world, which appear in the image 

taken with the camera on the user-held mobile device. In order to accomplish this aim, 

we have to determine where to display the text on the device screen. 

As shown in Figure 6.5, the visiting target is defined by four parameters which 

are described in the previous section. Then, the four points of the region of a visiting 

target can be computed by the following equations: 

 

Figure 6.4 An augmented image overlaid with visiting target information. 
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Then we can compute the ICS coordinates of a, b, c, and d by Algorithm 6.1, 

resulting in four new values a’, b’, c’, and d’ as shown in Figure 6.6(a). 
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Figure 6.5 Parameters of a visiting target (shown as the green region). All the 

parameters are in the GCS. 
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(a) (b) 

Figure 6.6 Four points transformed from the GCS of a visiting target. (a) Before 

clipping to the range of the image size. (b) After clipping to the range of the image 

size. 

However, the transformed points might exceed the region of the scene image. 

Therefore, we clip the points by the following equation: 
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101 

 

where p is the point to clip, p’is the point after clipping, wimg is the width of the scene 

image, and himg is the height. The range of u coordinates is between [1, wimg+1] and v 

is between [1, himg+1]. We can determine whether a point p  is inside the screen 

region or not by checking [0, ]u imgp w   and [0, ]v imgp h  . Then, we can obtain the 

display position of the text of the visiting target information by the following 

equation: 

And then we can display the text on the display position textp  as shown in 

Figure 6.7, where wtext is the width of the text, and htext is the height. 

ptext

htext

wtext

 

Figure 6.7 Display the visiting target information on the display position ptext. 

Furthermore, when a user has searched a destination, he/she must know which 

direction to go. We want to let the user always know the direction of the destination 

target even the target is outside the range of screen. As shown in Figure 6.8, if a 
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destination target is outside the range of screen, we should display the visiting target 

on the edge of the screen (shown as the red point). Then, the user can understand what 

the direction the destination is in. 



du

dv

tard

d

 

Figure 6.8 Display point for a visiting target which is outside of the screen range. d  

is the orientation of the user, and tard  is the vector from the user’s location to the 

visiting target. 

We summarize all the processes of visiting target display rendering discussed 

above by the following algorithm. 

Algorithm 6.2 Display rendering of a visiting target. 

Input: An image I which is to be drawn, with the width wimg and the height himg; a 

user’s location e, and his/her orientation d ; a visiting target tar with a vector 

f  indicating the front direction of the visiting target, the region with width w 

and height h, and its location p; a text t to display with the width wtext and the 

height htext. 

Output: An augmented image. 

Steps 

Step 1. Compute four points a, b, c, and d by Equation 6.9. 
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Step 2. Transform a, b, c, and d from the GCS into the ICS by Algorithm 6.1, 

resulting in a’, b’, c’, and d’. 

Step 3. Clip a’, b’, c’, and d’ into the range of the size of I by Equation 6.10. 

Step 4. Compute the display position ptext by Equation 6.11. 

Step 5. If [0, ]
utext imgp w  or [0, ]

vtext imgp h or [0,1]
ztextp  , take the following 

steps. 

5.1 If tar is not the destination target of the user, finish this algorithm. 

5.2 Compute the direction vector of tar by tard ep ep  and the angle  

between tard  and d (as shown in Figure 6.8). 

5.3 Compute the diagonal length of the screen 2 2

dia img imgd w h  . 

5.4 Compute du and dv by the following equations: 

cos( );
2 2
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2 2
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5.5 Compute ptext by the following equations if 
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where the function sign(x) returns 1 if x is negative; otherwise, it 

returns 1. If 
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;
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Step 6. Correct ptext to make the drawn text not exceeding the range of I by the 

following equation: 

max min , ,
2 2

max min , ,
2 2

x

x

y

y

text text
text img

text

text text text
text img

w w
p w

p

p h h
p h

   
         

           
   

. 

Step 7. Draw t on I at the point textp . 

Step 8. Take I as the output. 

As mentioned previously, if a user’s destination is outside the screen range, we 

display it on the edge of the screen. Therefore, we compute the appropriate display 

point (as shown by the red point in Figure 6.8) in the sub-steps of Step 5.  

6.3.2 Rendering and Geometry Creation of 

Navigation Paths 

As mentioned previously, only two line segments of a path will be displayed at a 

time. If a user receives a path sent from the server-side system as shown in Figure 

6.9(a), then the first two line segments are what we are going to display. The path 

composed of the first two line segments will be called “display path” in the 

subsequent sections. Figure 6.9(b) shows the expected result of overlaying the display 

path onto a scene image. The display path in Figure 6.9(b) is composed of thick line 

segments and an arrow. Therefore, we have to create the geometric shape of a path 

before conducting display rendering for them. 

A display path is a 3D augmented object. As mentioned in Chapter 2, the 
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rendering of 3D augmented objects is conducted by the OpenGL API. The OpenGL 

API processes 3D objects composed by triangles or quadrangles, which are called 

“geometric primitives.” As shown in Figure 6.10, the geometric shape of a display 

path is composed by 11 points, and we can get the geometric primitives of the display 

path by the 11 points of a path. Accordingly, we can perform the display rendering for 

a navigation path by Algorithm 6.3. 

p1

p2

p3

p4

  
(a) (b) 

Figure 6.9 A path and its display on a screen. (a) The path with three line segments. 

The first two line segments are which should be concerned by a user. (b) The display 

of the first two line segments of the path of (a). 
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Figure 6.10 The geometry of a display path 



 

106 

 

Algorithm 6.3 Display rendering for a navigation path. 

Input: A set P of points of a planned path, an image I to draw, the width wpath of the 

display path, the width warr of the arrow of the display path, and the length harr 

of the arrow. 

Output: An augmented image. 

Steps 

Step 1. Take the first three points p1, p2, and p3 of P. 

Step 2. Compute 1 2
1

1 2

p p
v

p p
 , 2 3

2

2 3
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p p
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1 1 1( , , 0)
2
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y x

w
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2 2 2( , , 0)
2
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y x

w
v v v   . 

Step 3. Compute p1a, p1b, p1c, p1d by the following equations: 
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Step 4. If 
2 3 arrp p h , then set arrh  to 2 3p p . 

Step 5. Compute p2a, p2b, p2c, p2d by the following equations: 
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Step 6. Compute p3a, p3b by the following equations: 
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Step 7. Draw the geometric primitives, which include two quadrangles 

1 1 1 1a b c dp p p p , 2 2 2 2a b c dp p p p
 and three triangles 1 2d ap p p , 1 2c bp p p , 

3 3 3a bp p p  using the OpenGL API. 

In Step 4, in order to prevent the arrow from exceeding the second line segment, 

we set the length of the arrow to be the length of the second line segment of the 

display path if the arrow length is larger than the line segment. 

6.4 Algorithm of Indoor Navigation by 

Augmented Reality 

In this section, we summarize the processes described in the previous sections as 

a total process  the process of indoor navigation by augmented reality, as described 

in Algorithm 6.4 below. 

Algorithm 6.4 Indoor navigation by augmented reality. 

Input: A scene image. 

Output: An augmented image. 

Steps 

Step 1. Obtain the user’s orientation, and the user’s location from the server-side 

system. 

Step 2. Obtain the pitch angle from the orientation sensor of the client device. 

Step 3. Create the projection matrix by the method described in Algorithm 6.1. 

Step 4. Obtain visiting target information from the server-side system. 

Step 5. Display all visiting targets by Algorithm 6.2. 

Step 6. Search the desired destination by a keyword to obtain a planned path. 

Step 7. Display the planned path by Algorithm 6.3. 
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6.5 Experimental Results 

Figure 6.11 and Figure 6.12 show two results of overlaying visiting target 

information on scene images. The figure includes an omni-image captured from a 

fisheye camera, the detected location and orientation, and the augmented image 

shown on the user’s mobile device. A user can understand the surrounding 

environment by the visiting target information on the augmented image. 

 

 

(a) (b) 

 

(c) 

Figure 6.11 An augmented image with visiting target information. (a) An 

omni-image. (b) Detected location and orientation. (c) The augmented image shown 

on user’s mobile device. 
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(a) (b) 

 

(c) 

Figure 6.12 An augmented image with visiting target information. (a) An 

omni-image. (b) Detected location and orientation. (c) The augmented image shown 

on user’s mobile device. 

Figure 6.13 shows a result of overlaying a navigation path on scene images. The 

figure includes four augmented images which are at different locations and in 

different orientations. A user can understand how to reach the desired destination by 

following the navigation path shown by the arrow and the line segment. When the 

destination is out of the screen, the navigation path may be invisible in an augmented 

image. At that time, the system will display the destination on the edge of the screen 

to indicate the correct direction. 
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(a) (b) 

  

(c) (d) 

Figure 6.13 An augmented image with a navigation path. (a)(b)(c) The augmented 

images at three different locations. (d) When the destination is outside of the screen, 

the name of the destination will display on the edge of the screen (shown as the 

yellow stroke text); this image shows that the destination is on the rear of the user. 
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Chapter 7  

Experimental Results and 

Discussions 

7.1 Experimental Results 

In this section, we will show some experimental results of the proposed indoor 

AR navigation system. The experimental environment is in the Computer Vision Lab 

at National Chiao Tung University. The environment map is shown in Figure 7.1, 

which includes eight visiting targets (shown as green regions) and two fisheye 

cameras (shown as blue circles). 
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Figure 7.1 The environment map of the experimental environment. 
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7.1.1 Result of Real Navigations 

A. Browsing visiting targets at a certain location 

Figure 7.2 shows a result of browsing surrounding visiting targets at a certain 

location. The omni-images captured from the fisheye cameras are shown on the 

left-hand side of this figure, and the augmented images shown on the user’s mobile 

device are shown on the right-hand side. At first, the user faced the left side of the 

experimental environment, where we can see two visiting targets displayed on the 

screen (as shown in Figure 7.2(a)). Then, the user began to turn to the left-hand side, 

and we can see that the overlaying texts are moving to the right-hand side as the user 

was turning (as shown in Figure 7.2(b)-(j)). 

 

(a) 

  

(b) 

  

 Figure 7.2 A result of browsing visiting targets at a certain location. The left-hand 

side is the images captured from the fisheye cameras, and the right-hand side is the 

augmented images shown on the user’s mobile device. 
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(c) 

  

(d) 

  

(e) 

  

(f) 

  

Figure 7.2 A result of browsing visiting targets at a certain location. The left-hand 

side is the images captured from the fisheye cameras, and the right-hand side is the 

augmented images shown on the user’s mobile device (cont’d). 
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(g) 

  

(h) 

  

(i) 

  

(j) 

  

Figure 7.2 A result of browsing visiting targets at a certain location. The left-hand 

side is the images captured from the fisheye cameras, and the right-hand side is the 

augmented images shown on the user’s mobile device (cont’d). 
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B. Navigation by a navigation path. 

In this section, we show a result of navigation according to a navigation path. A 

user stood at a location as shown in Figure 7.3(a), and the detected location and 

orientation are shown in Figure 7.3(b). Figure 7.3(c) shows the augmented image seen 

by the user. Then, the user searched the environment map for a visiting target, and 

there appeared a yellow stroke text on the right-hand side of the bottom edge of the 

augmented image (as shown in Figure 7.3(d)). The user could then understand that the 

destination is on the right rear, so the user began to turn to the right-hand side. As the 

user was turning, we can see that the destination was moving to the right-hand side of 

the user (as shown in Figure 7.3(e)). Finally, the user saw the destination and the 

navigation path when he turned to the correct direction (as shown in Figure 7.3(f)). 

Therefore, the user began to follow the navigation path to move. As shown in 

Figure 7.4, the user faced the left-hand side of the environment to move. When the 

user moved to the location as shown in Figure 7.4(b), he was closer to another camera 

of the environment. Therefore, the system shifted to use the other camera to track the 

user as shown in Figures 7.4(c) and 7.4(d). Figure 7.5 shows the four augmented 

images corresponding to the four locations as shown in Figures 7.4(a) through 7.4(d), 

respectively. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 7.3 A result of navigation by a navigation path. (a) A user was at a certain 

location. (b) The detected location and orientation. (c) The augmented image seen 

by the user. (d) The augmented image shown when the user searched a visiting 

target, and there is a yellow stroke text shown on the right-hand side of the 

bottom edge of the augmented image, which indicates the direction of the 

destination. (e) The augmented image shown when the user is turning to the 

right-hand side. (f) The augmented image shown when the user is turning to the 

correct direction. 
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(a) 

 
 

(b) 

 
 

(c) 

 
 

(d) 

 
 

Figure 7.4 A user following the path shown in Figure 7.3(f) to move. 
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(a) (b) 

  

(c) (d) 

Figure 7.5 The four augmented images corresponding to the four locations as shown 

in Figures 7.4(a) through 7.4(d), respectively. 

7.1.2 Result of Precision Measurement 

We show a result of precision measurement of human location detection in this 

section. As shown in Figure 7.6, we chose several locations in the experimental 

environment, and we let a person stand at these locations and detect the locations by 

the proposed human location detection method. The result is shown in Table 7.1, 

which includes the actual locations of the chosen locations which are measured 

manually and the detected locations by the proposed method. The average error of the 

computed locations is 15cm, which is small enough for the proposed system to locate 

a user. 
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Figure 7.6 Locations used for precision measurement in the human location 

detection process. 

Table 7.1 Error of human location detection (unit: cm) 

Location # 
(1) Actual (2) Computed 

Distance Error (1)(2)  
x y x y 

1 10.04  2.13  9.77  2.13  0.27  

2 8.82  1.22  8.69  1.20  0.14  

3 8.22  2.13  8.16  2.17  0.04  

4 7.30  1.22  7.14  1.13  0.17  

5 6.09  2.13  6.04  2.00  0.09  

6 5.17  2.74  4.89  2.73  0.25  

7 4.56  2.13  4.29  2.15  0.24  

8 2.13  1.83  1.92  1.80  0.17  

9 10.04  2.74  9.67  2.73  0.36  

10 9.13  2.74  8.74  2.75  0.37  

11 8.22  2.74  8.19  2.75  0.02  

12 7.61  2.74  7.59  2.728 0.02  

13 6.69  2.74  6.64  2.753 0.04  

14 5.78  2.74  5.77  2.753 0.01  

15 5.48  3.35  5.42  3.253 0.10  

16 4.56  3.35  5.22  3.228 0.47  

17 6.09  1.22  5.97  1.278 0.10  

18 5.17  1.22  5.09  1.253 0.07  

19 4.26  1.22  4.22  1.203 0.05  

20 3.35  1.22  3.27  1.228 0.07  

Average       0.15 
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Table 7.2 shows another result of precision measurement in the transformation 

from the ICS to GCS. We measured 11 line segments on the ground, and computed 

the length by transforming the two end points of each line from the ICS to the GCS. 

These lines segments we chose are shown in Figure 7.7. The average error rate is 

2.79%, which is small enough and shows that the proposed transformation technique 

actually works for real applications. 
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Figure 7.7 Line segments used for the line length measurement. 

Table 7.2 Error of line length measurement. 

Line # 

(1) 

Actual Length 

(cm) 

(2) 

Computed Length 

(cm) 

Error (3) 

|(1)-(2)| 
Error % 

(3)

(1)
 

1 93 96.45 3.45  3.71% 

2 121 121.08 0.08  0.06% 

3 48 46.50 1.50  3.13% 

4 31 28.60 2.40  7.75% 

5 44 41.00 3.00  6.82% 

6 90 89.89 0.11  0.13% 

7 30 29.56 0.44  1.47% 

8 30 30.46 0.46  1.55% 

9 30 30.90 0.90  3.00% 

10 70 67.92 2.08  2.97% 

11 121 120.87 0.13  0.11% 

Average   1.32  2.79% 
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Table 7.3 shows the result of precision measurement for the proposed process of 

human orientation detection by the color edge mark. We choose six locations in the 

experimental environment to for this experiment. We let a person stand at these 

locations, and the person faced towards the mobile device to four directions at each 

location. Finally, we computed the orientation vector by the proposed method, and the 

error is the angle between the actual orientation vector and the computed orientation 

vector. As shown in the result, we can see that the errors are almost below 8
o
, and the 

average is below 4
o
. This shows that the proposed method actually works for ral 

applications. However, the errors of some cases exceed 8
o
. The main cause of these 

higher errors is that the color edge mark will be projected into a small region in the 

omni-image when the distance between the color edge mark and the camera becomes 

larger, so it will not always be segmented successfully from the image completely. 
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Figure 7.8 Locations used for precision measurement in human orientation 

detection. 
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Table 7.3 Error of human orientation detection. 

Location # 

Actual Orientation 

Vector 

Computed Orientation  

Vector 
Angle 

Error 
x y x y 

1 -1 0 -1 -0.07 4.00
o
 

1 0 1 0.04 1 2.29
o
 

1 1 0 1 -0.03 1.72
o
 

1 0 -1 -0.06 -1 3.43
o
 

2 -1 0 -1 -0.001 0.06
o
 

2 0 1 0.02 1 1.15
o
 

2 1 0 1 -0.03 1.72
o
 

2 0 -1 -0.15 -0.99 8.62
o
 

3 -1 0 -1 -0.05 2.86
o
 

3 0 1 -0.04 1 2.29
o
 

3 1 0 1 -0.04 2.29
o
 

3 0 -1 -0.03 -1 1.72
o
 

4 -1 0 -1 -0.03 1.72
o
 

4 0 1 -0.04 1 2.29
o
 

4 1 0 0.99 0.1 5.77
o
 

4 0 -1 -0.06 -1 3.43
o
 

5 -1 0 -1 0.03 1.72
o
 

5 0 1 0.05 1 2.86
o
 

5 1 0 0.98 -0.2 11.53
o
 

5 0 -1 0.02 -1 1.15
o
 

6 -1 0 Not Detected 

6 0 1 0.06 1 3.43
o
 

6 1 0 0.99 -0.17 9.74
o
 

6 0 -1 -0.06 -1 3.43
o
 

Average     3.44
o
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7.2 Discussions 

The experimental results of the proposed indoor navigation system presented 

previously show that we can utilize fisheye cameras to detect the user’s location and 

orientation. Meanwhile, a user can understand the surrounding environment and 

conduct the navigation by the proposed AR techniques. 

However, the proposed system still has some problems. As a user is moving far 

away from a fisheye camera, the detected locations will become more and more 

unstable. This is because the detected locations are computed by interpolation of four 

calibration points, but the pixels of farer objects will have higher distortion. Therefore, 

the actual distance between two neighboring pixels become larger at a far location 

from the camera, and the error of a few pixels might cause the interpolation result to 

be inaccurate. A similar problem will occur on the color edge mark detection. As the 

user is moving away from a fisheye camera, the region of the color edge mark in the 

omni-image will become smaller and hard to detect. A possible way to solve these 

problems is to use more cameras in the environment. Therefore, when a user moves 

away from a camera, it can be detected from another camera which is closer to the 

user. Furthermore, when a user’s feet are covered by obstacles, cameras may not be 

able to detect correct foot locations and may result in incorrect detected locations. 

This problem can be solved by the same solution mentioned above, which is to use 

more cameras. Another possible way is to detect the head point of the user, and then 

we can use the height of the user to estimate the foot location. 

Furthermore, our experimental environment is just a small region, so the 

client-side system can be connected to the server-side system through the Wi-Fi 

wireless network, which has a smaller access range. However, if we want to apply the 

proposed system in a larger environment, we might have to use a mobile 
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telecommunication network, such as a 3G or 4G network, to connect the both sides. 

The mobile telecommunication network has a larger access range than the Wi-Fi 

wireless network. Using mobile telecommunication networks can also reduce the 

costs of building Wi-Fi wireless networks. 

Finally, the proposed system can handle only one user at a time. If we want to 

enhance the capability for multiple user usages, we have to distinguish different users 

in the environment. A possible solution is to analyze images captured from the mobile 

device, and detect the features in the images to identify different users at different 

locations. 
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Chapter 8  

Conclusions and Suggestions for 

Future Works 

8.1 Conclusions 

An indoor navigation system by augmented reality and down-looking 

omni-vision techniques using mobile devices has been proposed. To design such a 

system, several techniques have been proposed as summarized in the following. 

1. A modified method for point transformation from an omni-image to the global 

coordinate system has been proposed, which is modified from a space-mapping 

technique [16]. The proposed method can provide point transformation for larger 

pixel region in omni-images than the adopted method, by which we can increase 

the utilization of the pixels of the omni-image. 

2. A method for human localization in indoor environments has been proposed, by 

which we can obtain a user’s location and orientation in an indoor environment. 

The orientation detection algorithm integrates three different techniques to detect 

the orientation of a user, and each of the techniques can make up the deficiencies 

of the others. 

3. A method for path planning for indoor environments has been proposed, which is 

based on the analysis of the floor plan drawing of an indoor environment. By this 

method, the system can provide a navigation path starting from a user’s location 

to his/her desired destination. 

4. A method for indoor AR navigation by overlaying visiting target information on 
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the real objects in scene images has been proposed, by which a user can 

understand the surrounding environment in an AR way from the overlaying 

visiting target information. 

5. A method for indoor AR navigation by overlaying a navigation path on the floor 

in scene images has been proposed, by which a user can follow a navigation path 

shown on the screen and reach his/her desired destination in an AR way. 

The experimental results shown in the previous chapters have revealed the 

feasibility of the proposed system. 

8.2 Suggestions for Future Works 

According to our experience obtained in this study, several issues and possible 

extensions of the proposed system worth further studies are listed in the following: 

1. Designing a background/foreground separation algorithm which can adapt to 

different lighting conditions and moving styles of non-human objects. 

2. Seeking a solution to the problem of human location detection in the situation 

that a user’s feet are covered with obstacles. 

3. Proposing a method for human orientation detection with higher precision and 

better stability, which can be accomplished by matching the image captured from 

the user’s mobile device with a pre-learned database to determine the orientation. 

4. Providing the capability for processing multiple environment maps, which can 

provide human localization in different floors of an indoor environment. 

5. Enhancing the system capability for indoor environments with multiple system 

users, which can distinguish different users in an indoor environment. 

6. Including more useful information in an environment map, such as merchandise, 

food, etc. A user can search by a keyword for what he/she wants rather than just 
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searching for the name of a visiting target. 

7. Collecting the images captured from cameras on users’ mobile devices, and using 

them to establish a virtual environment database, by which users can browse an 

indoor environment without going there. 
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