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容積陰影的時間適應性取樣演算法 

 

 

研究生: 林相宇 指導教授: 施仁忠 教授 

        張勤振 教授 

 

國立交通大學多媒體工程研究所 

摘 要 

繪製場景時，若能考慮空氣中的介質對光的影響，則可以大大增加真實性，達到像

是光束(light beam)或是神光(god ray)的效果，但是也因此必須考慮到光與空間中每個介

質的交互作用，例如散射和吸收的影響，導致計算量大大的增加，而且若空氣中的介質

並不唯一，也就是不同的介質在散射和吸收的特性不一樣，再加入此考量的話會更加的

複雜，所幸只考慮單一介質的結果已非常逼真，故此論文以單一介質為基本假設。本論

文的動機是考慮到取樣空間中既有的三個維度之外，還可以考慮時間維度下的取樣，針

對動態場景，考慮動的物體所產生的容積陰影所影響到的像素範圍來做更新，而沒被影

響到的區域使用前一畫面的資訊，如此一來，可以減少計算量，達到重複使用而得到加

速的效果，並且維持一樣的品質。 
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Temporally Adaptive Sampling for Volumetric Shadow Algorithms 

 

Student: Hsiang-Yu Lin              Advisor: Dr. Zen-Chung Shih 

                                       Dr. Chin-Chen Chang 

Institute of Multimedia Engineering 

National Chiao-Tung University 

 

ABSTRACT 

Scattering in participating media generates volumetric lighting effects known as 

crepuscular or god rays. Such effects greatly enhance the realism in virtual scenes. However, 

they are inherently costly as scattering occurs at every point in sampling space and thus it 

needs costly integration of the light scattered towards the observer. This is often done using 

ray marching which is too expensive for each pixel on the screen for interactive applications. 

We propose a method to reduce samples in time domain, which means that we can reuse the 

information from the previous frame. In dynamic scenes, to decide pixels that can not be 

reused, we create shadow volumes of moving objects and rasterize them. Using a stencil 

buffer to maintain the information of screen pixels needs to recompute or just use the old 

information. We show that our method is simple to implement and yields the same quality but 

with a specific speedup. 
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Chapter 1 

Introduction 

 

1.1 Motivation  

Global illumination effects, for example, indirect lighting, soft shadows, caustics, or 

scattering heavily enhance the realism of rendered virtual scenes. However, they need a lot of 

computational cost. It is challenging for real time applications. In particular, effects which 

involve participating media are complicated. Considering about participating media 

implicates that not only surfaces are concerned, but also it requires the evaluation of the 

scattering radiance at each point in space. Some simplifying assumptions, such as the 

limitation to single-scattered light only, are often made to ease computation cost. Fortunately, 

in many cases, these effects suffice to produce convincing results.  

 

We inherit this direction and concentrate on single-scattering effects (see Figure 1.1). 

Ray marching [20] is usually used, which needs to integrate inscattered light along a ray 

emanating from the camera. Consequently, the computation cost scales with the number of 

rays and samples along the ray. The previous work [23] uses down sampling to reduce the 

number of rays, and restricts ray marching regions to lit segments (shadowed regions do not 

contribute). Another approach [7] uses irregular sampling and interpolates to reduce number 

of rays. 

 

In this thesis, we show that several screen information can be reused in dynamic scenes, 

and thus we can reduce number of rays reusing the results from the previous frame. Therefore, 

the main speedup is coming from reusing, which means that we have to determine pixels on 
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the screen whether they are needed to be updated or not. We focus on moving objects that are 

changed frame by frame and we make a stencil buffer to mask pixels that are not reusable by 

rasterizing these objects. But this is not enough because participating media is involved. are 

also consider the shadow volume of these objects. This temporally adaptive sampling strategy 

can be combined into exist rendering systems without obviously quality loss and yields a 

definite speedup. 

 

 

 

 

 

 

 

 

 

 

1.2 System Overview 

Figure 1.2 shows the flow chart that includes two parts. The first part is surface lighting 

that we can do it quickly with openGL library. The second part is about scattering effects that 

consider about participating media. Figure 1.3 focuses on scattering lighting and shows the 

procedure of our proposed temporally adaptive sampling. First, we check whether that full 

quad of screen frame exists or not. If it does not exist, we compute it with the original 

Figure 1.1 Scattering effect 
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rendering technique. With the previous frame, we can focus on finding out which regions of 

the frame are needed to recompute due to moving objects. We first generate a stencil mask 

and use it to adopt ray marching. Finally, we combine the previous frame with the frame 

generated using the stencil mask. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3 Thesis Organization 

The rest parts of this thesis are structured in the following manner. First, in Chapter 2, we 

will review some related works in volumetric shadows and scattering. Then, Chapter 3 

introduces some background knowledge that is involved or used in this thesis. Chapter 4 

describes the major method and algorithm used in our temporally adaptive sampling for 

volumetric shadow. Chapter 5 describes some implementation details and Chapter 6 shows the 

results of our algorithm and makes some discussion. Finally, in Chapter 7, we give some 

conclusions and some future works. 

Shadow volume 

Shadow map 

Surface lighting 

Result  

Scattering effect 

Figure 1.2 Flow chart of our proposed algorithm 
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Figure 1.3 Temporal adaptive sampling of scattering effect  
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Chapter 2 

Related Works  

 

2.1 Scattering Effect 

Traditional method for computing volumetric shadows with single scattering is ray 

marching. For each pixel on the screen, a ray is cast from the eye. And approximated radiance 

is computed by sampling along the ray. If the point is occluded from the light, it is discounted 

from the integral. The ray terminates once it hits an object’s surface. 

 

Several research approaches work on solving single-scattering integral semi-analytically 

[18,21], but these studies ignore shadowing, which is often needed for realism and is the 

effect we focus on. Other methods like volumetric photon mapping [11,12] and line space 

gathering [22] dedicate to more difficult scattering issues, such as volumetric caustics or 

multiple scattering. These problems mentioned are far from real time on complex scenes. 

 

Max [14] computed the single-scattering integral by searching the lit parts on every ray 

using shadow volumes intersected with epipolar slices. Then analytically compute the integral 

on each lit part.  

 

2.2 Visibility Query 

Wyman and Ramsey [23] restricted sample regions with shadow volumes, and used a 

shadow map to further determine visibility inside the region. Hu et al. [9] used Wyman and 

Ramsey’s method [23] in their algorithm for interactive volumetric caustics. It works for 

simple occlusion, but it is slow when visibility boundaries become complex. 
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The algorithm of Billeter et al. [2] generates the shadow volume extruded from a shadow 

map and computes the lit segments with a GPU rasterizer. It performs well for low-resolution 

shadow maps. This means that the performance is dependent on shadow map resolution. If a 

4096
2
 shadow map is applied, the performance will be slow down as predicted.  

 

2.3 Epipolar Sampling 

Volumetric shadow problems can be simplified using epipolar geometry [7,14]. Max [14] 

updated the hidden segments of view rays along epipolar planes. Then he computed scattering 

integrals of lit segments analytically, implying that complexity of the visibility function is 

proportional to integration cost. The shadow volume algorithm is dependent on scene 

complexity.  

 

Recently, Engelhardt and Dachsbacher [7] noticed that values of the scattering integral 

vary smoothly along epipolar plane lines in most cases except at depth discontinuities. They 

sampled more at discontinuities occurred due to occlusion in image space. A Z-buffer is used 

for detecting, and visibility is queried from the shadow map. Compared to ray marching, this 

sampling strategy can speed up for most cases. 

 

Incremental integration method is proposed by Baran et al [1]. They used epipolar 

rectification to reduce computation of scattering integral and accelerate this computation with 

a partial sum tree. This method is very fast on the CPU, but hard to implement to GPU due to 

incremental traversal of camera rays in specified order. For utilizing GPU parallelism, Chen et 

al. [4] used a 1D min-max data structure to avoid dependence between camera rays. They do 

not have to do camera rectification and avoid processing twice as many as camera rays. Their 
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results show that their approach can speed up and slightly obtain better quality. Wyman and 

Ramsey [24] also utilized epipolar space with voxelization. They reduced visibility query cost 

by voxelizing the scene into a binary, epipolar space grid. A fast parallel scan is then used to 

identify shadowed voxels. Once identified, a texture can be built according to this voxelized 

shadow volumes. Then, 128 visibility samples along the eye ray can be done with a single 

texture fetch.  

 

Engelhardt and Dachsbacher [7] reached a definite speedup. However, there are some 

improvements by reusing temporal information. Our method focuses on this part, and shows a 

slighter speedup with almost the same quality. 
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Chapter 3 

Background Knowledge 

 

3.1 Participating Media 

Considering particles in the air, intensity is modified through emission, absorption, 

in-scattering, and out-scattering. The discussion of these phenomena is not in the scope of this 

thesis. We only focus on discussing homogeneous single-scattering media. 

 

The following equation based on the discussion by Nishita et al. [17] is used in our 

model: 

L =  Lattn+Lsctr  

    =  Lse
-(ka+ks)ds+ ∫ ksρ(α)

ds

0

I0

d
2 e-(ka+ks)(d+x)dx ,     (1) 

 

where two terms Lattn and Lsctr represent attenuated light reflected from surface point s and 

additional light contributed by in-scattering along the viewing ray, respectively. The radiance 

reflected from s towards the eye is marked as Ls, light’s emitted radiance is I0, the distance 

from the eye to s is ds, and the distance from the light to an arbitrary point on the viewing ray 

at distance x from the eye is d, as illustrated in Figure 3.1. Absorption and scattering 

coefficients are ka and ks, respectively, and phase function is ρ(α). 
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Figure 3.1 Symbols along a viewing ray. [23] 

 

Figure 3.2 (Left) Ignoring segments with no contribution, we compute only 

segments from eye to d1, d2 to d3, and d4 to d5. (Right) [23] 
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3.2 Volumetric Shadows 

We can render volumetric shadows by using shadow volumes [3,15]. Regions between 

shadow quads are the key points, because they have I0 = 0 and thus make no contribution to 

the integral in Equation 1. We can compute each illuminated interval by splitting the integral 

of the following equation and Figure 3.2 (left) shows an illustration. 

 

Lsctr=kSI0 [∫ f(x)dx+ ∫ f(x)dx+ 
d3

d2
∫ f(x)dx

d5

d4

d1

0
], (2) 

 

where f(x)=
p(𝛼)

d
2 e-(ka+ks)(d+x). According to [21], every illuminated segment along the viewing 

ray can be simplified to two lookup functions. Front facing polygons and back facing 

polygons are positive and negative contributions, respectively.  

 

However, some shadow polygons are unnecessary to the computation. As shown in 

Figure 3.2, parts of shadow polygons overlap, and certain polygons are valid in certain 

regions. Solving these problems requires repeated depth peeling in order to sort shadow quads 

[3]. It is costly because even for simple scenes, it needs numerous passes. Moreover, 

rendering shadow quads spends significant fill rate for stencil shadow pass. 

 

Other approaches such as volume rendering technique [6], or ray marching [13] have to 

take care about shadow boundaries, which take additional work. 

 

Therefore we adopt a hybrid method proposed by Wyman and Ramsey [23], which uses 

ray marching to eliminate the soring requirement of shadow volume approaches and only ray 

marching in regions where shadows exist. They used shadow volumes to distinguish the 

shadow regions of each ray. 
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3.3 Hybrid Ray Marching and Shadow Volume 

Instead of sampling all the points of a viewing ray, this hybrid method samples in certain 

regions. The basic idea can be described as follows: Render shadow volumes from light 

direction, store the distance between front-most polygons and also store distance between 

back-most polygons. These distances will help us determine regions where shadows exist. As 

shown in Figure 3.2, if samples are between eye and d1, d4 and d5, they are lit. For the lit 

segments, use the air-light model [21] directly. Other samples which in the regions between 

front-most and back-most seen from eyes are determined visibility by the shadow map. 

 

Rendering procedure is shown as follows: 

1. Render a shadow map. 

2. Store distances between shadow polygons and the eye (front-most and back-most 

only). 

3. Render the scene without shadows. 

4. Render single-scattering effects and pixels encountered no shadow quads are 

computed by the air-light model [21] directly. The rest pixels of each lit segment are 

determined using the shadow map, and the contribution can be computed by the 

air-light model. 

5. Combine Lattn and Lsctr as results. 

 

This ray marching technique can reach a definite speedup compared to the traditional ray 

marching. However, ray marching with participating media still consumes a lot of 

performance. Therefore, we propose a temporal sampling to reduce samples in dynamic 

scenes. Our basic idea is to reuse information that is not changed from the previous frame. 

More details are introduced in Chapter 4.  
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Chapter 4 

The Algorithm 

 
We develop a novel real-time sampling algorithm for dynamic scenes with moving 

objects. Acceleration is coming from reducing number of samples for ray marching. The 

concept of temporal sampling is reusing. We consider what is changed in the current frame. 

For the part that is not changed, we can directly use the information from the previous frame. 

Effects we care about are god rays or crepuscular rays that generated by considering 

participating media. Because of participating media, samples in the scene volume influence 

the results of ray marching. This is important for deciding pixels whether they are changed or 

not. If visibility of samples in the scene volume along a viewing ray is changed, this ray 

should be computed. Otherwise we directly use the ray marching results of the previous frame. 

Thus a stencil mask is built for classifying pixels. This mask is made from considering the 

shadow volume of moving objects and moving objects. We need the current positions and the 

previous positions of moving objects to generate such a mask. We will describe more details 

in the following sections. 

 

4.1 Shadow Volumes of Moving Objects 

We generate a shadow volume of moving objects because the visibility of particles 

within the shadow volume will be changed. Therefore, ray marching results of the pixels will 

be different since we consider participating media. Therefore, the shadow volume of moving 

objects is an important part to indicate changed pixels of the screen. 

 

Assume that we know what objects are moved. We generate the shadow volume within a 

shader. First, silhouettes of the moving object are generated. Then two more vertices for each 



  

13 
 

silhouette are added to produce shadow polygons. Figure 4.1 shows the whole scene and the 

moving object is the dragon. Figure 4.2 shows the stencil mask generated from the object and 

the shadow volume. Light is in the left of the scene. The mask marks the changed results of 

ray marching which can not be reused. The results of ray marching of other parts remain the 

same as the previous frame.  

 

4.2 Dynamic Mask 

The stencil mask of current moving objects is not enough for specifying all changed 

pixels, because it only includes samples that are changed from visible to invisible. We should 

also consider visibility of samples that are changed from invisible to visible. This usually 

happens in the shadow volume of moving objects of the previous frame. 

 

Both the previous and current shadow volumes of moving objects are considered. 

Actually, we consider all shadow volumes of moving objects from the previous frame to the 

current frame. But since the time step between two frames is very small, the previous and 

current shadow volumes of moving objects can approximately cover all pixels that we want to 

mask. Figure 4.3 shows that we back trace positions of moving objects of the previous frame 

and generate shadow volumes of them, and do the same procedure for the current frame. 

Notice that there is no need to compute all pixels in the current frame. We show all the scenes 

just for helping understanding. Figure 4.4 shows that we combine two stencil masks from 

Figure 4.3. This combined mask help indicate which pixels are needed to ray marching due to 

movements of objects. We then use it to compute pixels that are marked changed. Figure 4.5 

shows that we combine the results from the previous frame and the current frame by updating 

red regions from the previous frame. 
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Figure 4.1 The whole scene with scattering effects 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.2 The mask of moving objects and the shadow volume 
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Experiments show this approximate strategy can handle all changed pixels expect the 

frame rate is slow. In some special cases, such as scenes with a lot of moving objects, scenes 

with sophisticated objects or moving objects covering almost all screen pixels, our algorithm 

can not perform well. The frame rates of these special cases are slow. Difference will become 

a little more obvious in these cases. Totally, the quality can remain the same. We capture the 

frames produced with our algorithm and the hybrid ray marching. The difference image of 

these two frames shows zeroes for all pixels if the frame rate is high. We notice that types of 

motion also affect the dynamic stencil mask. A linear motion will not lose pixels in general, 

but a rotate motion may leave some pixels out of the mask. We can handle this situation by 

updating whole frames with a definite number of frames. We call this number the reused 

frame number, and give more details in the following chapter. Using a large time step to build 

the mask is also a solution, but it will cause much overhead since more shadow volumes are 

needed.  
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Stencil mask from the previous frame Stencil mask from the current frame 

 

Previous frame 

Current frame with blue 

objects moving to the right 

Back trace moving objects and generate 

the shadow volume of them 

Generate the shadow volume 

of moving objects 

Figure 4.3 Generate shadow volumes of objects of the 

previous frame and current frame 
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Combine 

Figure 4.4 Generate a stencil mask from the 

generated shadow volume 

 

Stencil mask for regions that are 

needed to do actually ray marching 

Ray marching for only red regions 
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Combine 

Update red regions of the previous 

frame 

Result 

Figure 4.5 Combine results from the previous 

frame and current frame 
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Chapter 5  

Implementation Detail 
  

We develop our algorithm based on openGL and GLSL. Most jobs are stored as textures 

from different rendering passes and combined to get the rendering effects. Our temporally 

adaptive sampling technique dedicates to reducing samples by reusing ray marching results 

from the precious frame. Therefore, at least two rendering passes are added to the rendering 

system. One is for building a stencil mask and another is for combining the reusable parts and 

the actually recomputed parts. 

 

5.1 Stencil Mask Setting 

As Figure 4.4 (red parts) shows, our mask includes not only rasterization of moving 

objects and the shadow volume, but also the parts in the previous frame. This is done with 

stencil operations and stencil function sets. Stencil operations specify actions when stencil or 

depth tests pass or not. When building this mask, we do not need to consider about depth 

information and depth test is disabled. Stencil functions specify stencil tests that decide 

whether pixels pass the mask or not. During the rendering pass, all the changed parts of the 

screen will be set to non-zero in the stencil mask. Therefore we use GL_NOTEQUAL 

parameters to distinguish pixels which need ray marching.  

 

After setting stencil operations and stencil functions, a shader is performed to generate a 

shadow volume of moving objects. We perform this shader twice separately for the current 

positions of moving objects and the same moving objects but with positions of the previous 

frame. Pixels with different ray marching results due to moving objects are then marked as 

non-zeroes in the stencil mask. 
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Note that as above mentioned, we store different rendering passes as different textures. 

We use off-screen rendering techniques to do so. Frame buffer object of openGL is convenient 

to do this, but it is only a manager of memory to help us control off-screen render. Each 

render buffer should be created before it is used, such as depth buffer, stencil buffer and so on. 

 

5.2 Combine Temporal Frame 

Once we finish building the stencil mask, a texture with results of the changed parts can 

be generated, as shown in Figure 4.2. We need to compute the whole scene at least once and 

imagine it as background. Then a shader is applied to combine this background texture and 

the current changed part of the texture. Actually it is not necessary to process every pixel. We 

just take the background texture as render targets and process only pixels that are within the 

stencil mask. 

 

The reused frame number should be taken into account with this combined strategy. We 

compute the whole scene per this reused frame number (see Figure 5.1). Assume the camera is 

fixed, we only need to compute the background texture once. We can get the best speedup in 

this case. That is, assume that we generate a background texture where whole pixels are 

considered taking 200ms and a texture with only pixels covered by stencil mask taking 50ms. 

If we reuse the more frames, the closer to 50ms per frame we can reach (see Figure 5.2). In 

our case, we set the reused frame number to 3, because the stencil mask sometimes can not 

fully cover the regions that we want. If we set the reused frame number to more than a 

definite number, some unwanted colors would be accumulated and it produces obvious 

artifacts, as shown in Figure 5.3. Fortunately, 3 reused frames can achieve almost 70% of the 

best speed. 
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Figure 5.1 Reused frame number = n-1 
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scene f1 
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Figure 5.2 Relation between reused frame number 

and frame rate for scene “dragon” 
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Figure 5.3 Artifacts when reused frame number 

exceeds a number. (a) Normal (b) with artifacts 

(a) 

(b) 
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Chapter 6 

Results and Discussion   
 

We run our algorithm on a PC with 3.33 GHz Core™ i7 CPU and 8.0GB of memory. 

The graphics card is an NVDIA GeForce GTX 295. Table 6.1 shows the running time of our 

temporally adaptive sampling and of the hybrid ray marching. In most scenes, such as dragon, 

bunny and buddha, we can reach a definite speedup with almost the same quality. However, 

the speedup is coming from reusing ray marching results from the previous frame. Therefore, 

performance is directly proportional to moving objects and the shadow volume of the moving 

objects covering pixels. Moving objects of scenes “donuts & dragon” cover almost the whole 

scene, as shown as Figure 6.2. Therefore, there is no speedup due to reuse rare pixels. Figure 

6.3 and Figure 6.4 gain more speedups due to less pixels are changed, which means that we 

reuse most parts of the previous frame. Figure 6.5 shows the scene bigScene. The speedup is 

not so obvious due to more moving objects. We generate the shadow volume of moving 

objects so that more objects will produce more overhead. Besides, the big dragon covers 

almost fifty percent of the screen. Figure 6.6 shows less speedup to scene yeahRight which is 

because of sophisticated model and the overhead of building shadow volumes making frame 

rate increasement limited.  

 

There are three factors for affecting speedups: the number of moving objects, the stencil 

mask occupying pixels and the complexity of moving objects. All these factors exist when the 

performance of our algorithms becomes slow. As shown in Table 6.1, scene donuts & dragon 

is slow because of the number of moving objects and the stencil mask occupying pixels. 

Scene bigScene is due to the number of moving objects and scene yeahRight is influenced by 

the complexity of moving objects. Generate a shadow volume for our stencil mask is an 
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important reason to these factors. We could improve this condition by a more efficient method 

to generate shadow volume of moving objects.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scene Our approach (fps) Hybrid ray marching (fps) 

dragon 46.08 35.24 

bunny 59.93 44.73 

buddha 58.76 41.63 

donuts & dragon 41.32 43.31 

bigScene 31.54 28.78 

yeahRight 29.34 26.75 

Table 6.1 Results of scenes 
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Figure 6.1 Scene “dragon”. 

(a) 46.08 fps by our algorithm, (b) 35.24 fps by hybrid ray 

marching 

(a) 

(b) 
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(a) 

Figure 6.2 Scene “donuts & dragon”. 

(a) 41.32 fps by our algorithm, (b) 43.31 fps by hybrid ray marching 

 

(b) 
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Figure 6.3 Scene “bunny”.  

(a) 59.93 fps by our algorithm, (b) 44.73fps by hybrid ray marching 

 

(a) 

(b) 
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 Figure 6.4 Scene “buddha”.  

(a) 58.76 fps by our algorithm, (b) 41.63 fps by hybrid ray marching 

(a) 

(b) 
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Figure 6.5 Scene “bigScene”. 

(a) 31.54 fps by our algorithm, (b) 28.78 fps by hybrid ray marching 

(a) 

(b) 
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Figure 6.6 Scene “yeahRight”. 

(a) 29.34 fps by our algorithm, (b) 26.75 fps by hybrid ray marching 

(a) 

(b) 
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Chapter 7  

Conclusions and Future Work 
 

In this thesis, we propose a temporally adaptive sampling method and actually reduce 

sample numbers needed. We achieve a definite speedup compared to [23] and we believe that 

more speedups can be reached if this method is adopted to ray marching techniques with 

better quality, because down-sampling has been done with the proposed rendering techniques. 

Besides, this method can be easily integrated to other rendering techniques due to two 

rendering passes are needed only.  

 

There are some limitations in our method. If moving objects and their shadow volumes 

cover too many pixels of the screen, speedup will be limited. And if the camera is keeping 

moving, there will be no pixels reusable. Therefore, we show a little speedup or no speedup in 

these cases. 

 

In the future, we want to generate the stencil mask more efficiently. Save the stencil 

mask of the objects of the previous frame and adopt it in the current frame when they are 

detected moving, since we need to generate shadow volumes of the objects to compute ray 

marching results. Another feasible method is to generate a shadow volume from a shadow 

map. Besides, a dynamic detection of changed parts of the stencil mask can be applied to 

decide whether using this sampling method or not. If moving objects and their shadow 

volumes cover over a definite percentage of the screen, we do not use this method. 
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