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摘 要 

我們提出一個基於光滑粒子流體動力學法(Smoothed-Particle Hydrodynamics)來

模擬蠟燭融化。藉由使用幽靈粒子(ghost particle)並且確保橫跨固體邊界的密度場

是連續的，融化後的液體可以自然地沿著表面流動，而不需要使用人工的界面張

力。除此之外，藉由設定特別的幽靈速度(ghost velocity)以及使用平均後的速度

場(XSPH)，流體的附著度可由一個直覺的參數調整。為了模擬融化的過程，一

個完整的熱傳導被提出。熱傳導系統不止模擬粒子間的熱流，還模擬了和環境的

熱交換。相變包含了固體到液體以及液體到氣體，它的發生是由模擬出來的溫度

所決定。我們分裂粒子來保留黏滯液體因流動所產生的線狀物。螢幕空間顯像被

用來呈現模擬結果。為了捕捉輪廓鮮明且凸出的液滴形狀，本來用於代表一顆粒

子的球被拉長成橢球。 
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ABSTRACT

We propose a SPH-based particle simulation for candle melting. By using ghost parti-

cles and ensuring the continuous density field across the solid boundary, the melting liq-

uids can flow along the surface naturally without applying artificial interfacial tension.

Moreover, by setting specific ghost velocities and applying XSPH, the stickiness of the

fluid can be controlled easily by an intuitive parameter. To simulate the melting process,

a complete thermal transfer is proposed. The thermal transfer system simulates not only

the heat flow between particles but also the heat exchange with the environment. Also,

the occurrence of the phase transition, including solid-to-liquid and liquid-to-air, is de-

termined by the simulated temperature. We split the particles to preserve the shape of

thread formed by the flow of viscous liquid. Screen space point splatting method is

applied to display the simulation result. The sphere originally used for representing the

particle is stretched to the ellipsoid to capture the sharp and protruded shape of droplets.
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C H A P T E R 1

Introduction

Particle-based simulation has been an active research topic for many years and has re-

ceived a great deal of attention. Different from grid-based simulation which is an al-

ternative of physically-based simulation approach, particle-based simulation is suitable

for simulating deformable objects, such as clothes, elastic objects , and melting materi-

als. In this thesis, we focuses on the simulation of candle melting behavior, which is a

common phenomenon in our daily life.

Although several methods for object melting simulation have been proposed, some

problems require further study. First, the flow of melting liquid on the solid surface

has been less studied. When the solid candle melts, the melting liquid needs to flow

along the surface smoothly. Second, because the melted wax is a viscous material, it

usually forms a thread on the way it flows. Third, most of the previous thermal transfer

systems consider only the heat diffusion within material and do not simulate the heat

exchange with the environment, which is important for candle melting. Finally, the

shape of flowing viscous droplets on the surface is usually sharp and protruded, which

might be smoothed by the current fluid surface reconstruction.

1
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In this thesis, we develop a framework for candle melting and rendering. To deal

with the solid boundary condition, we consider the solid particles as ghost particles that

can contribute to the density summation. In addition, we sample air ghost particles

near the free surface of the fluids. By making the density field continuous across the

solid boundary, the melting liquids could flow on the surface naturally without the in-

volvement of artificial interfacial tension. Moreover, by setting specific ghost velocities

for solid particles and applying XSPH, the stickiness of the melting liquids could be

controlled easily by using an intuitive parameter.

A complete thermal transfer system is proposed. It simulates not only the heat flow

between particles but also the heat exchange with the environment. The phase transi-

tion from solid to liquid is simulated by varying the viscosity of the material with the

simulated temperature. We also remove the particles that are overheated to simulate the

phase transition from liquid to air.

To preserve the shape of thread formed by the flow of melting liquid, we propose

a framework of particle splitting that is physically-inspired. The split criteria simply

consider the forces exerted on the particle and do not require complex mathematical

analysis. The result shows that we could preserve the thread properly. Besides, to

intuitively model the shape of the thread, split particles are placed behind, instead of

symmetrically around the original one.

We render the fluid using screen-space rendering with Translucent Shadow Map

(TSM) for obtaining interactive frame rate. To capture the protruded and sharp detail of

droplets, we stretch the sphere into the ellipsoid for representing particles.

1.1 Contribution

The contributions of the proposed candle melting framework can be summarized as

follows:
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• By utilizing the concepts of ghost particles and making the density field contin-

uous across the solid boundary, the melting liquids could flow along the solid

surface naturally without the need of applying artificial interfacial tension. Also,

the stickiness of the fluids could be controlled by using an intuitive parameter.

• Propose a physics-inspired particle split operation for preserving the thread formed

by the flow of melting liquid. Because the split criteria are physically-based

that do not involve complex mathematical analysis, such as Principal Component

Analysis (PCA), the computation is more efficient.

• Capture the sharp and protruded shape of the melting liquid in the process of

rendering, instead of increasing the amount of particles involved in the simulation.

By stretching the sphere into the ellipsoid and setting appropriate orientation, the

detail of droplets can be better revealed.

1.2 Organization of the thesis

The rest of the chapters are organized as follows. Chapter 2 gives a literature re-

view for SPH fluids, melting and flowing, and related particle-based fluid rendering

approaches. Chapter 3 illustrates the proposed method, including the particle-based

simulation framework, thermal transfer simulation in fluid elements, adaptive particle

sampling scheme in object melting, and the screen space rendering approach. Chapter

4 shows the experimental results of our approach. Lastly, we summarize a conclusion

and discuss the future work in chapter 5.
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Related Work

In this chapter, we briefly review the related works in several parts: SPH-based fluids,

melting and flowing, and particle-based fluid rendering.

2.1 SPH-based Fluids

The Smoothed Particle Hydrodynamics(SPH) method, originally developed for simu-

lating the astrophysical problem [Mon05], was first used by Desbrun et al. [DC96] in

computer graphics field to animate highly deformable objects. This method can handle

complex and large topological deformation and satisfies the mass conservation equation

easily because it is inherently a lagrangian-based simulation approach.

Later, Müller et al. [MCG03] introduced a SPH-based fluid simulation scheme for

interactive applications by deriving the equation of pressure, viscosity and surface ten-

sion term, and using the appropriate smoothing kernels (Figure 2.1). Since then, the de-

velopment of largrangian-based fluid simulation, especially using SPH, has made great

progress.

4



2.1 SPH-based Fluids 5

Figure 2.1: Three smoothing kernels Wpoly6, Wspiky and Wviscosity (from left to right).

The thick lines are the kernels, the thin lines are the gradients in the direction towards

the center, and the dash lines are the Laplacian [MCG03].

However, how to ensure the incompressibility of fluids in particle-based simulation

is a challenge problem. In [MCG03], [BT07], and [APKG07], the particle pressure is

determined by an equation of state(EOS). Solenthaler et al.[SP09] enforced incompress-

ibility by purposing a prediction-correction scheme to solve particle pressure. Their

method not only avoided the computational cost of solving a pressure Poisson equation

but also enlarged the simulation time step. Hence, they achieved an order of magnitude

speed up for the entire fluid animation. Raveendran et al. [RWT11] achieved the in-

compressibility of particle-based fluid animation by solving the Poisson equation on the

coarse grid to enforce a divergence free velocity field.

Besides, the discretization resolution limitation is another problem because low res-

olution animation often limits the amount of detail that could be represented. The com-

putation time and the simulation quality are always the trade-off. Thus, how to allocate

more particles at the region of interest becomes a popular research topic. Adams et al.

[APKG07] split and merged particles based on the extended local feature size(ELFS) de-

fined on each particle. They split the particle if its ELFS is low, which indicates that this

particle is near the fluid surface. Vice versa, they merged those particles whose ELFSs

are high, which indicates that the particles are inside the fluid volume or near a thick flat
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surface. Solenthaler et al. [SG11] proposed a two-scale method for particle-based fluid

simulation. By simulating particles with the same size within each simulation level and

applying the feedback force between them, Solenthaler et al. avoided the operation of

particle split and merge and allowed the simulation of particles in large size differences

without introducing the stability problem. Ando et al.[ATT12] preserved fluid sheets of

animated liquids with an adaptively sampled method. They first detect the thin sheet

area by analyzing the distribution of neighbor particles. This process generally follows

by the algorithm for determining the stretch and the orientation of anisotropic kernels

proposed by Yu et al. [YT10]. Ando et al. use it as a criterion to determine whether

a particle is located at the thin sheet. After extracting the thin sheets, they detect the

candidate positions where the particles should be placed. See Figure 2.2.

Figure 2.2: Preserve thin sheets by inserting the particles[ATT12].

2.2 Melting and Flowing

To simulate object melting using particle-based approach, we have to pay attention to

the simulation of thermal dynamics and the interaction between the solid surface and the

melting liquid. The first issue can be deal with intuitively, and no matter the simulation

is grid-based or particle-based. The second has not received much attention in the cur-

rent object melting simulation. Several methods [CMRBVHT02][PPLT06][PPLT09][SSP07]

proposed for simulating the object melting do not address the flow of melting liquid on

the surface of the solid object. In the following paragraphs, we briefly review the previ-
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ous methods that are related to the object melting simulation.

Carlson et al. [CMRBVHT02] modified the Marker-and-Cell (MAC) algorithm to

simulate the high viscosity materials, introduced a heat diffusion equation to handle the

change in temperature, and varied the material’s viscosity according to the temperature

for simulating the phase transition process. Paiva et al. [PPLT06] [PPLT09] simulated

the non-Newtonian fluids by using the jump number, which is a new rheological param-

eter of a viscoplastic fluid and determines the viscosity of the material. Similar to the

method proposed in [CMRBVHT02], Paiva et al. only took the heat diffusion into con-

sideration and interpolated the jump number according to the temperature to simulate

the process of the phase transition. In [SSP07], Solenthaler et al. proposed a unified

particle model for fluid-solid interaction. They only considered the heat diffusion be-

tween particles and linearly interpolate Young’s Modulus and the viscosity to simulate

the phase transition. However, they do not handle the particle penetration problem.

Iwasaki et al. [IUDN10] simulated the ice melting and focused on the flows and the

motion of the melt liquids on the solid as well. They took not only heat diffusion but

also the heat radiation into consideration. The radiation energy from the heat source is

assumed to be transfered by a set of photons [FM07]. However, the radiation energy

carried by the photons do not attenuate with the distance and the thermal dissipation

is not considered. Besides, Iwasaki et al. used a simple and artificial force model to

simulate the interfacial tension between water-water and water-ice particles; see Figure

2.3. With these interfacial attraction forces, the meltwater could form a thin film of

water that surrounds the ice and form a water droplet at the bottom of the ice. However,

it needs additional parameters tunning to obtain the desired result.

Maréchal et al. [MGG+10] proposed several thermal transfer rules based on physics

to synthesize realistic winter sceneries. Three types of heat transfer are considered:

conduction, convection, and radiation. Figure 2.4 demonstrates the heat transfer model.
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Figure 2.3: Interfacial tension in [IUDN10].

Figure 2.4: Thermal transfer in [MGG+10].

2.3 Rendering

Nowadays, marching cube may be the most well-known surface reconstruction method

for fluid rendering. To generate the triangular mesh for particle-based fluids, we need

to first construct the density field of the particles, and then find the iso-surface using

the marching cube algorithm. The major concern of this approach is that the quality

of marching-cube reconstruction depends on the grid resolution and the preciseness of

density field constructed.

Researchers try to either speed up or improve the surface reconstruction algorithm.

Akinci et al. [AIAT12] speeded up the algorithm by applying the marching cube algo-

rithm only near the band of the fluid surface. Ho et al. [HWC+05] solved the ambiguity



2.3 Rendering 9

problem by converting 3D marching cubes into 2D cubical marching squares. Yu et

al. [YT10] analyzed the distribution of the nearby particles by using weighted princi-

ple component analysis (WPCA), and applied the anisotropic kernel for each particle

to construct the density field to better reveal the particle density distribution. Although

improvement have been made, the marching cube algorithm cannot be performed in

realtime.

Screen space point splatting method proposed by Cords et al. [CS08] may be the

fastest particle-based fluid rendering approaches because they only generated the surface

visible to the camera and eliminated the requirement of mesh generation [MSD07].

Cords et al. generated a 2D smooth depth map from the visible particles and the surface

normals of the fluid are obtained from the smoothed depth map. Finally, the surface

shading is carried out in screen space by using the surface normal and the depth obtained

from the previous steps. Moreover, screen space point splatting method is easy to be

post-processed so that we could remove some artifacts or enhance the detail that is

not captured in simulation. Cords et al. [CS08] used a Binomial filter to smooth the

fluid surface. van der Lann et al. [vdLGS09] smoothed the surface by minimizing the

curvature and additionally applied the noise texture to enhance its quality.

However, differed from rendering a bulk of fluid, such as water, the subtle and sharp

shape of the melting liquids and the droplets need to be captured carefully. In [CS08]

and [vdLGS09], they approximated the smooth fluid surface by rendering particles as

spheres and did not emphasize the sharp shape of droplets. In [vdLGS09], they used

Perlin noise to add the foam-like effects that do not appear in object melting.
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Candle Melting
Framework

3.1 Overview

The aim of this study is to simulate the candle melting behavior naturally. First, the

thermal radiation, conduction and dissipation are simulated and the phase transition

from solid to liquid will take place when the temperature reaches the melting point,

and the liquid particles near the candle flame transits to the air when they are burned.

Second, the melting liquid usually moves along the solid surface smoothly and forms a

thread on the solid surface, and in some cases leaves the solid object and falls down due

to gravity.

Figure 3.1 is the flow of our candle melting algorithm. First, giving a candle model,

we sample it with a set of particles and compute neighbors for each particle. Then,

we compute the temperature of each particle by simulating the heat transfer between

particles. Three types of thermal transfer are considered: thermal radiation, thermal

10
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Figure 3.1: System flow of our algorithm.
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conduction, and thermal dissipation. Once the temperature of a particle reaches the

melting point, the phase transition from solid to liquid takes place and the viscosity

of melting liquid also varies according to the temperature. Moreover, to simulate the

combustion, the liquid transits to the air when it reaches the flash point.

To reveal the realistic cohesion between melting liquids and solids and prevent liquid

particles from penetrating the solid, we consider solid particles as ghost particles, and

assign some elaborate attributes to them. We also compensate density deficiency near

the free surface by sampling air particles that are viewed as ghost particles. The fluid

particles thus can distribute evenly on the solid surface instead of being clustered to a

shell. After solving Navier-Stokes equation using SPH, we cloud determine the velocity

of each particle. However, in order to damp off the unphysical particle oscillation and

allow the melting liquids flow smoothly on the solid surface, we further smooth the ve-

locity of each liquid particle by applying XSPH to nearby particles. Besides, to simulate

the thread formed by melting liquids, we also split the liquid particle dynamically.

We use screen space rendering approach to display the simulation result. To model

the shape of viscous melting liquids flowing on the surface, we stretch the particle’s

sphere to the ellipsoid. The stretchiness and the orientation of the ellipsoid are different

according to the shape we want to model.

3.2 Fluid Simulation Framework

In this section, we first describe the framework of the fluid solver, and how we formulate

the force exerted on the fluids by using SPH. Then, we explain the concept of using ghost

particle in the object melting simulation.
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3.2.1 SPH formulations and Navier-Stokes equation

SPH is an interpolation method defined on the particle system. With SPH, fluid at-

tributes could be evaluated at discrete particle positions by using a symmetric radial

function. According to SPH, a scalar quantity A at location r could be interpolated by a

weighted sum of contributions from the neighbor particles:

A(r) =
∑
j

A(rj)
mj

ρj
W (r− rj, h), (3.1)

where j iterates over neighbor particles, mj is the mass of the particle j, rj is the location

of the particle j, ρj is the density define on the particle j, A(rj) is the quantity at rj .

The function W is a symmetric radial function with the kernel size h. We compute the

density at r by using

ρ(r) =
∑
j

mj
ρj
ρj
W (r− rj, h) =

∑
j

mjW (r− rj, h), (3.2)

which is also a derivation of Equation 3.1.

With SPH, the derivatives of field quantities only affect the smoothing kernel, so the

gradient and Laplacian of A at location r could be derived easily by Equation 3.3 and

3.4

∇A(r) =
∑
j

Aj
mj

ρj
∇W (r− rj, h) (3.3)

∇2A(r) =
∑
j

Aj
mj

ρj
∇2W (r− rj, h) (3.4)

Fluids are often described by a velocity field v, density field ρ, and pressure field p.

The evolution of these quantities over time is governed by two equations. The first is

mass conservation equation

∂ρ

∂t
+∇ · (ρv) = 0. (3.5)
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The second is Navier-Stokes equation which formulates the conservation of momentum

ρ(
∂v

∂t
+ v · ∇v) = −∇p+ µ∇2v + ρg, (3.6)

where µ is the viscosity of the fluid, and g is external force field. Because we use the

particle system to model the entire fluid, both of these two equations could be further

simplified. First, because the number of particles is constant and each particle has a

constant mass during the whole simulation process, mass conservation is guaranteed

naturally. Second, since the particles move with the fluid, the convective term v · ∇ v

is not needed for the particle system. That is,

ρ(
∂v

∂t
) = −∇p+ µ∇2v + ρg. (3.7)

There are three forces on the right hand side of the Equation 3.7 modeling pressure,

viscosity, and external forces. We could formulate these force density terms acting on a

particle i using SPH as follows [MCG03]:

fpressurei = −∇p = −
∑
j

mj
(pi + pj)

2ρj
∇W (ri − rj, h) (3.8)

fviscosityi = µ∇2v = µ
∑
j

mj
(vj − vi)

ρj
∇2W (ri − rj, h) (3.9)

To compute the pressure term in Equation 3.8 for each particle, we use ideal gas

state equation

pi = k(ρi − ρo), (3.10)

where k determines the incompressibility of the fluid, ρi is the density defined on the

particle i, and ρo is the rest density of the fluid [DC96].

After computing all the forces exerted to the particle i, the acceleration of it can be

computed by using Equation 3.11.

ai =
fi
ρi

=
fpressurei + fviscosityi + ρig

ρi
, (3.11)
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where ai is the acceleration of particle i. The velocity and the position of the particle i

is then updated using Equation 3.12 and 3.13.

v∗
i = vi + ai∆t, (3.12)

where v∗
i is the updated velocity and ∆t is the time interval, and

r∗i = ri + v∗
i∆t, (3.13)

where r∗i is the updated position.

3.2.2 Smooth flow of melting liquids

To reveal the cohesion phenomenon between solid and melting liquid and let the melting

liquid flows smoothly on the solid surface, we apply the concept proposed by Schechter

et al.[SB12] in our object melting simulation. First, by using ghost particles near fluid

boundary, we prevent the density of a liquid particle from being under-estimated, which

introduces obvious artifacts in SPH simulation. Second, by making the density field

continuous across the solid boundary, we could reach no-penetration and no-separation

solid-liquid boundary condition easily. Finally, we apply an artificial viscosity to damp

off the non-physical oscillations and obtain smooth fluid behavior when the melting

liquid flow on the solid surface.

Ghost particle Obviously, the fluid density distribution computed by Equation 3.2 is

not even because the amount of neighbors between interior and boundary liquid particles

differs. The pressure equation (Equation 3.10) leads to a case that particles near the

boundary are clustered to a shell, aiming to rebalance the density; see the Figure 3.2 .

To correct the density summation for a fluid particle near the boundary of the fluid,

we first consider solid particles as ghost particles with mass equal to the liquid particle

and also contribute to the density summation for liquid particles. As a result, we pre-

vent liquid particles near the solid boundary from being clustered to a shell due to the
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Figure 3.2: The fluid particles clustered into a shell due to neighbor deficiency [SB12].

neighbor deficiency. Also, we add air ghost particles above the free surface of the fluid

and within the kernel size [SB12]. However, for simplicity, the position of an air ghost

particle for the liquid particle is set to be the reflection of some solid particles; as shown

in Figure 3.3.

Figure 3.3: Sample air ghost particles.

Besides, to prevent liquid particles from either penetrating or leaving solid surface,

the pressure field should be continuous through the boundary. Thus, after computing

the density for each liquid particle, we set the density of each solid particle equal to the

density of it’s nearest liquid particle. This step naturally enforces the no-penetration and

no-separation boundary condition between solid and liquid.
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XSPH To damp off the unphysical oscillation when the fluids flow on the solid sur-

face, we apply the artificial viscosity to diffuse the velocity with nearby particles by

Equation 3.14 :

vnew
i = v∗

i + ϵ
∑
j

mj

ρj
(v∗

j − v∗
i )W (r− rj, h), (3.14)

where j iterates over neighbor particle including solid particles, v∗
i and v∗

j are the ve-

locities of particle i and j after solving the Navier-Stokes equation, ϵ is a parameter that

represents the degree of diffusion [SB12].

However, before we apply the artificial viscosity, we set elaborate ghost velocity for

solid particles. The velocity of liquids near solid boundary thus tends to converge to that

ghost velocity after the computation of Equation 3.14 and achieves specific stickiness.

For the inviscid liquid, it often freely slips on the solid boundary because the normal

component of liquid and solid velocities match and the motion of the liquid is only

determined by its tangential velocity. Thus, Schechter et al. [SB12] constructed the

ghost velocity vghost for a solid particle by summing the normal component of particle’s

true velocity vsolid
N and the tangential component of the nearest liquid particle’s velocity

vliquid
T , as shown in Equation 3.15.

vghost = vsolid
N + vliquid

T . (3.15)

Obviously, by constructing the ghost velocity for solid particle as Equation 3.15, the

liquid near the solid boundary could achieve no-stick boundary condition because there

does not exist relative-velocity in the normal direction and the velocity of the liquid does

not suffer any friction in the tangential direction.

However, we modify the Equation 3.15 as the following:

vghost = vsolid
N + αvliquid

T , (3.16)

where α, 0 ≤ α ≤ 1, is a tunable tangential friction coefficient that allows us to achieve

the desired fluid stickiness more easily. For the very high viscous liquid in our case, we

let α approach to zero such that the liquid could almost stick on the solid surface.
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3.2.3 Velocity Update

Figure 3.4 shows the detail steps for computing the velocity of the melting liquids. We

first compute the density for each liquid particle by using Equation 3.2. In this step, both

the solid ghost particles and the additionally sampled air ghost particles contribute to the

density summation. Then, we set the density of each solid particle as the density of its

nearest liquid particle, expecting that the pressure computed in the next step could be

continuous across the boundary between solid and liquid. After computing the pressure

using Equation 3.10 for each particle, we could compute the forces exerted on the liquid

particle by using Equation 3.8 and Equation 3.9. Then, we solve the velocity for melting

liquids by Equation 3.12. Finally, we set the ghost velocity for solid particle using

Equation 3.16 and smooth the velocity of liquid particles by applying XSPH (Equation

3.14).

Figure 3.4: Flow for updating the velocity of melting liquids.
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3.3 Thermal Transfer System

Thermal transfer system plays an important role in simulating the melting object be-

cause the melting behavior is triggered according to the simulated temperature. Figure

3.5 shows each step of our heat transfer system. To determine the temperature of each

Figure 3.5: Thermal transfer system flowchart.

particle, we first need to simulate the heat flow of our system. We take three types of

thermal transfer, namely, thermal radiation, thermal dissipation, and temperature con-

duction, into account. After simulating the net heat energy flow in the system, the
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absorbed heat energy Qi of the particle i is

Qi = Qradiation
i −Qemission

i , (3.17)

where Qradiation
i and Qemission

i is the radiation energy received and emitted by particle i

respectively. The temperature Ti of particle i is then updated by ∆Ti defined as

∆Ti =
Qi

miC
, (3.18)

where mi is the mass of the particle, and C is the specific heat capacity of the material.

The updated temperature is thus conducted to other particles in the entire model and the

occurrence of the phase transition could be determined as well. The phase transitions

considered are not only from solid to liquid but also liquid to air. The solid transits to

the liquid if the temperature is higher than the melting point. For the overheating liquid

particles, they transit to the air and do not involve in the simulation anymore.

In reality, the viscosity of the material often varies from the temperature to temper-

ature. Hence, we linearly interpolate the viscosity coefficient µ in Equation 3.9 for each

liquid particle according to its temperature. See the Figure 3.6. The simulated viscosity

force in Navier-Stokes equation (Equation 3.6) thus influences the motion of the melting

liquids.

Figure 3.6: Interpolating viscosity coefficient.

Thermal Radiation For the particles heated by the heat source directly, they would

absorb the radiation energy. To efficiently locate the particles that can be heated by the
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heat sources, we apply the shadow map technique to find the particles that are visible

to the heat sources. Moreover, the radiation energy from the heat source often attenuate

with the distance due to the occlusion of the air. For simplicity, we formulate the radi-

ation energy received by particle i that is at location r and visible to some heat sources

as the following:

Qradiation
i =

∑
s

δQs∆tW (r− ps, rs), (3.19)

where s iterates over the visible heat sources, δ is the coefficient that determines the heat

absorption ratio, Qs is the heat energy from the heat sources per unit time, ∆t is the time

interval, W is a weighting function, ps and rs are the position and the effective radius

of the heat sources, respectively. In our cases, we use the spiky kernel as the weighting

function.

Thermal Dissipation With the thermal dissipation, the liquid flowing on the solid

surface has the chance to transit to solid again, forming rich shapes. For the surface

particles exposed to the air, they either absorb or release the heat energy according

to the difference between their temperature and the ambient temperature. We use the

concept of color field proposed by Muller et al. [MCG03] to locate the surface particles

and formulate the dissipation behavior using the following general thermal radiation

equation proposed by [MGG+10].

Q = ϵeσA(T
4 − T 4

ambient), (3.20)

where ϵe is the emissivity of the material, σ is the Stefan-Boltzmann constant, A is the

area of heat transfer surface, T is the temperature of the voxel in their case, and Tambient

is the ambient temperature. However, because it is not easy to compute the heat transfer

surface for a particle exactly, we use the surface area of the particle as an approximation.
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Qemissive
i = ϵeσ4πh

2
i (T

4
i − T 4

ambient), (3.21)

where hi is the kernel size of the particle i, and Ti is the temperature of the particle i.

Temperature Conduction Once the temperature of each particle has been updated

according to Equation 3.18, the temperature conduction between particles could be cal-

culated using the following equation:

∂Ti

∂t
= cd

∑
j

mj
Tj

ρj
∇2W (ri − rj, h), (3.22)

where diffusion rate cd influences the speed of thermal conductivity, Tj is the temper-

ature of particle j, and W is the kernel function which is the same as the one used in

computing viscosity force. Equation 3.22 is a SPH-form of Equation 3.23 that gives the

change in temperature T .
∂T

∂t
= k∇2T − (v · ∇)T, (3.23)

where k is called the thermal diffusion constant, and v is the fluid velocity [CMRBVHT02].

The derivation from Equation 3.23 to Equation 3.22 is simple. First, as we mentioned

before (in Section 3.2.1), the convective term (v · ∇)T could be ignored in particle-

based simulation. Then, Equation 3.22 could be derived by computing the Laplacian of

the temperature ∇2T using Equation 3.4.

Similar to the concept of avoiding asymmetric viscosity forces distribution [MCG03],

taking the temperature differences between particle i and its neighbor particle j into

consideration is required.

∂Ti

∂t
= cd

∑
j

mj
(Tj − Ti)

ρj
∇2W (ri − rj, h). (3.24)

Finally, the temperature after conduction is determined by Equation 3.25.

T ∗
i = Ti +∆t

∂Ti

∂t
, (3.25)

where T ∗
i is the updated temperature of particle i and ∆t is the time interval.
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3.4 Adaptive Sampling

So far we could simulate the motion of melting liquids naturally, but we haven’t tried

to capture their subtle shape and behavior. For the viscous liquid, it usually stretch to

a thread when it flows. Similar to the concept of Ando et al.[ATT12], we adaptively

sample the particle to preserve the thread formed by the flow of droplets.

Framework for Adaptive Particle Sampling During the simulation process, if the

split criteria are satisfied for particle i (we explain the criteria in next paragraph), we

split the particle i and sample new particles within the kernel radius of the particle

i with lighter mass. Particle i is kept in the same position and those newly sampled

particles are placed right behind it. These particles thus form a shape of thread on the

surface.

We associate the particle i with a level li to record how many times the particle i has

been split. li is set to zero originally and is updated to li +1 after splitting. We compute

the mass and kernel size of each particle using Equation 3.26 and 3.27 after each split

process.

mi =
m

(s+ 1)li
, (3.26)

hi =
h

3
√
(s+ 1)li

, (3.27)

where s is the number of newly sampled particles, m and h are the initial particle mass

and initial kernel radius respectively. Note that when a particle i at level li splits, the

level of newly sampled particles is also set to li + 1 so that the mass conservation could

be guaranteed. Figure 3.7 demonstrates how we update the level of particles after split

prcoess. Figure 3.8 shows the mass of particles computed by using Equation 3.26.

Theoretically, particle i that has been split can split as usual if the split criteria are

guaranteed for it. However, in order to avoid over-splitting that might introduce the
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unstable simulation, we do not split the particle i whose level li is greater than three

even if the split criteria are satisfied.

Figure 3.7: Case of s = 2. Splitting a particle of level i into three particles of level i+1.

The newly sampled particles are placed behind the original one and within the kernel

radius.

Figure 3.8: Case of s = 2. The change of mass for particles during the split process.

Other physical attributes of the newly sampled particles (e.g. conductivity, emis-

sivity, temperature, viscosity coefficient, and velocity etc) are set to be the same as

the original particle. For the particles with different kernel sizes and masses, the force

model used in fluid simulation need to be further modified to avoid asymmetric force

distribution. Hence, we use the force model as Adams et al. [APKG07].

fpressurei = −mi

ρi

∑
j

mj

ρj
(pi + pj)

(∇W (ri − rj, hi) +∇W (ri − rj, hj))

2
(3.28)
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fviscosityi = µ
mi

ρi

∑
j

mj

ρj
(vj − vi)

(∇2W (ri − rj, hi) +∇2W (ri − rj, hj))

2
(3.29)

Particle Split Criteria Our concept is to detect which droplet is stretched to the thread

and in that case we split that droplet and sample the new liquid particles right behind

that droplet to model this shape. As shown in Figure 3.9, we observe that the thread is

going to be formed when the droplet is stretched, and at that moment, the external force

exerted on the mass of liquid is larger than the internal force from itself.

Figure 3.9: Real honey thread and the forces exerted on it.

Based on this observation, we split the particle i and sample particles behind it when

the following two conditions are met:

• ∥fexti ∥ > ∥f inti ∥,

• fexti · f inti < 0,

where f ext
i and f int

i are the external force and internal force exerted on the particle

i. In our simulation model, the external force f ext
i includes the gravity force and the

cohesion force which is modeled as the pressure force from ghost-solid particles. The

internal force f int
i includes the pressure force and the viscosity force caused by the

liquid particles.
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3.5 Rendering Framework

To achieve real-time rendering of the simulated result, we apply the screen space ap-

proach similar to [Gre10]. Moreover, to model the protruded and sharp shape of the

thread formed by the liquid drops, we stretch the sphere that is usually used in the

screen space rendering to the ellipsoid, vary the radius of the sphere based on its mass,

and rotate it to fit the surface of the model.

3.5.1 Screen Space Rendering

Figure 3.10: Flowchart of screen Space Rendering.

As shown in Figure 3.10, by rendering particles as spherical point sprites, we obtain

a depth map of the particles viewing from the eye point. However, the depth map is

often too bumpy to be used. Hence, we smooth the depth map by using Gaussian filter.

Figure 3.11 shows the depth map with and without applying Gaussian filter.
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Figure 3.11: Depth map with/without Gaussian Filter.

After smoothing the depth map, we use it to compute the fluid normal vectors in

per-pixel manner; see Figure 3.12. In addition, we also calculate the eye-space surface

position from the smoothed depth map. Once we have the per-pixel information of

the surface, such as depth, normal, and position, we could shade the surface as usual,

such as by Phong shading. Finally, because there exist solidified particles on the object

surface that often introduce self-shadows, we also apply shadow map to generate the

shadow.

Figure 3.12: Normal map obtained from the depth map filtered with Gaussian filter.
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3.5.2 Model the shape using ellipsoids

To model the shape of a thread formed by the melting liquid on the solid surface , we

first render the spheres in different radius based on the particle’s split level obtained in

adaptive sampling. For the particle with less mass, we render it with a relatively small

sphere, and vice versa, for the particle at lower split level that has heavier mass, we

render it with a relatively large sphere. Figure 3.13 demonstrates the idea. Moreover,

according to the suggestion of Cords et al. [CS08], the radius for rendering a particle is

determined when approximating the surface of calm liquid and mainly depends on the

distance to its nearest neighbor.

Figure 3.13: Render particles using spheres in different radius. The number indicates

the particle’s split level.

Then, we stretch the sphere in specific direction, trying to model the protruded shape

of the thread. For the sphere at the bottom of the thread, we stretch it in the direction

such that a sharp prominence could be formed at the bottom of the thread. For the

sphere located at the middle of the thread, we stretch the sphere in the direction to make

the filament appearance. The stretchiness of the sphere is an empirical adaption that

depends on the specific requirement. See the Figure 3.14.
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(a) (b)

Figure 3.14: (a) Stretch the sphere in y-direction so that it looks like a filament. (a)

Stretch the sphere in z-direction to make a sharp prominence.

Finally, we rotate the ellipsoid, and align its orientation with the surface normal

vector obtained by computing the divergence of the color field [MCG03].

Figure 3.15: Rotate the ellipsoid to align the surface normal vector.

3.5.3 Translucent Rendering

Because the wax is a translucent material, we integrate Translucent Shadow Map [DS03]

in our rendering framework. Figure 3.16 shows the standard process of Translucent

Shadow Map.
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Figure 3.16: The Translucent Shadow Map stores irradiance samples (left). The ra-

diance leaving the object is them computed by filtering these radiance samples (right)

[DS03].

In first step, we view the candle flame as the light source and place a virtual camera

at this position. The virtual camera looks at the particles and the shadow map stores

irradiance samples. In the second step, we compute the radiance leaving the object and

use it to shade the object. However, to get better visual effect and prevent the detail

of droplets from looking blurred due to the strong translucent effect, we additionally

consider the local light source to make the shaded droplet stereoscopic.
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Results

In this chapter, we first show the value of simulation parameters used in our results

and how we render the results. Second, we demonstrate the effect of parameter that

determines the stickiness of the fluid. Third, we show the thread-preserving flow of

melting liquid by applying the adaptive particle sampling model. Then, we demonstrate

the rendering result using screen space rendering approach. Finally, we compare our

candle melting result with previous methods [CMRBVHT02][PPLT09].

Table 4.1 shows the value of simulation parameters used in the following results

except Figure 4.1, 4.2, and 4.3. Table 4.2 show whether the technique in each column

is applied in the following figures.

31
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parameters meaning value

k liquid incompressibility (Eq. 3.10) 645000

µmax max viscosity coefficient (Eq. 3.9 and Fig. 3.6) 17000

µmin min viscosity coefficient (Eq. 3.9 and Fig. 3.6) 16000

ϵ degree of velocity diffusion (Eq. 3.14) 0.72

α tangential friction of solid surface (Eq. 3.16) 0.38

Qs heat energy from heat source (Eq. 3.19) 65

δ heat absorption ratio (Eq. 3.19) 0.063

rs heat source effective radius (Eq. 3.19) 0.18

cd thermal conductivity (Eq. 3.24) 0.004

ϵe thermal emissivity (Eq. 3.21) 0.001

s split number (Eq. 3.26) 2

Table 4.1: Main parameters of candle melting simulation

Translucent Shadow Map Adaptive Particle Sampling Render the particle as ellipsoid

Fig 4.1 o o o

Fig 4.2 o o o

Fig 4.3 o o o

Fig 4.4 o ∆ ∆

Fig 4.5 x o ∆

Fig 4.8 o o o

Table 4.2: How we render the simulation results. The circle (o) means the technique in

that column is applied and (x) vice versa. (∆) means we show the comparison with and

without applying the technique.

To illustrate that the parameter α appeared in Equation 3.16 determines the stick-
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iness of the fluid, Figure 4.1, Figure 4.2, and Figure 4.3 show the simulation process

with different α values. The value of other parameters used in these results are equal to

those in Table 4.1. Obviously, by setting different α values, the stickiness of the fluid

on the solid surface is different. Hence, we could achieve the expected stickiness easily

by only tunning this parameter.

Figure 4.1: α = 0.2. The fluid move slowly and almost stick on the solid surface.
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Figure 4.2: α = 0.5. The fluid run along the solid surface smoothly.

Figure 4.3: α = 0.8. The fluid on the slope run away from the solid surface easily.
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Figure 4.4 shows the simulation result with and without applying adaptive particle

sampling. The particle in the simulation result without applying adaptive particle sam-

pling is rendered as the sphere as usual. Adaptive sampling does preserve the thread

formed by the flow of melting liquid, comparing to the one without particle split.

Figure 4.4: The upper row shows the simulation result without adaptive particle sam-

pling. The droplet simply flows on the surface. The bottom row shows that the thread is

preserved with particle splitting.

Figure 4.5 shows the comparison between rendering the particle as the sphere and

the ellipsoid. Translucent effects are removed in order to clearly observe the sharp shape

of melting droplets. The shape of small droplets after splitting is sharper in Figure

4.5(b).
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(a) (b)

Figure 4.5: (a) Render the droplet using the sphere (b) Render the droplet using the

ellipsoid.

Figure 4.6, 4.7, and 4.8 shows a comparison of a candle melting scene between our

result, Carlson et al. [CMRBVHT02], and Pavia et al.[PPLT09]. Different from their

melting behavior, our simulation model focuses on the surface flow of melting liquid

and looks much more realistic.

Figure 4.6: Wax melting in [CMRBVHT02].
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Figure 4.7: Candle melting in [PPLT09].

Figure 4.8: Our simulation result
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Conclusions

In this chapter, we briefly summarize our candle melting approach and rendering frame-

work. Also, we describe the limitations and some future directions of improvement.

5.1 Summary

We have proposed a SPH-based simulation framework for candle melting. By utilizing

the concepts proposed by Schechter et al. [SB12], we solve the density deficiency prob-

lem near the fluid boundary and achieve no-penetration and no-separataion solid-liquid

boundary condition easily. The melting liquids thus could run along the surface closely

without introducing any artificial interfacial tension. Moreover, by applying XSPH and

setting appropriate ghost-solid velocities, the fluids can flow on the surface smoothly

and achieve the expected stickiness easily. We propose a complete transfer system that

considers the heat radiation, conduction, and dissipation. We model the heat source

as the light source, and the surface particles that receive the radiation energy are de-

termined by using shadow map. The radiation energy attenuates with the distance and

38



5.2 Limitations and Future Work 39

the attenuation ratio is formulated using a function like Gaussian distribution. The heat

energy dissipating from the fluid surface is also considered. The net heat energy then

introduces the change of the temperature and conducts to the entire model smoothly.

We apply adaptive particle sampling to preserve the thread formed by the flow of vis-

cous liquid. The split criteria are physically-based and thus do not introduce additional

computation cost.

We use screen space point splatting approach to reconstruct the fluid surface. We

render the sphere particle in different sizes based on its mass and stretch the sphere to

the ellipsoid, which is aligned with the surface normal to model the shape of the flowing

thread.

5.2 Limitations and Future Work

Although our adaptive particle sampling scheme could preserve the thread formed by the

viscous liquid, its framework is incomplete and has several drawbacks. First, because

the physics behind the formation of the thread may be complicated, the split criteria

in our adaptive sampling scheme may not able to preserve the thread properly in some

cases. Second, we lack particle merge operation and the simulation cost gets higher

with the increase of sampled particles. Moreover, because we model the surface simply

by a group of geometries (spheres or ellipsoids), aliasing appears on the fluid boundary

due to sparse particle distribution.

In the future, the criteria of our split operation may additionally take the geome-

try features into consideration, such as extended local feature size (ELFS) proposed by

Adams et al.[APKG07]. In addition, to use the computation resource more efficiently,

we could add the particle merge operation to merge the particles inside the object. Fi-

nally, to get a smooth fluid boundary, we may increase the amount of particles involved

in the simulation. However, it also increases the simulation cost.
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