CWT - 5T & JavagehBar £ AWT/Swing 7 15

CWT — An AWT/Swing Architecturerfor Cross-Platfodava Game

Development

oy oATAER
IR LR R

e g

doE s R4 L oA E =

CWT — g5 - Javadsist B 4 22 AWT/Swing 7
CWT — An AWT/Swing Architecture for Cross-Platforilava Game
Development

7SR S REMIVE & < Student: Yi-Hsien Wang

ERR AR Advisor : [-Chen Wu
Wen-Nung Tsai

= 5=
S 1

4%
R

“

R

Tl

3
T 4% |4

= 0% e
o BN

A Dissertation
Submitted to Institute of Computer Science and B&egjiing
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
in

Computer Science
July 2009

Hsinchu, Taiwan, Republic of China

v "i";‘.?\‘@g}i;,_’&; A

CWT : T - Javavsik B 4 2. AWT/Swing 7 H#

G NSRS S R SRS L

f =R >
B g4

H
|4
<k
(=
A=
+%
R
Y

q[‘;figf_lﬁiﬁﬂ'ﬂ M—r—rﬁt | fT

i &

TE K Javal S vk b enk RAEH B HEFIR BN ATE o KA o g
e JavaR 3 23k 2o 18> A L Javatk i e e 1 B e AWT 2 Swing & & &
PR RBRELEY FAEERRA A A ROFYH G H TR DEE 7T
- ~JavaR T EmBE A (JRE) 5 = - BRIE® 4255 o (APl) 5 = ~Javadi (=
ok Suddes w ~ F it E kLo o Windows XP- Windows Vista Fedoraz Mac OS
Xoo o fBrnit 7 - RO i@ 18 DN g X R SRR R] Javadkgt i o TG Rl

a0 4 MM Javals T e TIEE - =T E g RddE 7 (Write-Once-Run-Anywherg |

E’f‘]ﬁ_—%_l L: %%ﬁ o

B fRELER A - ROFE RSB[R T S P HEFREDREY -
hig Blit o AR D T - F AWT/Swing 78 40 4 = CYC AL F 1 & 2 (CYC Window
Toolkit) > A CWT > £ 5 T4t - 5 L » CWT % F L AEIRY Y B EE
Bl 3% & > 4e DirectX 2 OpenGL & 7 4p % 302 5 AL M 4 c07k 8 > CWT » % * Java
AWT kg @B - CWT 7 i~ 3% Javashis® ot > 23 5 Javam##i# ¥ (Java
VM) ~ NET 2 £33 #4735 (NETCLR) 12 & 467 Fenif s kst f % > CWT

-2 Java AWT/Swing 1.Bx4p e API ch= 2 5 5% - 5 Javads gt #% 2.3 CWT 9

LR o HA R BB A FERN s RN R KGR 0 CWT & - - %

et
=
I

API> 12 i B #dk i CWT p #%¢0 DirectX 22 OpenGLyr i > 12 2 2550 Ap B e 2 48 S

Joeh s CWT# 7 0t 0 3D o * A25% B A 73D PR LA LR o

Ak CWT EHT T 2 CWT 1 5 e 3 B2 % hiesb[15] &= &7

fe& pi&* AWT - DirectX 2 OpenGLk g @@ * & /e » £H L= F v 704
AT e o FRE B e LI S0 RIBEI L RRA X Java

AWT/Swing &2 CWT i Bl iy » 243t 0 @ L RIGEAESS % RPGEA * 8 Wit 4
(Micro-benchmark £ = & % B # (Macro-benchmark o pl3EA2 8 7204 * an
JRE: %r MSVM %2 JRE 1.4% 16% » 2 wi Flehe B iFE e » H % g7 !

CWT ++ Java AWT/Swingf it feizdt % e énfe fi @ £ 0| { 45 2 { - Ranig Bkt o o
* CWT # & Java AWT/Swing 1.B3=e0/ & > » o2 4 Java L.LKIR B T F (7 0 7]
L CWT 0 AP B 2 Javadt (78 & 5o Z»gt“r‘;'iﬁa Java AWT/Swing® » fie b eripl 8 e

SRR Sal i Rt U SER: & A

PR T CWT 2 iy e % o fFd N = B2 v o i Javak A k= 5
Wehpg T QBT Lo - v d SN Rl F P R 0 Java B B A 3R eh
DirectX £ OpenGL# # » BN K F R NI RGP LA EERGT S ©
= ~Java AWT/Swingsig Bl k%8 JREA B3 7 0 5 8430 { Posg g = 5 s V]:\@:

ZERE ST A ERASDIRE Z 47 * G o DirectX & OpenGL*t 2 (Bindings)
MARERBRF A A KR F T AEN B Er Java AWT/Swing:t Java 3D JOGL & *

ﬁj_}\‘t‘ rﬂgﬂ"}i) T'ﬁrs {ﬂb o

CWT — An AWT/Swing Architecture for Cross-platforilava Game
Development

Student: Yi-Hsien Wang Advisor: Dr. I-Chen Wu
Dr. Wen-Nung Tsai

Institute of Computer Science and Engineering
National Chiao Tung University

Abstract

In recent years, the performance of Java platfdressbeen greatly improved, which
makes Java satisfy the requirements for develogamges. However, after practicing in real
game development, we observe that a phenomenperfifrmance inconsisten@xists in
the graphics of Java AWT/Swing with different comdttions of JREsS, graphics APIs,
system properties, and operating systems (OSdyding Windows XP, Windows Vista,
Fedora and Mac OS X. This phenomenon makes it hargredict the rendering
performance of Java games and weakens the meritheofrite-Once-Run-Anywhere
feature of Java.

In order to solve the above problems, we propogertable AWT/Swing architecture,
called CYC Window Toolkit (CWT), for developing @®-platform Java games with high
and consistent rendering performance. CWT has dHewing features. First, the CWT
architecture supports multiple graphics librariexchs as AWT, DirectX and OpenGL,
multiple virtual machines such as Java VM and .NHR, and multiple OSs. Next, CWT
supports AWT/Swing 1.1 compatible widgets, so i ¢te easily applied to existing Java

games. For programmers who want to fine tune thames, CWT supports one-to-one

mapping APIs to directly manipulate DirectX and @@& objects and other game-related
properties. In addition, CWT supports interopergbivith 3D applications, which is an
important feature for 3D game design.

We implemented three versions of CWT — AWT, Direcehd OpenGL, to take
advantage of graphics hardware acceleration osuglborted OSs. The implementations of
CWT are available on our website [15]. Two testmmggrams, including micro-benchmark
and macro-benchmark, are also designed to evathateendering performance of the
original Java AWT/Swing and CWT. The benchmarkieguits show that CWT achieves
more consistent and higher rendering performanan thava AWT/Swing does in
commonly used JRES, including MSVM and JREs 1.4.6 on the four OSs. Moreover,
CWT needs fewer efforts to test the:combinationgraphics APIs and system properties,
which greatly improves programmers’ praductivity.

Based on the benchmarking results and our experieve propose three approaches to
make Java be a better platform for.developing epbstform games in the future. First,
since the video hardware evolves quickly, Java lshopen direct access to the internal
DirectX and OpenGL objects for game programmers wieed to access up-to-date
hardware features or change the rendering behavsasond, Java should decouple the
rendering pipelines of Java AWT/Swing from the JR&sfaster upgrading and supporting
old JREs. Third, Java should reuse existing Direatl OpenGL bindings for lower
developing cost, better maintainability, easieriaperability among Java AWT/Swing,

Java 3D, and JOGL applications.

Brie i R HPER o RALT - % - i endahl > AenEd 4 R A 20004 7 7 &

R e LA R - TSR L f 0 A B B R
BT ETT T L F R L Sl 0 AT pp s T ApdE T il

TAPFET o Y BB A F R R K HEAE T TR AT ST 0 i

B AR ERE o AMAp RS REEITF A DR R

EHHp LS RS R fo B i m A ALl e LY r 2 wH ik
BB E Y o s Ap BN DA gk e X - B AT E A A
AFP- FEPRNIEEN FRRBEamepd e XFPRAEF T E L H

x> %‘j‘;’*\%ﬁ%,;—ﬁ ° ’,}_5\7{1;?1& ilﬁﬁg’é ’ ;\j&.{;}—i_{fﬁﬁrﬁg};gj , %pﬂ;?%mg o

E#wme r#FL A AL L3 X RRPOG I RE - XTI RP T K
o E R (N RS LRI o RS ik A E S e 0 IR E) B

ReEAAPOFF AL BARAARSFE LI s ARG CHER L HHE o

HAEAEL A TR R RRET R A PHAEYV I REF RS
Javadsgh T 5 o fET AT fEd o RAAT Y AR R ISR BN 2 Ui 1 f7 i
ﬁ;‘?_‘:‘ ﬂf‘-"g“m)‘f;w vu’l"’g\: '{3\-71—,@&?%"5{75 Eﬂ""@f’r ° 53—1:\ Iﬂ,fﬂﬁg él(.}} y — g

A o

BoE s gk LA G =85 AW A CWT 2B ~ CWT-GL F i+ 12
2 CWT-GL% & JOGL% 3/ § ¥ enfiamt » 3 fedeid 9§ shiefe 4 A F Bl R

' 2

-ty R W sl R c

EHTIIREIFL - FEEF I RPORIEY - FAZFTYE2EY D

EFRRE AP TLTRILPPER S BE N PE SR L AR LR -

E#HFERRPHEAFTF - AAF £ Ty > JEMR ST 50 R

&

BL@m> R Mmoo 2 BRI TR A A ERABY N E R &2

BoA RSt GRAREE PR BB L & o R RS

PAp A E MR BB A HEE L % ke B RATESHLE 0 P LT

=]
“
"
W
@
I

FARAAEANET AR PE v AR PO BN 18 T FIELR AT

=

ER B B AR B o RN P E ML LRE G R AT b

R ERH Y BRI RS o ihgi‘#&tbgﬁélgk,?@i“&%é) S
R
RN

2009# 7 7 15p

vi

Contents

OO i
Y 011 =T PSP i
= Y
(070101 1] 0] £ TP PPPTTTTRR vii
LISt O FIQUIES ...ttt nne e e e bbb e e e e e e e e aeaeaeas IX
S 00 =1] (= TSRS Xi
Chapter 1 1o To [¥ox 1 o] o IS TSRS 1
1.1 Evolution of Java GraphiCsuuociiiiiieic e 5
1.2 Problems of Java GraphiCsS.........coou e 8
1.3 OIS, et —————————————_ 12
Chapter 2 DESIgN OF CWWT oot e e e e e e e e e et eeeeeneeeeeenennes 15
2.1 CWT ArChiteCtureofiseeeeeeeeeee s ie i 15
2.2 COre CWT e e Bi st i et et e et e e e eeenmnn e 18
221 Component HIBFAICRY <. ituee i e B e 19
2.2.2 EVENt MOAEk...... ... e it e e 22
2.2.3 Painting Model......o i i e e e 24
Chapter 3 Implementation Of CWTueiitirieeee e 27
3.1 Implementation APProaChReS ...l i ... ceeeeee e 27
3.2 LAV L PRSPPI 28
3.3 (4T e 5) 29
3.3.1 Images and ReCtanglesuuvueiiiiin i 29
3.3.2 FIQUrES and TeXES........coiviiiiiiiricammmmnieee e e e e e e e e e e e e eeeeeeaeeenn e 30
3.3.3 Optimization Of CWT-DX......cccuuuuuuumnmmmmeennnaeaeaeeeeeeeeeeeeeeeeesenennnnn 31
3.4 LT P UUURPPPPP 32
34.1 INtrodUCtiON t0 JOGLcoiiiiiiiiieet ettt e e e e e e e eeeeeeennees 32
3.4.2 FIQUIES ... e e e e e e e e e e e s aerenneeeeeee 32
3.4.3 IMAGES ... e 33
3.4.4 T OXES et e e 34
3.4.5 Off-screen BUfers ... 36
3.4.6 GraphiCs StAESuuueeiiiiie e 37
3.4.7 Optimization Of CWT-GLoooiiiiii e 40
3.5 Mixing CWT-GL With JOGLuuuiiiiiiiiiieeeiiiiiiiiieeeneeee e AL

Vii

3.6 R 1o IRVAY o] o R 43

3.6.1 AGIE2D ... —— 44
3.6.2 FENGGUI ...ttt ettt 44
3.6.3 IMHINUETO ...ttt e e e e e e e e e e e nnnnes 45
Chapter 4 T d 01T 41T] £ a7
4.1 TESE PrOgramS e e 47
4.2 System ConfigUIatioN...........coooeiiiiiieeecr e 51
4.3 Rendering Environments (RES)oovvvuueciiiieie e 52
4.4 DefiNitioNs Of METIICSoooiiii s 54
4.5 Analysis of Micro-Benchmark ReSultscccovviiiiiiiiii e, 54
45.1 IMAGE TOSTS ...ttt et e e e e ena s 55
4.5.2 TOXE TOSTS .t e e 57
45.3 T T LI =] £ SR 61
4.6 Analysis of Macro-Benchmark ReSUILS..... o eeeereiiiiiiiiiieeeeecccceceeiiiiines 63
Chapter 5 D Yo 017 o o RS 85
5.1 Supporting Graphics Systems on.Multiple Platior...............ccccceeeevieeeeeee.n. 85
5.1.1 Encapsulation.and EXtENSION it .o eeeeeeiiiiiess e e e e e e e e e eeeeeeeennnes 88
5.1.2 Decoupling .o .. el bl M e 89
5.1.3 Reuse........ o0 R R B ... e e 92
5.2 Drawbacks Of CWIT....c. i it 95
Chapter 6 (070] o] 1§] 0] £ 1S T e RS 97
0] (=] =) ¢ [of L JOUUPPPPP. # . - % ST PPPPPPRRT 103
Appendix A Results of MiCro-Benchmarkeuue.eeeeeiiiineseeeeeeeeiieeeeeieeiiiinnnns 0a
Appendix B Results of Macro-Benchmark.......ccccceeeoeeeiiiiiiiiicecceeeee e 31
Appendix C o] 1] To T U o = 135
R - PP PPPPPPUPPPPR 141

viii

List of Figures

Figure 1. Java usage trend diagram.cccceceeeiiiieeie e e e e e e e e e eaes 3
Figure 2. CWT arChitECIUIE.cceieiieeeeee et e e e e e e ee e e e e e e e e e e e e e eeaeeannnes 16
Figure 3. Relation among components, events anmh@i®.............coevvvvveiiiiinneeeeeeeees oo 19
Figure 4. Component hierarchy of Java AWT/SWING..cee...iiiiiieeieeeiieeeieeeeiii s 20
Figure 5. Component hierarchy of CWT.......o oo e e e 20
Figure 6. Event hierarchy of JaAVa AWT e 22
Figure 7. A typical event processing flow iNn CWT ..o eeeeeee e, 23
Figure 8. Three implementations of the Graphicsriate in CWT.cccceciiiiiiiieeeeeene 24
Figure 9. Eliminating unnecessary getting and seEaDC.coevviviiiiiiiiiieee e e 30
Figure 10. Sequence diagram of STR-like designWiTC...........cccccceeeeeeiieiiieeeeeeiie 39
Figure 11. Eliminating unnecessary changes of OResi@e.ovvviiiiieieeeeeeeeees s 40
Figure 12. The flow of mixing CWT-GL with JOGL. t........oovvviiiiiiiiiii e 42
Figure 13. AQIle2D arChitECIUIE. ioor s atmmmies o dea b e s e e eeeeeeeeeeeeeeeesssssnnnnnsesssssnnnnnaes 44
Figure 14. FENQGUI arChitECIUIR. .iuu..uuu.. msmisnsseaeeestanreeeeeeernnnnnnnnnassseneaaesesaseeaaaseeeees 45
Figure 15. Screenshots of the micro-benchmarks.o..........ccoooeiiiiii e 48
Figure 16. A screenshot of the BOmMBberman game. . . .ccoooeeveeeeeeeeiieeeeeeei s 48
Figure 17. Averaged rendered images per secondsdBs.cvvvviiiiiiiieeeeeeeneeennn. 56
Figure 18. Averaged rendered texts per seconds@RSIS.vvviiiieieieeeeeereeeieeninnnns 59
Figure 19. Averaged rendered texts per secondsdifférent font sizes.ccccvvvvvvnnnn 60
Figure 20. Averaged rendered figures per secon@m@rdSs.cccovvvvvvveeriiiiiniinnenans 62
Figure 21. Frame rates and Anomaly among OSs uJsing 1.0/1.1 graphics APIs. 64
Figure 22. Frame rates and Anomaly among OSs uJ$tkg{1.4} and
SystemProperty{NONE}.coooiiii e eeeeeeeeeneeee 65
Figure 23. Frame rates and Anomaly among OSs uJstkg{1.5} and
SystemProperty{NONE}.coooiiii e eeeeeeeeeneeee 66
Figure 24. Frame rates and Anomaly among OSs uJ$tkgl{1.6} and
SystemProperty{NONE}.coooiiiii e eeeeeeeeennene] 6.7
Figure 25. Frame rates and Anomaly among OSs uJ$tkg{1.4} and
SystemProperty{Special}. ... 68
Figure 26. Frame rates and Anomaly among OSs uJ$tkg{1.5} and
SystemProperty{Special}. ... 69

Figure 27.

Frame rates and Anomaly among OSs uJ$tkgl{1.6} and

SystemProperty{SPecCial}.uuuuiiiii e 70
Figure 28. Frame rates and Anomaly among OSs uJstkg{1.5} and

SysteMPropPerty{OPENGL.......uiieiiiiie e eeerr e 71
Figure 29. Frame rates and Anomaly among OSs uJ$tkg{1.6} and
SystemMPropPerty{OPENGL].......uvieiiiiie e e 72

Figure 30. Frame rates and Anomaly on choosingrmdifft graphics APIs using JREL.4}.75
Figure 31. Frame rates and Anomaly on choosingrmdifft graphics APIs using JREL.5}.76
Figure 32. Frame rates and Anomaly on choosingmdifft graphics APIs using JREL.6}.77
Figure 33. Frame rates and Anomaly in commonly u$tds using Java 1.0/1.1 graphics

A P LS. e —————— et et e e e e e e e e e e bbb 79
Figure 34. Frame rates and Anomaly in commonly u$8ies using graphics APIs

INtroduced SINCE J2SE 1.4,ooiiiiiiiii ettt 80
Figure 35. Frame rates and Anomaly in commonly u$8ies using graphics APIs

iINtroduced SINCE JAVA 5.0.uuiiiiiiiiiiiiiiiiee e e s 81
Figure 36. Java AWT/Swing and DirectX in MSVM.ccooiiiiiiiiiiiiiiiinieee e 89
Figure 37. Hardware-accelerated rendering pipesugported in specific JVM versions.... 90
Figure 38. Relation between JOGL and JVM.ociar i eeeeeee e 91
Figure 39. Two DirectX bindings and three OpenGtdigs by Sun Microsystems............ 92
Figure 40. Individual buffers used by JOGL progrand AWT/Swing, which does not

allow tranSIuCENt WIHQELS. (. i aits e e e eire e e e e e e e ee e e e e e e e e e e e e eeeees 93
Figure 41. A shared buffer used by JOGL progrands@wWT-GL, which allows translucent

LT/ [1] £ e PSSR 93
Figure 42. Suggestions for future Java AW T/SWINGu.........ceeiiiieeeeeeeieeeeeeeiiiiiieeneens 94
Figure 43. RuneScape in AED3-Sized reSolutioNn.............eeiiiiiiiieiiieeeieeeeeceeii 100
Figure 44. RuneScape in 102468-sized reSOlUtiON. ... 100
Figure 45. Comparison between raster graphics aotrvgraphics...........cccevvvvvvinnnn. 011

List of Tables

Table 1. Current State Of JRES.ccuiiiiiieeieeiiiiiiiiie ettt e e 3
Table 2. Performance evolution of Java AW T/SWING..ce...eeiiieiiieeeeeeeeeeeeeeeiiinnees 6
Table 3. Percentages Of OSS [B2].commmmmmerrniiiieeeeeeeererereeeeesrnrrnnnn 11
Table 4. OpenGL states fOr CWT-GL.ovvieeeeeeee e een e e e e e e e e 43
Table 5. Graphics APIs Tested in the Benchmarks............ccccoovviiiiiiccciiiie e 50
Table 6. System properties for SystemPropéiBpecial} [3][58].cvvvvrrriiiiiiiiiieeieii . 50
Table 7. System hardware, configuration and OSS.. c.....uuuiiiiiiiieeeeeiieeeeeeeeevveeeaeeaeens 51
Table 8. JRE versions in the benchmarks.ooooiiiiii e, 51
Table 9. Combinations of graphics APIs which delive highest frame rates...................... 74
Table 10. OS support of Sun’s rendering PIPEHNES..........ovvvvvviiiiiiiiiiii e, 87
Table 11. Rendered items per second.of opaque itcvvvviiiieiiiiieeeeeeeee e 110
Table 12. Rendered items per second of transpan@igie teStS.cccoveeeeeeeieieviieeeeviiens 111
Table 13. Rendered items per second of transIumeye tests.oooeeeeeeeiiviiveeiiiviies 112
Table 14. Rendered items per second of runtimewspagage tests............cceeevvvvveeevnnnns 131
Table 15. Rendered items per second 'of runtimepaent image tests.ccccvvvvvvevnnnnnn. 114
Table 16. Rendered items per second of runtimeluaent image tests............cccccevvveeeee 511
Table 17. Rendered items per second of simpleésis. Font size is 12. 161
Table 18. Rendered items per second of article.tEsint size iS 12.cccceeeeveeeeeeeennee. 117
Table 19. Rendered items per second of texts \ifittreint font size from 10 to 64............ 118
Table 20. Rendered items per second of line tests............viiieiiiiii e 119
Table 21. Rendered items per second of poIyliMSteS.........covvvvviiiiiiiiiiee e 120
Table 22. Rendered items per second of polygoB.teSL..........covvvvviiiiiiiiieee e 121
Table 23. Rendered items per second of polygandiliests.ccccceeeeiiiiiiiiiiiiiiioee 122
Table 24. Rendered items per second of rectangfi®. te............coovvvvvviiiiiiieeeeee oo e 123
Table 25. Rendered items per second of rectantgfgfiests.ccccevvviviiiciinnes 124
Table 26. Rendered items per second of round rg&ta@@sts.cccoeevevvvvvvviinnnnnn. 125
Table 27. Rendered items per second of round rgletditling tests..........ccccceeeivieeeeeeeiom 126
Table 28. Rendered items per second of arC teStS............uvvvviiiiiiiiii e, 127
Table 29. Rendered items per second of arc fillEsfS.ccoevvviirieeiiiiiice e eeeeneanns 128
Table 30. Rendered items per second of oval tests..............euvvviiiiiiiiiiiee e, 129
Table 31. Rendered items per second of oval filtesyS..............cccoovvviiiiiiiiiiiiiiiieeeeeens 130
Table 32. Average frame rate (in FPS) of the Bommiagr game..............ooovvvvvvceiennnnnn. 131

Xi

Table 33. Average frame rate (in FPS) of the Bommaer game, where JREL.5}. 132
Table 34. Average frame rate (in FPS) of the Bommaer game, where JREL.6}. 133

Xii

Chapter 1 Introduction

Since released by Sun Microsystems Inc. (abbraVviateSun) in 1995, Java [48] has
become increasingly popular owing to its higherdoiativity and portability than C/C++.
For productivity, a report [39] from IDC in 1998aked that writing the code in pure Java
instead of C++ increased the overall productivigyabfactor of 30% and the coding phase
alone by 65%. Since that study was made udm@ Development K{tJDK) 1.0.2, these
figures could be greater today owing to the imptbeapabilities of the moderdava 2
Platforms Standard Editio{J2SE). Phipps [37] also presented a similar testich
concluded that Java was 30~200% more productive @ia-. For portability, unlike C/C++
programs, which have to be ‘compiled to' native etedda code specifically for each
platform, Java programs are compiled. into a forecaled bytecode running atojava
virtual machine (JVM), which encapsulates platfoerm-specific featurand provides a
common set ofapplication programming interfaceAPIs) on all supported platforms.
Therefore, suchWrite Once, Run Anywhéré WORA) feature makes Java more portable
than C/C++.

Java has attracted much attention in game industong with the growth oMWorld
Wide WedlWWW) in the late 1990s, many Java casual apg@etes, which can run in Web
browsers, were deployed over the Internet, inclgdfahoo! Game$68], ArcadePod.com
[16] andCYC game$59][13]. Other than the widespread applet garseseral commercial
stand-alone Java games were also developed, sudbuaBon't Know Jackl9], Law &
Order: Dead on the Money61] and Tribal Trouble [33]. Examples of commercial

massively multiplayer onlin@BMMO) Java games includeuneScapé¢l7], Puzzle Pirates

[60] andWurm Onling[32]. Java games also appeared on mobile devimés@on became
the mainstream language for game development ose tdevices. For examplége of
Empires 11[27] was ported to mobile devices [14].

After these practices in game industry, howeveraJas some criticisms. The most
discussed topics include runtime speed, rendergrppnance, and deployment issues.
First of all, early implementations of the JVM naihly indeed delivered poorer
performance. In general, the performance of programning in JVM 1.0 is about 20 to 40
times slower than in C/C++ [23]. Fortunately, aeweral significant revisions in the JVM,
the tweaked Java programs using J2SE 1.4 ran oavérage only about 20-50% slower
than the tweaked C/C++ programs [23]. Java SEStQpically only 1.1 times slower [5].
Sun’s benchmarks also suggest that.Java SE 6'ist@@%P6 faster than Java SE 5.0 [49].
Therefore, the runtime speed is:no longer-a sepooislem for Java game development.

As for thegraphical user interfac€GUI) part of Java, early implementation of Java
AWT/Swing components or widgets. also. performed slodue to the lack of graphics
hardware acceleration. Since most game programeciedly high profile gamés have
intensive GUI operations, such as animation or dermpcenes, it is critical to reach high
rendering performance. In order to deal with tlssue,Microsoft DirectX[30] andOpen
Graphics Library (OpenGL) [35], which are two major graphics libear used in game
industry, were introduced in the implementationslafa AWT/Swing since J2SE 1.4 and
Java SE 5.0, respectively. With the supports ofplgies hardware acceleration, the
rendering performance of Java is largely improvédrnvcompared with previous versions.

However, current implementations still have somebfams that limit Java game

! According to [[28]], high-profile games usuallyternpt to attract the highest attention from retailend
media. Such games normally require several milliohdJS dollars to advance in technologies, such as
graphics. On the other hand, low-profile gamesefag niche groups of players and try to lower down
developing costs.

development, such as inconsistent rendering pedioce in different Java versions and on
different platforms. In this dissertation, we wilinly investigate these problems.

Table 1. Current state of JREs.

.| Percentage of Wep
: Supported Released JRE Size
Java Version : Browser Users
OSs Time (MB)
(May 2009)
MSVM (Java 1.1.4) Windowsg 1997/02 50 4.81%
J2SE 1.3 Windows | 2000/0% 7.9 0.20%
J2SE 1.4 Mac OS 2002/02 15.2 5.11%
J2SE 5.0 Linux 2004/09 15.8 18.63%
Java SE 6 Solaris | 2006/11| 15.5 71.02%
Percentage of Web Browser Users
80%
2832 M ==/ ava 1.1
50% =l=])SE 1.3
40% ‘ ey])SE 1.4
30% =®=])SE 5.0
?8;2 e=é=Tava SE 6
0%
06-2006 12-2006 06-2007 12-2007 06-2008 12-2008 06-2009

Figure 1. Java usage trend diagram.

As for the deployment issues, several problems tabe considered. First of all, few
game consoles are shipped with JVMs. However, aboUt of the game market is console
games, angersonal compute(PC) games own the most of the rest. The lack\Vdfl J
supports greatly limits the deployment of Java gaorethe consoles.

The next deployment problem is that not all PCselilava runtime environmeRE)
installed. According to Millward Brown’s survey iDecember 2008 [1], only 81%
Internet-enabled PCs have JRE installed. On som#ophs such as Windows 98, ME,

2000, early release of XP, and Mac OS X, certaigs]Bre pre-installed along with the

operating systemg$OSs). On other platforms, users need to insREs] by themselves
before they can play Java games. However, thellesta may not be allowed without
administrator’s privileges. The problem that reqdirJRE versions are not installed has
variant influence on Java program types. Standeallava applications can be shipped with
a JRE, so they can run on target systems withatlt problem. However, Java applets or
web start applications need pre-installed JREs¢hvbauses deployment issues.

Even if OSs have JRE installed, the installed JREien may not sufficient to run
Java games. In such case, upgrades are requirecexBmple, in order to enable the
OpenGL rendering pipeline on Windows, Java SE 5.0reiquired. According to the
statistical data in [12] during April to May in 290as shown in Table 1, the percentages of
Web browser users of popular JRE: 1.1, 1.4, 5.0, Gradle 4.81%, 5.11%, 18.63%, and
71.02%, respectively. Figure 1:shows that at amgmitime since June 2006 when this
research started, there are always at least theger IRE versions used by more than 5%
Web browser users, including twelve-year-old: MSVTh support most installed JRE
versions, Java programmers could be limited taJalh versions. However, many features,
especially improvements of graphics performanae paty available in new JREs.

In view of these problems, research for Java Graptiiat is reviewed in Subsection
1.1 has been done to make Java more suitable foe gkevelopment. However, some
problems which are identified in Subsection 1.2 séimain in the GUI part of Java, in
terms of AWT and Swing, especially when programnterso deploy cross-platform Java
games with high and consistent rendering performanBy consistent rendering
performance, we mean to deliver similar renderirggfggmance on different OSs or
different rendering environments when using the esamardware or equivalent-power
hardware. The consistency of rendering performascglite important, since programmers

would expect Java programs to run with similar penfance on multiple OSs. Subsection O

briefly describes our goals for solving these peotd, and also summarizes the organization

of the rest of this dissertation.

1.1 Evolution of Java Graphics

This subsection reviews the graphics part of Jawach is of great concern to game
developers today and is the main focus of thisetliason.

For high rendering performance, game developersneamy employ Microsoft
DirectX or OpenGL to access specialized hardwaatufes, such as direct access to the
video memory in graphics cards, and constructing&&nes.

Using Java AWT/Swing is the standard way to perfoemdering operations in Java.
However, Java AWT/Swing did not take full advantageraphics cards, before J2SE 1.4.
As shown in Table 2, for example, Java 1.0/1.1ig&rtusesWindows graphics device
interface (GDI) on Microsoft Windows platforms to accelerateage operations. Since
J2SE 1.2, buffered images have .been introducedshwlbis programmers directly access
pixels of images. However, since J2SE 1.2, softwameering was employed, instead of the
hardware acceleration, to guarantee rendering tguati all platforms. Consequently, the
rendering performance degrades in these Java msrsio

Since J2SE 1.AWT Native Interfackas been introduced which allows programmers
to render into Java AWT components through thirdti@si graphics libraries, such as
DirectX and OpenGL. This way is an alternative 8ing Java Native Interfac€JNI) to
access native libraries. However, the main drawlmdaksing this technology is the loss of

platform independency, which is a great concermeiveloping cross-platform games.

Table 2. Performance evolution of Java AWT/Swing.

Java , Release
i Graphics-Related Enhancement _
\ersion Time
1.0 | AWT (OS rendered widgets) May 1995
1.1 | Hardware-accelerated rendering using GDI on Midtoso Feb. 1997
1.2 Swing, Java2[lSoftware rendered widgets) Dec. 1998
1.3 AWT Native Interface May 2000

Hardware-accelerated rendering
DirectX on Microsoft Windows
14 _ _ Feb. 2002
« Shared Memory Extension (SHMh X Window systems

Quartz 2Don Apple Mac OS X

5.0 OpenGlpipeline on Windows, Linux and Solaris Sep. 2004
6 Improved OpenGL rendering pipeline Nov. 2006
6ul0 | Improved DirectX rendering pipeline Nov. 2708

In order to enhance the rendering performance of pava programs, Sun has started
to access graphics hardware features via Direat¥esd2SE 1.4 [45] and OpenGL since
J2SE 5.0 (or 1.5) [52]. After that, Sun keeps imprg the DirectX-based Java 2D pipeline
(abbreviated as DirectX pipeline) and the OpenGséeblalava 2D pipeline (abbreviated as
OpenGL pipeline). For example, in first releasd@afa SE 6, the OpenGL pipeline has been
redesigned to improve its usability. In Java SEpfate 10, the DirectX pipeline has also
been redesigned. Since J2SE 1.4, full-screen madeében supported, and new types of
images, such as volatile images and managed (opativte) images, have been designed
to take advantage of graphics hardware [45]. Siheg, the rendering performance of Java
AWT/Swing has had a great boost. In particular,ube of OpenGL which is supported by
multiple platforms is quite important to Java inighthe cross-platform feature is critical.

However, as shown in Table 2, these hardware-aatete rendering pipelines still
have the following two limitations. First, the reaohg pipelines are not ported back to old

Java versions, since they are tightly bundled wplecific Java versions. The rendering

pipelines are also not available on all platforrRer example, currently the OpenGL
pipeline can only be enabled in JRE versions 1dbmyond on Windows and Linux, and
JRE version 1.6 on Mac OS X 10.5.2. Second, thenGpeipeline is disabled by default,
because it does not work well due to some hardaadedriver issues [55]. Although Java
SE 6 (or 1.6) introduces a newly designed Open@Elpie that gives much better stability
and performance than that in J2SE 5.0, the pipabnagain disabled by default for
robustness issues [55].

According to the analysis above, Sun’ official implentations of Java AWT/Swing are
still not good enough for developing cross-platfayames with high rendering performance.
Alternatively, several 3D graphical libraries weateveloped to build cross-platform Java
games with high rendering performance, including OpenGL for JavéGL4Java) [18],
Java binding for OpenGIJOGL):[50];Lightweight Java Game LibrarftWJGL) [22] and
Java 3D [46]. The first three ibraries are OpenGL bindingvhich provide low-level
one-to-one mapped APIs to OpenGL. Using GL4Jav&Ller LWJGL, Java programmers
can access hardware features supported in OpentBbwiwriting JNI wrappers. On the
other hand, Java 3D provides high-level APIs, whisk OpenGL and DirectX internally,
for creating, rendering and manipulating 3D scemlgs.

Using these libraries not only improves greatly ttendering performance on
supported platforms, but also helps to build modngames with realistic scenes. As a
result, several cross-platform 3D Java games, diatplaw & Order: Dead on the Money
[61], Jake2[7] and Wurm Online[32], were created using these 3D graphical libgr

instead of AWT/Swing, to achieve high renderingf@enance.

1.2 Problems of Java Graphics

Although the graphics part of Java evolves as de=grin the previous subsection,
seven problems are still identified when Java AWNIig is employed to develop

cross-platform games.
(1) Backward compatibility to old JREswithout graphics acceleration

As described in Subsection 1.1, Java AWT/Swingrandt 3D libraries require at least
J2SE 1.4 to achieve high rendering performance.d¥ew Table 1 and Figure 1 indicate
that currently about 5% of Web browser users stséd JREs below 1.4, where game
applications cannot obtain the benefit of hardwaaecleration mentioned above. Thus, this
problem is significant when game programmers, @adrly for applets, need to take the

legacy Java users into consideration.

(2) Unexpected rendering performance and visual effects when mixing Java
AWT/Swing components with these 3D libraries, supported in DirectX and

OpenGL

Directly accessing the 3D graphics libraries indted Java AWT/Swing usually
achieves good rendering performance. However, tRés Aof OpenGL and DirectX are
different from that of Java AWT/Swing. Unlike Javd&VT/Swing, both OpenGL and
DirectX do not provide widget systems, which magréase the productivity of Java game
programmers. Consequently, when mixing Java AWTh8wiomponents with these 3D
libraries, the performance may still be limitedtthat of the widget systems, or even worse
[42]. In addition, the AWT/Swing components typigatontrol their repainting timing and

process, which may cause some unexpected viswatgffsuch as flickering and tearing.

Thus, game programmers typically build their owndgét systems for their games.

However, this reduces the productivity of programgni

(3) Inconsistent rendering performance among different JREs

The problem of inconsistent rendering performamoeray different JREs occurs since
significant changes are made in the graphics ganewer JREs. For example, J2SE 1.2
introduced software rendering for outputting eqealdering quality on different platforms
[54], J2SE 1.3 introduced AWT Native Interface tbaables native code to draw directly on
Java drawing surface [53], J2SE 1.4 introduced ddxepipeline, while Java SE 5.0
introduced OpenGL pipeline. These significant cleengesults in two phenomena. First,
these changes are tightly bound to the versioiseodREs and are rarely ported back to old
JREs. Second, not all of the changes improve remgieerformance. As shown in Section
4.5, the rendering performance.oftexts and figdrep seriously from Java 1.1 to J2SE 1.2,
and from J2SE 1.3 to J2SE 1:4. Therefore;~suchemghenon may make programmers

hard to tune up the performance for all of the JRESions.

(4) Inconsistent rendering per formance among different operating systems

The rendering performance of Java AWT/Swing is nsistent among different OSs,
even when the same hardware configuration and JREsed. The problem is caused by
different implementations of graphics systems diews. Java 2D rendering pipelines are
built on different graphics systems on differentsD8uch as Window GDI and DirectX on
Microsoft Windows platforms, X Window System (X)gpon Linux, and Quartz graphics
layer (Quartz) [4] on Mac OS X. In addition, Windewista has a new graphics system
called Desktop Window Manager (DWM), which runs tmp of Direct3D and through

which GDI rendering is redirected [28]. Other tlitha above graphics systems, OpenGL is

supported on all of the four OSs. Since the JRizslve these different graphics systems on
different OSs, the optimization of Java games foe ©S may not be applicable to other
OSs. Therefore, more efforts are required for ngstind optimizing the games on all

targeted OSs.

(5) Inconsistent rendering performance on choosing different graphicsAPIs

In order to let programmers access hardware fegtuf2SE 1.4 introduced volatile
images and managed images (or so-called compatiaiges). Later, J2SE 5.0 introduced
translucent-supported volatile images. Using these APIs properly may improve the
overall rendering performance but lose the backwamhpatibility to old JREs. When
programmers want to support legacy Java users,ttagyeither only use old graphics API
or write several versions of programs which accEssrent graphics APIs in different JRES.

However, the problem of inconsistent renderinggenince still occurs in either way.

(6) Inconsistent rendering per formance on setting different system properties

Besides the choices of graphics APIs 'describetiarfifth problem, system properties
also need to be set carefully for better rendepegormance. For example, the system
property “sun.java2d.opengl’ needs to be speciteenable the OpenGL pipeline [58].
However, these system properties need to be setebdie startup of Java AWT/Swing,
which means that programmers cannot dynamicallpnghdhe settings during runtime. It is
even worse that some of these need to be spedifyedsers, not just programmers.
Consequently, it is hard for users to use proptingse that programmers want, or to set
these system properties without administrator’etagr help, e.g., the system properties in
the Java applets of the Web browsers [43]. Thus ptoblem makes it hard for

programmers to predict rendering performance onuseds’ systems.

10

(7) No direct accessto internal DirectX and OpenGL functionalities

Since J2SE 1.4, Java starts to access hardwardematiom. For backward
compatibility and portability on multiple platformshe DirectX and OpenGL rendering
pipelines are encapsulated in Java 2D API and @ir@ctessible directly by programmers.
However, in recent 15 years, since the graphicslvee evolves quickly, many new
features are available as time goes by. Game indtdically tries to enhance the quality
and performance of games by accessing these nawrdsaTherefore, the approach of
encapsulation by Sun may limit the Java game dewatmt for the following two reasons.
First, Sun’s implementations of rendering pipelinesy not support game-related features,
such as translucent widgets. Second, Sun’s impleens rarely provide extensibility
such as OpenGL's shaders for programmers to implefeatures not provided by fixed

functionality.

Table 8. Percentages of OSs [62].

Percentage
May, 2006 May, 2009

0S

, 2000/XP| 84.9% 68.3%
Windows -
Vista 0.0% 18.4%
Mac OS 3.6% 6.1%
Linux 3.4% 4.1%

11

1.3 Goals

In view of the seven problems listed in Subsectlo?, our goal is to enhance the

rendering performance of Java for cross-platforrngaevelopment. According to our

experience, we also propose some directions whiaely make Java more suitable for

developing cross-platform games in the future. Tdissertation consists of three major

parts as follows.

(1)

(@)

3)

Evaluate the rendering performance of Java AWT/8wiwith different
combinations of JREs, graphics APIs, system pr@gsertand OSs, including
Windows XP, Windows Vista, Fedora and Mac OS X. seh®©Ss are selected
according to population percentages:.shown in T&8bl&@he evaluation results
indicate that the performance inconsistency of J&d/Swing exists among the
four OSs, even if the same hardware configurasomsied. In addition, the results
also show that no specific graphics APIs and sysissperties are guaranteed to
obtain high and consistent rendering performanaifiarent JREs. The problems
weaken the merits of Javadrite-Once-Run-Anywhefeature.

Propose solutions to solve the above problems\d 2&VT/Swing and compare
the results with those of Java AWT/Swing. We pre@paswindow toolkit called
CYC Window Toolkit (CWT), a fast-rendering lightvggit GUI toolkit which
renders all its widgets via native graphics libeariWwe implement CWT using
DirectX, OpenGL, and Java AWT. The benchmarkingultssshow that CWT
achieves more consistent and higher rendering qmeaioce in commonly used
JREsS, including MSVM and JRE 1.4 to 1.6, on fousOS

Propose three suggestions to future developmedawd AWT/Swing. First, the

internal DirectX and OpenGL objects should be agibés for game programmers

12

who need to access up-to-date hardware featureshange the rendering
behaviors. Second, decouple the rendering pipethdava AWT/Swing from the
JREs for faster upgrading and supporting old JREsd, the bindings of DirectX
and OpenGL should be reused for lower developirggs¢doetter maintainability,

easier interoperability among Java AWT/Swing, Ja@aand JOGL applications.

The rest of this dissertation is organized as ¥adloChapter 2 presents the design of
CWT. Chapter 3 introduces three implementations gpittmization techniques of CWT.
Chapter 4 describes the configurations of JREs lmmthmark programs used in this
dissertation. This chapter also analyzes the exyetial results. Chapter 5 discusses the
software development problems of Sun’s Java AWTh8wiSolutions for making Java a
better game platform are also proposed. Finallgpgidr 6 concludes our work and suggests

possible future extensions of CWT.

13

14

Chapter 2 Design of CWT

This section describes the design of CYC Window IKibo(CWT). First, the
architecture of CWT is given in Subsection 2.1. TB&/T architecture encapsulates
multiple graphics libraries and provides a Java ABiling compatible API, which can be
further divided into three major parts: componerdrdrchy, event model, and painting
model. These parts are designed by mostly followegdesign of Java AWT/Swing.

Following the architecture, we have implementece¢himplementations of CWT,
using three graphics libraries: DirectX, OpenGL,damWT, respectively. Each
implementation has its own main goal. The Direanpiementation enhances the rendering
performance of MSVM, the OpenGL implementation_ioyas the rendering performance
on multiple platforms, and the AWT implementatiaisaas a backup while neither DirectX
nor OpenGL is available. Finallyywe summarize welated to CWT, includind\gile2D,

FengGU| andMinueta

2.1 CWT Architecture

CWT, as shown in Figure 2, is designed to providgh land consistent rendering
performance for cross-platform Java game developnwdmle keeping the same APIs of
Java AWT/Swing and backward compatibility to Javh. For the part of high rendering
performance, CWT uses DirectX and OpenGL to ren®T/Swing widgets, so the
graphics performance is improved through video Wward acceleration. As for users with
limited video hardware where DirectX or OpenGL @ available, CWT uses Java AWT to

render widgets. Next, for the parts of ease of asd backward compatibility, CWT

15

provides AWT/Swing compatible APIs for Java 1.1 dayond. In other words, CWT has

been designed to adapt the DirectX and OpenGL Aldsthe AWT/Swing APIs.

In

Figure 2, we define three wrapper implementatjoncluding CWT-DX, CWT-GL,

CWT-GL, and CWT-AWT, which are introduced as follaw

1)

@)

For DirectX, CWT accesses DirectX 3.0, which ismuped in Microsoft Java
VM (MSVM) [31] via a wrapper identified as CWT-DX.

For OpenGL, CWT accesses it via OpenGL bindingsentified as CWT-GL.

There are several candidate libraries: GL4Javap(@tipg OpenGL 1.3), JOGL
and LWJGL (both supporting OpenGL 2.0). All thederdries are generally
available in various OSs, including Windows, Mac ®SLinux, and Solaris. In
this dissertation, we choase JOGL to,implement GB{Tdue to its official

supports from Sun.

Application
CWT (AWT/Swing Compatible API)
CWT-GL
(OpenGL)
DirectX
Java AWT Java AWT
Sun JVM Microsoft Java VM
Motif/ Mac/) .
OpenGL OpenGL Win32/DirectX/OpenGL
tniebased Mac OS Microsoft Windows
OSs
Hardware

Figure 2. CWT architecture.

16

(3) When neither DirectX nor OpenGL is supported by tmelerlying OSs, CWT
accesses Java AWT via a simple wrapper, ident#ee@WT-AWT.

Besides the full advantage of the hardware acdederéor most commonly used JREs

even including 1.1, with this architecture, CWToatdfers the following features.

(1) Allow programmers to access internal DirectX ande@@L objects directly to
manipulate more hardware features and to tune ipeaface.

(2) Support mixing AWT/Swing widgets with DirectX angpenGL.

(3) Provide more game-related features such as trargiugdgets.

According the analysis above, CWT helps solve angrove the seven problems

mentioned in Subsection 1.2, as follows.

(1) For the problem of backward compatibility to old EBR without graphics
acceleration, the rendering performance .of MSVM Heen improved by
CWT-DX [63]. Together with CWT-GL [64] for J2SE 1ahd beyond on multiple
OSs designed in this dissertation, CWT covers ial 189.80% of Web browser
users in Table 1, where MSVM, J2SE 1.4, Java SEah@ Java SE 6 are used by
4.81%, 5.11%, 18.63% and 71.02% Web browser usssgectively.

(2) For the problem caused by mixing Java AWT/Swing gonents with the 3D
libraries, CWT supports AWT/Swing compatible widgetndered by the 3D
libraries, including DirectX and JOGL. Since 3D mes and the widgets are
rendered by the same libraries, this problem ngdoexists.

(3) For the problem of inconsistent rendering perforoeamamong different JRES,
CWT is independent of JREs so that CWT can be egppb almost all the JREs,
even including JDK 1.1 (backwards) and future JRteswards). Therefore,
rendering performance among different JREs becanoge consistent.

(4) For the problem of inconsistent rendering perforoeaimmong different OSs,

17

(5)

(6)

(7)

CWT directly uses hardware acceleration supportethe OSs, such as OpenGL,
to avoid the problem of inconsistent rendering @enlance caused by the
different rendering pipelines on different OSs.

For the problem of inconsistent rendering perforogamn choosing different
graphics APIs, CWT provides one set of graphics WRith is compatible to Java
1.1. This improves the compatibility issue and dutest efforts. The details are
described in Subsection 4.6.

For the problem of inconsistent rendering perforceamhen setting different
system properties, users do not need to set sywteperties before the startup of
the CWT programs, since CWT lets users (includiregmmmers) configure the
rendering behaviors during runtime. The, detailsda®cribed in Subsection 4.6.
For the problem of:no |direct access to internale&iX and OpenGL
functionalities, CWT allows programmers to accdss internal DirectX and
OpenGL objects directly so-that the programmersroanipulate more hardware

features.

In this dissertation, we have implemented thregopea implementations: CWT-AWT,

CWT-GL, and CWT-DX. All the implementatioras well as demonstrations are available

on our website [15]. We also put a porting guidéppendix C.

2.2 CoreCWT

Supporting a Java AWT/Swing compatible APIl, CWT sists of three major parts:

component hierarchy, event model, and painting mdde relation among the three pars is
shown in Figure 3. The component hierarchy modelsesarchical component structure

similar to Java AWT/Swing 1.1. The event model #diescthe event-handling process. The

18

painting model defines an abstract class caltetbhics which allows Java programs to
draw on components realized on various deviceSCWAT, Graphics is implemented by
various graphics libraries, including Java AWT, d2itX and OpenGL. Components are

rendered via Graphics instances onto native seesgurces.

Components and Events
Graphics (Painting)
CWT-GL CWT-AWT CWT-DX3
JOGL Java AWT Microsoft Java SDK
(OpenGL 2.1) (Motif/Mac/Win32) (DirectX 3.0)

Figure 3. Relation among components, events arghgs

2.2.1 Component Hierarchy

Java AWT adopts th€omposite. patterfll] that allows programmers to build a
complex GUI hierarchy by recursively composing cbgein a tree-like manner. Two
abstract classes Gemponent andContainer — are the key classes of the entire hierarchy.
Component is the root class of all the widge€@ntainer is a special component which can
contain other components, includitigntainer itself, and can arrange and resize the
components inside.

Java AWT uses peer architecture to maintain nalibok-and-feel of widgets on
various OSs. To support the cross-platform featlia@a AWT provides a common set of
GUI components on different OSs and peers impleateah each OS that connect the GUI
components and underlying native GUI systems. Framgle, WButtonPeer is
implemented on Windows platforms, which presentsBintton component in Windows

look-and-feel, whileMButtonPeer provides Motif look-and-feel on Linux. As shown in

19

Figure 4, the components which have their own opatiive parts are called heavyweight
components. For deciding which peers to be creatéis design, an abstract class called
Toolkit should be implemented on each OS. For exanifileglkit works on Windows

platforms and creates peers in Windows look-and-fee

javax.swing |
java.awt | I JComponent |<|—| Jrx |
ScrollPane ava.applet
0.1
- Container < panel K i Applet |Q I JApplet |
— Button L Window K JWindow
] Canvas Lﬁ Frame K JFrame
i Checkbox Dialog K JDialog
—] Choice
— Label
— List
— Scrollbar TextArea
| Heavyweight Component |
L] TextComponent TextField |
| Lightweight Component |

Figure 4. Component hierarchy of Java AWT/Swing.

com.cyc.lib.cwt | com.cyc.lib.cwt.impl | java.applet |

0.*
Component J CwtAppletFramePeer H CwtApplet

Container Panel
ontai |<]—| Applet | java.awt |
Window I I CwtWindowPeer H CwtWindow [

1

Scrollbar

T [

x P A
Canvas Frame [cwiFramePeer H CwiFrame F--DI Frame
|
Button | Dialog I— i CwtDialogPeer H CwtDialog I———-{)i Dialog

Checkbox

List

Label

Choice

TextField |

| Heavyweight Component |

[T

TextComponent TextArea |

| Lightweight Component |

Figure 5. Component hierarchy of CWT.

20

In contrast, Java Swing provides lightweight comgua which are drawn on
heavyweight containers, including re-implemented TAWeavyweight components. The
lightweight components have no peers to connegative components and are rendered by
Java, not by OSs. The lightweight technology alltava Swing provide more high-level
components which are not natively available onC#is, such as tree view, list box, and
tabbed panes. Swing also supports pluggable lodkeal so that programs may have
Motif look-and-feel when running on Windows platits. These features are important for
game development, since game programs normallyere@dll by themselves instead of
using native components.

The component hierarchy of CWT is similar to thlava AWT/Swing but different
in the implementation of components. As shown, iguFé 5, all heavyweight components
of Java AWT, except fakpplet, Window, Frame andDialog, are redesigned as lightweight
components in CWT. The peer architecture is stdsprved in CWT so that we only need
to modify much fewer parts of the entire AWT arebtiure. In this design, the rendering of
the lightweight components is performed In" corresjilmg peers. Furthermore, the
lightweight components need at least one heavyweigmponent at the top level to draw
on. Therefore, CWT internally wraps four correspagdAWT heavyweight containers —
Window, Frame, Dialog, andApplet, for rendering all the lightweight components. When
CWT programs initiate these containers, the wrapf&d components are created to show
other CWT lightweight components.

CWT Applet is designed in a different way from other threavysveight components.
SinceApplet is a kind ofPanel which requires to be contained i endow root instance, a
new container nametbpletFrame, a kind of CWTFrame, is created for containing CWT
Applet instances. As shown in Figure 5, theletFrame has its own peer implementation

which wraps an AWTApplet instance as the canvas. In this design, the pacpay,

21

however, is the changes Gfpplet> tag in HTML files. Since the browsers can onlyegatc
the AWT Applet type and in CWT only théwtApplet class inherits the AWXpplet class,
programmers need to modify the applet tag so tiebtowsers laundbwtApplet and then
CwtApplet launches target applets by reading the applethpetea ‘cwtapplet”. This can

be illustrated by the following code segments.

Original applet tag:
<appl et code=Your Appl et . cl ass></ appl et >

Modified applet tag:
<appl et code=com cyc.lib.cwt .applet.Cnm Appl et.cl ass>

<par am nane="cwt appl et" val ue="Your Appl et ">

</ appl et >

2.2.2 Event Modd

jaVa.Util I jaVa.aWt I java_awt_event I
EventObject <]--— AWTEvent <} ComponentEvent

JAN

— FocusEvent

— PaintEvent

— InputEvent <]—[MouseEvent
—] ContainerEvent KeyEvent
L— WindowEvent

Figure 6. Event hierarchy of Java AWT
CWT follows the event hierarchy of Java AWT, aswhoin Figure 6, and the
delegation-based event modé7] used in Java 1.1 and beyond. However, thenteve

processing flow is slightly different from Java AWas follows. In CWT, the four wrapped

22

AWT heavyweight components mentioned in the previswbsection get native events from
OSs and dispatch them to the contained lightweightponents. In order to dispatch events
to the proper components, the four container p€etappletFramePeer, CwtWindowPeer,
CwtFramePeer, andCwtDialogPeer, as shown in Figure 5, act as event listenereefdur
heavyweight components. These listeners analyzeotigghal AWT events, generate
corresponding CWT events, and put the new everts anevent queue. Then, an event
dispatching thread dispatches the events to theep©@WT components. Figure 7 illustrates
the event-processing flow in the following steps.
® Step 1: a mouse moving event occurLinFrame, which is a wrapped AWT
Frame. This event is handled iwtFramePeer implementing the mouse motion
listener.
® Step 2: th€wtFramePeer gets the mouse pasition from the event objectfimuld
out which lightweight components in CWTame the mouse is on.
® Step 3: theCwtFramePeer generates-a new. CWT mouse event with translated
position and puts it intBventQuete.
® Step 4: the threallventDispatchThread retrieves the event and dispatches it to

the component where the mouse is moving over.

com.cyc.lib.cwt I com.cyc.lib.cwt.impl |
Component |K— EventDispatchThread |—X EventQueue CwtFramePeer |— CwtFrame Heavyweight Component
4. Dispatch the events 3. Get the events P> ﬂ|z Postthe events <1 Events occur Lightweight Component

Figure 7. A typical event processing flow in CWT.

23

2.2.3 Painting Model

Graphics

+ drawimage() : boolean

_ L IS

GlIGraphics AwtGraphics Dx3Graphics
- gl : javax.media.opengl.GL - graphics : java.awt.Graphics - dds : com.ms.directX.DirectDrawSurface
+ drawlmage() : boolean + drawlmage() : boolean + drawlmage() : boolean
1 1 1

/I CWT-GL uses OpenGL API /I CWT-AWT wraps original D (11 CWT-DX uses Directx API AN
gl.gIBegin(...); /I Java AWT Graphics object dds.blt(...);
gl.glTexCoord2d(...); graphics.drawlmage...);
gl.glVertex2i(...);
gl.glEnd();

Figure 8. Three implementations of the Graphicsrfate in CWT.

The painting model is the key for rendering, an iespecially important for games.
Since the rendering operations are eventually pagd on native components on multiple
platforms, this model defines a.common set-of rendeAPI for the various native GUI
systems. In Java AWT, the abstraction of rendeisngainly in three classesraphics,
Image, andFont.

The AWT Graphics class is an abstract class which defines basaererg operations,
such as rendering primitives, texts, and image® Ihfage class is also an abstract class
which represents native image resources. The tvetraadd classes are realized by using
various graphics libraries on different OSs, such Vdindows GDI and DirectX on
Microsoft platforms, X Window System on Linux, Qtmgraphics layer on Mac OS X, and
OpenGL on multiple OSs. On the other hand,iivet class adopts the peer architecture to
connect the native font information needed for ezirg) texts.

Both Java AWT and Swing use a callback mechanisnpdinting [56]. Two callback

methods to be overridden iflomponent are paint and update. Programs place the

24

rendering code in the two methods and useGthaghics parameter object for drawing on
the component. On different GUI systems, correspan@raphics instances are created
dynamically in runtime so that they can renderlmniative components. Since J2SE 1.2, a
delegation design is introducedGoaphics instead of the inheritance design. This design is
also apply to Image and Font classes which also

In CWT, the functions of théraphics andImage classes are implemented by using
different graphics libraries. As shown in Figures8yeral subclasses implement the abstract
class Graphics by Java AWT Graphics, DirectX, ape@L, called CWT-AWT, CWT-DX,
and CWT-GL, respectively. THent class is designed in a different way. Since weatly
access the font resource provided by Java AWTetiseno need to implement different font
peers for each GUI system.

To support efficient lightweight painting and gametéated features, CWT follows the
design of Swing. Many Swing features are appliedh®® CWT components. The most

important features are transparéency, double buaffeand optimized repaint process [56].

25

26

Chapter 3 Implementation of CWT

Based on the architecture of CWT described in Ghaptthree graphics libraries are
chosen to implement CWT, including Java AWT, Di¥e@&.0 supported in MSVM, and
JOGL. These implementations are identified as CWMTA CWT-DX, and CWT-GL,
respectively. CWT-AWT is a simple wrapper of Jaw&R while the rest two require much
more efforts to implement and optimize. In this miea, we will briefly introduce the most

important techniques employed in the CWT implemtgona.

3.1 Implementation Approaches

There are two approaches to implement AWT compmatibindow toolkits: peer
extension and reimplementation.

® Pear extension approach.”Java uses.it to support pluggable look and feel on
different OSs by implementing the interfaces inka@e java. awt. peer. Though
these interfaces were originally designed for cdaform, we can replace the
peer implementation by a different one, like Chgl@]. With this approach, we
need to modify no Java code but just set the classe of the new toolkit in a
system property callechft. toolkit” before running the Java programs.

® Remplementation approach. Using this approach, we have to rewrite the entire
set of thejava. awt package. With this approach, programmers haveaage all
the import statements for java.awt” and “java.applet” to
“com. cyc. 1ib. cwt”, and then recompile their programs.

This dissertation adopts the reimplementation aggrpsince it has the following three

27

advantages. First, better algorithms, such aRtpeintManager in Swing, or bug fixes,

such as the focus issues in Java 1.1, can be ddpliEWT to improve the performance
outside the peer part. Second, CWT interface fonegalevelopment may need to be
extended in the future, but the peer extensioncgmbr can hardly achieve this goal. Third,
CWT interface remains unchanged even when new \Je&on adds more methods. With
peer extension approach, the added methods in aeavuwersions have to be implemented
in CWT, or CWT could not be run in the new versiol®r these reasons, our

implementation is based on the reimplementatiomcaah.

3.2 CWT-AWT

CWT-AWT, basically trivial to.implement, is to kedpe portability in different JVMs
on different OSs. In CWT-AWT wrapper implementatioan instance of Java AWT
Graphics is wrapped in CWT Graphics. Since bothp@ies objects have the same interface,
invoking methods of CWT Graphics will mostly involtee corresponding methods of AWT
Graphics. Consequently, the rendering performah€@NT-AWT is slightly worse than the
original owing to extra wrapping overhead. Accogdin the benchmarking results made by
us in [63], the overhead is about 10.3%.

Although CWT-AWT is basically a simple wrapper irapientation, some
optimizations are still introduced in its implematndn. For example, CWT-AWT will avoid
unnecessary state changes since some changesowatiead, including font, color and
clipper. Changes of these states only have efiebtn rendering operations really occur.

Therefore, CWT-AWT only applies changes right beftire rendering operations.

28

3.3 CWT-DX

CWT-DX is implemented by using DirectX 3.0 provideg Microsoft Java SDK [31].
Using Microsoft Java SDK is a quick solution thdbwas us to access DirectX without
building a bridge via JNI. Although only old Directfunctionalities are available, since
CWT only supports 2D rendering now, DirectX 3.Ceally performs with sufficiently high
performance.

CWT-DX accesses Windows GDI and DirectDraw to penfobasic rendering
operations. The functionalities of the Graphicsslaan be divided into two categories: (1)
figures and texts, and (2) images. Each categamsaitzed by different graphics libraries, as

described in the following subsections.

3.3.1 Images and Rectangles

The major speedup from .accessing DireciDraw to diavages comes from
hardware-accelerated memory copy inside video cafdge drawlmage methods of
Graphics are implemented by théit block transfer (blit) operation in DirectDraw.
Furthermore, DirectDraw also accelerates colanlin a given rectangular area. Therefore,
both fillRect and clearRect methods ofGraphics are implemented by using the
bltColorFill method of DirectDraw.

However, using DirectDraw, programmers may encautite surface lost problem.
Surfaces represent the memory on the video cardshvdre used to store images. The
contents of the surfaces could be freed when wd&sge the screen resolution or simply
switch to another window. If surfaces are lost,ithage data are gone and must be restored

or re-rendered [54]. CWT tries to rebuild the Isstfaces if the images are loaded directly

29

from image files. Otherwise, if images are creaad maintained by programmers, CWT
sets a flag dontentLost" in the image objects, as the design of volatilages introduced

since J2SE 1.4 [54].

3.3.2 Figuresand Texts

Since the DirectX does not provide text and figieedering APIs, Windows GDI is
used instead. When using Window GDI to draw figuaed texts in a DirectDraw surface,
programs need to get a GDI-compatible device car(e€) handle for the surface. This
will lock the surface and thus incur extra overhg2@]. Thus, it is important to minimize
the locking times to reduce the performance ovethieeorder to minimize the times, CWT
does not release the obtained DC, handle, until cinthe image rendering or rectangle

filling methods is invoked. This eptimization cae ttlustrated in Figure 9.

Pseudo-code of optimized DirectX and GDI commands

Pseudo-code of Java AW T (sdected=true, alive=true)

g. drawImage (imgl) ; dds. blt (imgl) ;

g. drawlmage (imgl) ; dds. blt (imgl) ;

g. setColor(cl); hdc = dds. getDC() ;
Gdi32. SelectColor (hde, cl);
dds-—releaseDCthde)+

if(selected) hde—=dds-—getDCO—

g. drawOval (...); di32.Ellipse (hde) ;

dds-releaseDC(hde)+

if(alive) A
g. fillRect(...); hde—=dds-getDCO+
Gdi32. Rectangle (hdc) ;
Gdi32. releaseDC (hdc) ;

g. drawlmage (img2) ; dds. blt (img2) ;

}

g. setColor (c2) ; hde—=dds-—getDCO+
6di32-SeleetColor(hde;—€2)-
dds-—releaseDCthde)+

g. fillRect(...); dds. colorFill (c2) ;

Figure 9. Eliminating unnecessary getting and setepDC.

30

3.3.3 Optimization of CWT-DX

For high rendering performance, game programmaiallysput pre-rendered images
and textures into video memory of graphics cardsthsit the graphics cards can directly
access them. However, since the size of the videmary is limited, programs may not be
able to put all the images into the video memoher&fore, some of the off-screen images
will stay at the system memory. Practically, prognaers may need to put frequently used
off-screen images into the video memory and mowsdhused infrequently to the system
memory. Carefully managing the video memory rese@an improve the overall rendering
performance.

For most game applications, programmers want tdraball the details for high
rendering performance. In order: to give programnsush flexibilities, CWT allows
programmers to decide the memory location whentiagénages, and allow them to copy
images between the video memory 'and system men@MyT-DX also supports direct
access to DirectX 3.0 APl of MSVM. For example, gnammers can get DirectDraw
surfaces by calling thgetDDSurface method ofImage of CWT-DX. Using Toolkit,
programmers can get DirectDraw objects for advamgetations. For more details, please
refer to Appendix C.

DirectDraw supports high performance for 2D imagadering, but it still relies on
Windows GDI to render texts and figures. Game @ogners usually use pre-rendered text
and figures, saved as images, to solve this prabAdthough DirectX does not support
figures drawing, it can draw rectangles (includimizontal and vertical lines) by filling
colors into them, as J2SE 1.4 does [54]. With haréwacceleration, these operations

perform better than rendering non-rectangular shape

31

34 CWT-GL

In this subsection, we briefly introduce how CWT-@hplements the Graphics class
using JOGL. We divide the functionalities of thea@hics class into five parts: figures,
images, texts, off-screen buffers and graphicestathose design issues and strategies are

described in Subsections 3.4.2 to 3.4.6, respégtive

3.4.1 Introduction to JOGL

JOGL [50] is an open-sourced project initiated iy Game Technology Group at Sun
Microsystems Inc. JOGL is a Java binding for Opergdld provides access to the latest
OpenGL API, including writing shader. code. JOGL tednts the OpenGL functionality
from platform-specific libraries, such as wgl, @rd agl, to create a platform-independent
OpenGL API. The abstraction greatly improves thegimlity of JOGL on different OSs.
JOGL is a development version-of the JSR-231 (Bawding for the OpenGL API) [51] and

will possibly be included in the Java SE core:lilgna the future.

3.4.2 Figures

In Java 1.1, the Graphics class allows programdréov several kinds of figures,
including lines, rectangles, ovals, round rectasigpolylines and polygons. These figures
are mainly of two types — outline and solid figurés OpenGL, outline figures can be
assembled by lines, while solid figures can bedilby triangles. Therefore, we use lines
and solid triangles for these figure-drawing arglffe-filling methods, respectively. Most
importantly, we use as small number of lines oangles as possible to achieve high
rendering performance for game development. Fomel& CWT-GL uses just enough

one-pixel lines to approximate a round circle [41].

32

3.4.3 Images

In CWT-GL, images are loaded onto so-called textn&ps to fill rectangles. In
practice, there are several limitations when we tegéure mapping for the simulation of
drawing images. These limitations and the corregpagnsolutions are described as follows.

First, the size of each texture has a maximum bokod example, the limitation on
texture size of ATI X1600 series, which are used ag test beds, is up to
(4096x4096)-pixef [2]. The values of the bounds may vary, dependingisers’ systems
and graphics cards. Currently, CWT-GL does not sttpmages larger than the bounds of
the underlying system.

Second, some old graphics cards only support potvbro-sized texture [41].
Therefore, if the image is not power-of-two._in. dms@®n and the graphics card does not
support non-power-of-two image, JOGL pads.the infagereating a power-of-two texture
image and then draws the original image onto the oee. However, the price to pay is
more memory consumed. For example, a3bBpixef image has to be padded to a
128x64-pixef size before it can be used as a texture map. frbislem can be solved by
introducing texture mosaicing [24] (or called textypacking [65]), which groups small
images into a single power-of-two texture to uélimemory. This technique is commonly
used in game applications [65]. Note that the mobbf optimizing texture packing can be
reduced to the two-dimensional Knapsack problemg¢hvis known to be NP-hard [9].

Finally, the size of texture memory is also limitgtl]. Thus, OpenGL as well as
CWT-GL needs to manage the texture memory by motertures in and out according to
the priority of the textures. The method glPri@effextures() can set the priority to
minimize texture memory thrashing. Therefore, CWTI-&lds a corresponding attribute

(named priority) in the Image class for programntemianage the texture memory.

33

3.4.4 Texts

Since text drawing is not directly supported in O@&, two alternatives are used in
OpenGL applications: image-based and geometry-bagpbaches [24]. The image-based
approach draws texts by rendering images on wiekts tare pre-rendered or dynamically
rendered during runtime. This approach is furtherddd into two methods, bitmaps and
texture maps. The former is simpler and more efficin memory utilization. However, the
latter is normally faster than the former since lgiger is directly supported by hardware
acceleration.

Although the image-based approach is easy to imgienit has two drawbacks. First,
a pre-rendered text has fixed resolution, so thaditguof scaled texts would not be as good
as that of the originals. Second, when the foné $izlarge, the images consume more
memory and rendering time. For example, a32sized character costs three times more
memory than a 2616-sized character,does.

On the other hand, the geometry-based approacksems texts in a series of lines,
curves and polygons. Since the texts are presemt8Dd models, scaling the texts will not
cause the effect of artifact. However, the more glem shape the texts are of, the more
polygons and processing power are needed. For dgaAgan languages, such as Chinese,
typically require more polygons to emulate.

According to the analysis above, CWT-GL implemémnt$h approaches described as
follows.

® In the image-based approach, the text engine rizrstlers the texts into texture

maps in a character-by-character basis, and thesithe texture maps to display
the texts. The texts will be cached in the textmags for later uses. We use the

Least Frequently Use@LFU) algorithm to maintain the character cachbe T

34

number of texture bindings can be reduced by pytimumber of the characters
in one texture map instead of generating each iehdal character in its own
texture map, since drawing a string typically inwesd drawing a series of
characters.

® In the geometry-based approach, we follow the commethod described in [24].

The text engine generates glyphs for each charatdralso caches them in
display lists for later uses. Since most glyphstaoncurves, such as quadratic
parametric curves and Bezier curves, the text engieeds to use cubic
interpolation to draw the curves. Like the way haw optimize circle drawing
described in Subsection 3.4.2, we only interpoéateh curve by a limited number
of steps according to the distance between two ehtie curves.

Since both approaches have cons'and pros, CWT4Slptegrammers configure the
rendering behaviors of the text engine during mefisuch as the size of texture cache and
the threshold of font size for. enabling geometrgduh rendering. According to our
experimental results in Subsection 4.5.2, we set megabyte as the default size of the
texture cache and 32 as the default thresholdeofdht size to be a balanced point between
the rendering speed and memory consumption. Whansfee is larger than the threshold,
CWT-GL uses the geometry-based approach to dratg;texherwise, CWT-GL uses the
texture-based approach.

We adopt two methods to reduce the memory usechéyexture map for the text
cache as follows. First, in order to reduce the Ioemof cached texts, the color information
of the texts is removed, i.e. we let characterd wlifferent colors share the same cache

space in the texture map. To do this, the cachis e drawn in white color with black

35

background. Then, we enable the blending functioblénd the designated cdlobefore

drawing the texts. The blending function is alsecdfed so that the white color of the
cached texts will be drawn by designated color #rel black background will become
transparent. Second, since the color information is not neddetle cached texts, we use a

one-byte-per-pixel grayscale texture map, whichstdihbe accelerated by hardware.
3.4.5 Off-screen Buffers

Rendering to off-screen buffers is a common opemaitn Java AWT. It is useful for
performing double buffering, dynamically creatimgages during runtime (runtime images)
for special effects. Although there are several svy do so in OpenGL, only few are
hardware-accelerated and fast enough for game a@veint. Currently, two techniques for
fast off-screen rendering are pixel buffer (pbyff@6] and Framebuffer Object (FBO) [34].
Both have been implemented in CWT-GL, since botehadvantages over each other, as
described as follows.

® Pbuffer. The pbuffer technique [36] is an OpenGL extensiBbuffers allow

programmers to create hardware-accelerated oféscbeiffers. This method is
faster than old ways when doing off-screen rendersnich ag;1ReadPixels (),

glDrawPixels () andglCopyTexSubImage2D (), which involves copying pixels
betweenvideo memor and system memorty[34]. However, each pbuffer is
associated with one distinct OpenGL context, whndurs overhead in both time

and space as described in the following. Switchimganother pbuffer causes

% The designated color is specified by usinggh&lendColor () function.

® The blending function is configured @&B1endFunc (GL_CONSTANT COLOR, GL_ONE_MINUS_SRC_

COLOR). The colorC rendered on target will b€ X Cpjeng + Cast X (1.0 - Cs), WhereC denotes each
individual red, green and blue color from 0.0 t6. I herefore, the white colo€{. = 1.0) part of the cached
texts will be drawn wittCyeng While the black backgroun{. = 0.0) will be drawn withCyg,

* Video memory refers to the memory on the videasavhich hold data for display devices.

® System memory refers to the memory where a compolds current programs and data which CPU works
with.

36

OpenGL context switching, which takes extra timé][3oreover, since pbuffers
cannot share space, each pbuffer must containvitsdata for some extra buffers,
such as depth buffer, stencil buffers, accumulakiofiers [34]. Despite of these
disadvantages, the pbuffer technique is supponeddre graphics cards, since it
was introduced earlier than FBO.

FBO. The FBO [34] extension is a good alternative toff@susince it makes

off-screen rendering more efficient and easier 4. Wnlike pbuffer, binding a

different FBO does not require context switchingcduse different FBOs are
allowed to share one OpenGL context, such as dayfer, stencil buffers, and

accumulation buffers. The design of sharing contdgb helps reduce memory
consumption. Moreover, FBO is easiér, to set up fhauffer. As a result, FBO

now becomes the better choice of off-screen rendgein OpenGL. The only

problem of FBO, however, is that it is a new extemsand supported by fewer

graphics cards than pbuffer:

According to the analysis above, the order of teqpes for off-screen rendering in

CWT-GL is (1) FBO and (2) pbuffer. For backward gmatble consideration to make

CWT-GL work on systems with old graphics cards weheeither FBO nor pbuffer is

available, CWT-GL creates AWT off-screen buffers fendering, and then transfers the

buffers into textures when rendering is finished.

3.4.6 Graphics Sates

Graphics states control rendering behaviors, inotyarigins, clipping areas, colors

and fonts. For example, first set the foregrountbamkground color into the graphics state

for subsequent drawing such lines or circles. JMWad encapsulates the graphics states into

the Graphics objects, while OpenGL stores themhen@penGL contexts. In AWT/Swing

37

applications, a Window object may contain a numbieiComponent objects, and each
Component object maintains its own graphics statess Graphics object. However, in
multithread environments, concurrently drawing Comgnt objects in Java must carefully
make graphics states of OpenGL contexts consisi@mrefore, in order to design a
mechanism to let CWT run correctly in multithreaavieonments, we need to take the
following two points into account.

First, most CWT components are of lightweight. Théightweight components are
finally painted on the four CWT heavyweight compeise including Window, Frame,
Dialog and Applet. Heavyweight components indepatigekeep graphics states such as
painting colors, while lightweight components isiagle heavyweight component share the
same graphics states. Thus, a single heavyweighpaoent must execute correctly the
interleaved rendering operations from these ligigthwecomponents with different graphics
states, and set the proper graphics states befavandg) its lightweight components. This
implies that we need to serialize the renderingratmns and execute them by a single
thread.

Second, OpenGL is mainly designed for single-thedadsage. As suggested by the
single threaded renderin@TR) [8] introduced in Java SE 6, using a sinbtead to issue
OpenGL commands is more efficient and reliable tising the multithreaded way which is
common in AWT/Swing applications. It would be bett® avoid the multithreading
approach, since it introduces more unexpected ranggeerformance issues in Java
programs as indicated in [6].

According to the two points, we adopt the desigri5oR into CWT. We use the Java
AWT event dispatching threa(EDT) as the single command processing threadesime
of the responsibilities of the EDT is to repaint tomponents. An example of this design is

depicted in Figure 10 and the steps involved aserilged as follows.

38

® Step 1: a rendering requelstawImage () is issued to &1Graphics object.

® Step 2: the request is translated into an interasmand with the required state.

® Step 3: the command is put into a command queue.

® Steps 4 and 5: the command queue invokes the méthpday () of an internal
GLCanvas object in order to activate the EDT to execute tendering request.

® Step 6: the activated EDT invokes the methdidsplay (GLAutoDrawable
drawable) implemented by the command queue.

® Steps 7 and 8: the command is retrieved and exétytéhe EDT by calling the
drawImageImp () method in th&1Graphics object.

® Step 9: before the command is executed, @Gh&raphics object changes the
states of the OpenGL context to'match the requstatd of the command.

® Step 10: thé&1Graphics:0bject issues the OpenGL commands.

Therefore, all the OpenGL: operations are issuethbysame thread, and the required

states of the graphics commands are ensured.

. Component . GlGraphics . GraphicsCommandQueue . GLCanvas . EventDispatchThread

[[[[

| 1: drawimage() »J_ <<create>>
2:

. GraphicsCommand

| |

| I

| I

3: appendCommand() u ! !
> |

4: displa
: —py()’D 5: invokeAndWait(
| |
| T 6: display()
7 r
:‘_< 8: drawlmagelmp() 4‘176)(90() < :
: | 9: checkState() :
| |
| _ |
| 10: issueOps() |
| |
		T

Figure 10. Sequence diagram of STR-like designWATC

39

3.4.7 Optimization of CWT-GL

In order to achieve fast rendering for game develmu, CWT-GL introduces two
optimization methods, (1) disabling unnecessarycking and testing, and (2) minimizing
the number of state changes in OpenGL. These gatans effectively improve the
rendering performance of CWT-GL implementation.

In optimization method (1), we disable some unn&mgs checking and testing of
OpenGL before performing certain rendering operatid-or example, alpha testing and
blending mode are unnecessary when the programsapraque images and figures, while
these tests are required for drawing transparemigés, translucent images and texts.

Turning off unnecessary checking can greatly imprtne performance.

Pseudo-code of JavaAWT Pseudo-code of optimized OpenGL commands

g. drawlmage (imgl) ; gl. glBindTexture(imgl) ;
gli glEnable(GL./GL TEXTURE 2D) ;
gl. g1Begin (GL. GL_QUARDS) ;
gl glTexCoord2d(...);
gl.glVertex2i(...);

g. drawImage (imgl) ; gl g1BindTextureGme)+
gl. glTexCoord2d(...);
gl.glVertex2i(...);

gl. glEnd () ;
gl. glDisable (GL. GL_TEXTURE_2D) ;

Figure 11. Eliminating unnecessary changes of Opesi&e.

40

In optimization method (2), we try to minimize tmumber of state changes in
OpenGL. As described in Subsection 3.4.5, OpenGitesth switching takes extra overhead
in time [41]. For example, binding textures andakwg g1Begin()/glEnd(). Others such as
changing color and setting clipping area do no¢afspeed much. However, since JOGL
invokes corresponding OpenGL API via JNI, it idl stigood idea to reduce the number of
JNI calls. Therefore, CWT-GL tries to minimize theamber of method calls that change
OpenGL states. For example, Figure 11 shows thesescof unnecessary changes of
OpenGL state (pseudo-code with strikeout) when ohgwan image continuously: (a)
glBegin()/glEnd(), (b) glBindTexture(), and (c)glEnable()/glDisable(). In order to
achieve this, CWT-GL uses variables to indicateremir states of bound textures, color,
clipping area, and type of glBegin(): Before isguthe rendering operations to OpenGL,
CWT-GL changes OpenGL states only when the stateslifferent from required ones.

Therefore, unnecessary state changes can be avoided

3.5 Mixing CWT-GL with JOGL

CWT can be seamlessly mixed with JOGL without thebfems of unexpected
rendering performance and visual effects when rgixiava AWT/Swing components with
these 3D libraries, mentioned in Subsection 112¢esithe CWT-GL implementation uses
JOGL as its internal render. The problems of reindegperformance and visual effects are
solved by the shared buffer design between CWT-@L BOGL programs, as discussed in
Subsection 5.1.3.

In order to mix CWT-GL with JOGL, several issuevd&&o be considered, including
shared view buffer, rendering order, and maintgr@penGL states. First of all, in order to

seamlessly mix CWT-GL with JOGL, a shared view psrtlesigned. CWT-GL initiates a

41

GL.Canvas object provided by JOGL and renders everythinghencanvas, which can be
shared by other JOGL programs. To do so, CWT-GL getgrammers access the
GL.Canvas object so that the programmers can render 3D nbotethe canvas.

Once CWT-GL and the JOGL programs render on theesamnvas, the next issue is to
organize the rendering order. Since 3D programs usg&yCWT to design interactive user
interfaces andchead-up display(HUD), such as menu and chatting box, CWT widgets
should be rendered after the JOGL programs rerglsganes. Therefore, CWT defines the
rendering order to that the JOGL programs rendeis@&nes first and then CWT renders

atop the scenes, as shown in Figure 12.

Step 1. Clear the viewport.:

Step 2. JOGL programs render 3D sceneé

Step 3. CWT-GL directly renders Widgeté

Mixing CWT components with JOGL
= Wy
) 7

without clearing the viewport. &

Y
il

Figure 12. The flow of mixing CWT-GL with JOGL.

42

c

Java

Table 4. OpenGL states for CWT-GL.
State CWT-GL Description
Projection Orthographic| CWT-GL uses orthographigjgution since CWT is a
2D library which only requires a 2D orthograph
viewing region.
Viewport (O, 0, width, | The upper left corner of the viewport is locatedatO)
height) so that the coordination system is the same as
AWT/Swing.
Camera (0,0,1,0,0, 0,in CWT-GL, the camera is placed at location (0,10
0,1,0 and looks at location (0, 0, 0) with up directi@n {, 0).
Lighting Disabled CWT-GL does not need lighting.
Depth test Disabled Depth test has to be disabbethat widgets will be
rendered atop 3D scenes.
Clipper Enabled CWT-GL uses clipping planes of Gpkmo implement

the clipper. of Java AWT/Swing.

Modelview and
texture matrices

Identity matrix

CWT-GL uses identity matrix for modelview ai
texture-matrices, which means that no transformasc

D

required.

The final issue is to maintain OpenGL states be@WéT-GL and the JOGL programs

start to render. OpenGL is a state machine whiahtrots the rendering behaviors of

operations. Therefore, the OpenGL states have tsebeorrectly. The required OpenGL

states of CWT-GL are listed in Table 4. Before C@/Istarts to render, the OpenGL states

will be stored and be changed as described in FabAddter CWT-GL finishes the rendering,

the OpenGL state will be restored so that CWT-GILmat affect the rendering behaviors of

the JOGL programs.

3.6 Related Work

Some research, such Agile2D [26], focuses on building OpenGL adapters to Java

AWT/Swing, while others, such d@&engGUI[40], andMinueto [10] try to create toolkits

with different APIs. In this subsection, we revidgve work related to CWT.

43

3.6.1 Agile2D

Agile2D [26] implements an almost complete setafal2D functionalities based on
GL4Java to replace the repaint manager of Swingshasvn in Figure 13. Therefore, it
improves the rendering part of Swing without theedeof re-implementing Swing
components. The authors of Agile2D also showed itin@rovement in rendering
performance to Sun’s Java 2D implementation. Howetlere exist some problems in
Agile2D. First, Agile2D supports only J2SE 1.4 dmelyond, and it does not support the
acceleration of Java AWT 1.1, which is still usgdrbany applet games, such as Yahoo!
Games [68], ArcadePod.com [16] and CYC games [B3][Second, Agile2D is based on
GL4Java which only supports OpenGL version 1.4 hasl no plan for evolution. Third,
Agile2D does not support rendering of off-screeffidys. Finally, Agile2D only supports

the first 256 characters in Unicode, e.g. ISO 885%hese issues can limit the applications

of Agile2D.
Agile2D (Swing) |
GL4Java
Java AWT/Swing
Sun JVM 1.4 and beyond |
Figure 13. Agile2D architecture.
3.6.2 FengGUI

FengGUI [40] is a Java graphics toolkit based oiG@nd LWJIGL. This toolkit
specially focuses on the rendering performancarfoltimedia and game applications, and
has been used in several commercial projects. Sarstin Figure 14, FengGUI provides a

new set of commonly used widgets and graphics AifH easy-to-use design, which are

44

different from Java AWT/Swing components. In aduiti FengGUI can also be combined
with several 3D game engines, including jMonkey iBag20], jPCT [21], and Xith3D [67].
Programmers can also directly access JOGL or LWJ8h¢ce FengGUI does not
encapsulate these two APIs. However, using Feng@dgrammers need to learn not only
the new API, but JOGL or LWJGL, which may reduce girogrammers’ productivity. In

addition, FengGUI supports only JRE 1.5 and beyach also limits possible Web users.

FengGUI

JOGL

Java AWT/Swing
Sun JVM 5.0 and beyond

Figure 14. FengGUI architecture.

3.6.3 Minueto

Minueto [10] is a Java 2D game framework based awa AWT/Swing. The author
designed it especially for undergraduate studemtsrder to ease the work of Java game
programming, including graphics, input, and soumterefore, the API of Minueto is
different from Java AWT/Swing, which requires exd¢féorts to port existing Java games to
Minueto. For high rendering performance, Minuetoyisles an expansion module called
MinuetoGL using JOGL. Unfortunately, although tegtthe rendering performance of their
engine on Windows XP, Linux, and Mac OS, the auttiiokr not address how different
settings can affect the Java rendering performanbé&h is one of the objectives in this

dissertation.

45

46

Chapter 4 Experiments

In order to evaluate the consistency of renderiegfgpmance of a Java program
running in possible combinations of toolkit, JRigsaphics APIs, system properties, and
OSs, we implemented two testing programs as ouchmearks, available on the website
[15]. One benchmark tests the performance of rengl@rimitives, while the other focuses
on the performance of the Bomberman game, whiaoheigsured by two metrics: frame rate
and Anomaly. All the benchmarks were performed wm tcomputers with roughly
equivalent computing power. Since there are nunsecombinations of the five factors, we
introduce a five-tuple identifier” to represent .eacbmbination, called rendering
environment (RE). In the remaining part of this tgec we will briefly show our

experiments.

4.1 Test Programs

We implemented two test programs, available on weabsite [15]. One is a
micro-benchmark, and the other is a macro-benchmBnke micro-benchmark program
opens a 60€B800-sized window and counts the number of timesrage, text or figure is
rendered within a given time, described as follows.

® Image tests, as shown in Figure 15 (A), are furttigided into six subtests,

including opaque images, transparent images, tre@st images, runtime opaque
Images, runtime transparent images, and runtinmsltraent images. Each subtest

renders as many corresponding A100-sized images as possible in a given time.

47

(A) Image tests

(B) Text tests

(C) Figure tests e

yE)]

Figure 16. A screenshot of the Bomberman game.

48

® Text tests, as shown in Figure 15 (B), have twaesib: simple texts (using the
word “Running”) and articles (consisting of abo@,d00 characters on the screen,
including 1,562 different characters in Chineseglih, and other languages).
The font size in both tests is 12. In additionprder to decide the performance of
our text engine, the rendering speeds of texts different font sizes, from 10 to
64, are also measured.

® Figure tests, as shown in Figure 15 (C), includes@Btests which draw lines,
polylines, polygons, rectangles, round rectanglss, ovals, solid polygons,
solid rectangles, solid round rectangles, pies,smtid ovals. The metric for these
tests is “rendered items per second.”

The macro-benchmark program is to simulate a Bomaergame, an applet game
developed by [59], as shown in Figure 16. The panet of the game is 58895. On
average, the game draws 196 opaque images, 12par@mt images and 14 text characters
in each frame. Among the transparent images, abBuare runtime images which are
dynamically created during runtime. We measured #werage frame rate of the
Bomberman game in rendering 20000 frames.

Both benchmarks use double buffering to avoid @rakg. The programs first rendered
items into a back buffer, and then copied the bauafter to the front buffer which was
shown on the screen.

Since game programmers normally try to optimize fthene rates of their games by
using different combinations of graphics APIs, i@aneasure the rendering performance
of different combinations of graphics APIs, as shawTable 5, four APIs for creating back
buffers and three APIs for creating runtime imafmsdynamic processing. In order to
simplify the names of the graphics APIs, we ablakvihese sets of APIs in the remaining

dissertation. The APIs for back buffers are idesdifby Img (Java 1.0/1.1 Image), Cpt

49

(Compatible Image), VIt (Volatile Image) and Cpt{@ompatible Volatile Image), while

the APIs for runtime images are identified by Ingpt and CptVIit. Since it is possible to

test all the cases of choosing APIs for back bsfard for runtime images, there are in total

12 test cases of choosing these APIs.

According to JDK documents [3][58], some systemperties allow programmers to

customize how Java 2D performs rendering operatidbhsrefore, we also specified these

system properties when running our benchmarks aftetted the most significant parts

which influenced rendering performance most, asvshia Table 6.

Table 5. Graphics APIs Tested in the Benchmarks.

Usage API ID |JDK
Component. createlmage (w, h) Img 1.0 ~
Back |Component. createVolatileImage(w, h) Vit
Buffers|GraphicsConfiguration. createCompatibleImage (v, h) Cpt 1.4~
GraphicsConfiguration. createCompatibleVolatilelmage (w, h) CptVit
_ |Toolkit. createImage (imageProdueer) Img [1.0 ~
Runtim
GraphicsConfiguration. createCompatiblelmage (w, *h, trans) Cpt [1.4~
Images GraphicsConfiguration. createCompatibleVolatilelmage (w, h, trans) CptVIt| 1.5 ~
Table 6. System properties for SystemPropé&i®pecial} [3][58].
(ON) System Properties
Windows ® sun. java2d. translaccel=true andsun. java2d. ddforcevram=true
i Specify if translucent images should be hardwacelacated when
XP & Vista _ .
DirectX pipeline is in use.
® sun. java2d. pmoffscreen=true or false
Fedora Specify whether Java 2D stores images in pixmapsnwiGA is not
available.
® apple. awt. graphics. EnableQ2DX=true in J2SE 1.4
Use hardware acceleration to speed up renderingnafes, lines
Mac OS X rectangles and characters.
® apple. awt. graphics. UseQuartz=false in J2SE 5.0 and beyond
Use Sun’s 2D renderer instead of Apple’s 2D rendere

50

Table 7. System hardware, configuration and OSs.

Graphics Card

PC Hardware OS ;
Driver
® AMD X2 3800+ 2.0GHz Windows XP Professional SRP2
®1 GB DDR 400 Windows Vista Business
1 INCOWS Vista BUS ATI Catalyst 8.4

®ATI Radeon X1650with 254
MB GDDR2 AGP

®|ntel Core 2 Due 2.0GHz

®1 GB DDR2 667 .

2 N Mac OS X 10.4.11 Bundled driver

®ATI Mobility Radeon X160(Q

with 128MB GDDR3 PCle

Fedora Core 6

Table 8. JRE versions in the benchmarks.

Java Version - . oS
Windows XP and Vista Fedora Core | Mac OS X
MSVM (Java 1.1.4) 5.0.0.3810 N/A N/A
SunJava l.l 1.1:8.10 N/A N/A
Sun J2SE 1.2 1:2.2 47 N/A N/A
Sun J2SE 1.3 1.3.1 20 1.3.1 20 1.3.1 16
SunJ2SE 1.4 1.4.2 17 1.4.2 17 1.4.2 16
Sun J2SE 5.0 1.5.0 15 1.5.0_15 1.5.0 13
Sun Java SE 6 1.6.0_05 1.6.0_05 N/A

4.2 System Configuration

We performed our benchmarks on four OSs, includlifigdows XP Professional SP2,
Windows Vista Business, Fedora Core 6 and Mac O30x.11, which were chosen
according to the population percentages shown lateTa.

In order to make fair comparison, we used two caensuwith roughly equivalent
computing power to install the four OSs, as showrlable 7. For the hardware part,
Computer 1 is a desktop PC with AMD X2 3800+ 2.0z2GHGB DDR 400 RAM, and ATI

Radeon X1650 with 256 MB GDDR?2 via AGP bus, whilen@puter 2 is an iMac with Intel

51

Core 2 Due 2.0 GHz, 1 GB DDR2 667 RAM, and ATI Midpi Radeon X1600 with
128MB GDDR3 via PCle bus. As for the OSs, Compathias Windows XP Professional,
Windows Vista Business and Fedora Core 6 instaifiéial ATl Catalyst 8.4. Computer 2 has
Mac OS X 10.4.11 installed with bundled graphicedadriver. Both computers worked in
true color mode and disabled font anti-aliasing.

We installed most of the popular JREs on these OBs.versions of the JREs are
given in Table 8. However, we did not perform trenthmarks in JRE 1.1 and 1.2 on
Fedora and Mac OS X, since we could not succegsfatifigure these old versions.

Since JOGL is still under development, there averse release builds available on the
website [50]. The release build we used to runldbBachmarks in this dissertation was

JSR-231 1.1.1-rc8.

4.3 Rendering Environments (RES)

In this dissertation, we ran test programs infarendering environmentéRE) with
the combination of using different JRES, graphid3Ish system properties, and OSs. In
order to easily point out which RE we are referiogwe identify each RE by an identifier,
a tuple of five attributes (Toolkit, JRE, Graphi¢dASystemProperty, OS).

® Toolkit {AWT, CWT-DX, CWT-GL}. “AWT” represents the Java AW graphics

library, “CWT-DX" represents the DirectX implemetitm of CWT, and
“CWT-GL” represents the OpenGL implementation of TW this dissertation.
® JRHKMSVM, 1.1,1.2,1.3, 1.4, 1.5, 1.6}. “MSVM” denateMicrosoft Java VM
[31], and “1.1" to “1.6” denote Sun JRE version fio11.6, respectively.
® GraphicsAPLBackBufferAP¥RuntimelmageAR| where BackBufferAP£{Img,

VIt, Cpt, CptVIt} andRuntimelmageAR{Img, Cpt, CptVIt}, as shown in Table 5.

52

Therefore, there are in total 12 combinations testehis dissertation.

® SystemProperty{None, OpenGL, Special}. “None” represents the ctss no
system properties are specified for JREs, “Open@ehotes the case that
OpenGL pipeline is enabled (by setting the systeopgrtysun. java2d. opengl
to true), and “Special” refers to the system propertiegeceed for JREs
according to Table 6, which follows the hints if[$8].

® OSHKXP, Vista, Fedora, MacOS}. “XP,” “Vista,” “Fedora’and “MacOS”

respectively represent the following operating eys, Windows XP, Windows
Vista, Fedora Core 6 and Mac OS X 10.4.11.

For example, RE(AWT, 1.6, VIt+Cpt, OpenGL, XP) msféo the RE that uses AWT,
runs in JRE version 6, chooses the:method creattMdnage() in Component class for
back buffers and the method createCompatiblelmage@raphicsConfiguration class for
runtime images, enables OpenGL pipeline, and rim8Vondows XP; RE(CWT-GL, 1.4,
None, Img+Iimg, MacOS) refers'to the RE that usesl€\, runs in JRE version 1.4, uses
Java 1.0/1.1 graphics APIs for both back bufferd mmtime images, and runs on Mac OS
X 10.4.11.

For simplicity, we introduce the wildcard charact&rto indicate a group of REs for
all cases in the attribute. For example, RE(AWTY);+Cpt, None, MacOS) means all the
REs with AWT and with the combinations of Graphi&B&{VIt+Cpt} and

SystemProperty{None} on Mac OS X.

53

4.4 Definitionsof Metrics

To measure the rendering performance of the bendsmee use three metrics: (1)
rendered items per second, (2) frame rate, and\i®maly. Rendered items per second
count the number of times an image, text or figiserendered per second in the
micro-benchmark. As for the macro-benchmark, frame is commonly employed to
measure the rendering speed expressed by framesgoend (FPS). For a RE r,
FrameRate(r) denotes the frame rate in r. Anomaiyafset of REs, say R, is defined as

follows.

max,, .- (FrameRaté))
min_, . (FrameRaté))

AnomalyR) =

The metrics Anomaly is defined specifically for terst case which could happen out
of programmers’ expectation.. Since -programmers nhajieve that the rendering
performance of Java is also similar when portingtioer REs, they may optimize their
games by only testing in some limited RES. Howetleg, users who use other REs may
experience much worse rendering performance. Toxereive use the above definition for

Anomaly, instead of some other metrics such aslstandeviation.

4.5 Analysisof Micro-Benchmark Results

The micro-benchmark program opens a 600x300-sizedow and counts the number
of times an image, text or figure is rendered geoad. The micro-benchmark is consisting
in total 21 subtests. Each subtest was performéteicombinations of using different JRES,
graphics APIs, system properties, and OSs. In calyais, we will focus on the

performance inconsistency and eliminate unneceskagyls of all the results. Therefore, all

54

the results shown here are the averaged resuliiseo$ubtests. The whole results of the

micro-benchmark are listed in Appendix A.

4.5.1 Image Tests

The rendering performance of images is quite ingmirin 2D game development,
since normally games are formed by images. As showsigure 17, CWT achieves high
and consistent scores among the four OSs in thganests due to the use of hardware
acceleration. As for AWT, programmers need to use rgraphics APIs and system
properties, which also get benefits from hardwareekeration, to obtain better results.
However, while achieving good results using sommlmaations of graphics APIs and
system properties, the rendering performance’ |k istonsistent among the four OSs.
Besides, using new graphics ARIs and system pliepdodses the compatibility to old JRES,
such as Java 1.1, which is still used by a portibiveb users [12]. This makes it hard to
decide which combination of graphics APIls-and systigroperties should be used in

cross-platform game development.

55

E Windows XP E WindowsVista E Fedora Core @ Mac OS X |

puo2ag Jad SWway| palopuay

Ao
=7 | f----f---cf-c-cp--cfo-ccf---
=
&lE’»*uj T T T
B§> R R R SRR SRR SEEE
s DE_ T T
33

v -
2923
v>8E [
) 98‘
ogo= i
O< I
= i rrs s s]
i
< E v
<520
URSRCISEN EEEEY TEEES EEE
= Q
£3598&
TLE
£2
cxd
S58 focfefe
Lio
UJzu)
o o
|—<Dg_
~ T
E‘ag R
Z9Z [S
i
u> Y
N
SEuvg Ry
Sa g [T e N
E< L
=D
E2c
=S - T PR S PR R S
<*Z
-~ O
veg!?
=2
%2
<x
o o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o
[ee) ~ © w < [sp] N -~

1.2 1.3 1.4 1.5 1.6 1.4 1.5 1.6 1.4 1.5 1.6 1.5 1.6 1.5 16 MSVM 14 1.5 1.6

1.1

MSVM

JRE

56

Figure 17. Averaged rendered images per secondsga@®ss.

452 Text Tests

The rendering performance of texts is also impartlamrmany network games which
support chatting systems. The tests are dividea tinb parts: fix-sized and various-sized
texts. First, for the fix-sized text rendering,sl®wn in Figure 18, different from the results
of the image test, CWT, especially CWT-GL, is nhobd at rendering texts, since texts are
rendered by CPU, not by GPU. Therefore, the harevaaceleration of GPU is not quite
helpful in text rendering. For example, when Direw is used, CWT-DX put as many
images and off-screen buffers as possible intoovidemory. However, this makes the
rendering performance of texts worse, since CPUdascess the video memory through a
relatively slow bus, such as PCI, AGP, and PCleeldv@penGL is used, there is no direct
supports of text rendering. Alternatively, CWT-Genders the texts based on two
approaches: (1) texture-based (firstly render ¢xéstto images and then render the images)
and (2) geometry-based approaches (use lines dypdops to form the texts). In this test,
the texture-based approach is employed. Withowctihardware support, CWT performs
worse than AWT does.

As for AWT, we can also find the situation thatdware-accelerated image rendering
may make the rendering performance of texts woidegen the combinations of graphics
APls and system properties achieve higher rendgrertprmance in image rendering, the
performance of text rendering may become lower.tA@ofact that we want to point out is
that the text rendering is still inconsistent natyopamong the four OSs, but also among
JREs. Normally, we expect that the rendering peréorce would be better in newer JRESs.
However, on Windows XP and Vista, JRE 1.4 perfomwmse than JRE 1.2 and 1.3 do.
Fortunately, the performance of text rendering ixmbetter in JRE 1.5 and 1.6. However,

the requirement of proper combinations of graplAiPss, system properties, and JREs may

57

still makes it hard to optimize the rendering perfance of texts for unpredictable Web
users' rendering environments.

Next, we analyze the rendering performance of tewth different font sizes on
Windows XP. As mentioned in Subsection 3.4.4, CWTi@plements texture-based and
geometry-based text-rendering approaches. In t#ttereebased approach, the cache size of
the texture maps has a great influence on the rigdeerformance. As shown in Figure 19,
when using a 16-megabyte texture map to cache, tdndgexture-based approach is faster
than geometry-based approach in drawing texts. Mewesuch cache size may not be
practical, since some computers only have limiteatnory. When the cache size is limited
to one megabyte, the rendering speed decreasesitirally when drawing texts with size
larger than 24, since the number of different ctigra exceeds the capacity of the cache. In
such case, the geometry-based:approach delivaes batdering performance.

Next, we analyze the results of Java AWT. As shewigure 19, the rendering speed
of texts varies much when different-graphics-ARis ased. When Java 1.0/1.1 graphics
APIs are used (Img+Iimg), AWT often- delivers muclitérerendering performance than the
case of using new graphics APIs (VIt+Cpt) and syspeoperties (Special). This is because
that the text rendering is performed by CPU, noG®BU. CPU can directly render the texts
to the off-screen buffer located in the system mgmdhen Java 1.0/1.1 graphics APIs are
used. In contrast, CPU renders the texts to velatilages located in the video memory
when new graphics APIs are used, so the rendepiegdsdecreases dramatically. In order to
overcome this problem, a text cache mechanism bas mtroduced to Java AWT. For
example, Java AWT caches the frequently used cteasawith size 16 and below. Therefore,

in such case, the rendering speed of the texteatly improved.

58

B Windows XP B WindowsVista B Fedora Core B Mac OS X |

. it
B R RLRLE EEEEN ERPRS SUPRE Berr
EES
05
=2y AT
B B R Rh ELERR] LLLTT RERRE EEEr
o ©
F< g AT,
ggwj
SLEQ s I
S85 b T
§w§8‘
(_%En.v
= <
[l
SEu~
520 A
R A (REEES EERER] EEREE! REEEE (EEEE
2788
32a®
e
£33
=0
20 | ...,
<8
UJE[J)
Tuv e
ST 8 [[-----
<9
o
ey
Eag A,
Z9Z [[-----
VS Y
Evi L
S g [[-----
<=
o
o
""""" [-----f--- -1
o o,
"""""""""" -~~~
mET
Egg (e
_Z --------------------
5 ,
wgi .
£T¢E e
Z v g |
SE &
<&
e,
S 888888 °
o o o o o o o
o o o o o o o
5 2 28 8 8 8 8

puU0DaS Jod SWa)| pasapusy

1.1 1.2 1.3 14 1.5 1.6 14 1.5 1.6 14 1.5 1.6 1.5 1.6 1.5 16 MSVM 14 1.5 1.6

MSVM

JRE

59

Figure 18. Averaged rendered texts per seconds g&s.

'S3ZIS U0} JUBIAINPSPU0ISS Jad S1xo]1 palapual pabelany ‘6T ainbi4

925 Juo4
09 0S o 0 0z 0l 0
; : 0
// 0000€
R AN 00009
00006
00002}
i//t 00005}
00008}

{dx}>so {o'L}23ur

({euoN}=Auadoidwsishs {Bwi+bwi}s|dysoiydes {19-1MD}2IMI001) 8YoeD gIN 91 UM paseq aInjxa | —>—
({euoN}=2Auadoiduslshg “{buwi+bwi}s|dvsolydel {19-LMOI21MI001) 8yoeD giAl | Yim paseq ainjxe | ——
({suoN}=Auedoidwaishs {Bwi+bwi}s|dysolydess {19-1MO}=M00]) paseq Aljpwoss) —e—
{leroadg}aApadoiqueisAs {(1dD+iA}2IdVsolydels {1200 —¥—

{auoN}aAuadoidqualsAs {Bwj+bw}z|qysolyders {00 —E—

puU0D8S Jad SWwaj| paispusy
60

4.5.3 FigureTests

As shown in Figure 20, CWT-DX does not deliver gaedults in rendering figures,
since these operations are also not hardware-aatadein DirectDraw. Therefore, in order
to render figures onto back buffers, CPU has tessthe video memory. On the other hand,
CWT-GL performs these operations quite well sineefigures are rendered using lines and
polygons which have great supports in OpenGL-acatdd graphics cards. Therefore,
CWT-GL achieves high and consistent rendering perémce on the four OSs.

AWT still delivers inconsistent performance whemdering figures. The impacts of
using different graphics APIs and system properiesdifferent from those of image and
text tests. For example, in many cases, to, achieigh and consistent rendering
performance of figures among the four OSs, programmhould use Java 1.0/1.1 graphics
APIs (Img+Iimg). However, the benchmarking prograrhion uses new graphics APIs
(VIt+Cpt) and proper system properties delivers mbetter rendering performance in JRE
1.5 on Mac OS X. Therefore, it is still hard todia combination of graphics APIs and
system properties which achieves high and consistardering performance among the

four OSs.

61

Toolkit € {CWT}
API € {Img+Img}
Property € {None}

W,Wm
----- e o]

i
R SRR EEEEEE EEEEEE

R

Property €
{OpenGL}

Toolkit € {AWT}
API e {VIt+Cpt}

e

[|
e

Property €

Toolkit € {AWT}
{OpenGL}

API € {Img+Img}

o A

Toolkit € {AWT}

APl e {VIt+Cpt}
Property e {Special}

Toolkit € {AWT}
APl e {VIt+Cpt}
Property € {None}

B Windows XP B WindowsVista E Fedora Core B Mac OS X |

Toolkit € {AWT}
API € {Img+Iimg}
Property € {None}

S s

|
e e

e,

A

A s

B A A A

105000

puooag Jod Swa)| paiopuay

62

1.1 1.2 1.3 14 1.5 1.6 14 1.5 1.6 14 15 1.6 15 1.6 15 16 MSVM 14 1.5 1.6
JRE
Figure 20. Averaged rendered figures per secondsmgr®Ss.

MSVM

4.6 Analysisof Macro-Benchmark Results

We analyze the results by three aspects of theltsesthich can represent the
performance inconsistency of Java AWT: (1) groupgmd OSs, (2) grouped by the
combinations of graphics APIs and system properéied (3) grouped by JREs. The whole
results are listed in Appendix B. We summarizerdsellts of AWT as follows.
® Therendering performance of Java AWT isinconsistent among the four OSs. First

of all, we compare the rendering performance odwaJl.1 program among the four

OSs. In this case, Java 1.0/1.1 graphics APIs sed,u.e GraphicsAPL{Img+Img}.

As shown in Figure 21, Fedora normally delivers malower frame rates than those

on other OSs, which is the main«source of perfomaanconsistency among the four

OSs. For allre({1.3, 1.4, 1:5, 1.6}/AnomalyAWT, jre, Img+img, None, *)ranges

from 3.06 to 9.10. This means that the renderingpp@ance of the Java 1.1 program

would be quite different on the four OSs; eSpegiafi Fedora.

This phenomenon also exists when.we. use new gm@tits and system properties

available since JRE 1.4, as shown in Figure 22igarE 27. In the combinations of

SystemProperty{None, Special}, the frame rates on Fedora arédbtlver than those

on other OSs by a factor of 2.33 to 5.10. In Fig28eand Figure 29, when OpenGL

pipeline is enabled SystemProperty{OpenGL}), using the combinations of

GraphicsAPL{CptVIt+Cpt, CptVIt+CptVIt, VIt+Cpt, VIt+CptVIt} in JRE 1.6

achieves high and consistent frame rates on all B8sever, the OpenGL pipeline is

not reliable enough since it renders incompleteests in some of the&Es. Therefore,
when the OpenGL pipeline is excluded (thaSgstemProperty{None, Special}), the
inconsistent performance among different OSs exg&n when we use new graphics

APIs and system properties to tune up the Bombegaare.

63

E XP B Vista @ Fedora@ MacOS

All REs where GraphicsAPI € {Img+Img} and SystemProperty € {None}

©
0 | 222 N
S mE
) 0 [
v -
= | 222222200 n
. =
v K =
[
o
e L,
©
V777777
0
~
e
=
< ™
w -
|_
: L
%,
=
>
[0}
=
588888° 33333
© O < MO N ~
(Sd4) s1ey sweu4 sbeisny Alewouy

JRE

64

Figure 21. Frame rates and Anomaly among OSs using 1.0/1.1 graphics APIs.

EXP BVista BFedora @MacOS

Toolkit e
{CWT-GL}

DA

Img+Iimg

All REs where JRE € {1.4} and SystemProperty € {None}

DI,
g

%%

Toolkit € {AWT})

V4%

VIt+Cpt

O O O O © O o
S © & © © O
© O T ® N -

(Sd4) @18y swel{ abeiany

Alewouy

GraphicsAPI

65

Figure 22. Frame rates and Anomaly among OSs J&iig{1.4} and SystemProperf{None}.

EXP B Vista @ Fedora®MacOS

Toolkit e
{CWT-GL}

s

Img+img

All REs where JRE € {1.5} and SystemProperty € {None}

Toolkit € {AWT}

B

e]

==
B
B

o]

o

]
i

g Bk B

P

i

Vit+CptVit

Vit+Cpt

Vit+img

Cpt+CptVIt CptVit+Img CptVIt+Cpt CptVit+CptVit

Img+CptVIit Cpt+img Cpt+Cpt

Img+Cpt

(]
E
+
g
= | |
S 88 °© 9waouwo
N © T O «— O
(Sd4) a1ey swel abeisay Alewouy

GraphicsAPI

66

Figure 23. Frame rates and Anomaly among OSs J&tiagi{1.5} and SystemProperi{None}.

EXP @ Vista BFedora

Toolkit e
{CWT-GL}

[/777

Img+img

All REs where JRE € {1.6} and SystemProperty € {None}

Toolkit € {AWT}

(/72

G207

Vi

7

0

=

V777

VIt+CptVIt

Vit+Cpt

Vit+img

Cpt+CptVIt CptVit+lmg CptVIt+Cpt CptVit+CptVit

Img+Cpt Img+CptVIt Cpt+img Cpt+Cpt

Img+img

Vi
S 38888 ¢°
© B ¥ ® « «

(Sd4) a1eYy swel4 sbelany

20 H

|
Q9 Q
0w <t ™

Alewouy

|

Q
o

GraphicsAPI

67

Figure 24. Frame rates and Anomaly among OSs J&tiagi{1.6} and SystemProperi{None}.

{eoadsifiiadoiqwaisAs pue {y TN SSO Buowe Ajewouy pue sajel aweld ‘Gz ainbiH

Idvsolydel

Buj+Bu 1dD+IA Buwi+)A 1do+1do Buwi+do 1dDo+bw Buwi+buw

/7777

{19-1Mm2}
> 1y|00L

SO%BNE BI0PSL @ EISINE dXE

{LMV} 2 1j00L

{le10adg} > ApadoiduwisysAs pue {71} > 3Yr aleym s3y |1V

00
0l
0¢
0¢
0¥

(0[0]
00¢
00¢
0[0)4
00§
009

Alewouy

(Sd4) erey awel4 abelany

68

EXP @EVista BFedoramMacOS

All REs where JRE € {1.5} and SystemProperty € {Special}

s

w T

£ Q £
Ss %
- O| 7222 =
g
. %)
] =

-f---f--]
L ¢
]

-f---f--]
[g
=
0
g B s
1T 13
S K
] g
S
G &
o -f---f--] o
v] &
] >
2 &
O
)

Cpt+Cpt

B
i
(]
E
+
000 O
|
>
o
Q
g
£
B
Q
) <
(]
E
+
0 £]
£$88888° 3323253
© L T ® N - e N T e
(Sd4) sy swel4 abeisny Alewouy

GraphicsAPI

69

Figure 26. Frame rates and Anomaly among OSs J&ig{1.5} and SystemProperf{Special}.

@XP @ Vista BFedora

Toolkit e
{CWT-GL}

[0

Img+img

All REs where JRE € {1.6} and SystemProperty € {Special}

Toolkit € {AWT}

%

[0 0

7

Y%

Gz

Y%

[7777

V27

G0

V2407

Wz}'/ﬁ%

Vit+CptVIt

Vit+Cpt

Vit+Img

Cpt+CptVIt CptVit+img CptVIt+Cpt CptVIt+CptVit

Img+CptVIit Cpt+img Cpt+Cpt

Img+Cpt

[
£
T
V777777]
o O O O O O
8838882 ° 833323
(Sd4d) a1ey swe. abelany Ajewouy

GraphicsAPI

70

Figure 27. Frame rates and Anomaly among OSs J&ig{1.6} and SystemProperfi{Special}.

{MouadoiadoidwalsAs pue {g T}HEsN SSO Buowe Ajewouy pue sajel swelH

'8¢ 9Inbi4

Idvsolydei
Bwbwl | YAMOHIA - WOHIA BWIAIA IAdOHIAKED 1DAIAKD BWIAIED IADHdD 1dDwidD Bwadd 10+Bul - Bui+Bu
{19-1m2} {1MV} 2 001
S 14|00 L

SOOEN @ EIOPS] A BISINE dXH

{1ouadQ} > AuadoiduelshAg pue {G'L} > IHr 8Jeym s3Y |1V

00
0l
0¢
o€
0v

001
00¢
00€
00¥
00§
009

Alewouy

(sd4) a1y swelq abeisny

71

{MouadouedoidquwalsAs pue {9 THEms$N SSO Buowe Ajewouy pue salel saweld "6z ainbi4

Idvsolydei

Bwi+bwy | yAO+HIA 1OHIA

Bw+HA

NAOHIAID 1dO+HINIMD Bw+AMD JAD+IdD 1dD+dD Bwi+dD yAdO+Bw 3dO+Bw Bwi+Buw

N
W
\
\
\
\
W
\

{19-1Mm2}
3 |00

eIOpe4E EISINE JdXE

{LMmv} = oo

{19ouadQ} > ApadoidwalsAg pue {91} > IYr aJeym s3y |1V

00
0l
0¢
0¢
ov
0's

001
00¢
00¢
00¥
00§
009

Ajewouy

(Sd4d) erey swel sbeiony

72

® Therendering performance of using different combinations of graphics APIs and
system properties is inconsistent. Typically, using different graphics APIs resulis i
different rendering performance. As mentioned iths®gctions 4.1 and 4.3, Java AWT
provides several types of graphics APIs and syspoperties for tuning up
performance. However, we observe that the graphitis and system properties have
irregular impacts on the rendering performance iffer@nt REs In other words,
programmers may need to use different combinataingraphics APIs and system
properties in differenREsto achieve the best rendering performance.
Table 9 summarizes the best combinations of graphRis and system properties for
achieving the best frame rates in giieks and Figure 30 to Figure 32 show the
results of comparing different cembinations ,of Griap APIs and system properties.
From these results, we do not find a combinationgEphics APIs and system
properties which can deliveigh-andconsistenframe rates in alREs as illustrated in
the following examples. (@) On Windows XP, VistapndaFedora, using the
combinations ofGraphicsAPL{Img+img, Cpt+img} and SystemProperty{None,
Special} often achieves the best results. (b) Hereusing the combinations of
GraphicsAPI {CptVIt+Cpt, VIt+CptVIt} and SystemProperty{Special} instead in
JRE 1.6 on Windows XP delivers 1.57 times fastami rate. (c) As for Mac OS X,
programmers should use the combination&HphicsAPLKVIt+Cpt} to achieve the
best frame rates. (d) Moreover, when OpenGL pipelinenabled
(SystemProperty{OpenGL}), the combinations for the best frame sat@e also
different from those above. The combination&oaphicsAPL{Img+Cpt, CptVIt+Chpt,
VIt+Cpt} achieve the best frame rates in JRE 1.9jilevthe combinations of
GraphicsAPL{CptVIt+CptVIt, VIt+CptVIt} achieve the best frameates in JRE 1.6.

(e) Even worse, using wrong combinations of grapiPls with the OpenGL pipeline

73

would cause serious consequences. The frame ratgbecome as low as only 2 FPS.
Therefore, the inconsistent rendering performanicéhe combinations of graphics
APIs and system properties makes it hard to dewaidieh combinations should be

used in developing cross-platform Java games.

Table 9. Combinations of graphics APIs which delitvee highest frame rates.

JR | System OS
E |Property Windows XP Windows Vista Fedora Mac OS X
None Img+Img, Cpt+img Vit+Img Img+Img, Cpt+img, VIt+Cpt
14 Vit+Img
Special Img+Img, Cpt+Img VIt+Img, VIt+Cpt Img+|\r/r|13“igt+lmg, VIt+Cpt
Img+Cpt, Img+CptVlt,
None Img+Iimg, Cpt+img Ingcr:I T\gl’tgﬁfﬂmg’ Cpt+Cpt, Cpt+CptVIt, V\I{EECF\t/’It
b 9 CptVIt+Cpt, CptVIt+CptVt P
1.5 . Img+Img,;Cpt+Img, Img+Img, Cpt+img, VIt+Cpt,
Special Img+Img, Cpt+img CptVit+Img, VIt+img CptVit+Img, VIt+Img VIt+CptVIt
Img+Cpt, CptVIt+Cpt, | Img+Cpt, CptVIt+Cpt, Img+Cpt, CptVIt+Cpt,
OpenGlL VIt+Cpt VIt+Cpt Vit+Cpt N/A
Img+Img, Img+CptVlt,
Img+Img, Cpt+img, Cpt+Cpt, Cpt+CptVit,
None | Img+img, Cpt+img |20 itsimg. Vittimg - | Cptvit+Cpt, CptVit+Cptvit,| VA
VIt+CptVIt
+o Special| CptVIt+Cpt, Vit+Cptvit| AR9*+mg, Cpt+img, Img+lmg, Cpt+img, N/A
pecial Lp P P CptVit+Img, Vit+img .| CptVIt+CptVIt, Vit+img
CptVIt+CptVlt, CptVIt+CptVit,
OpenGl Vit+CptVit Vit+CptVit CptVIt+CptVlt, VIt+CptVIt N/A

74

{#"8B™c Buisn s|dy soyde.b wguduisooys uo Ajewouy pue sajel awel ‘0g ainbi4

SO

SO%EN

eiope4{ EISIA

dX

eiope

EISIA

dX

2
m
7
7
7
7
7
7
o &

{|eoadg} > AuadoidquieisAs

1dO+IA @
1do+do O
1do+bw| &

Bwi+A B
Bbwi+idDo @
Bwi+bw| @

{euoN} o AuedoiquieisAs

{+'1} 2 3¥r pue {L MV} > IM|00] 8iaym sy |IV

00
o'l
0¢
0¢
oY

(0[0]
00¢
00€
00y
00G
009

Alewouy

(Sd4) erey swel{ sbeiony

75

{g 8B™r Buisn s|dy soyde.b wguduisooys uo Ajewouy pue sajel aweld ‘TE ainbi4

SO

T 8 EN_B

elopa4 BISIA

dX

SOoe|N eiope-

EISIA dX SO%e|N eloped EISIA

==

dX

=3

=
=

]

{1ouadQ} > AadoidqwalsAs

{|leoadg} > AladoiquiaysAs

YAMDHIAD

1dO+IA O

IAMO+HIAIGD B 1dO+IAMD O

UAIdO+dD @
HAYO+bw| @

do+do a
1do+bw| &

Bul+)A B
Buwi+)\dD B
Bw|+dD @
bw|+bw| &

{euopN} > Ajadoiquelsis

{G'1} > 34r pue {{\V} > 1M|00] aieym sy |IV

00
Gl
0¢
Sy
09

001
00¢
00¢€
00
009
009

Alewouy

(Sd4) eiey awel abesany

76

{9 8B™r Buisn s|dy soyde.b wguduisooys uo Ajewouy pue sajel awel ‘gg ainbi4

SO

ov

YA X4

€l

elopa-

BISIA

dX

elopa

EISIA dX eJope4 BISIN dX

|

” P
| B
] B
B
B
N
N

i

RO

AN
I

|

=

{719uadQ} = Aledoiqua)sis

{|epadg} > AledoiquieisAs

UAMD+HIA O
UADHIAID B 1dD+IAIdD O Bwi+IAIdD B
UAWD+dD @

YAMD+Bw| @

1do+IA O

do+do @E
1do+bw| &

Bwi+iA @

bwi+do O

Buwi+bw| @

{euopN} > AjadoiqwalsAs

{91} 2 34r pue {1V} 2 IM|00] a18ym STy IV

00
0l
0¢
0¢
0v

001
00¢
00¢€
00y
009
009

Alewouy

(sd4) e1ey swel abelary

77

® The rendering performance of Java AWT is inconsistent among commonly used
JREs. As mentioned in Subsection 1.1, Java 2D rendggipglines evolve over JRES.
Therefore, it is normal that the rendering perfano®is inconsistent among different
JREs. However, since the old JREs are still used pgrtion of users, programmers
should take the inconsistency of rendering perfoteaamong JRESs into account.
As shown in Figure 33, older JREs normally delideveorse frame rates, especially
MSVM. In the case of using Java 1.0/1.1 graphic¢sAfor all o {XP, Vista, Fedora,
MacOS}, AnomalyAWT, *, Img+Iimg, Noneps) ranges from 1.18 to 3.31.
When new graphics APIs are used, as shown in Fi@dreand Figure 35, the
performance inconsistency among JREs also existsekample, programmers may
tune their programs to achieve very high framesrateertain JREs, such B&EAWT,
1.5, VIt+Cpt, None, MacOS) andEAWT, 1.6, VIi+Cpt, Special, XP), but the same
programs would not perform as well in other JREw. €&xample, in our benchmark,
AnomalyAWT, *, VIt+Cpt, None, MacOS) andnomalyAWT, *, VIt+Cpt, Special,
XP) are 1.71 and 2.60, respectively. Thereforecesiold JREs are still used,

programmers need to deal with the performance sistency among JREs.

78

'S|dV Salydelb T'T/0°T eAer Buisn spREMN Ajuowwod ul Arewouy pue sajel aweld "€ ainbi4

SO
SOOB\ elOpad EISIA dX |elopa4 EISIA dX |SOO%.\ elopad EISIA dX |SOO%e elopad EISIA dX

e R T B T T

.”.”m m ﬁ 27 : : : : : :
7 7 " " : " " : " "
7 7 ; ; : ; ; ; ; ;
-1 _ _ : _ _ _ _ _
- _ _ . _ _ _ _ _
7 7 : : : : : : : :

o “ ““ L) L} L] L} L] L} 1] L}

& w : : : : ; ;

{ouoN} = AuadoiquiaisAs {1ouadQ}aAuadoiquelsis {|eoadg} > Auadoiqwaisis {euoN} > Auadoiqwaisis

{LMO}=mj001

olE GLE ¥IBWNASWE

{1AV} = 1jo0)

{Bwi+bwy} > |dysolydess siaym s3y IV

00
0l
0¢
0¢
(0%

0ol
00¢
00¢€
ooy
00§
009

Alewouy

(Sd4d) e1ey swel{ abeiony

79

x1.4n1.5!1.6|

All REs where Toolkit € {AWT}

GraphicsAPI € {VIt+Cpt}

Vista Fedora

SystemPropertye
{OpenGL}

Fedora MacOS| XP

P
o e e

ERREEEEEEEE
A

Fedora MacOS| XP Vista

AR
[
-

SystemProperty € {None} | SystemPropertys{Special}
Vista

GraphicsAPI € {Cpt+Cpt}

SystemProperty € {None} | SystemPropertye{Special}

SystemPropertye
{OpenGL}

Fedora MacOS|] XP Vista Fedora MacOS| XP Vista Fedora|] XP

(]

>

b

o

<
S 8 8 S 9 9 o 9
© O < 0 © < NN O
(Sd4) s1ey swe. abelany Alewouy

(O]

80

Figure 34. Frame rates and Anomaly in commonly u$dgs using graphics APIs introduced since J2SE 1.4

0’G eAef 92UIS Padnpoaul S|dY saolydelb Buisn spgren Ajuowwod ul Apewouy pue salel aweld "G ainbi4

SO

SOOE|\ BlopaS

[SOOEN EIOPS] BISIN dX

an

eiopa4 BISIA dX

SOOB\ BIOpS4 EISIN - dX

SOOEN BIOpPSS BISIN dX

H”

119uadO;
sApadoiqualsig

{|eroadg}aAuadoiquelsAs

olEgLa

{uAndo+HINRRIdVYSOIYO

{euoN}>2AuadoiquelsAs

el

119uadQy
sAuadoiqwaisAs

{LMV}=In100] a18um s3Y IV

{|eroadg}aAuadoiqualsAs

{suoN}>AuadoiquelsAs

{ido+AdD}=Idysolydels

00
0¢
(U %
09
08

00k
00¢
00€
0oy
00G
009

Alewouy

(Sd4) e1eYy swel sbeisny

81

To sum up the results of Java AWT, we find it haeod optimize the rendering
performance in the combinations of JREs, graphiP$sAsystem properties, and OSs for
cross-platform Java games. In order to solve tlublpm of performance inconsistency
among different REs, we try to use a number okdsft combinations of graphics APIs and
system properties. However, according to our erpenial results, we find no combinations
which can achieve high, consistent, and reliableleeing performance among all REs.
When optimizing the rendering performance for oie Re observe that the same program
would perform differently in other REs. Thus, th#ods for performance testing are
required for programmers to develop cross-platfdava games requiring consistently high
rendering performance.

It is even worse that some of the parameters, asacIRE versions, system properties
and OSs, are controlled by users, not by the progrars, especially for Java applet games,
where the programmers have fewer choices. Thereftarea AWT/Swing programmers
need to pay more attention to the issue when demsig high rendering performance is
required for cross-platform Java games.

Next, we summarize the results of CWT as follows.

® CWT-GL achieveshigher and more consistent rendering performance among

the four OSs than Java AWT does. In Figure 21 to Figure 29, CWT-GL often
delivers the highest frame rates, and also morsistamt rendering performance
than Java AWT. For example, for gik[1{1.4, 1.5, 1.6},AnomalyCWT-GL, jre,
Img+Iimg, None, *) ranges from 1.34 to 1.49, whAleomalfAWT, jre, Img+Iimg,
None, *) ranges from 3.06 to 3.64. Therefore, CWI-@erforms more
consistently than AWT does among the four OSs.

® CWT-GL needs fewer efforts to test the combinations of graphics APIs and

system properties. CWT-GL supports Java 1.0/1.1 graphics APIs andireguno

82

system properties before the startup of prograntseréfore, the efforts to
optimize the rendering performance in all of fREs can be greatly reduced. In
fact, although only old graphics APIs are suppqrt€iVT-GL still achieves

almost the highest rendering performance when cozdpaith Java AWT which

has a number of graphics APIs and system propettiesine the rendering
performance up.

® CWT ddivers higher and more consistent rendering performance in the set

of JRE {MSVM, 1.4, 1.5, 1.6}, which covers most Web users. It is important
that games deliver high and consistent renderimfpeance in commonly used
JREs. As shown in Figure 33, CWT achieves the fraste rates in the set of
JREKMSVM, 1.4, 1.5, 1.6}. Meanwhile, CWT also deliversore consistent
frame rates than Java. AWT does. For. example, foosA{XP, Vista, Fedora,
MacOS}, AnomalyCWT, *, Img+Iimg, Noneps) ranges from 1.08 to 2.22, while
AnomalyAWT, *, Img+Img, Nones) ranges from 1.18 to 3.31.

Generally speaking, the rendering performance of T&M. is higher and more
consistent on supported REs than those in Java AWIE is quite important especially
when games run in users’ computers with various. REghermore, the graphics APIs and
system properties in CWT-GL are simpler than JaVdTAwhich also helps reduce the
testing efforts. Therefore, our experimental ressliggest that CWT-GL is more suitable

for cross-platform Java game development than A4VE

83

84

Chapter 5 Discussion

Although theWrite-Once-Run-Anywhei@/ORA) feature of Java is very attractive to
Java game developers and Java has been greatlgviegpon performance in terms of JVM
and graphics, the inconsistency of rendering perémce weakens the merit of WORA for
game development, especially for cross-platform emmunning in various RESs. In this
chapter, we further discuss the problems of curdamt 2D rendering pipelines on the four
OSs: Windows XP, Windows Vista, Mac OS X, and Fadoore. Then, we give suggestion
for making Java a better platform for developingssrplatform games. Finally, the

limitations of CWT are presented.

5.1 Supporting Graphics Systemson Multiple Platfor ms

This subsection discusses the problems of diffegesphics systems on the four OSs
and corresponding implementations of Java 2D rémgiguipelines. These include Window
graphics device interface (GDI) and DirectX on Msoft Windows platforms, Desktop
Window Manager (DWM) on Microsoft Windows Vista, Window System (X) on Fedora,
Quartz graphics layer (Quartz) on Mac OS X, andri@ieon all of the four OSs.

On Microsoft Windows platforms, the main renderigelines of Java AWT/Swing
rely on GDI and DirectX. GDI was used in Java AWfice Java 1.0/1.1, while DirectX was
introduced since J2SE 1.4 to greatly improve thadeeng performance of Java
AWT/Swing. In addition, Windows Vista has a new s system called DWM, which
runs on top of Direct3D instead of GDI. In orderrntake Java programs run well with

DWM, Sun introduced some changes to the Java 28erarg pipelines [44]. Consequently,

85

these changes altered the rendering performan@émaows Vista.

On Fedora, Java AWT/Swing is built on X, which ies@jned according to the
client-server model so as to operate over netwdfken the X server and X clients are
located in the same machine, shared memory extefSIeM) is introduced into X to allow
them to jointly access shared memory rapidly. Adoay to the macro-benchmark results,
when using SHM, the Bomberman game delivered oragee20% more frames per second.
However, the frame rates were still about two te¢htimes slower than those on other three
OSs, which is due to the lack of full hardware é=@gion on the graphics system. This is
an example that low rendering performance may oaten Java games run in the different
rendering pipelines on different OSs.

On Mac OS X, Apple Inc. has its'own peerimplemeotaof Java AWT atop Quartz.
Therefore, the performance factors are .differenmfrthose on Windows platforms and
Fedora, especially for the system properties [B8bperly configuring the behaviors of
Quartz may improve the rendering. performance, -Sisome rendering operations are
anti-aliased [3].

For cross-platform Java games, OpenGL is availablell of the four OSs. According
to our benchmarking results, the OpenGL pipelineJava AWT/Swing has shown its
potential on cross-platform Java game developnfent.example, Figure 28 shows that
Sun’s OpenGL pipeline in some cases delivered edpm frame rates on Windows
platforms and Fedora. However, the OpenGL pipelnag deliver very poor frame rates in
other cases when using different graphics APIs.s Télnows inconsistent rendering
performance of the OpenGL pipeline when Java gamsesimproper graphics APIs. In
contrast, CWT-GL achieves high and consistent mengeperformance on all of the four
OSs by direct access to OpenGL via JOGL.

Indeed, it is not an easy task to design a craa$epin graphics library with high and

86

consistent rendering performance on multiple ptat® with various graphics systems
mentioned above. For cross-platform part, Sun esetato cross-platform graphics libraries
for Java: AWT and Swing, which encapsulate theed#fitces and complexity of underlying
graphics systems. Java AWT uses native widgets ostggp by OSs so that the
look-and-feels of the OSs are kept. Java Swing @adiogghtweight components which are
rendered by Java so that the look-and-feel of Switoggrams can be changed. Both AWT
and Swing provide standard widgets on all suppo@&d, which makes Java GUI highly
portable.

For the rendering performance part, Sun currendly $everal DirectX and OpenGL
pipelines to accelerate the rendering of Java AWIir§, as shown in Table 2 and Table 10.
However, the rendering pipelines are tightly botmdpecific Java versions and OSs, since
they are not ported back to old Java versions aayg mot be supported on all OSs. This
approach causes more serious the performance istamsy of Java AWT/Swing among
Java versions and OSs. Consequently, the rend@enfprmance of Java GUI is not
portable, which makes it hard to ‘create cross-miatf Java games that require high

rendering performance.

Table 10. OS support of Sun’s rendering pipelines.

JRE Windows Linux Mac OS Mac OS
\ersion 10.4.x 10.5.2
1.4 DirectX N/A N/A N/A
DirectX
5.0 OpenGL OpenGL N/A N/A
DirectX
6 Improved OpenG Improved OpenG| N/A Improved OpenGL
Improved DirectX
6ul0 Improved OpenG Improved OpenG| N/A N/A

87

According to the analysis above, we propose thatdbsign of Java AWT/Swing
should follow the Open-Closed Principle (OCP) [2hhich states that “software entities
should be open for extension, but closed for moalifon.” We analyze the adoption of OCP
to Java AWT/Swing by three aspects in the followsupsections: (1) encapsulation and

extension, (2) decoupling, and (3) reuse.

5.1.1 Encapsulation and Extension

In order to provide platform independence, Javee ddsraries have encapsulated
platform-dependent features. For example, Java Aing has been developed by hiding
the differences among the graphics systems on Wisdblac OS, Linux, and Solaris. Such
encapsulation makes Java highly platform-indepenaled portable. The encapsulation also
helps performance improvement without changes: mawleAPIls. For example, Sun
introduce DirectX and OpenGL pipelines to Java ABWihg which greatly improve its
rendering performance. Since accessing DirectX @penGL is completely hided, Java
AWT/Swing programs are benefited with few orno mfiodtions.

However, the encapsulation may not meet futureireuents. In game industry, since
video cards evolve quickly, high-profile game proeits have to keep moving on the trend
and using the new features to create games witlerbesual quality and performance.
Therefore, the capability of extension should besadered in the design of graphics API.
For example, OpenGL specifies a way to extenduietions for vendors. The capability of
extension is an important key to achieve OCP.

Currently, as stated in problem 7 in Subsection Ja¥a AWT/Swing does not allow
direct access to internal DirectX and OpenGL olsjeuthich is not open for extension.
Since DirectX and OpenGL evolve along with videadsa new versions are released

almost every one to two years. Java AWT/Swing moll get benefits from the new features

88

unless the implementations of the rendering pipsliadopt them. Java game programmers
also lose the ability to access the latest videal deatures, fine tune the rendering
performance, and change the behaviors of the remdpipelines, such as writing shader
code in Java AWT/Swing and making translucent camepts.

As discussed above, we suggest that Java AWT/Sslraglld provide not only a
platform-independent API but also a way to accetsmal DirectX and OpenGL objects for
game programmers who need to access up-to-dat® ded features or change the
rendering behaviors. Such approach maintains #wopin independency for normal users
while giving flexibility for advanced users. Forample, as shown in Figure 36, MSVM
provides both Java AWT/Swing and DirectX APIs, whigives programmers the ability to

fine tune rendering performance.

DirectX

Java AWT

MSVM (Java 1.1)

Figure 36. Java AWT/Swing and DirectX in MSVM.

5.1.2 Decoupling

The current approach by Sun to improve the rendepipelines is to bundle the
rendering pipelines with specific JVM versions grldtforms, as shown in Table 10 and
Figure 37. However, this approach also incurs tiewing three problems.

(1) Since the rendering pipelines are bundled with dREs and are not ported back

to old JREs, users need to upgrade to one of thelRESs.

89

Java AWT/Swing Java AWT/Swing

DirectX DirectX | OpenGL
Sun JVM 1.4 and beyond Sun JVM 5.0 and beyond
(A) (B)
Java AWT/Swing Java AWT/Swing
. Improved Improved | Improved
DirectX OpenGL DirectX | OpenGL
Sun JVM 6 and beyond Sun JVM 6ul0 and beyond

(©€) (D)

Figure 37. Hardware-accelerated rendering pipesogported in specific JVM versions.

(2) In order to obtain new features .or fix -bugs in thendering pipelines,
programmers and users haye to upgrade their efRiEs, not only the parts of the
rendering pipelines.

(3) Programmers must wait for newer JREs to improveehability, performance or
more support of the rendering pipelines. For examiplture JREs are required to
solve the following two problems: that the OpenGpetine is currently not
reliable enough, and that Mac OS X 10.4 and belowat support the OpenGL
pipeline.

These problems weaken the motivation of using JAVAT/Swing to develop

cross-platform Java games with high and consiserttering performance.

According to the discussion above, we suggest ttiatrendering pipelines of Java

AWT/Swing should be decoupled from JRES, since Batlea AWT and Swing provide the

capability of extension. For example, implement mmers of AWT to replace those in old

90

JRESs, such as CWT, or replace the repaint mandgéwimg, such as Agile2D. Once the
rendering pipelines are decoupled, they are inddgr@nof the JRE versions and can be
applied to the older JREs. A good example is t@dsl]is decoupled from JRE, as shown in
Figure 38. With the design of decoupling, JOGL suppSun JVM 1.4 and beyond. JOGL
is also easier to upgrade, since its downloadisioaly 1 MB, while JRE 1.4 and beyond
require more than 15 MB for download.
To sum up, the benefits of decoupling Java AWT/$wiom the JRE are listed as
follows.
(1) The rendering pipelines can be applied to the Ql&REs.
(2) The rendering pipelines are easier to upgrade algentller size when compared
with the whole JRE.
(3) New features and bug fixes of the rendering pigslican be released faster
(without waiting for new JRE releases).
(4) The responsibility of performance-is shifted to going graphics libraries such
as CWT.

(5) JRE developers such as Sun can focus on othemdssigges.

JOGL

Java AWT/Swing
Sun JVM 1.4 and beyond

Figure 38. Relation between JOGL and JVM.

91

5.1.3 Reuse

Over the past years, Sun has designed at least gmeucts which have similar
functions of accessing DirectX or OpenGL, includgal AWT/Swing, Java 3D, and JOGL.
Several DirectX and OpenGL bindings written by Jdive been created in these products.
As a result, Sun created two DirectX bindings amedé OpenGL bindings, as shown in
Figure 39. These bindings incur several problenfslésvys.

(1) Since different teams created several bindings vsgithmilar functions, the

developing time and cost are higher.

(2) Since these duplicated bindings have to be madiaitihe overall maintainability
is decreased.

(3) Since the products use different -bindings, morereffare required to make these
products work together. For example, as showngurei 40, it is hard to mix Java
AWT/Swing OpenGL pipeline, (2D rendering) with JOGRD rendering) until
Sun resolve the interoperability in"Java SE 6. Befdava SE 6, mixing Java
AWT/Swing and JOGL causes performance degrade kicering due to the
synchronization between the individual buffers fué two graphics systems. It is

also hard to support translucent widgets.

JOGL
Java3D Java AWT/Swing
DirectX™ | OpenGL™ DirectX*V" | OpenGLA™!
Sun JVM 1.4 and beyond

Figure 39. Two DirectX bindings and three OpenGhdongs by Sun Microsystems.

92

JOGL Rendering AWT/Swing Rendering

l Copy l

OpenGL Buffer <> AWT/Swing Buffer

AWT does not support fransparent components
Swing does not support translucent components
Render [ERUIHY n in m mode

Make components, i @ Transliucent | @ Opaque

Figure 40. Individual buffers used-b_y_"J'OGL!' prograand AWT/Swing, which does not

allow translucent widgéts.
-.d I: ‘--l II » il (s :_

Step 1. JOGL Rendering . = Step 2, CWT-GL Rendering

Shared Buffer

Mixing CWT components with JOGL

CWT supports transparent components

CWT supports translucent components

Figure 41. A shared buffer used by JOGL prograntsGWT-GL, which allows translucent

widgets.

93

According to the discussion above, we suggest ttmatbindings of DirectX and
OpenGL should be reused. For example, as showngurd=41, CWT-GL uses JOGL to
render everything, so the interoperability betwgdWT-GL and JOGL APIs are much
easier and more efficient because of the share@roénother good example is that Java
3D uses JOGL as its internal rendering pipelineesirersion 1.5.

Since JOGL is a well developed OpenGL bindings;aih be the default OpenGL
bindings for Java 2D. Once Java AWT/Swing uses JQG&lLlimplement its OpenGL
rendering pipeline, not only interoperability brfprmance among Java AWT/Swing, Java
3D, and JOGL applications will be greatly improved.

To sum up, the following three suggestions can basidered in future Java
AWT/Swing. First, the internal DirectX and OpenGhjects should be accessible for game
programmers who need to access' up-to-date hardigateres or change the rendering
behaviors. Second, the rendering pipelines of &Vd/Swing should be decoupled from
the JREs for higher and more consistent rendermnfppnance, faster upgrades, and better
supports of old JREs. Third, the bindings of Di¥eend OpenGL should be reused for
lower developing cost, better maintainability, easiinteroperability among Java
AWT/Swing, Java 3D, and JOGL applications. The eéhseiggestions are illustrated in

Figure 42. With applied OCP, these designs may nJaka a better game platform in the

future.
Extension Encapsulation Extension
Java AWT/Swing
Reuse Reuse
Suggest DirectX JOGL
decoupling | VM |

Figure 42. Suggestions for future Java AWT/Swing.

94

5.2 Drawbacksof CWT

This subsection lists the drawbacks of CWT as Yadlo

® CWT is not designed for general-purpose applicatidfror example, CWT-GL
needs modern video cards with 3D hardware accelardor delivering better
results.

® When no hardware acceleration is available, CWTiches to use CWT-AWT
implementation, which incurs 10.3% extra overhe@d].[For example, when
neither FBO nor pbuffer is available, CWT-GL wilei Java AWT internally to
perform off-screen rendering.

® Using CWT will not benefit from any additional fea¢s supported by new Java
versions, since currently we implement only JavaTABwing 1.1 compatible
API.

In order to access the hardware acceleration vigapplets using CWT-GL need to be

signed and acquire permissions from users wheruge@m Web browsers.

95

96

Chapter 6 Conclusions

In this dissertation, we design a portable AWT/Syiarchitecture, called CYC
Window Toolkit (CWT), for high and consistent renidg performance for developing
cross-platform Java games, especially for appletegawritten in Java 1.1.

The features of CWT can be summarized as follods.Reach high and consistent
performance when using DirectX and OpenGL to renddgets in MSVM and JRE 1.4 to
1.6, which are currently used by most Web browssersi We demonstrated the
performance of CWT by applying it to a real appietme, the Bomberman game. (2)
Support Java AWT/Swing compatible widgets. Henc®y/TCcan be easily applied to
existing Java games. In addition, programmers wawe libeen familiar to Java AWT/Swing
APl can adopt CWT without learning hew APIs. (3)fiDe a general architecture that
supports multiple graphics libraries such as AWTettX and OpenGL; multiple virtual
machines such as Java VM and .NET CLR; and mul@#s such as Microsoft Windows,
Mac OS and UNIX-based OSs. (4) Provide programmits one-to-one mapping APIs to
directly manipulate DirectX objects and other gamleted properties for advanced
programmers.

This dissertation implements three versions of @WT architecture and compares
their rendering performance with that of Java AW four OSs, including Windows XP,
Windows Vista, Fedora and Mac OS X. The resultscaté that the approach employed by
CWT generally reaches higher and more consistertertng performance in MSVM and
JRE 1.4 to 1.6 on the four OSs. Furthermore, t &lslps reduce the efforts of tuning the

rendering performance by choosing different graplAiels and system properties.

97

The contributions of this dissertation are listedalows:

® FEvaluate the rendering performance of the origiteba AWT with different
combinations of JRES, graphics APIs, system pr@gsrand OSs. The evaluation
results indicate that the performance inconsisteotylava AWT also exists
among the four OSs, even if the same hardware guafiion is used. This
concludes that programmers can hardly optimizerémelering performance of
Java AWT using different combinations of graphidBl®\and system properties
for mostly used JREs on the four operating systérhs weakens the merit of
Write-Once-Run-Anywhere of Java for game develogmen

® Implement three versions of CWT via DirectX, JOGudaAWT, which takes
advantage of video hardware acceleration on malt(pss. Compared to Java
AWT, CWT-DX and CWT-GL achieves more consistent dngher rendering
performance in MSVM and JRE 1.4 to 1.6 on the tested OSs.

® The experimental results also reveal three. suggestior future Java. First, the
internal DirectX and OpenGL objects should be agibés for game programmers
who need to access up-to-date hardware featureshange the rendering
behaviors. Second, the rendering pipelines of JAWAT/Swing should be
decoupled from the JREs for higher and more carsisendering performance,
faster upgrades, and better supports of old JREisd,Tthe bindings of DirectX
and OpenGL should be reused for lower developirsy, deetter maintainability,

easier interoperability among Java AWT/Swing, Ja@aand JOGL applications.

We have established a website [15] for releasimgldtest implementations of CWT.
The benchmark programs and results are also alailab the website, as well as

demonstrations and a porting guide.

98

Suggestions for possible future extensions of CWiClude Support for Java
AWT/Swing 1.2 APIs and beyond, and support for eegraphics. Since CWT is designed

mainly for game development, these features makiduimprove the usability of CWT.

(1) Support for Java AW T/Swing 1.2 APIsand Beyond

Currently, the implementations of CWT only supptata AWT/Swing 1.1 compatible
API. Although CWT already reaches high and conststendering performance, some Java
game programmers may have been familiar to J2SEriddeyond, which introduces more
advanced 2D graphics API supporting line stylesdmgnt- or texture-filled geometries,
affine transform and irregular clipping areas [S3lipporting these advanced 2D graphics
features in CWT may help Java game jprogrammerdecreare runtime visual effects

instead of pre-rendered images.

(2) Support for Vector Graphics

With the rapid development ‘of video cards, the Ikggms of monitors have also been
improved greatly. At the end of 1980s’, the redolutmay be limited to CGA (up to
640x200) and EGA (up to 64350). The screen resolutions become bigger ancebiagg
time goes by, such as VGA (6MB0), SVGA (808600), XGA (1024768), SXGA
(1280x1024), UXGA (16061200), HD (19281080), and so on. In the future, there will be
surely more new resolutions.

Since games may be played in various resoluticarsiegprogrammers need to choose
one or more resolutions to support. For exampeaneScapdl7] supports dynamic
resolutions, such as 768503 and 1024768 in window mode shown in Figure 43 and

Figure 44, respectively.

99

Figure 44. RuneScape in 102468-sized resolution.

However, supporting various resolutions may brihglienges to the design of user
interfaces, since the user interfaces may have torbited to certain smaller size in order to
support most commonly used resolutions. With thbaanement of monitors, modern
games may need to support several resolutionsibdthl screen mode and window mode
so that the user interfaces can utilize the vissiplece of the monitors. Traditionally, games
are designed in a fixed sized resolution, suchO&s@00, typically in full screen mode. In
full screen mode, game scenes are normally scaldd the maximum resolution of the

monitors, such as 1280024. On the other hand, games in window mode, sscthose

100

embedded inside Web browsers, would only be shovthe original sizes. However, when
fixed-sized scenes designed for small resolutisnsh as 808600, are scaled to different
resolutions, such as 1280024, the visual quality would be worse. For examnphe
apparent quality would loss, when a checkbox iedisize 8825, as shown in Figure 45
(A) is scaled to size 2405, as shown in Figure 45 (B).

Vector graphics is a good solution to the scalimgpfem, since vector graphics can be
scalable to any size without loss of detail. Foaraple, Figure 45 (C) presents that the
checkbox is scaled to size 24 with smooth outlines. In vector graphics, thedered
sizes of the graphics primitives, including figureexts, and images, are decided
mathematically in runtime. In fact, vector graphisscommon in 3D games that allow to
zoom in/out and to rotate the scenes:without losetils.

Rendering widgets by graphics primitives, CWT candxtended to support vector
graphics while remaining Java-'AWT/Swing API, whitlay greatly help the design of user

interfaces of games for different resolutions.

(A) @(Checkhax A checkbox of size 85

(B) r...__ Checkbo Raster graphics:

A checkbox scaled from size 885 to size 24875

©) Vector graphics:
(: CheCkb OX A checkbox scaled from size 885 to size 24875

Figure 45. Comparison between raster graphics eotbvgraphics.

101

102

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

References

Adobe Systems IndFlash Content Reaches 99.0% of Internet Viewbt#lward
Brown survey, conducted December 2008.

Advanced Micro Devices Inc. Radeon X1600 Seriedt&pecifications. Advanced
Micro Devices Inc.
http://ati.amd.com/products/RadeonX1600/specs.(last access: July 2009)

Apple Inc.Java System Property Reference for Mac O8pxyle Inc.

Apple Inc. Graphics & Imaging Overview. Apple Inc.
http://developer.apple.com/graphicsimaging/ovenvgml (last access: July 2009)

T. BruckschlegelMicrobenchmarking C++,.C#, and JavBr. Dobb's Journal, 2005.

A. L. Burrows and D. England..Java 3D, 3D GraphiaVvironments and Behaviour.
Software Practice and Experiendél. 32, Issue 4,-April 2002; 359-376.

Bytonic Software. Jake2. Bytonic Software.
http://www.bytonic.de/html/jake?2 . htnflast access: July 2009)

C. Campbell. STR-Crazy: Improving the OpenGL-based Java 2D RipelSun
Microsystems Inc.

http://weblogs.java.net/blog/campbell/archive/2Q@3étrcrazy _improv_1.html
(last access: July 2009)

P. C. Chu and J. E. Beasley. A Genetic Algorithmtiie Multidimensional Knapsack
Problem.Journal of Heuristics\Vol. 4, Number 1, 1998; 63-86.

A. Denault and J. Kienzle, Avoid Common Pitfalls #¥hProgramming 2D Graphics
in Java: Lessons Learnt from Implementing the Miaumolkit. ACM Crossroads
Volume 13 Issue 3, March 2007.

E. Gamma, R. Helm, R. Johnson and J. VissifeEsign Patterns: Elements of
Reusable Object-Oriented Softwateldison Wesley, 1995.

A. Gray. GC Usage Statistics.
http://www.andrew-gray.com/dist/stats.shffiaist access: July 2009)

103

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

C.-C. Hsu and I.-C. Wu. An Event-driven Framewark lhter-user Communication
Applications.Information and Software Technolq®ol.48, July 2006; 471-483.

IN-FUSIO. Age of Empires Il Mobile. IN-FUSIO.
http://www.in-fusio.comflast access: July 2009)

Internet Application Technology Lab. CWT - CYC Wow Toolkit. National
Chiao-Tung University, Taiwan.
http://java.csie.nctu.edu.tw/cwiast access: July 2009)

lonChron Inc. Java Games. lonChron Inc.
http://www.arcadepod.com/javélast access: July 2009)

Jagex Ltd. RuneScape. Jagex Ltd.
http://www.runescape.conflast access: July 2009)

Jausoft. GL4Java: OpenGL for Java. Jausoft.
http://gl4java.sourceforge.ndtast access: July 2009)

Jellyvision Inc. You Don’t Know Jack. Jellyvisiond.
http://www.jellyvision.comflast access: July 2009)

jMonkeyEngine.com. jMonkey Engine. jMonkeyEnginerco
http://www.jmonkeyengine.conglast access: July 2009)

jPct.net. jPCT. jPct.nehttp://www.jpct.netllast access: July 2009)

Iwjgl.org. LWJGL, Lightweight Java Game Library.jl.org.
http://lwjgl.org/ (last access: July 2009)

J. Marner.Evaluating Java for Game Developmebtept. of Computer Science,
Univ. of Copenhagen, Denmark, 2002.

T. McReynolds and D. BlytheAdvanced Graphics Programming Using OpenGL
Morgan Kaufmann, February 2005.

B. Meyer. Object-Oriented Software Construction"{2Edition). Prentice Hall,
March 2000.

J. Meyer, B. Bederson, and J.-D. Fekete. Agile2D et Renderer.
Human-Computer Interaction Lab, University of Manytl, USA.
http://www.cs.umd.edu/hcil/agile2@ast access: July 2009)

Microsoft Corp. Age of Empires. Micorsoft Corp.

104

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

http://www.microsoft.com/games/empirdkst access: July 2009)

Microsoft Corp.Desktop Window ManageMicrosoft Corp.
http://msdn2.microsoft.com/En-US/library/aa969540xqlast access: July 2009)

Microsoft Corp. DirectX: Platform SDK. Microsoft Qo

Microsoft Corp. Microsoft DirectX. Microsoft Corp.
http://msdn.microsoft.com/en-us/direcfidst access: July 2009)

Microsoft Corp. Microsoft Java Virtual Machine Supp Microsoft Corp.
http://www.microsoft.com/mscorp/javéast access: July 2009)

Mojang Specifications. Wurm Online. Mojang Speatfions.
http://www.wurmonline.com(last access: July 2009)

Oddlabs ApS. Tribal Trouble. Oddlabs ApS.
http://tribaltrouble.com(last access: July 2009)

OpenGL Architecture Review Board3L_EXT_framebuffer_object in OpenGL
Extension RegistryThe OpenGL Architecture Review Board.
http://www.opengl.org/registry/specs/EXT/framebuffebject.txt

(last access: July 2009)

OpenGL Architecture Review Board. OpenGL: Open Giep Library. OpenGL
Architecture Review Board.
http://www.opengl.org(last access: July 2009)

OpenGL Architecture Review BoardVGL_ARB_pbuffer in OpenGL Extension
Registry.The OpenGL Architecture Review Board.
http://www.opengl.org/reqistry/specs/ARB/wgl_pbuffet (last access: July 2009)

G. Phipps. Comparing Observed Bug and ProductiRiages for Java and C++.
Software Practice and Experiendéol. 29, Issue 4, April 1999; 345-358.

R. Pitman. Charva: A Java Windowing Toolkit for T@erminals.
http://www.pitman.co.za/projects/charva/index.h{fakt access: July 2009)

E. Quinn and C. Christiansedava Pays — PositivelyDC Bulletin #W16212, 1998.

J. Schaback. FengGUI, Java GUIs with OpenGL.
http://www.fengqgui.org(last access: July 2009)

D. Shreiner, M. Woo, J. Neider and T. Dav@penGL Programming Guide: The

105

Official Guide to Learning OpenGL, Version 1.4, RbuEdition. Addison-Wesley
Professional, November 2003.

[42] Sun Microsystems IncBug ID: 5037133 Mixed mode rendering and 3D effects
using Java2D and JOGL togeth&un Microsystems Inc.
http://bugs.sun.com/bugdatabase/view_bug.do?bug0Ri~33
(last access: July 2009)

[43] Sun Microsystems Inc. Bug ID: 6260751 Applets Can't Set
sun.java2d.noddraw=trueSun Microsystems Inc.
http://bugs.sun.com/bugdatabase/view _bug.do?bu§283751
(last access: July 2009)

[44] Sun Microsystems InBug ID: 6343853 Rendering Issues on Vista Causeddsy
of GDI and DDraw on Onscreen Surfac&un Microsystems Inc.
http://bugs.sun.com/bugdatabase/view_bug.do?bu§3uB853
(last access: July 2009)

[45] Sun Microsystems IncHigh Performance ‘Graphics — Graphics Performance
Improvements in the Java 2 SDK, version $4n Microsystems Inc., 2001.

[46] Sun Microsystems Inc. Java 3D. Sun Microsystems Inc
https://java3d.dev.java.ndlast access: July 2009)

[47] Sun Microsystems Inclava AWT: Delegation Event Mod&un Microsystems Inc.,
1997.

[48] Sun Microsystems Inc. Java Home Page. Sun Micresystnc.
http://java.sun.com{last access: July 2009)

[49] Sun Microsystems Indlava SE 6 Performance White Pap8un Microsystems Inc.
2006.

[50] Sun Microsystems Inc. JOGL, Java bindings for Oded@®I. Sun Microsystems
Inc. https://jogl.dev.java.neflast access: July 2009)

[51] Sun Microsystems IncJSR 231. Java Binding for the OpenGL ARSun
Microsystems Inchttp://jcp.org/en/jsr/detail?id=231ast access: July 2009)

[52] Sun Microsystems IndNew Java 2D Features in J2SE 53un Microsystems Inc.,
2004.

[53] Sun Microsystems In@.he AWT Native Interfac&un Microsystems Inc., 1999.

106

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Sun Microsystems Ind he Volatilelmage APIs User Guidgsun Microsystems Inc.,
2001.

Sun Microsystems IncUpdate: Desktop Java Features in Java SE Sin
Microsystems Inc., 2005.

Sun Microsystems In®ainting in AWT and Swingun Microsystems Inc., 2003.

Sun Microsystems IncProgrammer’s Guide to the Java 2D APl — Enhanced
Graphics and Imaging for Jav&un Microsystems Inc., 2001.

Sun Microsystems Inc.System Properties for Java 2D Technologgun
Microsystems Inc., 2004.

ThinkNewldea Internet Technology Corp. CYC GamehkinKNewldea Internet
Technology Corphttp://cycgame.com(last access: July 2009)

Three Rings Design, Inc. Puzzle Pirates. Three KRkidgsign, Inc.
http://www.puzzlepirates.conflast access: July 2009)

Vivendi Universal Games. Law & Order:. Dead on therdy. Legacy Interactive,
Inc. http://www.legacyinteractive.coiflast-access: July 2009)

W3Schools. OS Platform Statistics. Refsnes Data Inc
http://www.w3schools.com/browsers/browsers os(kst access: July 2009)

Y.-H. Wang, I.-C. Wu, and J.-Y." Jiang. A PortabM/A/Swing Architecture for Java
Game DevelopmenSoftware Practice and Experiendéol. 37, Issue 7, June 2007;
727-745.

Y.-H. Wang and I.-C. Wu. Achieving High and ConergtRendering Performance of
Java AWT/Swing on Multiple PlatformSoftware Practice and Experiendél. 39,
Issue 7, March 2009; 701-736.

A. Wong and A. Kennings. Adaptive multiple textagproach to texture packing for
3D video gamesProceedings of the 2007 conference on Future ,Playonto,
Canada; 189-196.

X.0rg Foundation. X.Org Project. X.Org Foundation.
http://www.x.org/wiki/ (last access: July 2009)

Xith3D Community. The Xith3D Project. Xith3D Commitin
http://www.xith.org/(last access: July 2009)

107

[68] Yahoo Inc. Yahoo! Games. Yahoo Inc.
http://games.yahoo.conflast access: July 2009)

108

Appendix A Resultsof Micro-Benchmark

This appendix presents the detail results of theradbenchmark program. The

micro-benchmark includes 21 tests, divided intogmaext and figure tests, as follows.

Image tests, as shown in Figure 15 (A), are furtigided into six subtests,
including opaque images, transparent images, tre@st images, runtime opaque
Images, runtime transparent images, and runtinmsltraeent images. Each subtest
renders as many corresponding 2110-sized images as possible in a given time.
Text tests, as shown in Figure 15 (B), have twadesib: simple texts (using the
word “Running”) and articles’(consisting,of abo@;d00 characters on the screen,
including 1,562 different characters in. Chineseglih, and other languages).
The font size in both tests'is 12. In additionprder to decide the performance of
our text engine, the rendering. speeds. of texts difterent font sizes, from 10 to
64, are also measured.

Figure tests, as shown in Figure 15 (C), includestBtests which draw lines,
polylines, polygons, rectangles, round rectangdss, ovals, solid polygons,
solid rectangles, solid round rectangles, pies,slid ovals. The metric for these

tests is “rendered items per second.”

109

Table 11. Rendered items per second of opaque iteatge

OS
: System | Graphics— -
Toolkit JRE Windows| Windows| Fedora | Mac OS
Property| API
XP Vista Core 6 X
MSVM None | Img+img 11221 63104 N/A N/A
1.1 None | Img+img 11197 60436 N/A N/A
1.2 None | Img+img 39873 60044 N/A N/A
1.3 None | Img+img 40409 60877 31792 2097
None Img+Img 42492 14776 35232 66341
1.4 VIt+Cpt 58662 14737 2617 66371
Special | VIt+Cpt 58854 3618(2615 66577
None Img+Img 42856 36478 35178 68965
AWT VIt+Cpt 5990(40849 4607 70422
15 Special | VIt+Cpt 58571 63264 456(71089
Img+Img 27619 63317 34554 N/A
OpenGL .
VIt+Cpt 27512 41447 36818 N/A
None Img+img 43617 4236(40106 N/A
VIt+Cpt 61099 422771 4598 N/A
1.6 Special| VIt+Cpt 58486 17533 4596 N/A
Img+img 25274 17247 37276 N/A
OpenGL
VIt+Cpt 52394 4344(47393 N/A
CWT-DX| MSVM None | Img+img 63104 43503 N/A N/A
1.4 None | Img+img 60436 43414 58846 54644
CWT-GL 1.5 None | Img+img 60048 22023 59405 56775
1.6 None | Img+img 60877 5015(6009¢ N/A

110

Table 12. Rendered items per second of transpeanaigie tests.

(O]
: System | Graphics— -
Toolkit JRE Windows| Windows| Fedora | Mac OS
Property| API
XP Vista Core 6 X
MSVM None | Img+img 1889 71428 N/A N/A
1.1 None | Img+img 1884 80819 N/A N/A
1.2 None | Img+img 23112 80429 N/A N/A
1.3 None | Img+img 22869 80171 7407 1217
None Img+img 23636 3901 17994 25222
1.4 VIt+Cpt 70226 3869 3945 25286
Special | VIt+Cpt 70194 20966 394§ 25265
None Img+Img 23752 20847 17998 25786
AWT VIt+Cpt 70258 22492 6683 25969
1.5 Special | VIt+Cpt 70126 7568(6557 33875
Img+Img 41841 75718 34498 N/A
OpenGL .
VIt+Cpt 41494 22458 36567 N/A
None Img+img 23205 23044 19414 N/A
VIt+Cpt 70291 23091 6683 N/A
1.6 Special| VIt+Cpt 44483 17223 6693 N/A
Img+Img 16757 17027 22377 N/A
OpenGL
VIt+Cpt 68306 22596 47096 N/A
CWT-DX| MSVM None | Img+img 71424 22586 N/A N/A
1.4 None | Img+img 80819 22589 79703 65586
CWT-GL 1.5 None | Img+img 80429 15027 8026(6938(
1.6 None | Img+img 80171 63775% 81967 N/A

111

Table 13. Rendered items per second of translucege tests.

(O]
: System | Graphics— -
Toolkit JRE Windows| Windows| Fedora | Mac OS
Property| API
XP Vista Core 6 X

MSVM None | Img+img 1887 72011 N/A N/A
1.1 None | Img+img 1884 81303 N/A N/A
1.2 None | Img+img 3255 80906 N/A N/A
1.3 None | Img+img 3617 81922 1009 1133
None Img+Img 6145 3905 3283 3457
1.4 VIt+Cpt 6037 3872 3285 1882(
Special | VIt+Cpt 37983 3183 3277 18801
None Img+Img 6122 356§ 46684 35085
AWT VIt+Cpt 596§ 5985 4705 2002¢
1.5 Special | VIt+Cpt 213 6034 4616 7628
Img+Img 764 27119 1859 N/A

OpenGL
VIt+Cpt 38639 5906 3671(N/A
None Img+img 8504 6121 4743 N/A
VIt+Cpt 837§ 6142 4559 N/A
1.6 Special| VIt+Cpt 45099 580 4707 N/A
Img+Img 1475 17037 4651 N/A

OpenGL
VIt+Cpt 69186 8494 46699 N/A
CWT-DX| MSVM None | Img+img 72011 8521 N/A N/A
1.4 None | Img+img 81303 8531 79746 65645
CWT-GL 1.5 None | Img+img 80906 7032 80775 68807
1.6 None | Img+img 81922 63965 82462 N/A

112

Table 14. Rendered items per second of runtimewspagage tests.

oS
: System | Graphics— -
Toolkit JRE Windows| Windows| Fedora | Mac OS
Property| API
XP Vista Core 6 X
MSVM None | Img+img 11221 62998 N/A N/A
1.1 None | Img+img 1119(¢ 61349 N/A N/A
1.2 None | Img+img 4245 60728 N/A N/A
1.3 None | Img+img 40551 61984 31745 1284
None Img+img 42613 14781 34884 49983
1.4 VIt+Cpt 594(14342 2617 23577
Special | VIt+Cpt 27427 4129 2616 23614
None Img+Img 42698 36414 8569 5845¢
AWT VIt+Cpt 604(41061 4613 25737
15 Special | VIt+Cpt 5888 6073 4535 560¢
Img+img 887 23651 120¢ N/A
OpenGL .
VIt+Cpt 27654 41841 36647 N/A
None Img+img 43910 6211 9245 N/A
VIt+Cpt 10067 6217 46085 N/A
1.6 Special| VIi+Cpt 45112 635 46071 N/A
Img+img 25523 17413 37379 N/A
OpenGL
VIt+Cpt 4155(43289 46511 N/A
CWT-DX| MSVM None | Img+img 62998 10356 N/A N/A
1.4 None | Img+img 61349 1035(59405 55146
CWT-GL 15 None | Img+img 60728 22185 59976 57229
1.6 None | Img+img 61984 39504 61099 N/A

113

Table 15. Rendered items per second of runtimepaent image tests.

oS
: System | Graphics— -
Toolkit JRE Windows| Windows| Fedora | Mac OS
Property| API
XP Vista Core 6 X

MSVM None | Img+img 1887 71942 N/A N/A
1.1 None | Img+img 1883 81833 N/A N/A
1.2 None | Img+img 49671 81212 N/A N/A
1.3 None | Img+img 55445 8130(2481 1204
None Img+Img 990(3910 4045 4063
1.4 VIt+Cpt 968(3758 3952 22064
Special | VIt+Cpt 37935 4809 3949 22044
None Img+Img 9967 554§ 6676 4132
AWT VIt+Cpt 979(Q 9579 6691 23888
15 Special | VIt+Cpt 8812 9587 6596 10221
Img+Img 783 27911 1913 N/A

OpenGL
VIt+Cpt 42016 960(0 36746 N/A
None Img+img 11917 9895 6659 N/A
VIt+Cpt 11709 9897 6682 N/A
1.6 Special| VIt+Cpt 45167 588 6701 N/A
Img+Img 9951 17449 6661 N/A

OpenGL
VIt+Cpt 69412 11901 46801 N/A
CWT-DX| MSVM None | Img+img 71942 11944 N/A N/A
1.4 None | Img+img 81833 1196(8042¢ 65876
CWT-GL 15 None | Img+img 81212 9294 81212 69188
1.6 None | Img+img 8130(64294 83379 N/A

114

Table 16. Rendered items per second of runtimelwaent image tests.

|

OS
: System | Graphics— -
Toolkit JRE Windows| Windows| Fedora | Mac OS
Property| API
XP Vista Core 6 X

MSVM None | Img+img 1887 7149¢ N/A N/A
1.1 None | Img+img 1884 81394 N/A N/A
1.2 None | Img+img 3258 80644 N/A N/A
1.3 None | Img+img 3614 82147 101d 1127
None Img+Img 6137 39064 3287 3481
1.4 VIt+Cpt 6020 3747 32885 18884
Special | VIt+Cpt 37554 32085 3271 18841
None Img+Iimg 6129 3581 4703 3477
AWT VIt+Cpt 6080 5924 4746 2010¢
15 Special | VIt+Cpt 213 6024 4555 766(0
Img+Img 765 27382 1859 N/A

OpenGL
VIt+Cpt 3879(5918 36674 N/A
None Img+img 8521 6123 4746 N/A
VIt+Cpt 8370 6129 4749 N/A
1.6 Special| VIt+Cpt 45126 578 4753 N/A
Img+Img 7481 17467 4656 N/A

OpenGL
VIt+Cpt 69124 84885 46948 N/A
CWT-DX| MSVM None | Img+img 71496 8533 N/A N/A
1.4 None | Img+img 81394 8528 8000(65841
CWT-GL 1.5 None | Img+img 80648 7037 81037 6922(
1.6 None | Img+img 82147 64349 83102 N/A

4

115

Table 17. Rendered items per second of simpleésis. Font size is 12.

OS
: System | Graphics— -
Toolkit JRE Windows| Windows| Fedora | Mac OS
Property| API
XP Vista Core 6 X
MSVM None | Img+img 165016 120579 N/A N/A
1.1 None | Img+img 80257 34944 N/A N/A
1.2 None | Img+img 163398 3296(N/A N/A
1.3 None | Img+img 171624 34207 51741 7359
None Img+Img 111111 87006 35569 4711(
1.4 VIt+Cpt 2459(5095(35646 47423
Special | VIt+Cpt 24581 101350 63883 476189
None Img+Img 197642 104311 52337 115384
AWT VIt+Cpt 56305 95724 5170% 120096
15 Special | VIt+Cpt 56732 15002 111607 15706]
Img+Img 41005 148446 38118 N/A
OpenGL
VIt+Cpt 39450 173612 3820¢ N/A
None Img+img 238474 180075 54327 N/A
VIt+Cpt 57230 179212 54844 N/A
1.6 Special| VIt+Cpt 125226 15851 11415% N/A
Img+img 46596 1569% 106457 N/A
OpenGL _
VIt+Cpt 177095 204360 20223 N/A
CWT-DX| MSVM None | Img+img 120579 198680 N/A N/A
1.4 None | Img+img 34948 199734 34152 25146
CWT-GL 1.5 None | Img+img 3296(37518 37027 29538
1.6 None | Img+img 34207 148957 41911 N/A

116

Table 18. Rendered items per second of articls.tEsint size is 12.

(O]
: System | Graphics— -
Toolkit JRE Windows| Windows| Fedora | Mac OS
Property| API
XP Vista Core 6 X

MSVM None | Img+img 56454 48575% N/A N/A
1.1 None | Img+img 29245 57318 N/A N/A
1.2 None | Img+img 129650 53918 N/A N/A
1.3 None | Img+img 10502 54465 1445 101d
None Img+img 11217 45689 10042 22407
1.4 VIt+Cpt 8189 20553 9787 22268
Special | VIt+Cpt 8056 86505 11229 22344
None Img+Img 143967 23786 45017 25108
AWT VIt+Cpt 53956 5965 44708 25286
1.5 Special | VIt+Cpt 54248 394(93168 115207
Img+Img 2505(4291 28312 N/A

OpenGL
VIt+Cpt 25154 126262 28126 N/A
None Img+img 156914 130208 46904 N/A
VIt+Cpt 54190 130321 4686(N/A
1.6 Special| VIt+Cpt 6219(12723 95421 N/A
Img+img 42625 12814 89766 N/A

OpenGL
VIt+Cpt 49520 144370 28121 N/A
CWT-DX| MSVM None | Img+img 48575 139664 N/A N/A
1.4 None | Img+img 57318 139794 55248 13362
CWT-GL 1.5 None | Img+img 53918 34523 60193 15891
1.6 None | Img+img 5446% 42637 65731 N/A

117

Table 19. Rendered items per second of texts \ifittreint font size from 10 to 64.

Font

Size Test1 Test 2 Test 3 Test 4 Test 5
10 157053 79183 56871 69932 70763
12 13655[1 77337 55963 68269 68646
14 129146 77078 55078 69406 69697
16 109803 75165 54489 70244 69699
20 87800 123710 53453 67169 69383
24 80805 11491 51910 64102 69100
28 67481 11226 50120 32237 70424
32 55730 11029 47142 25077 68852
36 48225 4085 45587 18892 63261
40 41862 3316 43767 15587 62942
48 31992 3112 40407 11410 62331
56 25685 2981 37741 8814 58823
64 20141 2858 35013 6929 48732

Test 1: RE=(AWT, 1.6, Img+Iimg, None, XP)

Test 2: RE=(AWT, 1.6, VIt+Cpt,-Special, XP)

Test 3: Geometry-based text engine, RE=(CWT-GL, lilng+Img, None, XP)

Test 4: Texture-based text engine with 1 -MB"caéties(CWT-GL, 1.6, Img+Img, None,
XP)

Test 5: Texture-based text engine with 16 MB ca&tes(CWT-GL, 1.6, Img+img, None,
XP)

118

Table 20. Rendered items per second of line tests.

(O]
: System | Graphics— -
Toolkit JRE Windows| Windows| Fedora | Mac OS
Property| API
XP Vista Core 6 X
MSVM None | Img+img 301204 111779 N/A N/A
1.1 None | Img+img 304878 247671 N/A N/A
1.2 None | Img+img 309919 248034 N/A N/A
1.3 None | Img+img 323278 242729 94876 6834
None Img+img| 27676% 176886 138002 37155
1.4 VIt+Cpt 37229 174217 144092 37304
Special | VIt+Cpt 35842 144230 131118 37249
None Img+img| 297667 145632 14778¢ 38431
AWT VIt+Cpt 67144 184549 147347 39011
1.5 Special | VIt+Cpt 65876 37602 138248 266431
Img+Iimg 65274 35202 218659 N/A
OpenGL
VIt+Cpt 63831 265962 220913 N/A
None Img+img| - 340912 269301 158060 N/A
VIt+Cpt 67876 26978% 158062 N/A
1.6 Special| VIt+Cpti. .. 226244 20804 145630 N/A
Img+img 50033 21058 13227% N/A
OpenGL
VIt+Cpt 231843 306170 382733 N/A
CWT-DX| MSVM None | Img+img 111779 300059 N/A N/A
1.4 None | Img+img 247671 300639 311868 255974
CWT-GL 1.5 None | Img+img 248034 39830 333362 312508
1.6 None | Img+img 242729 196592 350470 N/A

119

Table 21. Rendered items per second of polylints.tes

oS
: System | Graphics— -
Toolkit JRE Windows| Windows| Fedora | Mac OS
Property| API
XP Vista Core 6 X

MSVM None | Img+img 119047 295¢ N/A N/A
1.1 None | Img+img 119141 53096 N/A N/A
1.2 None | Img+Iimg 7218% 53634 N/A N/A
1.3 None | Img+img 70224 54367 3241¢ 112(
None Img+Img 6218¢ 6643(52466 4547
1.4 VIt+Cpt 63722 67872 52947 4573
Special | VIt+Cpt 61932 57229 48669 4569
None Img+Img 62111 55493 53801 4614
AWT VIt+Cpt 63884 5537(53457 4647
15 Special | VIt+Cpt 62292 2503 5438¢ 8324(
Img+lmg 56053 2494 79323 N/A

OpenGL
VIt+Cpt 54744 56433 83939 N/A
None Img+img 68369 58009 55269 N/A
VIt+Cpt 65819 58189 55782 N/A
1.6 Special| VIt+Cptl. 100671 19548 57803 N/A
Img+Img 31439 19711 55782 N/A

OpenGL
VIt+Cpt 80906 62866 105708 N/A
CWT-DX| MSVM None | Img+img 2959 62735 N/A N/A
1.4 None | Img+img 53096 62814 56882 43944
CWT-GL 15 None | Img+img 53634 26723 57384 5053¢
1.6 None | Img+Iimg 54367 74924 59101 N/A

)
)

120

Table 22. Rendered items per second of polygos.test

OS
: System | Graphics— -
Toolkit JRE Windows| Windows| Fedora | Mac OS
Property| API
XP Vista Core 6 X

MSVM None | Img+img 107449 358(N/A N/A
1.1 None | Img+img 106391 80953 N/A N/A
1.2 None | Img+img 66904 78411 N/A N/A
1.3 None | Img+img 65104 84127 30019 954
None Img+Img 57339 61702 4922¢ 4045
1.4 VIt+Cpt 64184 62814 49635 40772
Special | VIt+Cpt 61906 53956 4562(4074
None Img+Img 54789 52101 50403 4117
AWT VIt+Cpt 63667 51546 50522 4117
15 Special | VIt+Cpt 62162 2454 52594 78492
Img+Img 55907 2443 75037 N/A

OpenGL _
VIt+Cpt 54944 52337 79239 N/A
None Img+img 63371 53859 5221(N/A
VIt+Cpt 66577 53859 52174 N/A
1.6 Special| VIt+Cpt 101146 19467 54486 N/A
Img+Img 30274 1970C 52554 N/A

OpenGL .
VIt+Cpt 90854 59737 100133 N/A
CWT-DX| MSVM None | Img+img 358(0 59085 N/A N/A
1.4 None | Img+img 80953 59062 89924 64654
CWT-GL 1.5 None | Img+img 78411 25835 9080(79744
1.6 None | Img+img 84127 84459 94876 N/A

121

Table 23. Rendered items per second of polygandiliests.

oS
: System | Graphics— -
Toolkit JRE Windows| Windows| Fedora | Mac OS
Property| API
XP Vista Core 6 X

MSVM None | Img+img 35688 3564 N/A N/A
1.1 None | Img+img 36328 17166 N/A N/A
1.2 None | Img+img 74085 17142 N/A N/A
1.3 None | Img+img 8194 17231 29972 758
None Img+Img 1308¢ 14841 1039¢ 7747
1.4 VIt+Cpt 25117 14443 10402 7685
Special | VIt+Cpt 24867 7093 7691 7671
None Img+Img 13564 7857 10455 793(
AWT VIt+Cpt 25012 12614 10414 8007
15 Special | VIt+Cpt 24792 1076 9597 13707
Img+Img 8085 1082 2817 N/A

OpenGL
VIt+Cpt 8045 12962 2819 N/A
None Img+img 15211 13304 10534 N/A
VIt+Cpt 25497 13346 10485 N/A
1.6 Special| VIt+Cpt 9792 6284 954(N/A
Img+img 12345 6396 9557 N/A

OpenGL
VIt+Cpt 9498 15086 5341 N/A
CWT-DX| MSVM None | Img+img 3564 15224 N/A N/A
1.4 None | Img+img 17166 15191 17287 12543
CWT-GL 15 None | Img+img 17142 11206 17327 13101
1.6 None | Img+img 17231 7841 17467 N/A

122

Table 24. Rendered items per second of rectangiie. te

OS
: System | Graphics— -
Toolkit JRE Windows| Windows| Fedora | Mac OS
Property| API
XP Vista Core 6 X
MSVM None | Img+img 158899 20164 N/A N/A
1.1 None | Img+img 163043 88599 N/A N/A
1.2 None | Img+img 272734 97546 N/A N/A
1.3 None | Img+img 266532 101388 84364 11031
None Img+Img 25252% 114068 124378 25167
1.4 VIt+Cpt 45276 109249 12542% 25453
Special | VIt+Cpt 43808 132391 125736 25523
None Img+Img 268337 136861 131810 26122
AWT VIt+Cpt 23995 171037 130776 26305
15 Special | VIt+Cpt 23763 43290 125733 243902
Img+Img 62849 40160 113472 N/A
OpenGL _
VIt+Cpt 62061 235124 11415% N/A
None Img+img 297619 245101 136363 N/A
VIt+Cpt 23763 243906 137362 N/A
1.6 Special| VIt+Cpt}. . 320512 20430 132042 N/A
Img+img 48843 20636 119712 N/A
OpenGL
VIt+Cpt 180073 264550 247536 N/A
CWT-DX| MSVM None | Img+img 20164 263162 N/A N/A
1.4 None | Img+img 88599 263157 14258% 116550
CWT-GL 1.5 None | Img+img 97546 38859 151209 136115%
1.6 None | Img+img 101388 157563 15923% N/A

123

Table 25. Rendered items per second of rectantjigfiests.

oS
: System | Graphics— -
Toolkit JRE Windows| Windows| Fedora | Mac OS
Property| API
XP Vista Core 6 X

MSVM None | Img+img 116551 24473 N/A N/A
1.1 None | Img+img 116822 92266 N/A N/A
1.2 None | Img+img 72046 92764 N/A N/A
1.3 None | Img+img 73064 93691 10825 12319
None Img+img 54014 58116 61728 12787]
1.4 VIt+Cpt 77002 56796 62266 127447
Special | VIt+Cpt 77041 54864 34956 128205
None Img+Img 54545 55268 63559 143266
AWT VIt+Cpt 24374 4918(63345 147924
15 Special | VIt+Cpt 24378 8474% 4619¢ 58433
Img+Img 5864(84889 8620¢ N/A

OpenGL .
VIt+Cpt 5884¢ 5020(92137 N/A
None Img+img 57983 51387 64764 N/A
VIt+Cpt 24378 51404 64766 N/A
1.6 Special| VIit+Cptl 105708 19825 46845 N/A
Img+img 29862 19955 45359 N/A

OpenGL . .
VIt+Cpt 87977 54288 109897 N/A
CWT-DX| MSVM None | Img+img 24473 54244 N/A N/A
1.4 None | Img+img 92266 54268 100603 75757
CWT-GL 15 None | Img+img 92764 25037 102529 8000C
1.6 None | Img+img 93691 82417 104166 N/A

124

Table 26. Rendered items per second of round rgletaests.

(01
: System | Graphics— -
Toolkit JRE Windows| Windows| Fedora | Mac OS
Property| API
XP Vista Core 6 X

MSVM None | Img+img 57981 56284 N/A N/A
1.1 None | Img+Img 58049 33245 N/A N/A
1.2 None | Img+Img 55844 33714 N/A N/A
1.3 None | Img+img 51318 36638 39011 2258
None Img+img 53975 92764 90634 19022
14 VIt+Cpt 3116% 9196¢& 91463 19014
Special | VIt+Cpt 30574 4621(43029 19044
None Img+Img 47953 54864 92193 19391
AWT VIt+Cpt 35071 47953 92592 19511
15 Special | VIt+Cpt 34738 2874 39113 5098%
Img+Img 29982 2858 38749 N/A

OpenGL
VIt+Cpt 29411 44078 3848(N/A
None Img+img 82965 4486(94279 N/A
VIt+Cpt 35646 44994 94696 N/A
1.6 Special| VIi+Cpt 54387 13954 60681 N/A
Img+Img 34152 14059 58892 N/A

OpenGL
VIt+Cpt 36945 75872 42722 N/A
CWT-DX| MSVM None | Img+img 56284 75872 N/A N/A
1.4 None | Img+img 33245 75833 46699 72704
CWT-GL 1.5 None | Img+img 33714 28619 45058 65673
1.6 None | Img+img 36638 34028 56053 N/A

)

D

125

Table 27. Rendered items per second of round rgletditling tests.

(01
: System | Graphics— -
Toolkit JRE Windows| Windows| Fedora | Mac OS
Property| API
XP Vista Core 6 X
MSVM None | Img+img 75187 10534 N/A N/A
1.1 None | Img+img 77399 29509 N/A N/A
1.2 None | Img+img 18265 30072 N/A N/A
1.3 None | Img+img 11963 32495 7040 2069
None Img+img 25653 43152 46554 32651
14 VIt+Cpt 40927 42277 46816 32658
Special | VIt+Cpt 40021 16929 17564 32873
None Img+Img 25693 11831 4820(33594
AWT VIt+Cpt 41061 2422(47938 3389(
15 Special | VIt+Cpt 40529 1687 21431 28527
Img+Img 1696(169(¢ 10025 N/A
OpenGL
VIt+Cpt 1695(2390(10023 N/A
None Img+img 31853 24887 48732 N/A
VIt+Cpt 41806 25009 48574 N/A
1.6 Special| VIi+Cpt 21222 10367 19454 N/A
Img+img 2074(10585 18912 N/A
OpenGL .
VIt+Cpt 15316 30637 18522 N/A
CWT-DX| MSVM None | Img+img 10534 30537 N/A N/A
1.4 None | Img+Img 29509 30624 44299 39964
CWT-GL 15 None | Img+img 30072 18268 43053 39557
1.6 None | Img+img 3249% 14345 53342 N/A

126

Table 28. Rendered items per second of arc tests.

oS
: System | Graphics—— .
Toolkit JRE Windows| Windows| Fedora | Mac OS
Property| API :
XP Vista Core 6 X
MSVM None | Img+img 47006 47709 N/A N/A
1.1 None | Img+Img 46201 65905 N/A N/A
1.2 None | Img+Img 30593 66401 N/A N/A
1.3 None | Img+Iimg 27052 75766 2127(239(Q
None Img+Img 3722(5482% 119426 1482(
1.4 VIt+Cpt 27512 53513 120096 14829
Special | VIt+Cpt 2703€ 27943 30832 1481(
None Img+Img 33783 26009 124792 15059
AWT VIt+Cpt 30959 34193 124069 15146
15 Special | VIt+Cpt 30681 2888 29347 40053
Img+Img 24267 2871 28571 N/A
OpenGL
VIt+Cpt 23745 3155¢& 28489 N/A
None Img+img 48496 32334 129645 N/A
VIt+Cpt 31465 32580 130434 N/A
1.6 Special | VIt+Cpt 40816 12509 39861 N/A
Img+Iimg 26389 12649 38719 N/A
OpenGL .
VIt+Cpt 26164 45689 32587 N/A
CWT-DX| MSVM None | Img+img 47709 45899 N/A N/A
1.4 None | Img+Img 6590% 45871 71564 114416
CWT-GL 15 None | Img+img 66401 23012 66341 105857
1.6 None | Img+Img 75766 22528 86206 N/A

127

Table 29. Rendered items per second of arc filigsgs.

(O]
: System | Graphics— -
Toolkit JRE Windows| Windows| Fedora | Mac OS
Property| API
XP Vista Core 6 X

MSVM None | Img+img 43377 12486 N/A N/A
1.1 None | Img+img 43314 49011 N/A N/A
1.2 None | Img+img 15723 56681 N/A N/A
1.3 None | Img+img 12239 63085 8001 2036
None Img+img 18934 32815 40672 16781
1.4 VIt+Cpt 28414 32064 40794 16759
Special | VIt+Cpt 28232 14625 14869 16799
None Img+Img 19098 1198(41367 16998
AWT VIt+Cpt 28653 1827(41152 17109
1.5 Special | VIt+Cpt 28354 2041 18272 27377
Img+lmg 12909 2041 1036(N/A

OpenGL
VIt+Cpt 12892 18116 10365 N/A
None Img+img 32523 18808 41829 N/A
VIt+Cpt 28746 19003 41666 N/A
1.6 Special| VIt+Cpt 17476 8743 21761 N/A
Img+Img 21312 8867 21011 N/A

OpenGL
VIt+Cpt 1446(31289 17504 N/A
CWT-DX| MSVM None | Img+img 12486 31551 N/A N/A
1.4 None | Img+img 49011 31605 69637 69092
CWT-GL 1.5 None | Img+img 56681 18603 64906 67688
1.6 None | Img+img 6308% 13201 83472 N/A

128

Table 30. Rendered items per second of oval tests.

(O]
: System | Graphics— -
Toolkit JRE Windows| Windows| Fedora | Mac OS
Property| API
XP Vista Core 6 X
MSVM None | Img+img 52065% 51089 N/A N/A
1.1 None | Img+img 5304(61602 N/A N/A
1.2 None | Img+img 25201 63317 N/A N/A
1.3 None | Img+img 21766 72534 17562 2789
None Img+img 32916 70224 131810 11713
1.4 VIt+Cpt 29964 69897 132978 11694
Special | VIt+Cpt 29428 23629 27168 1173(
None Img+Img 29019 21425 138248 11853
AWT VIt+Cpt 33474 30407 138121 1190(
1.5 Special | VIt+Cpt 33119 2886 25884 34309
Img+Img 21713 2877 24638 N/A
OpenGL . .
VIt+Cpt 21331 27347 24537 N/A
None Img+img 67114 2800% 144369 N/A
VIt+Cpt 33821 28248 145348 N/A
1.6 Special| VIt+Cpt 36629 12029 52065 N/A
Img+Img 3087(1216(50437 N/A
OpenGL
VIt+Cpt 36864 61702 40719 N/A
CWT-DX| MSVM None | Img+img 51089 62421 N/A N/A
1.4 None | Img+img 61602 62499 58456 96215
CWT-GL 1.5 None | Img+img 63317 26543 55066 82964
1.6 None | Img+img 72538 32757 69864 N/A

129

Table 31. Rendered items per second of oval fillesjs.

(01
: System | Graphics— -
Toolkit JRE Windows| Windows| Fedora | Mac OS
Property| API
XP Vista Core 6 X

MSVM None | Img+img 13665 11586 N/A N/A
1.1 None | Img+img 13663 47232 N/A N/A
1.2 None | Img+img 13718 46684 N/A N/A
1.3 None | Img+img 10206 53511 6813 2526
None Img+Img 17299 37453 4042(15894
14 VIt+Cpt 11181 37119 40639 15939
Special | VIt+Cpt 11136 1281(14116 15974
None Img+Img 17211 10123 40181 16196
AWT VIt+Cpt 11907 16663 40584 16253
15 Special | VIt+Cpt 11844 1866 17251 26014
Img+Img 12395 187C 10378 N/A

OpenGL
VIt+Cpt 1234(16368 1038% N/A
None Img+img 35859 17087 41597 N/A
VIt+Cpt 11928 17325 41106 N/A
1.6 Special| VIi+Cpt 16662 8511 21616 N/A
Img+Img 22391 8606 20821 N/A

OpenGL
VIt+Cpt 1672(33244 1869¢ N/A
CWT-DX| MSVM None | Img+img 11586 34514 N/A N/A
1.4 None | Img+img 47232 34522 57033 60777
CWT-GL 1.5 None | Img+img 46684 19612 53918 5778(
1.6 None | Img+img 53511 15255 68057 N/A

130

Appendix B Results of Macro-Benchmark

The macro-benchmark program is to simulate a Bomaergame. The panel size of
the game is 56(B95. On average, the game draws 196 opaque imagastransparent
images and 14 text characters in each frame. Antlogransparent images, about 58 are
runtime images which are dynamically created duringtime. We measured the average

frame rate of the Bomberman game in rendering 20@00es.

Table 32. Average frame rate (in FPS) of the Bommiaer game.
The numbers with “*” mean that the screen was antlered correctly.

. System , : . oe
Toolkit | JRE Property Graphics APl Windows Wm_dows Fedora | Mac OS X
XP Vista Core 6 10.4.11
CWT-DX|MSVM| None Img+img 245 280 N/A N/A
14 None Img+Iimg 484 408 357 412
CWT-GL| 1.5 None Img+Img 518 395 387 449
1.6 None Img+img 544 405 365 N/A
MSVM| None Img+Img 1on 99 N/A N/A
1.1 None Img+img 98 94 N/A N/A
1.2 None Img+Img 98 67 N/A N/A
1.3 None Img+Img 182 99 62 20
Img+Iimg 306 232 100 218
Img+Cpt 293 217 94 225
Cpt+Iimg 301 2217 100 214
None .
AWT Cpt+Cpt 217 222 94 227
Vit+img 220 288 101 217
14 VIt+Cpt 258 132 94 271
Img+Img 304 234 116 217
Img+Cpt 285 224 75 225
, Cpt+Img 307 237 115 217
Special
Cpt+Cpt 286 222 108 224
Vit+img 210 290 118 217
VIt+Cpt 200 292 110 272

131

Table 33. Average frame rate (in FPS) of the Bommiaer game, where JRIEL.5}.
The numbers with “*” mean that the screen was antlered correctly.

: System : . . o
Toolkit | JRE Property Graphics APl Windows Wmdows Fedora | Mac OS X
XP Vista Core 6 10.4.11
Img+Img 322 295 88 322
Img+Cpt 295 274 97, 341
Img+CptVIt 296 272 96 343
Cpt+Img 321 295 74 321
Cpt+Cpt 242 277 97 343
None Cpt+CptVIt 299 273 98 345
CptVit+Img 220 299 88 320
CptVIt+Cpt 256 275 97 344
CptVIt+CptVIt 259 278 97 345
Vit+Img 222 291 88 356
VIt+Cpt 256 275 91 464
VIt+CptVIt 259 273 97 467
Img+Img 314 291 121 269
Img+Cpt 299 277 115 244
Img+CptVIt 294 277 117 245
Cpt+img 317 294 120 265
Cpt+Cpt 299 277 116 240
.| Cpt+CptVit 297 277 116 247
AWT 1.5 | Special = itimg 212 204 121 265
CptVIt+Cpt 199 274 116 240
CptVIt+CptVIt 205 273 117 237
Vit+Img 211 298 122 264
VIt+Cpt 202 271 117 287
VIt+CptVIt 204 273 117 285
Img+Img *86 37 37 N/A
Img+Cpt 127 47 178 N/A
Img+CptVIt 90 39 40 N/A
Cpt+Img 45 *33 110 N/A
Cpt+Cpt 44 32 94 N/A
Cpt+CptVit 44 32 105 N/A
OpenGl— i Vitrimg 85 38 37 N/A
CptVIt+Cpt 124 47 178 N/A
CptVIt+CptVIt 90 39 37 N/A
Vit+Img *85 38 37 N/A
VIt+Cpt 127 47, 178 N/A
VIt+CptVIt 89 39 40 N/A

132

Table 34. Average frame rate (in FPS) of the Bommiagr game, where JREL.6}.
The numbers with “*” mean that the screen was antlered correctly.

. System : . . o
Toolkit | JRE Property Graphics APl Windows Wmdows Fedora | Mac OS X
XP Vista Core 6 10.4.11
Img+Img 34(315 108 N/A
Img+Cpt 325 301 98 N/A
Img+CptVIt 323 304 111 N/A
Cpt+Img 339 316 84 N/A
Cpt+Cpt 324 303 111 N/A
None Cpt+CptVIt 326 301 110 N/A
CptVit+Img 227 312 104 N/A
CptVIt+Cpt 274 300 112 N/A
CptVIt+CptVit 275 300 112 N/A
Vit+img 224 312 104 N/A
VIt+Cpt 274 296 73 N/A
VIt+CptVIt 277, 297 112 N/A
Img+Iimg 331 307 124 N/A
Img+Cpt 319 296 118 N/A
Img+CptVIt 324 296 119 N/A
Cpt+Img 340 311 122 N/A
Cpt+Cpt 327 301 117 N/A
.| Cpt+CptVit 323 296 118 N/A
AWT | 1.6 | Special—= S Vitimg 283 314 116 N/A
CptVIt+Cpt 51(303 119 N/A
CptVIt+CptVIt 272 300 120 N/A
Vit+img 281 313 124 N/A
VIt+Cpt 519 300 119 N/A
VIt+CptVIt 272 301 119 N/A
Img+Img 43 *30 113 N/A
Img+Cpt 43 32 108 N/A
Img+CptVit 2 2 2 N/A
Cpt+Img 43 32 113 N/A
Cpt+Cpt 43 *32 85 N/A
Cpt+CptVIt 2 2 2 N/A
OpenGl CptVit+Img 104 78 115 N/A
CptVIt+Cpt 327 304 302 N/A
CptVIt+CptVit 338 319 308 N/A
Vit+img 104 79 115 N/A
VIt+Cpt 327 303 *302 N/A
VIt+CptVIt 338 319 308 N/A

133

134

Appendix C Porting Guide

Before port Java programs to CWT, check that the JaUl code only access 1.1

functionalities.
C.1 Import Satements

Simply change thémport statements that use Java AWjkaya. awt) to use CWT

(com. cyc. lib. cwt). Then, recompile the programs.

Original Java AWT Code:

i mport java.awt.*;

i mport java. applet.*;

i mport javax.sw ng.*;
CWT code:

import comcyc.lib.cwt.*;

import comcyc.lib.cwt.applet.*;

i mport comcyc.|ib.sw ng.*;

C.2 Doublebuffering

CWT internally implements double-buffering techrgyjo Therefore, for better

rendering performance, code for double renderimgbearemoved.

Original Java AWT Code:
public void paint(Gaphics g) {
Di nension d = getSize();
if((offlmage == null) ||
(d.width !'= of flmage. get Wdth(this) ||

135

(d. height !'= offlnage. getHei ght(this))) {
/Il Create offscreen buffer
of fl mage = createl mage(d. wi dth, d.height);
of f Graphi cs = of fl nage. get Graphi cs();
}
I/ Performrendering using of fGaphics
/| Copy offscreen buffer to screen
g.drawl mage(of f I mage, 0, 0, this);
}
CWT Code:
public void paint(Gaphics g) {

/I Performrendering using g

C.3 Active Rendering

In each normal repaint, CWT copies altered aredbabff-screen buffer to screen. In
the case of active rendering, however,” CWT will nopy the altered content to screen.
Therefore, in this case, a new methddp (). introduced in thé&raphics class should be
called to trigger the repaint procedure on alldcbmponents atop the altered area, and copy

the area to screen.

Original Java AWT Code:

G aphi cs g = conponent. get G aphics();
/I performrendering

CWT Code:

G aphi cs g = conponent. get Graphics();
/I performrendering

g.flip();

136

C.4 <applet>Tagin Html

CWT wraps Java Applet. Therefore, when using Japplét, the html code which
launches your programs should be modified firstnsdCwtApplet can launch your Applet

programs.

Original Java AWT Code:
<appl et code=Your Appl et . cl ass>

</ appl et >
CWT code:
<appl et code=com cyc.|ib.cwt.applet.Ont Appl et. cl ass>

<par am nane="cwt appl et" val ue="Your Appl et ">

</ appl et >

C.5 JavaScript

Since Applet now is wrapped in,CWT, new- methodspaorided to obtain the Applet
instance for accessing JavaScript. The Applet mtstacan be reached by calling

getAppletContext().getNativeApplet().

Original Java AWT Code:

i mport java. appl et. Appl et;
i mport netscape.javascript.JSOoj ect;

public class YourAppl et extends Appl et

{
voi d foo()
{
JShj ect jso =JSObj ect. get Wndow(this);
/l'Use jso to call JavaScri pt
}
}

137

CWT Code:
i mport comcyc.lib.cwt.applet.Applet;
i mport netscape.javascript.JSOoj ect;
public class YourAppl et extends Applet {
void foo() {
JShj ect jso =JSObj ect. get Wndow(get Appl et Cont ext ().
get Nati veApplet());

/l'Use jso to call JavaScri pt

C.6 CWT Implementations

Programmers can specify the system propettyt."toolkit" to assign one of three

implementations to run.

® CWT-AWT

-Dewt . toolkit=com.cyc.lib.cwt.mpl.awt.AwtToolkit
® CWT-GL

-Dewt . toolkit=com.cyc.lib.cwt . impl /fbo.GlToolkit
® CWT-DX

-Dcwt . toolkit=com.cyc.l1b.cwt.impl.dx3.Dx3Toolkit

Programmers can also specify the applet parameter toolkit" as follows.

® CWT-AWT

<param name="cwt.toolkit" value="com.cyc.lib.cwt.impl.awt.AwtToolkit">
® CWT-GL

<param name="cwt.toolkit" value="com.cyc.lib.cwt.impl.fbo.GlToolkit">
® CWT-DX

<param name="cwt.toolkit" value="com.cyc.lib.cwt.impl.dx3.Dx3Toolkit">

138

C.7 MoreUseful APIs

CWT adds some methods to AWT API for giving prognaens more abilities to
manipulate game objects.
® com cyc. lib. cwt. Component
void setOpaque (boolean b)

If true the components background will be filledtwihe background color.
Otherwise, the background is transparent, and whats underneath will
show through. The default value is false. Thisilaite will affect the
background of most components: Canvas, CheckborjcEhLabel, List,
Scrollbar, ScrollPane, Panel, TextArea and TexdFiel

boolean isOpaque ()
Check if the component background is transparenbbr
void setOpacity (float opacity)

Make the components be drawn in translucent mod# @hatever is
underneath will show “through. "Opacity value is kedw 0.0 (totally
transparent) to 1.0 (totally opaque). The defaalti® is 1.0.

float getOpacity()

Get opacity value of this component. The value ewieen 0.0 (totally
transparent) to 1.0 (totally opaque).

® com cyc. lib. cwt. Window
void addGLEventListener (Object listener)

Add a javax.media.opengl.GLEventListener to CWT-GL internal
GLCanvas. If multiple listeners are added to theCanvas, they are notified
of events in an arbitrary order

139

com.

com.

com.

com.

cyc. lib. cwt. impl. dx3. Dx3Toolkit
static com. ms. directX.DirectDraw getDirectDraw()

Access the DirectDraw object to get full control oféndering. The
DirectDraw object can be used to create offscremages, query the
capabilities of the graphics card and perform otB@ectDraw specific
operations, supported by Microsoft Java SDK.

cyc. lib. cwt. impl. dx3. Dx3Image
com. ms. directX. DirectDrawSurface getDirectDrawSurface ()
Get DirectDraw surfaces of CWT images to handlepikels of the images.
cyc. lib. cwt. impl. fbo. Gl Image
void setPriority(float .priority)

Set priority of images to minimize texture memohyashing. The value is
between 0.0 and 1.0.

cyc. lib. cwt. impl. fbo GlGraphics
static void setGlyphFontSizeThreshold(int fontSize)

Set the threshold of font size for enabling geoybaised rendering. If
rendered font size is bigger than or equals totlineshold, the text engine
uses geometry-based rendering. Otherwise, use reéeltised rendering.
Default value is 28.

static void setTextCacheSize(int bytes)

Specify the maximum memory size for text cache.abDkfvalue is one
megabyte.

140

Vita

Yi-Hsien Wang was born in Yunlin, Taiwan in 1977 keceived the B.S.,
M.S. and Ph.D. degree in Computer Science and r&bon Engineering
from National Chiao Tung University, Hsinchu, Tamwan 2000, 2002 and
2009, respectively. He was also a visiting schatabepartment of Electrical
Engineering, University of Washington, Seattle,nird®2007 to 2008. He
worked for ThinkNewldea Inc. from 2000 to 2009. Hessearch interests

include Internet gaming technology and softwareresgying.

141

