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摘要 

近年來，Java平台在效能上的長足進步，使其達到開發遊戲之所需。然而，實際

應用 Java開發遊戲之後，我們發現 Java標準內建的視窗工具組 AWT 及 Swing在各種

不同的執行環境組態中存在繪圖效能不一致的問題，這些執行環境的組合包含下列四

項：一、Java執行環境版本（JRE）；二、繪圖應用程式界面（API）；三、Java執行

期系統參數；四、常用的作業系統，如 Windows XP、Windows Vista、Fedora及 Mac OS 

X。這種效能不一致的現象使得遊戲開發人員難以預測 Java遊戲在使用者電腦的繪圖

效能，也降低了 Java倡言的「撰寫一次即可隨處運行（Write-Once-Run-Anywhere）」

的跨平台優勢。 

為了解決繪圖效能不一致的問題，使遊戲在不同平台上執行皆能達到高速且一致

的繪圖效能，我們提出了一套 AWT/Swing架構，稱為 CYC 視窗工具組（CYC Window 

Toolkit），簡稱 CWT，具有下述數項特性。首先，CWT 架構支援多種常用的高速繪

圖函式庫，如 DirectX 及 OpenGL，為了相容於沒有硬體加速的環境，CWT 也使用 Java 

AWT 來繪圖。CWT 架構也維持 Java的跨平台特性，支援各 Java虛擬機器（Java 

VM）、.NET公共語言執行環境（.NET CLR）以及各種不同的作業系統。再者，CWT

提供與 Java AWT/Swing 1.1版相同 API 的元件，降低將既有 Java遊戲移植到 CWT 的
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難度。對於需要進一步調整遊戲效能的程式設計師來說，CWT 提供一對一對應的

API，以便直接操作 CWT 內部的 DirectX與 OpenGL物件，以及遊戲相關的各種參數。

此外，CWT 也可以應用於 3D應用程式，這對於現在流行的 3D遊戲設計十分重要。 

我們依照 CWT 架構實作了三種 CWT 工具組，並開放於專屬網站[15]。這三種實

作各自使用 AWT、DirectX及 OpenGL來繪製使用者介面，尤其是後二項實作，可以

在支援的作業系統中，得到繪圖加速卡的硬體加速支援。為了測試並比較原本 Java 

AWT/Swing與 CWT 的繪圖效能，我們設計了兩支測試程式，用來測試基本繪圖能力

（Micro-benchmark）與綜合繪圖能力（Macro-benchmark）。測試程式執行於常用的

JRE，如 MSVM 及 JRE 1.4至 1.6版，以及前面提到的四個作業系統中，其結果顯示：

CWT 比 Java AWT/Swing更能在這些不同的組態中達到更好且更一致的繪圖效能。由

於 CWT 提供 Java AWT/Swing 1.1版的介面，也可以在 Java 1.1版的環境下運行，因

此，CWT 的 API 數量及 Java執行期系統參數都較 Java AWT/Swing少，較少的測試組

合有助於提升程式設計師的生產力。 

我們將實作 CWT 以及測試效能的經驗，歸納出三點方向，使 Java在未來成為更

好的跨平台遊戲的開發平台。一、由於繪圖加速卡的快速演進，Java應開放內部的

DirectX 與 OpenGL物件，讓遊戲程式設計師能夠直接存取新功能或調整繪圖行為。

二、Java AWT/Swing的繪圖管線應該與 JRE分開發行，有助於更快速地升級、除錯

該繪圖管線，並支援舊版本的 JRE。三、複用現有的 DirectX與 OpenGL綁定（Bindings）

以降低開發成本、提高可維護性、簡化運用 Java AWT/Swing於 Java 3D及 JOGL應用

程式中的難度，並提高效能。 
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Abstract 

In recent years, the performance of Java platforms has been greatly improved, which 

makes Java satisfy the requirements for developing games. However, after practicing in real 

game development, we observe that a phenomenon of performance inconsistency exists in 

the graphics of Java AWT/Swing with different combinations of JREs, graphics APIs, 

system properties, and operating systems (OSs), including Windows XP, Windows Vista, 

Fedora and Mac OS X. This phenomenon makes it hard to predict the rendering 

performance of Java games and weakens the merits of the Write-Once-Run-Anywhere 

feature of Java.  

In order to solve the above problems, we propose a portable AWT/Swing architecture, 

called CYC Window Toolkit (CWT), for developing cross-platform Java games with high 

and consistent rendering performance. CWT has the following features. First, the CWT 

architecture supports multiple graphics libraries such as AWT, DirectX and OpenGL, 

multiple virtual machines such as Java VM and .NET CLR, and multiple OSs. Next, CWT 

supports AWT/Swing 1.1 compatible widgets, so it can be easily applied to existing Java 

games. For programmers who want to fine tune their games, CWT supports one-to-one 
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mapping APIs to directly manipulate DirectX and OpenGL objects and other game-related 

properties. In addition, CWT supports interoperability with 3D applications, which is an 

important feature for 3D game design. 

We implemented three versions of CWT – AWT, DirectX, and OpenGL, to take 

advantage of graphics hardware acceleration on all supported OSs. The implementations of 

CWT are available on our website [15]. Two testing programs, including micro-benchmark 

and macro-benchmark, are also designed to evaluate the rendering performance of the 

original Java AWT/Swing and CWT. The benchmarking results show that CWT achieves 

more consistent and higher rendering performance than Java AWT/Swing does in 

commonly used JRES, including MSVM and JREs 1.4 to 1.6, on the four OSs. Moreover, 

CWT needs fewer efforts to test the combinations of graphics APIs and system properties, 

which greatly improves programmers’ productivity. 

Based on the benchmarking results and our experience, we propose three approaches to 

make Java be a better platform for developing cross-platform games in the future. First, 

since the video hardware evolves quickly, Java should open direct access to the internal 

DirectX and OpenGL objects for game programmers who need to access up-to-date 

hardware features or change the rendering behaviors. Second, Java should decouple the 

rendering pipelines of Java AWT/Swing from the JREs for faster upgrading and supporting 

old JREs. Third, Java should reuse existing DirectX and OpenGL bindings for lower 

developing cost, better maintainability, easier interoperability among Java AWT/Swing, 

Java 3D, and JOGL applications.  
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Chapter 1 Introduction 

Since released by Sun Microsystems Inc. (abbreviated as Sun) in 1995, Java [48] has 

become increasingly popular owing to its higher productivity and portability than C/C++. 

For productivity, a report [39] from IDC in 1998 showed that writing the code in pure Java 

instead of C++ increased the overall productivity by a factor of 30% and the coding phase 

alone by 65%. Since that study was made using Java Development Kit (JDK) 1.0.2, these 

figures could be greater today owing to the improved capabilities of the modern Java 2 

Platforms Standard Edition (J2SE). Phipps [37] also presented a similar result which 

concluded that Java was 30~200% more productive than C++. For portability, unlike C/C++ 

programs, which have to be compiled to native executable code specifically for each 

platform, Java programs are compiled into a format called bytecode running atop Java 

virtual machine (JVM), which encapsulates platform-specific features and provides a 

common set of application programming interfaces (APIs) on all supported platforms. 

Therefore, such “Write Once, Run Anywhere” (WORA) feature makes Java more portable 

than C/C++. 

Java has attracted much attention in game industry. Along with the growth of World 

Wide Web (WWW) in the late 1990s, many Java casual applet games, which can run in Web 

browsers, were deployed over the Internet, including Yahoo! Games [68], ArcadePod.com 

[16] and CYC games [59][13]. Other than the widespread applet games, several commercial 

stand-alone Java games were also developed, such as You Don't Know Jack [19], Law & 

Order: Dead on the Money [61] and Tribal Trouble [33]. Examples of commercial 

massively multiplayer online (MMO) Java games include RuneScape [17], Puzzle Pirates 
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[60] and Wurm Online [32]. Java games also appeared on mobile devices and soon became 

the mainstream language for game development on these devices. For example, Age of 

Empires II [27] was ported to mobile devices [14].  

After these practices in game industry, however, Java has some criticisms. The most 

discussed topics include runtime speed, rendering performance, and deployment issues. 

First of all, early implementations of the JVM normally indeed delivered poorer 

performance. In general, the performance of programs running in JVM 1.0 is about 20 to 40 

times slower than in C/C++ [23]. Fortunately, after several significant revisions in the JVM, 

the tweaked Java programs using J2SE 1.4 ran on the average only about 20-50% slower 

than the tweaked C/C++ programs [23]. Java SE 5.0 is typically only 1.1 times slower [5]. 

Sun’s benchmarks also suggest that Java SE 6 is 20% to 25% faster than Java SE 5.0 [49]. 

Therefore, the runtime speed is no longer a serious problem for Java game development. 

As for the graphical user interface (GUI) part of Java, early implementation of Java 

AWT/Swing components or widgets also performed slowly due to the lack of graphics 

hardware acceleration. Since most game programs, especially high profile games1, have 

intensive GUI operations, such as animation or complex scenes, it is critical to reach high 

rendering performance. In order to deal with this issue, Microsoft DirectX [30] and Open 

Graphics Library (OpenGL) [35], which are two major graphics libraries used in game 

industry, were introduced in the implementations of Java AWT/Swing since J2SE 1.4 and 

Java SE 5.0, respectively. With the supports of graphics hardware acceleration, the 

rendering performance of Java is largely improved when compared with previous versions. 

However, current implementations still have some problems that limit Java game 

                                                 
1 According to [[28]], high-profile games usually attempt to attract the highest attention from retailers and 
media. Such games normally require several millions of US dollars to advance in technologies, such as 
graphics. On the other hand, low-profile games target at niche groups of players and try to lower down 
developing costs. 



 

 3 

development, such as inconsistent rendering performance in different Java versions and on 

different platforms. In this dissertation, we will mainly investigate these problems. 

Table 1. Current state of JREs. 

Java Version 
Supported 

OSs 

Released 

Time 

JRE Size 

(MB) 

Percentage of Web 

Browser Users 

(May 2009) 

MSVM (Java 1.1.4) Windows 1997/02 5.0  4.81% 

J2SE 1.3 2000/05 7.9 0.20% 

J2SE 1.4 2002/02 15.2  5.11% 

J2SE 5.0 2004/09 15.8 18.63% 

Java SE 6 

Windows 

Mac OS 

Linux 

Solaris 2006/11 15.5 71.02% 
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Figure 1. Java usage trend diagram. 

As for the deployment issues, several problems have to be considered. First of all, few 

game consoles are shipped with JVMs. However, about 70% of the game market is console 

games, and personal computer (PC) games own the most of the rest. The lack of JVM 

supports greatly limits the deployment of Java games on the consoles.  

The next deployment problem is that not all PCs have Java runtime environment (JRE) 

installed. According to Millward Brown’s survey in December 2008 [1], only 81% 

Internet-enabled PCs have JRE installed. On some platforms such as Windows 98, ME, 

2000, early release of XP, and Mac OS X, certain JREs are pre-installed along with the 
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operating systems (OSs). On other platforms, users need to install JREs by themselves 

before they can play Java games. However, the installation may not be allowed without 

administrator’s privileges. The problem that required JRE versions are not installed has 

variant influence on Java program types. Stand-alone Java applications can be shipped with 

a JRE, so they can run on target systems without such problem. However, Java applets or 

web start applications need pre-installed JREs, which causes deployment issues. 

Even if OSs have JRE installed, the installed JRE version may not sufficient to run 

Java games. In such case, upgrades are required. For example, in order to enable the 

OpenGL rendering pipeline on Windows, Java SE 5.0 is required. According to the 

statistical data in [12] during April to May in 2009, as shown in Table 1, the percentages of 

Web browser users of popular JRE 1.1, 1.4, 5.0, and 6 are 4.81%, 5.11%, 18.63%, and 

71.02%, respectively. Figure 1 shows that at any given time since June 2006 when this 

research started, there are always at least three major JRE versions used by more than 5% 

Web browser users, including twelve-year-old MSVM. To support most installed JRE 

versions, Java programmers could be limited to old Java versions. However, many features, 

especially improvements of graphics performance, are only available in new JREs.  

In view of these problems, research for Java Graphics that is reviewed in Subsection 

1.1 has been done to make Java more suitable for game development. However, some 

problems which are identified in Subsection 1.2 still remain in the GUI part of Java, in 

terms of AWT and Swing, especially when programmers try to deploy cross-platform Java 

games with high and consistent rendering performance. By consistent rendering 

performance, we mean to deliver similar rendering performance on different OSs or 

different rendering environments when using the same hardware or equivalent-power 

hardware. The consistency of rendering performance is quite important, since programmers 

would expect Java programs to run with similar performance on multiple OSs. Subsection 0 
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briefly describes our goals for solving these problems, and also summarizes the organization 

of the rest of this dissertation. 

1.1 Evolution of Java Graphics 

This subsection reviews the graphics part of Java, which is of great concern to game 

developers today and is the main focus of this dissertation. 

For high rendering performance, game developers commonly employ Microsoft 

DirectX or OpenGL to access specialized hardware features, such as direct access to the 

video memory in graphics cards, and constructing 3D scenes. 

Using Java AWT/Swing is the standard way to perform rendering operations in Java. 

However, Java AWT/Swing did not take full advantage of graphics cards, before J2SE 1.4. 

As shown in Table 2, for example, Java 1.0/1.1 partially uses Windows graphics device 

interface (GDI) on Microsoft Windows platforms to accelerate image operations. Since 

J2SE 1.2, buffered images have been introduced, which lets programmers directly access 

pixels of images. However, since J2SE 1.2, software rendering was employed, instead of the 

hardware acceleration, to guarantee rendering quality on all platforms. Consequently, the 

rendering performance degrades in these Java versions. 

Since J2SE 1.3, AWT Native Interface has been introduced which allows programmers 

to render into Java AWT components through third parties’ graphics libraries, such as 

DirectX and OpenGL. This way is an alternative to using Java Native Interface (JNI) to 

access native libraries. However, the main drawback of using this technology is the loss of 

platform independency, which is a great concern in developing cross-platform games.  
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Table 2. Performance evolution of Java AWT/Swing. 

Java 

Version 
Graphics-Related Enhancement 

Release 

Time 

1.0 May 1995 

1.1 

AWT (OS rendered widgets) 

Hardware-accelerated rendering using GDI on Microsoft Feb. 1997 

1.2 Swing, Java2D (Software rendered widgets) Dec. 1998 

1.3 AWT Native Interface May 2000 

1.4 

Hardware-accelerated rendering 

• DirectX on Microsoft Windows 

• Shared Memory Extension (SHM) on X Window systems 

• Quartz 2D on Apple Mac OS X 

Feb. 2002 

5.0 OpenGL pipeline on Windows, Linux and Solaris Sep. 2004 

6 Improved OpenGL rendering pipeline Nov. 2006 

6u10 Improved DirectX rendering pipeline Nov. 2008 

 

In order to enhance the rendering performance of pure Java programs, Sun has started 

to access graphics hardware features via DirectX since J2SE 1.4 [45] and OpenGL since 

J2SE 5.0 (or 1.5) [52]. After that, Sun keeps improving the DirectX-based Java 2D pipeline 

(abbreviated as DirectX pipeline) and the OpenGL-based Java 2D pipeline (abbreviated as 

OpenGL pipeline). For example, in first release of Java SE 6, the OpenGL pipeline has been 

redesigned to improve its usability. In Java SE 6 update 10, the DirectX pipeline has also 

been redesigned. Since J2SE 1.4, full-screen mode has been supported, and new types of 

images, such as volatile images and managed (or compatible) images, have been designed 

to take advantage of graphics hardware [45]. Since then, the rendering performance of Java 

AWT/Swing has had a great boost. In particular, the use of OpenGL which is supported by 

multiple platforms is quite important to Java in which the cross-platform feature is critical.  

However, as shown in Table 2, these hardware-accelerated rendering pipelines still 

have the following two limitations. First, the rendering pipelines are not ported back to old 

Java versions, since they are tightly bundled with specific Java versions. The rendering 
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pipelines are also not available on all platforms. For example, currently the OpenGL 

pipeline can only be enabled in JRE versions 1.5 and beyond on Windows and Linux, and 

JRE version 1.6 on Mac OS X 10.5.2. Second, the OpenGL pipeline is disabled by default, 

because it does not work well due to some hardware and driver issues [55]. Although Java 

SE 6 (or 1.6) introduces a newly designed OpenGL pipeline that gives much better stability 

and performance than that in J2SE 5.0, the pipeline is again disabled by default for 

robustness issues [55].  

According to the analysis above, Sun’ official implementations of Java AWT/Swing are 

still not good enough for developing cross-platform games with high rendering performance. 

Alternatively, several 3D graphical libraries were developed to build cross-platform Java 

games with high rendering performance, including the OpenGL for Java (GL4Java) [18], 

Java binding for OpenGL (JOGL) [50], Lightweight Java Game Library (LWJGL) [22] and 

Java 3D [46]. The first three libraries are OpenGL bindings, which provide low-level 

one-to-one mapped APIs to OpenGL. Using GL4Java, JOGL or LWJGL, Java programmers 

can access hardware features supported in OpenGL without writing JNI wrappers. On the 

other hand, Java 3D provides high-level APIs, which use OpenGL and DirectX internally, 

for creating, rendering and manipulating 3D scene graphs.  

Using these libraries not only improves greatly the rendering performance on 

supported platforms, but also helps to build modern 3D games with realistic scenes. As a 

result, several cross-platform 3D Java games, including Law & Order: Dead on the Money 

[61], Jake2 [7] and Wurm Online [32], were created using these 3D graphical libraries, 

instead of AWT/Swing, to achieve high rendering performance.  
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1.2 Problems of Java Graphics 

Although the graphics part of Java evolves as described in the previous subsection, 

seven problems are still identified when Java AWT/Swing is employed to develop 

cross-platform games.  

(1) Backward compatibility to old JREs without graphics acceleration 

As described in Subsection 1.1, Java AWT/Swing and most 3D libraries require at least 

J2SE 1.4 to achieve high rendering performance. However, Table 1 and Figure 1 indicate 

that currently about 5% of Web browser users still used JREs below 1.4, where game 

applications cannot obtain the benefit of hardware acceleration mentioned above. Thus, this 

problem is significant when game programmers, particularly for applets, need to take the 

legacy Java users into consideration.  

(2) Unexpected rendering performance and visual effects when mixing Java 

AWT/Swing components with these 3D libraries, supported in DirectX and 

OpenGL 

Directly accessing the 3D graphics libraries instead of Java AWT/Swing usually 

achieves good rendering performance. However, the APIs of OpenGL and DirectX are 

different from that of Java AWT/Swing. Unlike Java AWT/Swing, both OpenGL and 

DirectX do not provide widget systems, which may decrease the productivity of Java game 

programmers. Consequently, when mixing Java AWT/Swing components with these 3D 

libraries, the performance may still be limited to that of the widget systems, or even worse 

[42]. In addition, the AWT/Swing components typically control their repainting timing and 

process, which may cause some unexpected visual effects, such as flickering and tearing. 
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Thus, game programmers typically build their own widget systems for their games. 

However, this reduces the productivity of programming. 

(3) Inconsistent rendering performance among different JREs 

The problem of inconsistent rendering performance among different JREs occurs since 

significant changes are made in the graphics part of newer JREs. For example, J2SE 1.2 

introduced software rendering for outputting equal rendering quality on different platforms 

[54], J2SE 1.3 introduced AWT Native Interface that enables native code to draw directly on 

Java drawing surface [53], J2SE 1.4 introduced DirectX pipeline, while Java SE 5.0 

introduced OpenGL pipeline. These significant changes results in two phenomena. First, 

these changes are tightly bound to the versions of the JREs and are rarely ported back to old 

JREs. Second, not all of the changes improve rendering performance. As shown in Section 

4.5, the rendering performance of texts and figures drop seriously from Java 1.1 to J2SE 1.2, 

and from J2SE 1.3 to J2SE 1.4. Therefore, such a phenomenon may make programmers 

hard to tune up the performance for all of the JRE versions.  

(4) Inconsistent rendering performance among different operating systems 

The rendering performance of Java AWT/Swing is inconsistent among different OSs, 

even when the same hardware configuration and JRE are used. The problem is caused by 

different implementations of graphics systems as follows. Java 2D rendering pipelines are 

built on different graphics systems on different OSs, such as Window GDI and DirectX on 

Microsoft Windows platforms, X Window System (X) [66] on Linux, and Quartz graphics 

layer (Quartz) [4] on Mac OS X. In addition, Windows Vista has a new graphics system 

called Desktop Window Manager (DWM), which runs on top of Direct3D and through 

which GDI rendering is redirected [28]. Other than the above graphics systems, OpenGL is 
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supported on all of the four OSs. Since the JREs involve these different graphics systems on 

different OSs, the optimization of Java games for one OS may not be applicable to other 

OSs. Therefore, more efforts are required for testing and optimizing the games on all 

targeted OSs. 

(5) Inconsistent rendering performance on choosing different graphics APIs 

In order to let programmers access hardware features, J2SE 1.4 introduced volatile 

images and managed images (or so-called compatible images). Later, J2SE 5.0 introduced 

translucent-supported volatile images. Using these new APIs properly may improve the 

overall rendering performance but lose the backward compatibility to old JREs. When 

programmers want to support legacy Java users, they may either only use old graphics API 

or write several versions of programs which access different graphics APIs in different JREs. 

However, the problem of inconsistent rendering performance still occurs in either way.  

(6) Inconsistent rendering performance on setting different system properties 

Besides the choices of graphics APIs described in the fifth problem, system properties 

also need to be set carefully for better rendering performance. For example, the system 

property “sun.java2d.opengl” needs to be specified to enable the OpenGL pipeline [58]. 

However, these system properties need to be set before the startup of Java AWT/Swing, 

which means that programmers cannot dynamically change the settings during runtime. It is 

even worse that some of these need to be specified by users, not just programmers. 

Consequently, it is hard for users to use proper settings that programmers want, or to set 

these system properties without administrator’s rights or help, e.g., the system properties in 

the Java applets of the Web browsers [43]. Thus, this problem makes it hard for 

programmers to predict rendering performance on end users’ systems. 
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(7) No direct access to internal DirectX and OpenGL functionalities 

Since J2SE 1.4, Java starts to access hardware acceleration. For backward 

compatibility and portability on multiple platforms, the DirectX and OpenGL rendering 

pipelines are encapsulated in Java 2D API and are not accessible directly by programmers. 

However, in recent 15 years, since the graphics hardware evolves quickly, many new 

features are available as time goes by. Game industry typically tries to enhance the quality 

and performance of games by accessing these new features. Therefore, the approach of 

encapsulation by Sun may limit the Java game development for the following two reasons. 

First, Sun’s implementations of rendering pipelines may not support game-related features, 

such as translucent widgets. Second, Sun’s implementations rarely provide extensibility 

such as OpenGL’s shaders for programmers to implement features not provided by fixed 

functionality. 

 

Table 3. Percentages of OSs [62].  

Percentage 
OS 

May, 2006 May, 2009 

2000/XP 84.9% 68.3% 
Windows 

Vista  0.0% 18.4% 

Mac OS  3.6%  6.1% 

Linux  3.4%  4.1% 
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1.3 Goals 

In view of the seven problems listed in Subsection 1.2, our goal is to enhance the 

rendering performance of Java for cross-platform game development. According to our 

experience, we also propose some directions which may make Java more suitable for 

developing cross-platform games in the future. This dissertation consists of three major 

parts as follows.  

(1) Evaluate the rendering performance of Java AWT/Swing with different 

combinations of JREs, graphics APIs, system properties, and OSs, including 

Windows XP, Windows Vista, Fedora and Mac OS X. These OSs are selected 

according to population percentages shown in Table 3. The evaluation results 

indicate that the performance inconsistency of Java AWT/Swing exists among the 

four OSs, even if the same hardware configuration is used. In addition, the results 

also show that no specific graphics APIs and system properties are guaranteed to 

obtain high and consistent rendering performance in different JREs. The problems 

weaken the merits of Java’s Write-Once-Run-Anywhere feature.  

(2) Propose solutions to solve the above problems of Java AWT/Swing and compare 

the results with those of Java AWT/Swing. We propose a window toolkit called 

CYC Window Toolkit (CWT), a fast-rendering lightweight GUI toolkit which 

renders all its widgets via native graphics libraries. We implement CWT using 

DirectX, OpenGL, and Java AWT. The benchmarking results show that CWT 

achieves more consistent and higher rendering performance in commonly used 

JREs, including MSVM and JRE 1.4 to 1.6, on four OSs.  

(3) Propose three suggestions to future development of Java AWT/Swing. First, the 

internal DirectX and OpenGL objects should be accessible for game programmers 
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who need to access up-to-date hardware features or change the rendering 

behaviors. Second, decouple the rendering pipelines of Java AWT/Swing from the 

JREs for faster upgrading and supporting old JREs. Third, the bindings of DirectX 

and OpenGL should be reused for lower developing costs, better maintainability, 

easier interoperability among Java AWT/Swing, Java 3D, and JOGL applications.  

The rest of this dissertation is organized as follows. Chapter 2 presents the design of 

CWT. Chapter 3 introduces three implementations and optimization techniques of CWT. 

Chapter 4 describes the configurations of JREs and benchmark programs used in this 

dissertation. This chapter also analyzes the experimental results. Chapter 5 discusses the 

software development problems of Sun’s Java AWT/Swing. Solutions for making Java a 

better game platform are also proposed. Finally, Chapter 6 concludes our work and suggests 

possible future extensions of CWT. 
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Chapter 2 Design of CWT 

This section describes the design of CYC Window Toolkit (CWT). First, the 

architecture of CWT is given in Subsection 2.1. The CWT architecture encapsulates 

multiple graphics libraries and provides a Java AWT/Swing compatible API, which can be 

further divided into three major parts: component hierarchy, event model, and painting 

model. These parts are designed by mostly following the design of Java AWT/Swing.  

Following the architecture, we have implemented three implementations of CWT, 

using three graphics libraries: DirectX, OpenGL, and AWT, respectively. Each 

implementation has its own main goal. The DirectX implementation enhances the rendering 

performance of MSVM, the OpenGL implementation improves the rendering performance 

on multiple platforms, and the AWT implementation acts as a backup while neither DirectX 

nor OpenGL is available. Finally, we summarize work related to CWT, including Agile2D, 

FengGUI, and Minueto. 

2.1 CWT Architecture 

CWT, as shown in Figure 2, is designed to provide high and consistent rendering 

performance for cross-platform Java game development, while keeping the same APIs of 

Java AWT/Swing and backward compatibility to Java 1.1. For the part of high rendering 

performance, CWT uses DirectX and OpenGL to render AWT/Swing widgets, so the 

graphics performance is improved through video hardware acceleration. As for users with 

limited video hardware where DirectX or OpenGL is not available, CWT uses Java AWT to 

render widgets. Next, for the parts of ease of use and backward compatibility, CWT 
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provides AWT/Swing compatible APIs for Java 1.1 and beyond. In other words, CWT has 

been designed to adapt the DirectX and OpenGL APIs into the AWT/Swing APIs. 

In Figure 2, we define three wrapper implementations, including CWT-DX, CWT-GL, 

CWT-GL, and CWT-AWT, which are introduced as follows. 

(1) For DirectX, CWT accesses DirectX 3.0, which is supported in Microsoft Java 

VM (MSVM) [31] via a wrapper identified as CWT-DX. 

(2) For OpenGL, CWT accesses it via OpenGL bindings, identified as CWT-GL. 

There are several candidate libraries: GL4Java (supporting OpenGL 1.3), JOGL 

and LWJGL (both supporting OpenGL 2.0). All these libraries are generally 

available in various OSs, including Windows, Mac OS X, Linux, and Solaris. In 

this dissertation, we choose JOGL to implement CWT-GL due to its official 

supports from Sun. 

 

Figure 2. CWT architecture. 



 

 17

(3) When neither DirectX nor OpenGL is supported by the underlying OSs, CWT 

accesses Java AWT via a simple wrapper, identified as CWT-AWT. 

Besides the full advantage of the hardware acceleration for most commonly used JREs 

even including 1.1, with this architecture, CWT also offers the following features. 

(1) Allow programmers to access internal DirectX and OpenGL objects directly to 

manipulate more hardware features and to tune performance. 

(2) Support mixing AWT/Swing widgets with DirectX and OpenGL. 

(3) Provide more game-related features such as translucent widgets. 

According the analysis above, CWT helps solve and improve the seven problems 

mentioned in Subsection 1.2, as follows.  

(1) For the problem of backward compatibility to old JREs without graphics 

acceleration, the rendering performance of MSVM has been improved by 

CWT-DX [63]. Together with CWT-GL [64] for J2SE 1.4 and beyond on multiple 

OSs designed in this dissertation, CWT covers in total 99.80% of Web browser 

users in Table 1, where MSVM, J2SE 1.4, Java SE 5.0, and Java SE 6 are used by 

4.81%, 5.11%, 18.63% and 71.02% Web browser users, respectively. 

(2) For the problem caused by mixing Java AWT/Swing components with the 3D 

libraries, CWT supports AWT/Swing compatible widgets rendered by the 3D 

libraries, including DirectX and JOGL. Since 3D scenes and the widgets are 

rendered by the same libraries, this problem no longer exists.  

(3) For the problem of inconsistent rendering performance among different JREs, 

CWT is independent of JREs so that CWT can be applied to almost all the JREs, 

even including JDK 1.1 (backwards) and future JREs (forwards). Therefore, 

rendering performance among different JREs becomes more consistent.  

(4) For the problem of inconsistent rendering performance among different OSs, 
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CWT directly uses hardware acceleration supported on the OSs, such as OpenGL, 

to avoid the problem of inconsistent rendering performance caused by the 

different rendering pipelines on different OSs. 

(5) For the problem of inconsistent rendering performance on choosing different 

graphics APIs, CWT provides one set of graphics API which is compatible to Java 

1.1. This improves the compatibility issue and reduces test efforts. The details are 

described in Subsection 4.6.  

(6) For the problem of inconsistent rendering performance when setting different 

system properties, users do not need to set system properties before the startup of 

the CWT programs, since CWT lets users (including programmers) configure the 

rendering behaviors during runtime. The details are described in Subsection 4.6.  

(7) For the problem of no direct access to internal DirectX and OpenGL 

functionalities, CWT allows programmers to access the internal DirectX and 

OpenGL objects directly so that the programmers can manipulate more hardware 

features. 

In this dissertation, we have implemented three wrapper implementations: CWT-AWT, 

CWT-GL, and CWT-DX. All the implementations as well as demonstrations are available 

on our website [15]. We also put a porting guide in Appendix C. 

2.2 Core CWT 

Supporting a Java AWT/Swing compatible API, CWT consists of three major parts: 

component hierarchy, event model, and painting model. The relation among the three pars is 

shown in Figure 3. The component hierarchy models a hierarchical component structure 

similar to Java AWT/Swing 1.1. The event model specifies the event-handling process. The 
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painting model defines an abstract class called Graphics which allows Java programs to 

draw on components realized on various devices. In CWT, Graphics is implemented by 

various graphics libraries, including Java AWT, DirectX and OpenGL. Components are 

rendered via Graphics instances onto native screen resources. 

 

Figure 3. Relation among components, events and graphics 

2.2.1 Component Hierarchy 

Java AWT adopts the Composite pattern [11] that allows programmers to build a 

complex GUI hierarchy by recursively composing objects in a tree-like manner. Two 

abstract classes – Component and Container – are the key classes of the entire hierarchy. 

Component is the root class of all the widgets. Container is a special component which can 

contain other components, including Container itself, and can arrange and resize the 

components inside.  

Java AWT uses peer architecture to maintain native look-and-feel of widgets on 

various OSs. To support the cross-platform feature, Java AWT provides a common set of 

GUI components on different OSs and peers implemented on each OS that connect the GUI 

components and underlying native GUI systems. For example, WButtonPeer is 

implemented on Windows platforms, which presents the Button component in Windows 

look-and-feel, while MButtonPeer provides Motif look-and-feel on Linux. As shown in 
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Figure 4, the components which have their own opaque native parts are called heavyweight 

components. For deciding which peers to be created in this design, an abstract class called 

Toolkit should be implemented on each OS. For example, WToolkit works on Windows 

platforms and creates peers in Windows look-and-feel. 

 

 

Figure 4. Component hierarchy of Java AWT/Swing. 

 

Figure 5. Component hierarchy of CWT. 
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In contrast, Java Swing provides lightweight components which are drawn on 

heavyweight containers, including re-implemented AWT heavyweight components. The 

lightweight components have no peers to connect to native components and are rendered by 

Java, not by OSs. The lightweight technology allow Java Swing provide more high-level 

components which are not natively available on all OSs, such as tree view, list box, and 

tabbed panes. Swing also supports pluggable look-and-feel so that programs may have 

Motif look-and-feel when running on Windows platforms. These features are important for 

game development, since game programs normally render GUI by themselves instead of 

using native components. 

The component hierarchy of CWT is similar to that of Java AWT/Swing but different 

in the implementation of components. As shown in Figure 5, all heavyweight components 

of Java AWT, except for Applet, Window, Frame and Dialog, are redesigned as lightweight 

components in CWT. The peer architecture is still preserved in CWT so that we only need 

to modify much fewer parts of the entire AWT architecture. In this design, the rendering of 

the lightweight components is performed in corresponding peers. Furthermore, the 

lightweight components need at least one heavyweight component at the top level to draw 

on. Therefore, CWT internally wraps four corresponding AWT heavyweight containers – 

Window, Frame, Dialog, and Applet, for rendering all the lightweight components. When 

CWT programs initiate these containers, the wrapped AWT components are created to show 

other CWT lightweight components.  

CWT Applet is designed in a different way from other three heavyweight components. 

Since Applet is a kind of Panel which requires to be contained in a Window root instance, a 

new container named AppletFrame, a kind of CWT Frame, is created for containing CWT 

Applet instances. As shown in Figure 5, the AppletFrame has its own peer implementation 

which wraps an AWT Applet instance as the canvas. In this design, the price to pay, 
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however, is the changes of <applet> tag in HTML files. Since the browsers can only accept 

the AWT Applet type and in CWT only the CwtApplet class inherits the AWT Applet class, 

programmers need to modify the applet tag so that the browsers launch CwtApplet and then 

CwtApplet launches target applets by reading the applet parameter “cwtapplet”. This can 

be illustrated by the following code segments. 

Original applet tag:  
<applet code=YourApplet.class></applet> 

Modified applet tag:  
<applet code=com.cyc.lib.cwt.applet.CwtApplet.class> 

        <param name="cwtapplet" value="YourApplet"> 

</applet> 

 

2.2.2 Event Model 

 

Figure 6. Event hierarchy of Java AWT 

CWT follows the event hierarchy of Java AWT, as shown in Figure 6, and the 

delegation-based event model [47] used in Java 1.1 and beyond. However, the event 

processing flow is slightly different from Java AWT, as follows. In CWT, the four wrapped 
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AWT heavyweight components mentioned in the previous subsection get native events from 

OSs and dispatch them to the contained lightweight components. In order to dispatch events 

to the proper components, the four container peers, CwtAppletFramePeer, CwtWindowPeer, 

CwtFramePeer, and CwtDialogPeer, as shown in Figure 5, act as event listeners of the four 

heavyweight components. These listeners analyze the original AWT events, generate 

corresponding CWT events, and put the new events into a event queue. Then, an event 

dispatching thread dispatches the events to the proper CWT components. Figure 7 illustrates 

the event-processing flow in the following steps.  

� Step 1: a mouse moving event occurs in CwtFrame, which is a wrapped AWT 

Frame. This event is handled by CwtFramePeer implementing the mouse motion 

listener.  

� Step 2: the CwtFramePeer gets the mouse position from the event object and finds 

out which lightweight components in CWT Frame the mouse is on.  

� Step 3: the CwtFramePeer generates a new CWT mouse event with translated 

position and puts it into EventQueue.  

� Step 4: the thread EventDispatchThread retrieves the event and dispatches it to 

the component where the mouse is moving over. 

 

 

Figure 7. A typical event processing flow in CWT. 
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2.2.3 Painting Model 

 

Figure 8. Three implementations of the Graphics interface in CWT.  

The painting model is the key for rendering, and it is especially important for games. 

Since the rendering operations are eventually performed on native components on multiple 

platforms, this model defines a common set of rendering API for the various native GUI 

systems. In Java AWT, the abstraction of rendering is mainly in three classes: Graphics, 

Image, and Font. 

The AWT Graphics class is an abstract class which defines basic rendering operations, 

such as rendering primitives, texts, and images. The Image class is also an abstract class 

which represents native image resources. The two abstract classes are realized by using 

various graphics libraries on different OSs, such as Windows GDI and DirectX on 

Microsoft platforms, X Window System on Linux, Quartz graphics layer on Mac OS X, and 

OpenGL on multiple OSs. On the other hand, the Font class adopts the peer architecture to 

connect the native font information needed for rendering texts. 

Both Java AWT and Swing use a callback mechanism for painting [56]. Two callback 

methods to be overridden in Component are paint and update. Programs place the 
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rendering code in the two methods and use the Graphics parameter object for drawing on 

the component. On different GUI systems, corresponding Graphics instances are created 

dynamically in runtime so that they can render on the native components. Since J2SE 1.2, a 

delegation design is introduced to Graphics instead of the inheritance design. This design is 

also apply to Image and Font classes which also  

In CWT, the functions of the Graphics and Image classes are implemented by using 

different graphics libraries. As shown in Figure 8, several subclasses implement the abstract 

class Graphics by Java AWT Graphics, DirectX, and OpenGL, called CWT-AWT, CWT-DX, 

and CWT-GL, respectively. The Font class is designed in a different way. Since we directly 

access the font resource provided by Java AWT, there is no need to implement different font 

peers for each GUI system.  

To support efficient lightweight painting and game-related features, CWT follows the 

design of Swing. Many Swing features are applied to the CWT components. The most 

important features are transparency, double buffering, and optimized repaint process [56]. 
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Chapter 3 Implementation of CWT 

Based on the architecture of CWT described in Chapter 2, three graphics libraries are 

chosen to implement CWT, including Java AWT, DirectX 3.0 supported in MSVM, and 

JOGL. These implementations are identified as CWT-AWT, CWT-DX, and CWT-GL, 

respectively. CWT-AWT is a simple wrapper of Java AWT, while the rest two require much 

more efforts to implement and optimize. In this chapter, we will briefly introduce the most 

important techniques employed in the CWT implementations. 

3.1 Implementation Approaches 

There are two approaches to implement AWT compatible window toolkits: peer 

extension and reimplementation.  

� Peer extension approach. Java uses it to support pluggable look and feel on 

different OSs by implementing the interfaces in package java.awt.peer. Though 

these interfaces were originally designed for cross-platform, we can replace the 

peer implementation by a different one, like Charva [38]. With this approach, we 

need to modify no Java code but just set the class name of the new toolkit in a 

system property called “awt.toolkit” before running the Java programs.  

� Reimplementation approach. Using this approach, we have to rewrite the entire 

set of the java.awt package. With this approach, programmers have to change all 

the import statements for “java.awt” and “java.applet” to 

“com.cyc.lib.cwt”, and then recompile their programs.  

This dissertation adopts the reimplementation approach, since it has the following three 
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advantages. First, better algorithms, such as the RepaintManager in Swing, or bug fixes, 

such as the focus issues in Java 1.1, can be applied to CWT to improve the performance 

outside the peer part. Second, CWT interface for game development may need to be 

extended in the future, but the peer extension approach can hardly achieve this goal. Third, 

CWT interface remains unchanged even when new Java version adds more methods. With 

peer extension approach, the added methods in new Java versions have to be implemented 

in CWT, or CWT could not be run in the new versions. For these reasons, our 

implementation is based on the reimplementation approach.  

3.2 CWT-AWT 

CWT-AWT, basically trivial to implement, is to keep the portability in different JVMs 

on different OSs. In CWT-AWT wrapper implementation, an instance of Java AWT 

Graphics is wrapped in CWT Graphics. Since both Graphics objects have the same interface, 

invoking methods of CWT Graphics will mostly invoke the corresponding methods of AWT 

Graphics. Consequently, the rendering performance of CWT-AWT is slightly worse than the 

original owing to extra wrapping overhead. According to the benchmarking results made by 

us in [63], the overhead is about 10.3%. 

Although CWT-AWT is basically a simple wrapper implementation, some 

optimizations are still introduced in its implementation. For example, CWT-AWT will avoid 

unnecessary state changes since some changes incur overhead, including font, color and 

clipper. Changes of these states only have effects when rendering operations really occur. 

Therefore, CWT-AWT only applies changes right before the rendering operations. 
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3.3 CWT-DX 

CWT-DX is implemented by using DirectX 3.0 provided by Microsoft Java SDK [31]. 

Using Microsoft Java SDK is a quick solution that allows us to access DirectX without 

building a bridge via JNI. Although only old DirectX functionalities are available, since 

CWT only supports 2D rendering now, DirectX 3.0 already performs with sufficiently high 

performance. 

CWT-DX accesses Windows GDI and DirectDraw to perform basic rendering 

operations. The functionalities of the Graphics class can be divided into two categories: (1) 

figures and texts, and (2) images. Each category is realized by different graphics libraries, as 

described in the following subsections.  

3.3.1 Images and Rectangles 

The major speedup from accessing DirectDraw to draw images comes from 

hardware-accelerated memory copy inside video cards. The drawImage methods of 

Graphics are implemented by the bit block transfer (blit) operation in DirectDraw. 

Furthermore, DirectDraw also accelerates color filling in a given rectangular area. Therefore, 

both fillRect and clearRect methods of Graphics are implemented by using the 

bltColorFill method of DirectDraw.  

However, using DirectDraw, programmers may encounter the surface lost problem. 

Surfaces represent the memory on the video cards which are used to store images. The 

contents of the surfaces could be freed when users change the screen resolution or simply 

switch to another window. If surfaces are lost, the image data are gone and must be restored 

or re-rendered [54]. CWT tries to rebuild the lost surfaces if the images are loaded directly 
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from image files. Otherwise, if images are created and maintained by programmers, CWT 

sets a flag "contentLost" in the image objects, as the design of volatile images introduced 

since J2SE 1.4 [54]. 

3.3.2 Figures and Texts 

Since the DirectX does not provide text and figure rendering APIs, Windows GDI is 

used instead. When using Window GDI to draw figures and texts in a DirectDraw surface, 

programs need to get a GDI-compatible device context (DC) handle for the surface. This 

will lock the surface and thus incur extra overhead [29]. Thus, it is important to minimize 

the locking times to reduce the performance overhead. In order to minimize the times, CWT 

does not release the obtained DC handle, until any of the image rendering or rectangle 

filling methods is invoked. This optimization can be illustrated in Figure 9. 

Pseudo-code of optimized DirectX and GDI commands 
Pseudo-code of Java AWT 

(selected=true, alive=true) 
g.drawImage(img1); dds.blt(img1); 

g.drawImage(img1); dds.blt(img1); 

g.setColor(c1); hdc = dds.getDC(); 

Gdi32.SelectColor(hdc, c1); 

dds.releaseDC(hdc);dds.releaseDC(hdc);dds.releaseDC(hdc);dds.releaseDC(hdc);    

if(selected) 

  g.drawOval(...); 

hdc = dds.getDC();hdc = dds.getDC();hdc = dds.getDC();hdc = dds.getDC();    

di32.Ellipse(hdc); 

dds.releaseDC(hdc);dds.releaseDC(hdc);dds.releaseDC(hdc);dds.releaseDC(hdc);    

if(alive) { 

    g.fillRect(...); 

 

hdc = dds.getDC();hdc = dds.getDC();hdc = dds.getDC();hdc = dds.getDC();    

Gdi32.Rectangle(hdc); 

Gdi32.releaseDC(hdc); 

    g.drawImage(img2); 

} 

dds.blt(img2); 

g.setColor(c2); hdc = dds.getDC();hdc = dds.getDC();hdc = dds.getDC();hdc = dds.getDC();    

Gdi32.Gdi32.Gdi32.Gdi32.SelectColor(hdc, c2);SelectColor(hdc, c2);SelectColor(hdc, c2);SelectColor(hdc, c2);    

dds.releaseDC(hdc);dds.releaseDC(hdc);dds.releaseDC(hdc);dds.releaseDC(hdc); 

g.fillRect(...); dds.colorFill(c2); 

Figure 9. Eliminating unnecessary getting and releasing DC. 
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3.3.3 Optimization of CWT-DX 

For high rendering performance, game programmers usually put pre-rendered images 

and textures into video memory of graphics cards, so that the graphics cards can directly 

access them. However, since the size of the video memory is limited, programs may not be 

able to put all the images into the video memory. Therefore, some of the off-screen images 

will stay at the system memory. Practically, programmers may need to put frequently used 

off-screen images into the video memory and move those used infrequently to the system 

memory. Carefully managing the video memory resource can improve the overall rendering 

performance. 

For most game applications, programmers want to control all the details for high 

rendering performance. In order to give programmers such flexibilities, CWT allows 

programmers to decide the memory location when creating images, and allow them to copy 

images between the video memory and system memory. CWT-DX also supports direct 

access to DirectX 3.0 API of MSVM. For example, programmers can get DirectDraw 

surfaces by calling the getDDSurface method of Image of CWT-DX. Using Toolkit, 

programmers can get DirectDraw objects for advanced operations. For more details, please 

refer to Appendix C. 

DirectDraw supports high performance for 2D image rendering, but it still relies on 

Windows GDI to render texts and figures. Game programmers usually use pre-rendered text 

and figures, saved as images, to solve this problem. Although DirectX does not support 

figures drawing, it can draw rectangles (including horizontal and vertical lines) by filling 

colors into them, as J2SE 1.4 does [54]. With hardware acceleration, these operations 

perform better than rendering non-rectangular shapes. 
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3.4 CWT-GL 

In this subsection, we briefly introduce how CWT-GL implements the Graphics class 

using JOGL. We divide the functionalities of the Graphics class into five parts: figures, 

images, texts, off-screen buffers and graphics states, whose design issues and strategies are 

described in Subsections 3.4.2 to 3.4.6, respectively. 

3.4.1 Introduction to JOGL 

JOGL [50] is an open-sourced project initiated by the Game Technology Group at Sun 

Microsystems Inc. JOGL is a Java binding for OpenGL and provides access to the latest 

OpenGL API, including writing shader code. JOGL abstracts the OpenGL functionality 

from platform-specific libraries, such as wgl, glx and agl, to create a platform-independent 

OpenGL API. The abstraction greatly improves the portability of JOGL on different OSs. 

JOGL is a development version of the JSR-231 (Java binding for the OpenGL API) [51] and 

will possibly be included in the Java SE core library in the future. 

3.4.2 Figures 

In Java 1.1, the Graphics class allows programs to draw several kinds of figures, 

including lines, rectangles, ovals, round rectangles, polylines and polygons. These figures 

are mainly of two types – outline and solid figures. In OpenGL, outline figures can be 

assembled by lines, while solid figures can be filled by triangles. Therefore, we use lines 

and solid triangles for these figure-drawing and figure-filling methods, respectively. Most 

importantly, we use as small number of lines or triangles as possible to achieve high 

rendering performance for game development. For example, CWT-GL uses just enough 

one-pixel lines to approximate a round circle [41]. 
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3.4.3 Images 

In CWT-GL, images are loaded onto so-called texture maps to fill rectangles. In 

practice, there are several limitations when we use texture mapping for the simulation of 

drawing images. These limitations and the corresponding solutions are described as follows.  

First, the size of each texture has a maximum bound. For example, the limitation on 

texture size of ATI X1600 series, which are used as our test beds, is up to 

(4096×4096)-pixel2 [2]. The values of the bounds may vary, depending on users’ systems 

and graphics cards. Currently, CWT-GL does not support images larger than the bounds of 

the underlying system.  

Second, some old graphics cards only support power-of-two-sized texture [41]. 

Therefore, if the image is not power-of-two in dimension and the graphics card does not 

support non-power-of-two image, JOGL pads the image by creating a power-of-two texture 

image and then draws the original image onto the new one. However, the price to pay is 

more memory consumed. For example, a 65×33-pixel2 image has to be padded to a 

128×64-pixel2 size before it can be used as a texture map. This problem can be solved by 

introducing texture mosaicing [24] (or called texture packing [65]), which groups small 

images into a single power-of-two texture to utilize memory. This technique is commonly 

used in game applications [65]. Note that the problem of optimizing texture packing can be 

reduced to the two-dimensional Knapsack problem, which is known to be NP-hard [9].  

Finally, the size of texture memory is also limited [41]. Thus, OpenGL as well as 

CWT-GL needs to manage the texture memory by moving textures in and out according to 

the priority of the textures. The method glPrioritizeTextures() can set the priority to 

minimize texture memory thrashing. Therefore, CWT-GL adds a corresponding attribute 

(named priority) in the Image class for programmers to manage the texture memory.  
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3.4.4 Texts 

Since text drawing is not directly supported in OpenGL, two alternatives are used in 

OpenGL applications: image-based and geometry-based approaches [24]. The image-based 

approach draws texts by rendering images on which texts are pre-rendered or dynamically 

rendered during runtime. This approach is further divided into two methods, bitmaps and 

texture maps. The former is simpler and more efficient in memory utilization. However, the 

latter is normally faster than the former since the latter is directly supported by hardware 

acceleration.  

Although the image-based approach is easy to implement, it has two drawbacks. First, 

a pre-rendered text has fixed resolution, so the quality of scaled texts would not be as good 

as that of the originals. Second, when the font size is large, the images consume more 

memory and rendering time. For example, a 32×32-sized character costs three times more 

memory than a 16×16-sized character does.  

On the other hand, the geometry-based approach represents texts in a series of lines, 

curves and polygons. Since the texts are presented in 3D models, scaling the texts will not 

cause the effect of artifact. However, the more complex shape the texts are of, the more 

polygons and processing power are needed. For example, Asian languages, such as Chinese, 

typically require more polygons to emulate.  

According to the analysis above, CWT-GL implements both approaches described as 

follows. 

� In the image-based approach, the text engine first renders the texts into texture 

maps in a character-by-character basis, and then uses the texture maps to display 

the texts. The texts will be cached in the texture maps for later uses. We use the 

Least Frequently Used (LFU) algorithm to maintain the character cache. The 
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number of texture bindings can be reduced by putting a number of the characters 

in one texture map instead of generating each individual character in its own 

texture map, since drawing a string typically involves drawing a series of 

characters.  

� In the geometry-based approach, we follow the common method described in [24]. 

The text engine generates glyphs for each character and also caches them in 

display lists for later uses. Since most glyphs contain curves, such as quadratic 

parametric curves and Bezier curves, the text engine needs to use cubic 

interpolation to draw the curves. Like the way how we optimize circle drawing 

described in Subsection 3.4.2, we only interpolate each curve by a limited number 

of steps according to the distance between two ends of the curves. 

Since both approaches have cons and pros, CWT-GL lets programmers configure the 

rendering behaviors of the text engine during runtime, such as the size of texture cache and 

the threshold of font size for enabling geometry-based rendering. According to our 

experimental results in Subsection 4.5.2, we set one megabyte as the default size of the 

texture cache and 32 as the default threshold of the font size to be a balanced point between 

the rendering speed and memory consumption. When font size is larger than the threshold, 

CWT-GL uses the geometry-based approach to draw texts; otherwise, CWT-GL uses the 

texture-based approach.  

We adopt two methods to reduce the memory used by the texture map for the text 

cache as follows. First, in order to reduce the number of cached texts, the color information 

of the texts is removed, i.e. we let characters with different colors share the same cache 

space in the texture map. To do this, the cache texts are drawn in white color with black 
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background. Then, we enable the blending function to blend the designated color2 before 

drawing the texts. The blending function is also specified so that the white color of the 

cached texts will be drawn by designated color and the black background will become 

transparent.3 Second, since the color information is not needed in the cached texts, we use a 

one-byte-per-pixel grayscale texture map, which can still be accelerated by hardware. 

3.4.5 Off-screen Buffers 

Rendering to off-screen buffers is a common operation in Java AWT. It is useful for 

performing double buffering, dynamically creating images during runtime (runtime images) 

for special effects. Although there are several ways to do so in OpenGL, only few are 

hardware-accelerated and fast enough for game development. Currently, two techniques for 

fast off-screen rendering are pixel buffer (pbuffer) [36] and Framebuffer Object (FBO) [34]. 

Both have been implemented in CWT-GL, since both have advantages over each other, as 

described as follows. 

� Pbuffer. The pbuffer technique [36] is an OpenGL extension. Pbuffers allow 

programmers to create hardware-accelerated off-screen buffers. This method is 

faster than old ways when doing off-screen rendering, such as glReadPixels(), 

glDrawPixels() and glCopyTexSubImage2D(), which involves copying pixels 

between video memory4 and system memory5 [34]. However, each pbuffer is 

associated with one distinct OpenGL context, which incurs overhead in both time 

and space as described in the following. Switching to another pbuffer causes 
                                                 
2 The designated color is specified by using the glBlendColor() function. 
3 The blending function is configured as glBlendFunc(GL_CONSTANT_COLOR, GL_ONE_MINUS_SRC_ 

COLOR). The color C rendered on target will be Csrc × Cblend + Cdst × (1.0 - Csrc), where C denotes each 
individual red, green and blue color from 0.0 to 1.0. Therefore, the white color (Csrc = 1.0) part of the cached 
texts will be drawn with Cblend, while the black background (Csrc = 0.0) will be drawn with Cdst. 
4 Video memory refers to the memory on the video cards which hold data for display devices. 
5 System memory refers to the memory where a computer holds current programs and data which CPU works 
with. 
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OpenGL context switching, which takes extra time [34]. Moreover, since pbuffers 

cannot share space, each pbuffer must contain its own data for some extra buffers, 

such as depth buffer, stencil buffers, accumulation buffers [34]. Despite of these 

disadvantages, the pbuffer technique is supported by more graphics cards, since it 

was introduced earlier than FBO. 

� FBO. The FBO [34] extension is a good alternative to pbuffer, since it makes 

off-screen rendering more efficient and easier to use. Unlike pbuffer, binding a 

different FBO does not require context switching, because different FBOs are 

allowed to share one OpenGL context, such as depth buffer, stencil buffers, and 

accumulation buffers. The design of sharing context also helps reduce memory 

consumption. Moreover, FBO is easier to set up than pbuffer. As a result, FBO 

now becomes the better choice of off-screen rendering in OpenGL. The only 

problem of FBO, however, is that it is a new extension and supported by fewer 

graphics cards than pbuffer.  

According to the analysis above, the order of techniques for off-screen rendering in 

CWT-GL is (1) FBO and (2) pbuffer. For backward compatible consideration to make 

CWT-GL work on systems with old graphics cards where neither FBO nor pbuffer is 

available, CWT-GL creates AWT off-screen buffers for rendering, and then transfers the 

buffers into textures when rendering is finished. 

3.4.6 Graphics States 

Graphics states control rendering behaviors, including origins, clipping areas, colors 

and fonts. For example, first set the foreground or background color into the graphics state 

for subsequent drawing such lines or circles. Java AWT encapsulates the graphics states into 

the Graphics objects, while OpenGL stores them in the OpenGL contexts. In AWT/Swing 
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applications, a Window object may contain a number of Component objects, and each 

Component object maintains its own graphics states in its Graphics object. However, in 

multithread environments, concurrently drawing Component objects in Java must carefully 

make graphics states of OpenGL contexts consistent. Therefore, in order to design a 

mechanism to let CWT run correctly in multithread environments, we need to take the 

following two points into account.  

First, most CWT components are of lightweight. These lightweight components are 

finally painted on the four CWT heavyweight components, including Window, Frame, 

Dialog and Applet. Heavyweight components independently keep graphics states such as 

painting colors, while lightweight components in a single heavyweight component share the 

same graphics states. Thus, a single heavyweight component must execute correctly the 

interleaved rendering operations from these lightweight components with different graphics 

states, and set the proper graphics states before drawing its lightweight components. This 

implies that we need to serialize the rendering operations and execute them by a single 

thread.  

Second, OpenGL is mainly designed for single-threaded usage. As suggested by the 

single threaded rendering (STR) [8] introduced in Java SE 6, using a single thread to issue 

OpenGL commands is more efficient and reliable than using the multithreaded way which is 

common in AWT/Swing applications. It would be better to avoid the multithreading 

approach, since it introduces more unexpected rendering performance issues in Java 

programs as indicated in [6]. 

According to the two points, we adopt the design of STR into CWT. We use the Java 

AWT event dispatching thread (EDT) as the single command processing thread, since one 

of the responsibilities of the EDT is to repaint the components. An example of this design is 

depicted in Figure 10 and the steps involved are described as follows.  
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� Step 1: a rendering request drawImage() is issued to a GlGraphics object.  

� Step 2: the request is translated into an internal command with the required state.  

� Step 3: the command is put into a command queue.  

� Steps 4 and 5: the command queue invokes the method display() of an internal 

GLCanvas object in order to activate the EDT to execute this rendering request.  

� Step 6: the activated EDT invokes the method display(GLAutoDrawable 

drawable) implemented by the command queue.  

� Steps 7 and 8: the command is retrieved and executed by the EDT by calling the 

drawImageImp() method in the GlGraphics object.  

� Step 9: before the command is executed, the GlGraphics object changes the 

states of the OpenGL context to match the required state of the command.  

� Step 10: the GlGraphics object issues the OpenGL commands.  

Therefore, all the OpenGL operations are issued by the same thread, and the required 

states of the graphics commands are ensured. 

 

Figure 10. Sequence diagram of STR-like design in CWT. 
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3.4.7 Optimization of CWT-GL 

In order to achieve fast rendering for game development, CWT-GL introduces two 

optimization methods, (1) disabling unnecessary checking and testing, and (2) minimizing 

the number of state changes in OpenGL. These optimizations effectively improve the 

rendering performance of CWT-GL implementation.  

In optimization method (1), we disable some unnecessary checking and testing of 

OpenGL before performing certain rendering operations. For example, alpha testing and 

blending mode are unnecessary when the programs draw opaque images and figures, while 

these tests are required for drawing transparent images, translucent images and texts. 

Turning off unnecessary checking can greatly improve the performance.  

 

Pseudo-code of Java AWT Pseudo-code of optimized OpenGL commands 

g.drawImage(img1); gl.glBindTexture(img1); 

gl.glEnable(GL.GL_TEXTURE_2D); 

gl.glBegin(GL.GL_QUARDS); 

gl.glTexCoord2d(...); 

gl.glVertex2i(...); 

... 

gl.glEnd();gl.glEnd();gl.glEnd();gl.glEnd();    

gl.glDisable(GL.GL_TEXTURE_2D);gl.glDisable(GL.GL_TEXTURE_2D);gl.glDisable(GL.GL_TEXTURE_2D);gl.glDisable(GL.GL_TEXTURE_2D); 

g.drawImage(img1); gl.glBindTexture(img1);gl.glBindTexture(img1);gl.glBindTexture(img1);gl.glBindTexture(img1);    

glglglgl.glEnable(GL.GL_TEXTURE_2D);.glEnable(GL.GL_TEXTURE_2D);.glEnable(GL.GL_TEXTURE_2D);.glEnable(GL.GL_TEXTURE_2D);    

gl.glBegin(GL.GL_QUARDS);gl.glBegin(GL.GL_QUARDS);gl.glBegin(GL.GL_QUARDS);gl.glBegin(GL.GL_QUARDS);    

gl.glTexCoord2d(...); 

gl.glVertex2i(...); 

... 

gl.glEnd(); 

gl.glDisable(GL.GL_TEXTURE_2D); 

Figure 11. Eliminating unnecessary changes of OpenGL state. 
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In optimization method (2), we try to minimize the number of state changes in 

OpenGL. As described in Subsection 3.4.5, OpenGL context switching takes extra overhead 

in time [41]. For example, binding textures and invoking glBegin()/glEnd(). Others such as 

changing color and setting clipping area do not affect speed much. However, since JOGL 

invokes corresponding OpenGL API via JNI, it is still a good idea to reduce the number of 

JNI calls. Therefore, CWT-GL tries to minimize the number of method calls that change 

OpenGL states. For example, Figure 11 shows three cases of unnecessary changes of 

OpenGL state (pseudo-code with strikeout) when drawing an image continuously: (a) 

glBegin()/glEnd(), (b) glBindTexture(), and (c) glEnable()/glDisable(). In order to 

achieve this, CWT-GL uses variables to indicate current states of bound textures, color, 

clipping area, and type of glBegin(). Before issuing the rendering operations to OpenGL, 

CWT-GL changes OpenGL states only when the states are different from required ones. 

Therefore, unnecessary state changes can be avoided.  

3.5 Mixing CWT-GL with JOGL 

CWT can be seamlessly mixed with JOGL without the problems of unexpected 

rendering performance and visual effects when mixing Java AWT/Swing components with 

these 3D libraries, mentioned in Subsection 1.2, since the CWT-GL implementation uses 

JOGL as its internal render. The problems of rendering performance and visual effects are 

solved by the shared buffer design between CWT-GL and JOGL programs, as discussed in 

Subsection 5.1.3. 

In order to mix CWT-GL with JOGL, several issues have to be considered, including 

shared view buffer, rendering order, and maintaining OpenGL states. First of all, in order to 

seamlessly mix CWT-GL with JOGL, a shared view port is designed. CWT-GL initiates a 
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GLCanvas object provided by JOGL and renders everything on the canvas, which can be 

shared by other JOGL programs. To do so, CWT-GL let programmers access the 

GLCanvas object so that the programmers can render 3D content on the canvas. 

Once CWT-GL and the JOGL programs render on the same canvas, the next issue is to 

organize the rendering order. Since 3D programs may use CWT to design interactive user 

interfaces and head-up display (HUD), such as menu and chatting box, CWT widgets 

should be rendered after the JOGL programs rendering scenes. Therefore, CWT defines the 

rendering order to that the JOGL programs render 3D scenes first and then CWT renders 

atop the scenes, as shown in Figure 12. 

    

Step 1. Clear the viewport. 

 

Step 2. JOGL programs render 3D scenes. 

 

Step 3. CWT-GL directly renders widgets 

without clearing the viewport. 

 

Figure 12. The flow of mixing CWT-GL with JOGL.    
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Table 4. OpenGL states for CWT-GL. 

State CWT-GL Description 

Projection Orthographic CWT-GL uses orthographic projection since CWT is a 

2D library which only requires a 2D orthographic 

viewing region. 

Viewport (0, 0, width, 

height) 

The upper left corner of the viewport is located at (0, 0) 

so that the coordination system is the same as Java 

AWT/Swing. 

Camera (0, 0, 1, 0, 0, 0, 

0, 1, 0) 

In CWT-GL, the camera is placed at location (0, 0, 1) 

and looks at location (0, 0, 0) with up direction (0, 1, 0). 

Lighting Disabled CWT-GL does not need lighting. 

Depth test Disabled Depth test has to be disabled so that widgets will be 

rendered atop 3D scenes. 

Clipper Enabled CWT-GL uses clipping planes of OpenGL to implement 

the clipper of Java AWT/Swing. 

Modelview and 

texture matrices 

Identity matrix CWT-GL uses identity matrix for modelview and 

texture matrices, which means that no transformation is 

required. 

The final issue is to maintain OpenGL states before CWT-GL and the JOGL programs 

start to render. OpenGL is a state machine which controls the rendering behaviors of 

operations. Therefore, the OpenGL states have to be set correctly. The required OpenGL 

states of CWT-GL are listed in Table 4. Before CWT-GL starts to render, the OpenGL states 

will be stored and be changed as described in Table 4. After CWT-GL finishes the rendering, 

the OpenGL state will be restored so that CWT-GL will not affect the rendering behaviors of 

the JOGL programs. 

3.6 Related Work 

Some research, such as Agile2D [26], focuses on building OpenGL adapters to Java 

AWT/Swing, while others, such as FengGUI [40], and Minueto [10] try to create toolkits 

with different APIs. In this subsection, we review the work related to CWT.  
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3.6.1 Agile2D 

Agile2D [26] implements an almost complete set of Java 2D functionalities based on 

GL4Java to replace the repaint manager of Swing, as shown in Figure 13. Therefore, it 

improves the rendering part of Swing without the need of re-implementing Swing 

components. The authors of Agile2D also showed the improvement in rendering 

performance to Sun’s Java 2D implementation. However, there exist some problems in 

Agile2D. First, Agile2D supports only J2SE 1.4 and beyond, and it does not support the 

acceleration of Java AWT 1.1, which is still used by many applet games, such as Yahoo! 

Games [68], ArcadePod.com [16] and CYC games [13][59]. Second, Agile2D is based on 

GL4Java which only supports OpenGL version 1.4 and has no plan for evolution. Third, 

Agile2D does not support rendering of off-screen buffers. Finally, Agile2D only supports 

the first 256 characters in Unicode, e.g. ISO 8859-1. These issues can limit the applications 

of Agile2D.  

 

Figure 13. Agile2D architecture. 

3.6.2 FengGUI 

FengGUI [40] is a Java graphics toolkit based on JOGL and LWJGL. This toolkit 

specially focuses on the rendering performance for multimedia and game applications, and 

has been used in several commercial projects. As shown in Figure 14, FengGUI provides a 

new set of commonly used widgets and graphics API with easy-to-use design, which are 
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different from Java AWT/Swing components. In addition, FengGUI can also be combined 

with several 3D game engines, including jMonkey Engine [20], jPCT [21], and Xith3D [67]. 

Programmers can also directly access JOGL or LWJGL, since FengGUI does not 

encapsulate these two APIs. However, using FengGUI, programmers need to learn not only 

the new API, but JOGL or LWJGL, which may reduce the programmers’ productivity. In 

addition, FengGUI supports only JRE 1.5 and beyond, which also limits possible Web users.  

 

Figure 14. FengGUI architecture. 

3.6.3 Minueto 

Minueto [10] is a Java 2D game framework based on Java AWT/Swing. The author 

designed it especially for undergraduate students in order to ease the work of Java game 

programming, including graphics, input, and sound. Therefore, the API of Minueto is 

different from Java AWT/Swing, which requires extra efforts to port existing Java games to 

Minueto. For high rendering performance, Minueto provides an expansion module called 

MinuetoGL using JOGL. Unfortunately, although testing the rendering performance of their 

engine on Windows XP, Linux, and Mac OS, the author did not address how different 

settings can affect the Java rendering performance, which is one of the objectives in this 

dissertation.  
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Chapter 4 Experiments 

In order to evaluate the consistency of rendering performance of a Java program 

running in possible combinations of toolkit, JREs, graphics APIs, system properties, and 

OSs, we implemented two testing programs as our benchmarks, available on the website 

[15]. One benchmark tests the performance of rendering primitives, while the other focuses 

on the performance of the Bomberman game, which is measured by two metrics: frame rate 

and Anomaly. All the benchmarks were performed on two computers with roughly 

equivalent computing power. Since there are numerous combinations of the five factors, we 

introduce a five-tuple identifier to represent each combination, called rendering 

environment (RE). In the remaining part of this section, we will briefly show our 

experiments.  

4.1 Test Programs 

We implemented two test programs, available on our website [15]. One is a 

micro-benchmark, and the other is a macro-benchmark. The micro-benchmark program 

opens a 600×300-sized window and counts the number of times an image, text or figure is 

rendered within a given time, described as follows.  

� Image tests, as shown in Figure 15 (A), are further divided into six subtests, 

including opaque images, transparent images, translucent images, runtime opaque 

images, runtime transparent images, and runtime translucent images. Each subtest 

renders as many corresponding 110×110-sized images as possible in a given time.  
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(A) Image tests 

 
(B) Text tests 

 
(C) Figure tests 

 

Figure 15. Screenshots of the micro-benchmarks. 

 

 

Figure 16. A screenshot of the Bomberman game. 
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� Text tests, as shown in Figure 15 (B), have two subtests: simple texts (using the 

word “Running”) and articles (consisting of about 13,000 characters on the screen, 

including 1,562 different characters in Chinese, English, and other languages). 

The font size in both tests is 12. In addition, in order to decide the performance of 

our text engine, the rendering speeds of texts with different font sizes, from 10 to 

64, are also measured.  

� Figure tests, as shown in Figure 15 (C), include 12 subtests which draw lines, 

polylines, polygons, rectangles, round rectangles, arcs, ovals, solid polygons, 

solid rectangles, solid round rectangles, pies, and solid ovals. The metric for these 

tests is “rendered items per second.” 

The macro-benchmark program is to simulate a Bomberman game, an applet game 

developed by [59], as shown in Figure 16. The panel size of the game is 560×395. On 

average, the game draws 196 opaque images, 122 transparent images and 14 text characters 

in each frame. Among the transparent images, about 58 are runtime images which are 

dynamically created during runtime. We measured the average frame rate of the 

Bomberman game in rendering 20000 frames.  

Both benchmarks use double buffering to avoid flickering. The programs first rendered 

items into a back buffer, and then copied the back buffer to the front buffer which was 

shown on the screen.  

Since game programmers normally try to optimize the frame rates of their games by 

using different combinations of graphics APIs, we also measure the rendering performance 

of different combinations of graphics APIs, as shown in Table 5, four APIs for creating back 

buffers and three APIs for creating runtime images for dynamic processing. In order to 

simplify the names of the graphics APIs, we abbreviate these sets of APIs in the remaining 

dissertation. The APIs for back buffers are identified by Img (Java 1.0/1.1 Image), Cpt 
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(Compatible Image), Vlt (Volatile Image) and CptVlt (Compatible Volatile Image), while 

the APIs for runtime images are identified by Img, Cpt and CptVlt. Since it is possible to 

test all the cases of choosing APIs for back buffers and for runtime images, there are in total 

12 test cases of choosing these APIs. 

According to JDK documents [3][58], some system properties allow programmers to 

customize how Java 2D performs rendering operations. Therefore, we also specified these 

system properties when running our benchmarks and selected the most significant parts 

which influenced rendering performance most, as shown in Table 6. 

Table 5. Graphics APIs Tested in the Benchmarks. 

Usage API ID JDK 

Component.createImage(w, h) Img 1.0 ~ 

Component.createVolatileImage(w, h) Vlt 

GraphicsConfiguration.createCompatibleImage(w, h) Cpt 

Back 

Buffers 

GraphicsConfiguration.createCompatibleVolatileImage(w, h) CptVlt 

1.4 ~ 

Toolkit.createImage(imageProducer) Img 1.0 ~ 

GraphicsConfiguration.createCompatibleImage(w, h, trans) Cpt 1.4 ~ 
Runtime 

Images 
GraphicsConfiguration.createCompatibleVolatileImage(w, h, trans) CptVlt 1.5 ~ 

Table 6. System properties for SystemProperty∈{Special} [3][58]. 

OS System Properties 

Windows 

XP & Vista 

� sun.java2d.translaccel=true and sun.java2d.ddforcevram=true 

Specify if translucent images should be hardware-accelerated when 

DirectX pipeline is in use. 

Fedora 

� sun.java2d.pmoffscreen=true or false 

Specify whether Java 2D stores images in pixmaps when DGA is not 

available. 

Mac OS X 

� apple.awt.graphics.EnableQ2DX=true in J2SE 1.4 

Use hardware acceleration to speed up rendering of images, lines, 

rectangles and characters. 

� apple.awt.graphics.UseQuartz=false in J2SE 5.0 and beyond 

Use Sun’s 2D renderer instead of Apple’s 2D renderer. 
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Table 7. System hardware, configuration and OSs. 

PC Hardware OS 
Graphics Card 

Driver 

Windows XP Professional SP2 

Windows Vista Business 
1 

�AMD X2 3800+ 2.0GHz 

�1 GB DDR 400 

�ATI Radeon X1650 with 256 

MB GDDR2 AGP 
Fedora Core 6 

ATI Catalyst 8.4 

2 

�Intel Core 2 Due 2.0GHz 

�1 GB DDR2 667 

�ATI Mobility Radeon X1600 

with 128MB GDDR3 PCIe 

Mac OS X 10.4.11 Bundled driver 

Table 8. JRE versions in the benchmarks. 

OS 
Java Version 

Windows XP and Vista Fedora Core Mac OS X 

MSVM (Java 1.1.4) 5.0.0.3810 N/A N/A 

Sun Java 1.1 1.1.8_10 N/A N/A 

Sun J2SE 1.2 1.2.2_17 N/A N/A 

Sun J2SE 1.3 1.3.1_20 1.3.1_20 1.3.1_16 

Sun J2SE 1.4 1.4.2_17 1.4.2_17 1.4.2_16 

Sun J2SE 5.0 1.5.0_15 1.5.0_15 1.5.0_13 

Sun Java SE 6 1.6.0_05 1.6.0_05 N/A 

4.2 System Configuration 

We performed our benchmarks on four OSs, including Windows XP Professional SP2, 

Windows Vista Business, Fedora Core 6 and Mac OS X 10.4.11, which were chosen 

according to the population percentages shown in Table 3. 

In order to make fair comparison, we used two computers with roughly equivalent 

computing power to install the four OSs, as shown in Table 7. For the hardware part, 

Computer 1 is a desktop PC with AMD X2 3800+ 2.0 GHz, 1 GB DDR 400 RAM, and ATI 

Radeon X1650 with 256 MB GDDR2 via AGP bus, while Computer 2 is an iMac with Intel 
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Core 2 Due 2.0 GHz, 1 GB DDR2 667 RAM, and ATI Mobility Radeon X1600 with 

128MB GDDR3 via PCIe bus. As for the OSs, Computer 1 has Windows XP Professional, 

Windows Vista Business and Fedora Core 6 installed with ATI Catalyst 8.4. Computer 2 has 

Mac OS X 10.4.11 installed with bundled graphics card driver. Both computers worked in 

true color mode and disabled font anti-aliasing.  

We installed most of the popular JREs on these OSs. The versions of the JREs are 

given in Table 8. However, we did not perform the benchmarks in JRE 1.1 and 1.2 on 

Fedora and Mac OS X, since we could not successfully configure these old versions. 

Since JOGL is still under development, there are several release builds available on the 

website [50]. The release build we used to run the benchmarks in this dissertation was 

JSR-231 1.1.1-rc8. 

4.3 Rendering Environments (REs) 

In this dissertation, we ran test programs in all the rendering environments (RE) with 

the combination of using different JREs, graphics APIs, system properties, and OSs. In 

order to easily point out which RE we are referring to, we identify each RE by an identifier, 

a tuple of five attributes (Toolkit, JRE, GraphicsAPI, SystemProperty, OS). 

� Toolkit∈{AWT, CWT-DX, CWT-GL}. “AWT” represents the Java AWT graphics 

library, “CWT-DX” represents the DirectX implementation of CWT, and 

“CWT-GL” represents the OpenGL implementation of CWT in this dissertation. 

� JRE∈{MSVM, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6}. “MSVM” denotes Microsoft Java VM 

[31], and “1.1” to “1.6” denote Sun JRE version 1.1 to 1.6, respectively. 

� GraphicsAPI∈BackBufferAPI×RuntimeImageAPI, where BackBufferAPI={Img, 

Vlt, Cpt, CptVlt} and RuntimeImageAPI={Img, Cpt, CptVlt}, as shown in Table 5. 
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Therefore, there are in total 12 combinations tested in this dissertation. 

� SystemProperty∈{None, OpenGL, Special}. “None” represents the case that no 

system properties are specified for JREs, “OpenGL” denotes the case that 

OpenGL pipeline is enabled (by setting the system property sun.java2d.opengl 

to true), and “Special” refers to the system properties specified for JREs 

according to Table 6, which follows the hints in [3][58].  

� OS∈{XP, Vista, Fedora, MacOS}. “XP,” “Vista,” “Fedora” and “MacOS” 

respectively represent the following operating systems, Windows XP, Windows 

Vista, Fedora Core 6 and Mac OS X 10.4.11.  

For example, RE(AWT, 1.6, Vlt+Cpt, OpenGL, XP) refers to the RE that uses AWT, 

runs in JRE version 6, chooses the method createVolatileImage() in Component class for 

back buffers and the method createCompatibleImage() in GraphicsConfiguration class for 

runtime images, enables OpenGL pipeline, and runs on Windows XP; RE(CWT-GL, 1.4, 

None, Img+Img, MacOS) refers to the RE that uses CWT-GL, runs in JRE version 1.4, uses 

Java 1.0/1.1 graphics APIs for both back buffers and runtime images, and runs on Mac OS 

X 10.4.11. 

For simplicity, we introduce the wildcard character “*” to indicate a group of REs for 

all cases in the attribute. For example, RE(AWT, *, Vlt+Cpt, None, MacOS) means all the 

REs with AWT and with the combinations of GraphicsAPI∈{Vlt+Cpt} and 

SystemProperty∈{None} on Mac OS X. 
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4.4 Definitions of Metrics 

To measure the rendering performance of the benchmarks, we use three metrics: (1) 

rendered items per second, (2) frame rate, and (3) Anomaly. Rendered items per second 

count the number of times an image, text or figure is rendered per second in the 

micro-benchmark. As for the macro-benchmark, frame rate is commonly employed to 

measure the rendering speed expressed by frames per second (FPS). For a RE r, 

FrameRate(r) denotes the frame rate in r. Anomaly for a set of REs, say R, is defined as 

follows. 

))((min

))((max
)(

rFrameRate

rFrameRate
RAnomaly

Rr

Rr

∈∀

∈∀=  

The metrics Anomaly is defined specifically for the worst case which could happen out 

of programmers’ expectation. Since programmers may believe that the rendering 

performance of Java is also similar when porting to other REs, they may optimize their 

games by only testing in some limited REs. However, the users who use other REs may 

experience much worse rendering performance. Therefore, we use the above definition for 

Anomaly, instead of some other metrics such as standard deviation.  

4.5 Analysis of Micro-Benchmark Results 

The micro-benchmark program opens a 600x300-sized window and counts the number 

of times an image, text or figure is rendered per second. The micro-benchmark is consisting 

in total 21 subtests. Each subtest was performed in the combinations of using different JREs, 

graphics APIs, system properties, and OSs. In our analysis, we will focus on the 

performance inconsistency and eliminate unnecessary details of all the results. Therefore, all 
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the results shown here are the averaged results of the subtests. The whole results of the 

micro-benchmark are listed in Appendix A. 

4.5.1 Image Tests 

The rendering performance of images is quite important in 2D game development, 

since normally games are formed by images. As shown in Figure 17, CWT achieves high 

and consistent scores among the four OSs in the image tests due to the use of hardware 

acceleration. As for AWT, programmers need to use new graphics APIs and system 

properties, which also get benefits from hardware acceleration, to obtain better results. 

However, while achieving good results using some combinations of graphics APIs and 

system properties, the rendering performance is still inconsistent among the four OSs. 

Besides, using new graphics APIs and system properties loses the compatibility to old JREs, 

such as Java 1.1, which is still used by a portion of Web users [12]. This makes it hard to 

decide which combination of graphics APIs and system properties should be used in 

cross-platform game development.  
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4.5.2 Text Tests 

The rendering performance of texts is also important in many network games which 

support chatting systems. The tests are divided into two parts: fix-sized and various-sized 

texts. First, for the fix-sized text rendering, as shown in Figure 18, different from the results 

of the image test, CWT, especially CWT-GL, is not good at rendering texts, since texts are 

rendered by CPU, not by GPU. Therefore, the hardware acceleration of GPU is not quite 

helpful in text rendering. For example, when DirectDraw is used, CWT-DX put as many 

images and off-screen buffers as possible into video memory. However, this makes the 

rendering performance of texts worse, since CPU has to access the video memory through a 

relatively slow bus, such as PCI, AGP, and PCIe. When OpenGL is used, there is no direct 

supports of text rendering. Alternatively, CWT-GL renders the texts based on two 

approaches: (1) texture-based (firstly render the texts to images and then render the images) 

and (2) geometry-based approaches (use lines and polygons to form the texts). In this test, 

the texture-based approach is employed. Without direct hardware support, CWT performs 

worse than AWT does.  

As for AWT, we can also find the situation that hardware-accelerated image rendering 

may make the rendering performance of texts worse. When the combinations of graphics 

APIs and system properties achieve higher rendering performance in image rendering, the 

performance of text rendering may become lower. Another fact that we want to point out is 

that the text rendering is still inconsistent not only among the four OSs, but also among 

JREs. Normally, we expect that the rendering performance would be better in newer JREs. 

However, on Windows XP and Vista, JRE 1.4 performs worse than JRE 1.2 and 1.3 do. 

Fortunately, the performance of text rendering is much better in JRE 1.5 and 1.6. However, 

the requirement of proper combinations of graphics APIs, system properties, and JREs may 
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still makes it hard to optimize the rendering performance of texts for unpredictable Web 

users' rendering environments.  

Next, we analyze the rendering performance of texts with different font sizes on 

Windows XP. As mentioned in Subsection 3.4.4, CWT-GL implements texture-based and 

geometry-based text-rendering approaches. In the texture-based approach, the cache size of 

the texture maps has a great influence on the rendering performance. As shown in Figure 19, 

when using a 16-megabyte texture map to cache texts, the texture-based approach is faster 

than geometry-based approach in drawing texts. However, such cache size may not be 

practical, since some computers only have limited memory. When the cache size is limited 

to one megabyte, the rendering speed decreases dramatically when drawing texts with size 

larger than 24, since the number of different characters exceeds the capacity of the cache. In 

such case, the geometry-based approach delivers better rendering performance.  

Next, we analyze the results of Java AWT. As shown in Figure 19, the rendering speed 

of texts varies much when different graphics APIs are used. When Java 1.0/1.1 graphics 

APIs are used (Img+Img), AWT often delivers much better rendering performance than the 

case of using new graphics APIs (Vlt+Cpt) and system properties (Special). This is because 

that the text rendering is performed by CPU, not by GPU. CPU can directly render the texts 

to the off-screen buffer located in the system memory when Java 1.0/1.1 graphics APIs are 

used. In contrast, CPU renders the texts to volatile images located in the video memory 

when new graphics APIs are used, so the rendering speed decreases dramatically. In order to 

overcome this problem, a text cache mechanism has been introduced to Java AWT. For 

example, Java AWT caches the frequently used characters with size 16 and below. Therefore, 

in such case, the rendering speed of the texts is greatly improved. 
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4.5.3 Figure Tests 

As shown in Figure 20, CWT-DX does not deliver good results in rendering figures, 

since these operations are also not hardware-accelerated in DirectDraw. Therefore, in order 

to render figures onto back buffers, CPU has to access the video memory. On the other hand, 

CWT-GL performs these operations quite well since the figures are rendered using lines and 

polygons which have great supports in OpenGL-accelerated graphics cards. Therefore, 

CWT-GL achieves high and consistent rendering performance on the four OSs.  

AWT still delivers inconsistent performance when rendering figures. The impacts of 

using different graphics APIs and system properties are different from those of image and 

text tests. For example, in many cases, to achieve high and consistent rendering 

performance of figures among the four OSs, programmers should use Java 1.0/1.1 graphics 

APIs (Img+Img). However, the benchmarking program which uses new graphics APIs 

(Vlt+Cpt) and proper system properties delivers much better rendering performance in JRE 

1.5 on Mac OS X. Therefore, it is still hard to find a combination of graphics APIs and 

system properties which achieves high and consistent rendering performance among the 

four OSs.  
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4.6 Analysis of Macro-Benchmark Results 

We analyze the results by three aspects of the results which can represent the 

performance inconsistency of Java AWT: (1) grouped by OSs, (2) grouped by the 

combinations of graphics APIs and system properties, and (3) grouped by JREs. The whole 

results are listed in Appendix B. We summarize the results of AWT as follows. 

� The rendering performance of Java AWT is inconsistent among the four OSs. First 

of all, we compare the rendering performance of a Java 1.1 program among the four 

OSs. In this case, Java 1.0/1.1 graphics APIs are used, i.e. GraphicsAPI∈{Img+Img}. 

As shown in Figure 21, Fedora normally delivers much slower frame rates than those 

on other OSs, which is the main source of performance inconsistency among the four 

OSs. For all jre∈{1.3, 1.4, 1.5, 1.6}, Anomaly(AWT, jre, Img+Img, None, *) ranges 

from 3.06 to 9.10. This means that the rendering performance of the Java 1.1 program 

would be quite different on the four OSs, especially on Fedora.  

This phenomenon also exists when we use new graphics APIs and system properties 

available since JRE 1.4, as shown in Figure 22 to Figure 27. In the combinations of 

SystemProperty∈{None, Special}, the frame rates on Fedora are still slower than those 

on other OSs by a factor of 2.33 to 5.10. In Figure 28 and Figure 29, when OpenGL 

pipeline is enabled (SystemProperty∈{OpenGL}), using the combinations of 

GraphicsAPI∈{CptVlt+Cpt, CptVlt+CptVlt, Vlt+Cpt, Vlt+CptVlt} in JRE 1.6 

achieves high and consistent frame rates on all OSs. However, the OpenGL pipeline is 

not reliable enough since it renders incomplete screens in some of these REs. Therefore, 

when the OpenGL pipeline is excluded (that is, SystemProperty∈{None, Special}), the 

inconsistent performance among different OSs exists even when we use new graphics 

APIs and system properties to tune up the Bomberman game. 
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� The rendering performance of using different combinations of graphics APIs and 

system properties is inconsistent. Typically, using different graphics APIs results in 

different rendering performance. As mentioned in Subsections 4.1 and 4.3, Java AWT 

provides several types of graphics APIs and system properties for tuning up 

performance. However, we observe that the graphics APIs and system properties have 

irregular impacts on the rendering performance in different REs. In other words, 

programmers may need to use different combinations of graphics APIs and system 

properties in different REs to achieve the best rendering performance.  

Table 9 summarizes the best combinations of graphics APIs and system properties for 

achieving the best frame rates in given REs, and Figure 30 to Figure 32 show the 

results of comparing different combinations of Graphics APIs and system properties. 

From these results, we do not find a combination of graphics APIs and system 

properties which can deliver high and consistent frame rates in all REs, as illustrated in 

the following examples. (a) On Windows XP, Vista, and Fedora, using the 

combinations of GraphicsAPI∈{Img+Img, Cpt+Img} and SystemProperty∈{None, 

Special} often achieves the best results. (b) However, using the combinations of 

GraphicsAPI ∈{CptVlt+Cpt, Vlt+CptVlt} and SystemProperty∈{Special} instead in 

JRE 1.6 on Windows XP delivers 1.57 times faster frame rate. (c) As for Mac OS X, 

programmers should use the combinations of GraphicsAPI∈{Vlt+Cpt} to achieve the 

best frame rates. (d) Moreover, when OpenGL pipeline enabled 

(SystemProperty∈{OpenGL}), the combinations for the best frame rates are also 

different from those above. The combinations of GraphicsAPI∈{Img+Cpt, CptVlt+Cpt, 

Vlt+Cpt} achieve the best frame rates in JRE 1.5, while the combinations of 

GraphicsAPI∈{CptVlt+CptVlt, Vlt+CptVlt} achieve the best frame rates in JRE 1.6. 

(e) Even worse, using wrong combinations of graphics APIs with the OpenGL pipeline 



 

 74

would cause serious consequences. The frame rates may become as low as only 2 FPS. 

Therefore, the inconsistent rendering performance of the combinations of graphics 

APIs and system properties makes it hard to decide which combinations should be 

used in developing cross-platform Java games. 

 

Table 9. Combinations of graphics APIs which deliver the highest frame rates. 

OS JR
E 

System 
Property Windows XP Windows Vista Fedora Mac OS X 

None Img+Img, Cpt+Img Vlt+Img 
Img+Img, Cpt+Img, 

Vlt+Img 
Vlt+Cpt 

1.4 
Special Img+Img, Cpt+Img Vlt+Img, Vlt+Cpt 

Img+Img, Cpt+Img, 
Vlt+Img 

Vlt+Cpt 

None Img+Img, Cpt+Img 
Img+Img, Cpt+Img, 

CptVlt+Img 

Img+Cpt, Img+CptVlt, 
Cpt+Cpt, Cpt+CptVlt, 

CptVlt+Cpt, CptVlt+CptVlt 

Vlt+Cpt, 
Vlt+CptVlt 

Special Img+Img, Cpt+Img 
Img+Img, Cpt+Img, 

CptVlt+Img, Vlt+Img 
Img+Img, Cpt+Img, 

CptVlt+Img, Vlt+Img 
Vlt+Cpt, 

Vlt+CptVlt 
1.5 

OpenGL 
Img+Cpt, CptVlt+Cpt, 

Vlt+Cpt 
Img+Cpt, CptVlt+Cpt, 

Vlt+Cpt 
Img+Cpt, CptVlt+Cpt, 

Vlt+Cpt 
N/A 

None Img+Img, Cpt+Img 
Img+Img, Cpt+Img, 

CptVlt+Img, Vlt+Img 

Img+Img, Img+CptVlt, 
Cpt+Cpt, Cpt+CptVlt, 

CptVlt+Cpt, CptVlt+CptVlt, 
Vlt+CptVlt 

N/A 

Special CptVlt+Cpt, Vlt+CptVlt 
Img+Img, Cpt+Img, 

CptVlt+Img, Vlt+Img 
Img+Img, Cpt+Img, 

CptVlt+CptVlt, Vlt+Img 
N/A 

1.6 

OpenGL 
CptVlt+CptVlt, 

Vlt+CptVlt 
CptVlt+CptVlt, 

Vlt+CptVlt 
CptVlt+CptVlt, Vlt+CptVlt N/A 

 



 

 75

 

  

 
F

ig
ur

e 
30

. F
ra

m
e 

ra
te

s 
a

nd
 A

no
m

al
y 

on
 c

ho
os

in
g

 d
iff

er
en

t g
ra

ph
ic

s 
A

P
Is

 u
si

ng
 J

R
E

∈
{1

.4
}.

 

 



 

 76

 

 

F
ig

ur
e 

31
. F

ra
m

e 
ra

te
s 

a
nd

 A
no

m
al

y 
on

 c
ho

os
in

g
 d

iff
er

en
t g

ra
ph

ic
s 

A
P

Is
 u

si
ng

 J
R

E
∈

{1
.5

}.
 

  



 

 77

 

 

F
ig

ur
e 

32
. F

ra
m

e 
ra

te
s 

a
nd

 A
no

m
al

y 
on

 c
ho

os
in

g
 d

iff
er

en
t g

ra
ph

ic
s 

A
P

Is
 u

si
ng

 J
R

E
∈

{1
.6

}.
 

  



 

 78

� The rendering performance of Java AWT is inconsistent among commonly used 

JREs. As mentioned in Subsection 1.1, Java 2D rendering pipelines evolve over JREs. 

Therefore, it is normal that the rendering performance is inconsistent among different 

JREs. However, since the old JREs are still used by a portion of users, programmers 

should take the inconsistency of rendering performance among JREs into account.  

As shown in Figure 33, older JREs normally delivered worse frame rates, especially 

MSVM. In the case of using Java 1.0/1.1 graphics APIs, for all os∈{XP, Vista, Fedora, 

MacOS}, Anomaly(AWT, * , Img+Img, None, os) ranges from 1.18 to 3.31.  

When new graphics APIs are used, as shown in Figure 34 and Figure 35, the 

performance inconsistency among JREs also exists. For example, programmers may 

tune their programs to achieve very high frame rates in certain JREs, such as RE(AWT, 

1.5, Vlt+Cpt, None, MacOS) and RE(AWT, 1.6, Vlt+Cpt, Special, XP), but the same 

programs would not perform as well in other JREs. For example, in our benchmark, 

Anomaly(AWT, *, Vlt+Cpt, None, MacOS) and Anomaly(AWT, *, Vlt+Cpt, Special, 

XP) are 1.71 and 2.60, respectively. Therefore, since old JREs are still used, 

programmers need to deal with the performance inconsistency among JREs. 
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To sum up the results of Java AWT, we find it hard to optimize the rendering 

performance in the combinations of JREs, graphics APIs, system properties, and OSs for 

cross-platform Java games. In order to solve the problem of performance inconsistency 

among different REs, we try to use a number of different combinations of graphics APIs and 

system properties. However, according to our experimental results, we find no combinations 

which can achieve high, consistent, and reliable rendering performance among all REs. 

When optimizing the rendering performance for one RE, we observe that the same program 

would perform differently in other REs. Thus, the efforts for performance testing are 

required for programmers to develop cross-platform Java games requiring consistently high 

rendering performance.  

It is even worse that some of the parameters, such as JRE versions, system properties 

and OSs, are controlled by users, not by the programmers, especially for Java applet games, 

where the programmers have fewer choices. Therefore, Java AWT/Swing programmers 

need to pay more attention to the issue when consistently high rendering performance is 

required for cross-platform Java games.  

Next, we summarize the results of CWT as follows. 

� CWT-GL achieves higher and more consistent rendering performance among 

the four OSs than Java AWT does. In Figure 21 to Figure 29, CWT-GL often 

delivers the highest frame rates, and also more consistent rendering performance 

than Java AWT. For example, for all jre∈{1.4, 1.5, 1.6}, Anomaly(CWT-GL, jre, 

Img+Img, None, *) ranges from 1.34 to 1.49, while Anomaly(AWT, jre, Img+Img, 

None, *) ranges from 3.06 to 3.64. Therefore, CWT-GL performs more 

consistently than AWT does among the four OSs.  

� CWT-GL needs fewer efforts to test the combinations of graphics APIs and 

system properties. CWT-GL supports Java 1.0/1.1 graphics APIs and requires no 
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system properties before the startup of programs. Therefore, the efforts to 

optimize the rendering performance in all of the REs can be greatly reduced. In 

fact, although only old graphics APIs are supported, CWT-GL still achieves 

almost the highest rendering performance when compared with Java AWT which 

has a number of graphics APIs and system properties to tune the rendering 

performance up. 

� CWT delivers higher and more consistent rendering performance in the set 

of JRE {MSVM, 1.4, 1.5, 1.6}, which covers most Web users. It is important 

that games deliver high and consistent rendering performance in commonly used 

JREs. As shown in Figure 33, CWT achieves the best frame rates in the set of 

JRE∈{MSVM, 1.4, 1.5, 1.6}. Meanwhile, CWT also delivers more consistent 

frame rates than Java AWT does. For example, for all os∈{XP, Vista, Fedora, 

MacOS}, Anomaly(CWT, *, Img+Img, None, os) ranges from 1.08 to 2.22, while 

Anomaly(AWT, *, Img+Img, None, os) ranges from 1.18 to 3.31.  

Generally speaking, the rendering performance of CWT-GL is higher and more 

consistent on supported REs than those in Java AWT. This is quite important especially 

when games run in users’ computers with various REs. Furthermore, the graphics APIs and 

system properties in CWT-GL are simpler than Java AWT, which also helps reduce the 

testing efforts. Therefore, our experimental results suggest that CWT-GL is more suitable 

for cross-platform Java game development than Java AWT. 
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Chapter 5 Discussion 

Although the Write-Once-Run-Anywhere (WORA) feature of Java is very attractive to 

Java game developers and Java has been greatly improved on performance in terms of JVM 

and graphics, the inconsistency of rendering performance weakens the merit of WORA for 

game development, especially for cross-platform games running in various REs. In this 

chapter, we further discuss the problems of current Java 2D rendering pipelines on the four 

OSs: Windows XP, Windows Vista, Mac OS X, and Fedora Core. Then, we give suggestion 

for making Java a better platform for developing cross-platform games. Finally, the 

limitations of CWT are presented. 

5.1 Supporting Graphics Systems on Multiple Platforms 

This subsection discusses the problems of different graphics systems on the four OSs 

and corresponding implementations of Java 2D rendering pipelines. These include Window 

graphics device interface (GDI) and DirectX on Microsoft Windows platforms, Desktop 

Window Manager (DWM) on Microsoft Windows Vista, X Window System (X) on Fedora, 

Quartz graphics layer (Quartz) on Mac OS X, and OpenGL on all of the four OSs.  

On Microsoft Windows platforms, the main rendering pipelines of Java AWT/Swing 

rely on GDI and DirectX. GDI was used in Java AWT since Java 1.0/1.1, while DirectX was 

introduced since J2SE 1.4 to greatly improve the rendering performance of Java 

AWT/Swing. In addition, Windows Vista has a new graphics system called DWM, which 

runs on top of Direct3D instead of GDI. In order to make Java programs run well with 

DWM, Sun introduced some changes to the Java 2D rendering pipelines [44]. Consequently, 
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these changes altered the rendering performance on Windows Vista. 

On Fedora, Java AWT/Swing is built on X, which is designed according to the 

client-server model so as to operate over network. When the X server and X clients are 

located in the same machine, shared memory extension (SHM) is introduced into X to allow 

them to jointly access shared memory rapidly. According to the macro-benchmark results, 

when using SHM, the Bomberman game delivered on average 20% more frames per second. 

However, the frame rates were still about two to three times slower than those on other three 

OSs, which is due to the lack of full hardware acceleration on the graphics system. This is 

an example that low rendering performance may occur when Java games run in the different 

rendering pipelines on different OSs.  

On Mac OS X, Apple Inc. has its own peer implementation of Java AWT atop Quartz. 

Therefore, the performance factors are different from those on Windows platforms and 

Fedora, especially for the system properties [58]. Properly configuring the behaviors of 

Quartz may improve the rendering performance, since some rendering operations are 

anti-aliased [3].  

For cross-platform Java games, OpenGL is available on all of the four OSs. According 

to our benchmarking results, the OpenGL pipeline of Java AWT/Swing has shown its 

potential on cross-platform Java game development. For example, Figure 28 shows that 

Sun’s OpenGL pipeline in some cases delivered equivalent frame rates on Windows 

platforms and Fedora. However, the OpenGL pipeline may deliver very poor frame rates in 

other cases when using different graphics APIs. This shows inconsistent rendering 

performance of the OpenGL pipeline when Java games use improper graphics APIs. In 

contrast, CWT-GL achieves high and consistent rendering performance on all of the four 

OSs by direct access to OpenGL via JOGL. 

Indeed, it is not an easy task to design a cross-platform graphics library with high and 
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consistent rendering performance on multiple platforms with various graphics systems 

mentioned above. For cross-platform part, Sun creates two cross-platform graphics libraries 

for Java: AWT and Swing, which encapsulate the differences and complexity of underlying 

graphics systems. Java AWT uses native widgets supported by OSs so that the 

look-and-feels of the OSs are kept. Java Swing adopts lightweight components which are 

rendered by Java so that the look-and-feel of Swing programs can be changed. Both AWT 

and Swing provide standard widgets on all supported OSs, which makes Java GUI highly 

portable. 

For the rendering performance part, Sun currently has several DirectX and OpenGL 

pipelines to accelerate the rendering of Java AWT/Swing, as shown in Table 2 and Table 10. 

However, the rendering pipelines are tightly bound to specific Java versions and OSs, since 

they are not ported back to old Java versions and may not be supported on all OSs. This 

approach causes more serious the performance inconsistency of Java AWT/Swing among 

Java versions and OSs. Consequently, the rendering performance of Java GUI is not 

portable, which makes it hard to create cross-platform Java games that require high 

rendering performance. 

 

Table 10. OS support of Sun’s rendering pipelines. 

JRE 
Version 

Windows Linux 
Mac OS 
10.4.x 

Mac OS 
10.5.2 

1.4 DirectX N/A N/A N/A 

5.0 
DirectX 
OpenGL 

OpenGL N/A N/A 

6 
DirectX 

Improved OpenGL 
Improved OpenGL N/A Improved OpenGL 

6u10 
Improved DirectX 
Improved OpenGL 

Improved OpenGL N/A N/A 
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According to the analysis above, we propose that the design of Java AWT/Swing 

should follow the Open-Closed Principle (OCP) [25], which states that “software entities 

should be open for extension, but closed for modification.” We analyze the adoption of OCP 

to Java AWT/Swing by three aspects in the following subsections: (1) encapsulation and 

extension, (2) decoupling, and (3) reuse. 

5.1.1 Encapsulation and Extension 

In order to provide platform independence, Java core libraries have encapsulated 

platform-dependent features. For example, Java AWT/Swing has been developed by hiding 

the differences among the graphics systems on Windows, Mac OS, Linux, and Solaris. Such 

encapsulation makes Java highly platform-independent and portable. The encapsulation also 

helps performance improvement without changes made on APIs. For example, Sun 

introduce DirectX and OpenGL pipelines to Java AWT/Swing which greatly improve its 

rendering performance. Since accessing DirectX and OpenGL is completely hided, Java 

AWT/Swing programs are benefited with few or no modifications. 

However, the encapsulation may not meet future requirements. In game industry, since 

video cards evolve quickly, high-profile game producers have to keep moving on the trend 

and using the new features to create games with better visual quality and performance. 

Therefore, the capability of extension should be considered in the design of graphics API. 

For example, OpenGL specifies a way to extend its functions for vendors. The capability of 

extension is an important key to achieve OCP. 

Currently, as stated in problem 7 in Subsection 1.2, Java AWT/Swing does not allow 

direct access to internal DirectX and OpenGL objects, which is not open for extension. 

Since DirectX and OpenGL evolve along with video cards, new versions are released 

almost every one to two years. Java AWT/Swing will not get benefits from the new features 
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unless the implementations of the rendering pipelines adopt them. Java game programmers 

also lose the ability to access the latest video card features, fine tune the rendering 

performance, and change the behaviors of the rendering pipelines, such as writing shader 

code in Java AWT/Swing and making translucent components.  

As discussed above, we suggest that Java AWT/Swing should provide not only a 

platform-independent API but also a way to access internal DirectX and OpenGL objects for 

game programmers who need to access up-to-date video card features or change the 

rendering behaviors. Such approach maintains the platform independency for normal users 

while giving flexibility for advanced users. For example, as shown in Figure 36, MSVM 

provides both Java AWT/Swing and DirectX APIs, which gives programmers the ability to 

fine tune rendering performance. 

 

Figure 36. Java AWT/Swing and DirectX in MSVM. 

5.1.2 Decoupling 

The current approach by Sun to improve the rendering pipelines is to bundle the 

rendering pipelines with specific JVM versions and platforms, as shown in Table 10 and 

Figure 37. However, this approach also incurs the following three problems.  

(1) Since the rendering pipelines are bundled with new JREs and are not ported back 

to old JREs, users need to upgrade to one of the new JREs.  
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(A)                              (B) 

   

(C)                              (D) 

Figure 37. Hardware-accelerated rendering pipelines supported in specific JVM versions. 

(2) In order to obtain new features or fix bugs in the rendering pipelines, 

programmers and users have to upgrade their entire JREs, not only the parts of the 

rendering pipelines. 

(3) Programmers must wait for newer JREs to improve the reliability, performance or 

more support of the rendering pipelines. For example, future JREs are required to 

solve the following two problems: that the OpenGL pipeline is currently not 

reliable enough, and that Mac OS X 10.4 and below do not support the OpenGL 

pipeline. 

These problems weaken the motivation of using Java AWT/Swing to develop 

cross-platform Java games with high and consistent rendering performance. 

According to the discussion above, we suggest that the rendering pipelines of Java 

AWT/Swing should be decoupled from JREs, since both Java AWT and Swing provide the 

capability of extension. For example, implement new peers of AWT to replace those in old 
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JREs, such as CWT, or replace the repaint manager of Swing, such as Agile2D. Once the 

rendering pipelines are decoupled, they are independent of the JRE versions and can be 

applied to the older JREs. A good example is that JOGL is decoupled from JRE, as shown in 

Figure 38. With the design of decoupling, JOGL supports Sun JVM 1.4 and beyond. JOGL 

is also easier to upgrade, since its download size is only 1 MB, while JRE 1.4 and beyond 

require more than 15 MB for download. 

To sum up, the benefits of decoupling Java AWT/Swing from the JRE are listed as 

follows. 

(1) The rendering pipelines can be applied to the older JREs.  

(2) The rendering pipelines are easier to upgrade due to smaller size when compared 

with the whole JRE. 

(3) New features and bug fixes of the rendering pipelines can be released faster 

(without waiting for new JRE releases). 

(4) The responsibility of performance is shifted to supporting graphics libraries such 

as CWT.  

(5) JRE developers such as Sun can focus on other design issues.  

 

 

Figure 38. Relation between JOGL and JVM. 
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5.1.3 Reuse 

Over the past years, Sun has designed at least three products which have similar 

functions of accessing DirectX or OpenGL, include Java AWT/Swing, Java 3D, and JOGL. 

Several DirectX and OpenGL bindings written by JNI have been created in these products. 

As a result, Sun created two DirectX bindings and three OpenGL bindings, as shown in 

Figure 39. These bindings incur several problems as follows. 

(1) Since different teams created several bindings with similar functions, the 

developing time and cost are higher. 

(2) Since these duplicated bindings have to be maintained, the overall maintainability 

is decreased. 

(3) Since the products use different bindings, more efforts are required to make these 

products work together. For example, as shown in Figure 40, it is hard to mix Java 

AWT/Swing OpenGL pipeline (2D rendering) with JOGL (3D rendering) until 

Sun resolve the interoperability in Java SE 6. Before Java SE 6, mixing Java 

AWT/Swing and JOGL causes performance degrade and flickering due to the 

synchronization between the individual buffers of the two graphics systems. It is 

also hard to support translucent widgets. 

 

 

Figure 39. Two DirectX bindings and three OpenGL bindings by Sun Microsystems. 
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Figure 40. Individual buffers used by JOGL programs and AWT/Swing, which does not 

allow translucent widgets.  

 

 

 

Figure 41. A shared buffer used by JOGL programs and CWT-GL, which allows translucent 

widgets. 

OpenGL Buffer AWT/Swing Buffer 

Copy 

JOGL Rendering AWT/Swing Rendering 

Shared Buffer 

Step 1. JOGL Rendering Step 2. CWT-GL Rendering 
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 According to the discussion above, we suggest that the bindings of DirectX and 

OpenGL should be reused. For example, as shown in Figure 41, CWT-GL uses JOGL to 

render everything, so the interoperability between CWT-GL and JOGL APIs are much 

easier and more efficient because of the shared buffer. Another good example is that Java 

3D uses JOGL as its internal rendering pipeline since version 1.5.  

Since JOGL is a well developed OpenGL bindings, it can be the default OpenGL 

bindings for Java 2D. Once Java AWT/Swing uses JOGL to implement its OpenGL 

rendering pipeline, not only interoperability but performance among Java AWT/Swing, Java 

3D, and JOGL applications will be greatly improved.  

To sum up, the following three suggestions can be considered in future Java 

AWT/Swing. First, the internal DirectX and OpenGL objects should be accessible for game 

programmers who need to access up-to-date hardware features or change the rendering 

behaviors. Second, the rendering pipelines of Java AWT/Swing should be decoupled from 

the JREs for higher and more consistent rendering performance, faster upgrades, and better 

supports of old JREs. Third, the bindings of DirectX and OpenGL should be reused for 

lower developing cost, better maintainability, easier interoperability among Java 

AWT/Swing, Java 3D, and JOGL applications. The three suggestions are illustrated in 

Figure 42. With applied OCP, these designs may make Java a better game platform in the 

future. 

ExtensionEncapsulation

Reuse

Suggest
decoupling

Extension

Reuse

 

Figure 42. Suggestions for future Java AWT/Swing. 
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5.2 Drawbacks of CWT 

This subsection lists the drawbacks of CWT as follows.  

� CWT is not designed for general-purpose applications. For example, CWT-GL 

needs modern video cards with 3D hardware acceleration for delivering better 

results.  

� When no hardware acceleration is available, CWT switches to use CWT-AWT 

implementation, which incurs 10.3% extra overhead [63]. For example, when 

neither FBO nor pbuffer is available, CWT-GL will use Java AWT internally to 

perform off-screen rendering.  

� Using CWT will not benefit from any additional features supported by new Java 

versions, since currently we implement only Java AWT/Swing 1.1 compatible 

API.  

In order to access the hardware acceleration via JNI, applets using CWT-GL need to be 

signed and acquire permissions from users when executed in Web browsers.  
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Chapter 6 Conclusions 

In this dissertation, we design a portable AWT/Swing architecture, called CYC 

Window Toolkit (CWT), for high and consistent rendering performance for developing 

cross-platform Java games, especially for applet games written in Java 1.1.  

The features of CWT can be summarized as follows. (1) Reach high and consistent 

performance when using DirectX and OpenGL to render widgets in MSVM and JRE 1.4 to 

1.6, which are currently used by most Web browser users. We demonstrated the 

performance of CWT by applying it to a real applet game, the Bomberman game. (2) 

Support Java AWT/Swing compatible widgets. Hence, CWT can be easily applied to 

existing Java games. In addition, programmers who have been familiar to Java AWT/Swing 

API can adopt CWT without learning new APIs. (3) Define a general architecture that 

supports multiple graphics libraries such as AWT, DirectX and OpenGL; multiple virtual 

machines such as Java VM and .NET CLR; and multiple OSs such as Microsoft Windows, 

Mac OS and UNIX-based OSs. (4) Provide programmers with one-to-one mapping APIs to 

directly manipulate DirectX objects and other game-related properties for advanced 

programmers. 

This dissertation implements three versions of the CWT architecture and compares 

their rendering performance with that of Java AWT on four OSs, including Windows XP, 

Windows Vista, Fedora and Mac OS X. The results indicate that the approach employed by 

CWT generally reaches higher and more consistent rendering performance in MSVM and 

JRE 1.4 to 1.6 on the four OSs. Furthermore, it also helps reduce the efforts of tuning the 

rendering performance by choosing different graphics APIs and system properties.  
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The contributions of this dissertation are listed as follows: 

� Evaluate the rendering performance of the original Java AWT with different 

combinations of JREs, graphics APIs, system properties, and OSs. The evaluation 

results indicate that the performance inconsistency of Java AWT also exists 

among the four OSs, even if the same hardware configuration is used. This 

concludes that programmers can hardly optimize the rendering performance of 

Java AWT using different combinations of graphics APIs and system properties 

for mostly used JREs on the four operating systems. This weakens the merit of 

Write-Once-Run-Anywhere of Java for game development. 

� Implement three versions of CWT via DirectX, JOGL and AWT, which takes 

advantage of video hardware acceleration on multiple OSs. Compared to Java 

AWT, CWT-DX and CWT-GL achieves more consistent and higher rendering 

performance in MSVM and JRE 1.4 to 1.6 on the four tested OSs. 

� The experimental results also reveal three suggestions for future Java. First, the 

internal DirectX and OpenGL objects should be accessible for game programmers 

who need to access up-to-date hardware features or change the rendering 

behaviors. Second, the rendering pipelines of Java AWT/Swing should be 

decoupled from the JREs for higher and more consistent rendering performance, 

faster upgrades, and better supports of old JREs. Third, the bindings of DirectX 

and OpenGL should be reused for lower developing cost, better maintainability, 

easier interoperability among Java AWT/Swing, Java 3D, and JOGL applications.  

We have established a website [15] for releasing the latest implementations of CWT. 

The benchmark programs and results are also available on the website, as well as 

demonstrations and a porting guide. 
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Suggestions for possible future extensions of CWT include Support for Java 

AWT/Swing 1.2 APIs and beyond, and support for vector graphics. Since CWT is designed 

mainly for game development, these features may further improve the usability of CWT.  

(1) Support for Java AWT/Swing 1.2 APIs and Beyond 

Currently, the implementations of CWT only support Java AWT/Swing 1.1 compatible 

API. Although CWT already reaches high and consistent rendering performance, some Java 

game programmers may have been familiar to J2SE 1.2 and beyond, which introduces more 

advanced 2D graphics API supporting line styles, gradient- or texture-filled geometries, 

affine transform and irregular clipping areas [57]. Supporting these advanced 2D graphics 

features in CWT may help Java game programmers create more runtime visual effects 

instead of pre-rendered images. 

(2) Support for Vector Graphics 

With the rapid development of video cards, the resolutions of monitors have also been 

improved greatly. At the end of 1980s’, the resolution may be limited to CGA (up to 

640×200) and EGA (up to 640×350). The screen resolutions become bigger and bigger as 

time goes by, such as VGA (640×480), SVGA (800×600), XGA (1024×768), SXGA 

(1280×1024), UXGA (1600×1200), HD (1920×1080), and so on. In the future, there will be 

surely more new resolutions. 

Since games may be played in various resolutions, game programmers need to choose 

one or more resolutions to support. For example, RuneScape [17] supports dynamic 

resolutions, such as 765×503 and 1024×768 in window mode shown in Figure 43 and 

Figure 44, respectively.  
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Figure 43. RuneScape in 765×503-sized resolution. 

 

 

Figure 44. RuneScape in 1024×768-sized resolution. 

 

However, supporting various resolutions may bring challenges to the design of user 

interfaces, since the user interfaces may have to be limited to certain smaller size in order to 

support most commonly used resolutions. With the enhancement of monitors, modern 

games may need to support several resolutions both in full screen mode and window mode 

so that the user interfaces can utilize the visible space of the monitors. Traditionally, games 

are designed in a fixed sized resolution, such as 800×600, typically in full screen mode. In 

full screen mode, game scenes are normally scaled to fit the maximum resolution of the 

monitors, such as 1280×1024. On the other hand, games in window mode, such as those 
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embedded inside Web browsers, would only be shown in the original sizes. However, when 

fixed-sized scenes designed for small resolutions, such as 800×600, are scaled to different 

resolutions, such as 1280×1024, the visual quality would be worse. For example, the 

apparent quality would loss, when a checkbox in fixed-size 80×25, as shown in Figure 45 

(A) is scaled to size 240×75, as shown in Figure 45 (B). 

Vector graphics is a good solution to the scaling problem, since vector graphics can be 

scalable to any size without loss of detail. For example, Figure 45 (C) presents that the 

checkbox is scaled to size 240×75 with smooth outlines. In vector graphics, the rendered 

sizes of the graphics primitives, including figures, texts, and images, are decided 

mathematically in runtime. In fact, vector graphics is common in 3D games that allow to 

zoom in/out and to rotate the scenes without loss of details. 

Rendering widgets by graphics primitives, CWT can be extended to support vector 

graphics while remaining Java AWT/Swing API, which may greatly help the design of user 

interfaces of games for different resolutions.  

 

(A)  A checkbox of size 80×25 

(B)  

 

Raster graphics: 

A checkbox scaled from size 80×25 to size 240×75 

(C)  

 

Vector graphics: 

A checkbox scaled from size 80×25 to size 240×75 

Figure 45. Comparison between raster graphics and vector graphics. 
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Appendix A  Results of Micro-Benchmark 

This appendix presents the detail results of the micro-benchmark program. The 

micro-benchmark includes 21 tests, divided into image, text and figure tests, as follows.  

� Image tests, as shown in Figure 15 (A), are further divided into six subtests, 

including opaque images, transparent images, translucent images, runtime opaque 

images, runtime transparent images, and runtime translucent images. Each subtest 

renders as many corresponding 110×110-sized images as possible in a given time.  

� Text tests, as shown in Figure 15 (B), have two subtests: simple texts (using the 

word “Running”) and articles (consisting of about 13,000 characters on the screen, 

including 1,562 different characters in Chinese, English, and other languages). 

The font size in both tests is 12. In addition, in order to decide the performance of 

our text engine, the rendering speeds of texts with different font sizes, from 10 to 

64, are also measured.  

� Figure tests, as shown in Figure 15 (C), include 12 subtests which draw lines, 

polylines, polygons, rectangles, round rectangles, arcs, ovals, solid polygons, 

solid rectangles, solid round rectangles, pies, and solid ovals. The metric for these 

tests is “rendered items per second.” 
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Table 11. Rendered items per second of opaque image tests. 

OS 

Toolkit JRE 
System 

Property 

Graphics 

API 
Windows 

XP 

Windows 

Vista 

Fedora 

Core 6 

Mac OS 

X 

MSVM None Img+Img 11221 63104 N/A N/A 

1.1 None Img+Img 11197 60436 N/A N/A 

1.2 None Img+Img 39873 60048 N/A N/A 

1.3 None Img+Img 40409 60877 31792 2097 

Img+Img 42492 14776 35232 66341 
None 

Vlt+Cpt 58662 14737 2617 66371 1.4 

Special Vlt+Cpt 58854 36180 2615 66577 

Img+Img 42856 36478 35178 68965 
None 

Vlt+Cpt 59900 40849 4602 70422 

Special Vlt+Cpt 58571 63264 4560 71089 

Img+Img 27619 63317 34554 N/A 

1.5 

OpenGL 
Vlt+Cpt 27512 41447 36818 N/A 

Img+Img 43617 42360 40106 N/A 
None 

Vlt+Cpt 61099 42277 4598 N/A 

Special Vlt+Cpt 58486 17533 4596 N/A 

Img+Img 25274 17247 37276 N/A 

AWT 

1.6 

OpenGL 
Vlt+Cpt 52398 43440 47393 N/A 

CWT-DX MSVM None Img+Img 63104 43503 N/A N/A 

1.4 None Img+Img 60436 43414 58846 54644 

1.5 None Img+Img 60048 22023 59405 56775 CWT-GL 

1.6 None Img+Img 60877 50150 60096 N/A 
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Table 12. Rendered items per second of transparent image tests. 

OS 

Toolkit JRE 
System 

Property 

Graphics 

API 
Windows 

XP 

Windows 

Vista 

Fedora 

Core 6 

Mac OS 

X 

MSVM None Img+Img 1888 71428 N/A N/A 

1.1 None Img+Img 1884 80819 N/A N/A 

1.2 None Img+Img 23112 80429 N/A N/A 

1.3 None Img+Img 22869 80171 7407 1212 

Img+Img 23636 3901 17994 25222 
None 

Vlt+Cpt 70226 3869 3945 25286 1.4 

Special Vlt+Cpt 70194 20966 3948 25265 

Img+Img 23752 20847 17998 25786 
None 

Vlt+Cpt 70258 22492 6683 25969 

Special Vlt+Cpt 70126 75680 6552 33875 

Img+Img 41841 75718 34498 N/A 

1.5 

OpenGL 
Vlt+Cpt 41494 22458 36567 N/A 

Img+Img 23205 23044 19414 N/A 
None 

Vlt+Cpt 70291 23091 6683 N/A 

Special Vlt+Cpt 44483 17223 6693 N/A 

Img+Img 16757 17027 22377 N/A 

AWT 

1.6 

OpenGL 
Vlt+Cpt 68306 22596 47096 N/A 

CWT-DX MSVM None Img+Img 71428 22586 N/A N/A 

1.4 None Img+Img 80819 22589 79703 65588 

1.5 None Img+Img 80429 15027 80260 69380 CWT-GL 

1.6 None Img+Img 80171 63775 81967 N/A 
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Table 13. Rendered items per second of translucent image tests. 

OS 

Toolkit JRE 
System 

Property 

Graphics 

API 
Windows 

XP 

Windows 

Vista 

Fedora 

Core 6 

Mac OS 

X 

MSVM None Img+Img 1887 72011 N/A N/A 

1.1 None Img+Img 1884 81303 N/A N/A 

1.2 None Img+Img 3255 80906 N/A N/A 

1.3 None Img+Img 3612 81922 1009 1133 

Img+Img 6145 3905 3283 3457 
None 

Vlt+Cpt 6037 3872 3285 18820 1.4 

Special Vlt+Cpt 37983 3183 3277 18801 

Img+Img 6122 3568 4668 3505 
None 

Vlt+Cpt 5968 5985 4705 20029 

Special Vlt+Cpt 213 6034 4616 7628 

Img+Img 764 27119 1858 N/A 

1.5 

OpenGL 
Vlt+Cpt 38639 5906 36710 N/A 

Img+Img 8504 6121 4743 N/A 
None 

Vlt+Cpt 8378 6142 4559 N/A 

Special Vlt+Cpt 45099 580 4707 N/A 

Img+Img 7475 17037 4651 N/A 

AWT 

1.6 

OpenGL 
Vlt+Cpt 69188 8494 46699 N/A 

CWT-DX MSVM None Img+Img 72011 8521 N/A N/A 

1.4 None Img+Img 81303 8531 79746 65645 

1.5 None Img+Img 80906 7032 80775 68807 CWT-GL 

1.6 None Img+Img 81922 63965 82462 N/A 
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Table 14. Rendered items per second of runtime opaque image tests. 

OS 

Toolkit JRE 
System 

Property 

Graphics 

API 
Windows 

XP 

Windows 

Vista 

Fedora 

Core 6 

Mac OS 

X 

MSVM None Img+Img 11221 62998 N/A N/A 

1.1 None Img+Img 11190 61349 N/A N/A 

1.2 None Img+Img 4245 60728 N/A N/A 

1.3 None Img+Img 40551 61984 31745 1284 

Img+Img 42613 14781 34884 49983 
None 

Vlt+Cpt 5940 14342 2617 23577 1.4 

Special Vlt+Cpt 27427 4129 2616 23614 

Img+Img 42698 36416 8569 58456 
None 

Vlt+Cpt 6040 41061 4613 25737 

Special Vlt+Cpt 5888 6073 4535 5609 

Img+Img 887 23651 1209 N/A 

1.5 

OpenGL 
Vlt+Cpt 27654 41841 36647 N/A 

Img+Img 43910 6211 9245 N/A 
None 

Vlt+Cpt 10067 6217 4605 N/A 

Special Vlt+Cpt 45112 635 4607 N/A 

Img+Img 25523 17413 37378 N/A 

AWT 

1.6 

OpenGL 
Vlt+Cpt 41550 43289 46511 N/A 

CWT-DX MSVM None Img+Img 62998 10356 N/A N/A 

1.4 None Img+Img 61349 10350 59405 55146 

1.5 None Img+Img 60728 22185 59976 57229 CWT-GL 

1.6 None Img+Img 61984 39504 61099 N/A 
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Table 15. Rendered items per second of runtime transparent image tests. 

OS 

Toolkit JRE 
System 

Property 

Graphics 

API 
Windows 

XP 

Windows 

Vista 

Fedora 

Core 6 

Mac OS 

X 

MSVM None Img+Img 1887 71942 N/A N/A 

1.1 None Img+Img 1883 81833 N/A N/A 

1.2 None Img+Img 4967 81212 N/A N/A 

1.3 None Img+Img 5545 81300 2481 1204 

Img+Img 9900 3910 4045 4063 
None 

Vlt+Cpt 9680 3758 3952 22064 1.4 

Special Vlt+Cpt 37935 4809 3949 22048 

Img+Img 9967 5548 6676 4132 
None 

Vlt+Cpt 9790 9579 6691 23888 

Special Vlt+Cpt 8812 9587 6596 10221 

Img+Img 783 27911 1913 N/A 

1.5 

OpenGL 
Vlt+Cpt 42016 9600 36746 N/A 

Img+Img 11917 9895 6659 N/A 
None 

Vlt+Cpt 11709 9897 6682 N/A 

Special Vlt+Cpt 45167 588 6701 N/A 

Img+Img 9951 17449 6661 N/A 

AWT 

1.6 

OpenGL 
Vlt+Cpt 69412 11901 46801 N/A 

CWT-DX MSVM None Img+Img 71942 11944 N/A N/A 

1.4 None Img+Img 81833 11960 80428 65876 

1.5 None Img+Img 81212 9294 81212 69188 CWT-GL 

1.6 None Img+Img 81300 64294 83379 N/A 
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Table 16. Rendered items per second of runtime translucent image tests. 

OS 

Toolkit JRE 
System 

Property 

Graphics 

API 
Windows 

XP 

Windows 

Vista 

Fedora 

Core 6 

Mac OS 

X 

MSVM None Img+Img 1887 71496 N/A N/A 

1.1 None Img+Img 1884 81398 N/A N/A 

1.2 None Img+Img 3258 80648 N/A N/A 

1.3 None Img+Img 3614 82147 1010 1127 

Img+Img 6137 3906 3282 3481 
None 

Vlt+Cpt 6020 3742 3285 18884 1.4 

Special Vlt+Cpt 37558 3205 3277 18841 

Img+Img 6129 3581 4703 3477 
None 

Vlt+Cpt 6080 5924 4746 20106 

Special Vlt+Cpt 213 6026 4555 7660 

Img+Img 765 27382 1859 N/A 

1.5 

OpenGL 
Vlt+Cpt 38790 5918 36674 N/A 

Img+Img 8521 6123 4746 N/A 
None 

Vlt+Cpt 8370 6129 4749 N/A 

Special Vlt+Cpt 45126 578 4753 N/A 

Img+Img 7481 17467 4656 N/A 

AWT 

1.6 

OpenGL 
Vlt+Cpt 69124 8485 46948 N/A 

CWT-DX MSVM None Img+Img 71496 8533 N/A N/A 

1.4 None Img+Img 81398 8528 80000 65847 

1.5 None Img+Img 80648 7032 81037 69220 CWT-GL 

1.6 None Img+Img 82147 64349 83102 N/A 
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Table 17. Rendered items per second of simple text tests. Font size is 12. 

OS 

Toolkit JRE 
System 

Property 

Graphics 

API 
Windows 

XP 

Windows 

Vista 

Fedora 

Core 6 

Mac OS 

X 

MSVM None Img+Img 165016 120579 N/A N/A 

1.1 None Img+Img 80257 34948 N/A N/A 

1.2 None Img+Img 163398 32960 N/A N/A 

1.3 None Img+Img 171624 34207 51741 7359 

Img+Img 111111 87006 35569 47110 
None 

Vlt+Cpt 24590 50950 35646 47423 1.4 

Special Vlt+Cpt 24581 101350 63883 47619 

Img+Img 197642 104311 52337 115384 
None 

Vlt+Cpt 56305 95724 51705 120096 

Special Vlt+Cpt 56732 15002 111607 157067 

Img+Img 41005 14846 38118 N/A 

1.5 

OpenGL 
Vlt+Cpt 39450 173612 38206 N/A 

Img+Img 238474 180075 54327 N/A 
None 

Vlt+Cpt 57230 179212 54844 N/A 

Special Vlt+Cpt 125226 15851 114155 N/A 

Img+Img 46596 15695 106457 N/A 

AWT 

1.6 

OpenGL 
Vlt+Cpt 177095 204360 20223 N/A 

CWT-DX MSVM None Img+Img 120579 198680 N/A N/A 

1.4 None Img+Img 34948 199734 34152 25146 

1.5 None Img+Img 32960 37518 37027 29538 CWT-GL 

1.6 None Img+Img 34207 148957 41911 N/A 
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Table 18. Rendered items per second of article tests. Font size is 12. 

OS 

Toolkit JRE 
System 

Property 

Graphics 

API 
Windows 

XP 

Windows 

Vista 

Fedora 

Core 6 

Mac OS 

X 

MSVM None Img+Img 56454 48575 N/A N/A 

1.1 None Img+Img 29245 57318 N/A N/A 

1.2 None Img+Img 129650 53918 N/A N/A 

1.3 None Img+Img 10502 54465 1445 1010 

Img+Img 11217 45689 10042 22407 
None 

Vlt+Cpt 8189 20553 9787 22268 1.4 

Special Vlt+Cpt 8056 86505 11229 22344 

Img+Img 143967 23786 45017 25108 
None 

Vlt+Cpt 53956 5965 44708 25286 

Special Vlt+Cpt 54248 3940 93168 115207 

Img+Img 25050 4291 28312 N/A 

1.5 

OpenGL 
Vlt+Cpt 25154 126262 28126 N/A 

Img+Img 156914 130208 46904 N/A 
None 

Vlt+Cpt 54190 130321 46860 N/A 

Special Vlt+Cpt 62190 12723 95421 N/A 

Img+Img 42625 12814 89766 N/A 

AWT 

1.6 

OpenGL 
Vlt+Cpt 49520 144370 28121 N/A 

CWT-DX MSVM None Img+Img 48575 139664 N/A N/A 

1.4 None Img+Img 57318 139794 55248 13362 

1.5 None Img+Img 53918 34523 60193 15891 CWT-GL 

1.6 None Img+Img 54465 42637 65731 N/A 
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Table 19. Rendered items per second of texts with different font size from 10 to 64. 

Font 

Size 
Test 1 Test 2 Test 3 Test 4 Test 5 

10 157053 79183 56871 69932 70763

12 136551 77337 55953 68269 68646

14 129146 77078 55078 69406 69697

16 109803 75165 54489 70244 69699

20 87800 12370 53453 67169 69388

24 80805 11491 51910 64102 69100

28 67481 11226 50120 32237 70424

32 55730 11029 47142 25077 68852

36 48225 4085 45587 18892 63261

40 41862 3316 43767 15587 62942

48 31992 3112 40407 11410 62331

56 25685 2981 37741 8814 58823

64 20141 2858 35013 6929 48732

Test 1: RE=(AWT, 1.6, Img+Img, None, XP) 

Test 2: RE=(AWT, 1.6, Vlt+Cpt, Special, XP) 

Test 3: Geometry-based text engine, RE=(CWT-GL, 1.6, Img+Img, None, XP) 

Test 4: Texture-based text engine with 1 MB cache, RE=(CWT-GL, 1.6, Img+Img, None, 

XP) 

Test 5: Texture-based text engine with 16 MB cache, RE=(CWT-GL, 1.6, Img+Img, None, 

XP) 
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Table 20. Rendered items per second of line tests. 

OS 

Toolkit JRE 
System 

Property 

Graphics 

API 
Windows 

XP 

Windows 

Vista 

Fedora 

Core 6 

Mac OS 

X 

MSVM None Img+Img 301204 111779 N/A N/A 

1.1 None Img+Img 304878 247671 N/A N/A 

1.2 None Img+Img 309919 248034 N/A N/A 

1.3 None Img+Img 323278 242729 94876 6834 

Img+Img 276765 176886 138002 37155 
None 

Vlt+Cpt 37229 174217 144092 37304 1.4 

Special Vlt+Cpt 35842 144230 131118 37248 

Img+Img 297667 145632 147786 38431 
None 

Vlt+Cpt 67144 184549 147347 39011 

Special Vlt+Cpt 65876 37602 138248 266431 

Img+Img 65274 35202 218659 N/A 

1.5 

OpenGL 
Vlt+Cpt 63831 265962 220913 N/A 

Img+Img 340912 269301 158060 N/A 
None 

Vlt+Cpt 67876 269785 158062 N/A 

Special Vlt+Cpt 226244 20804 145630 N/A 

Img+Img 50033 21058 132275 N/A 

AWT 

1.6 

OpenGL 
Vlt+Cpt 231843 306170 382733 N/A 

CWT-DX MSVM None Img+Img 111779 300059 N/A N/A 

1.4 None Img+Img 247671 300639 311868 255974 

1.5 None Img+Img 248034 39830 333362 312508 CWT-GL 

1.6 None Img+Img 242729 196592 350470 N/A 
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Table 21. Rendered items per second of polyline tests. 

OS 

Toolkit JRE 
System 

Property 

Graphics 

API 
Windows 

XP 

Windows 

Vista 

Fedora 

Core 6 

Mac OS 

X 

MSVM None Img+Img 119047 2959 N/A N/A 

1.1 None Img+Img 119141 53096 N/A N/A 

1.2 None Img+Img 72185 53634 N/A N/A 

1.3 None Img+Img 70224 54367 32418 1120 

Img+Img 62188 66430 52466 4547 
None 

Vlt+Cpt 63722 67872 52947 4573 1.4 

Special Vlt+Cpt 61932 57229 48669 4569 

Img+Img 62111 55493 53801 4614 
None 

Vlt+Cpt 63884 55370 53457 4647 

Special Vlt+Cpt 62292 2503 54386 83240 

Img+Img 56053 2494 79323 N/A 

1.5 

OpenGL 
Vlt+Cpt 54744 56433 83939 N/A 

Img+Img 68369 58009 55269 N/A 
None 

Vlt+Cpt 65819 58189 55782 N/A 

Special Vlt+Cpt 100671 19548 57803 N/A 

Img+Img 31439 19711 55782 N/A 

AWT 

1.6 

OpenGL 
Vlt+Cpt 80906 62866 105708 N/A 

CWT-DX MSVM None Img+Img 2959 62735 N/A N/A 

1.4 None Img+Img 53096 62814 56882 43949 

1.5 None Img+Img 53634 26723 57384 50539 CWT-GL 

1.6 None Img+Img 54367 74924 59101 N/A 
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Table 22. Rendered items per second of polygon tests. 

OS 

Toolkit JRE 
System 

Property 

Graphics 

API 
Windows 

XP 

Windows 

Vista 

Fedora 

Core 6 

Mac OS 

X 

MSVM None Img+Img 107449 3580 N/A N/A 

1.1 None Img+Img 106391 80953 N/A N/A 

1.2 None Img+Img 66904 78411 N/A N/A 

1.3 None Img+Img 65104 84127 30018 954 

Img+Img 57339 61702 49228 4045 
None 

Vlt+Cpt 64184 62814 49635 4072 1.4 

Special Vlt+Cpt 61906 53956 45620 4074 

Img+Img 54789 52101 50403 4117 
None 

Vlt+Cpt 63667 51546 50522 4112 

Special Vlt+Cpt 62162 2454 52594 78492 

Img+Img 55907 2443 75037 N/A 

1.5 

OpenGL 
Vlt+Cpt 54944 52337 79239 N/A 

Img+Img 63371 53859 52210 N/A 
None 

Vlt+Cpt 66577 53859 52174 N/A 

Special Vlt+Cpt 101146 19467 54486 N/A 

Img+Img 30278 19700 52558 N/A 

AWT 

1.6 

OpenGL 
Vlt+Cpt 90854 59737 100133 N/A 

CWT-DX MSVM None Img+Img 3580 59085 N/A N/A 

1.4 None Img+Img 80953 59062 89928 64654 

1.5 None Img+Img 78411 25835 90800 79744 CWT-GL 

1.6 None Img+Img 84127 84459 94876 N/A 
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Table 23. Rendered items per second of polygon filling tests. 

OS 

Toolkit JRE 
System 

Property 

Graphics 

API 
Windows 

XP 

Windows 

Vista 

Fedora 

Core 6 

Mac OS 

X 

MSVM None Img+Img 35688 3564 N/A N/A 

1.1 None Img+Img 36328 17166 N/A N/A 

1.2 None Img+Img 7405 17142 N/A N/A 

1.3 None Img+Img 8194 17231 2992 758 

Img+Img 13088 14841 10398 7747 
None 

Vlt+Cpt 25117 14443 10402 7685 1.4 

Special Vlt+Cpt 24867 7093 7691 7671 

Img+Img 13564 7857 10455 7930 
None 

Vlt+Cpt 25012 12614 10416 8007 

Special Vlt+Cpt 24792 1076 9592 13707 

Img+Img 8085 1082 2812 N/A 

1.5 

OpenGL 
Vlt+Cpt 8045 12962 2819 N/A 

Img+Img 15211 13304 10534 N/A 
None 

Vlt+Cpt 25497 13346 10485 N/A 

Special Vlt+Cpt 9792 6284 9540 N/A 

Img+Img 12345 6396 9557 N/A 

AWT 

1.6 

OpenGL 
Vlt+Cpt 9498 15086 5341 N/A 

CWT-DX MSVM None Img+Img 3564 15224 N/A N/A 

1.4 None Img+Img 17166 15191 17287 12543 

1.5 None Img+Img 17142 11206 17327 13101 CWT-GL 

1.6 None Img+Img 17231 7841 17467 N/A 
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Table 24. Rendered items per second of rectangle tests. 

OS 

Toolkit JRE 
System 

Property 

Graphics 

API 
Windows 

XP 

Windows 

Vista 

Fedora 

Core 6 

Mac OS 

X 

MSVM None Img+Img 158899 20164 N/A N/A 

1.1 None Img+Img 163043 88599 N/A N/A 

1.2 None Img+Img 272734 97546 N/A N/A 

1.3 None Img+Img 266532 101388 84364 11031 

Img+Img 252525 114068 124378 25167 
None 

Vlt+Cpt 45276 109249 125425 25453 1.4 

Special Vlt+Cpt 43808 132391 125736 25523 

Img+Img 268337 136861 131810 26122 
None 

Vlt+Cpt 23995 171037 130776 26305 

Special Vlt+Cpt 23763 43290 125733 243902 

Img+Img 62849 40160 113472 N/A 

1.5 

OpenGL 
Vlt+Cpt 62061 235124 114155 N/A 

Img+Img 297619 245101 136363 N/A 
None 

Vlt+Cpt 23763 243906 137362 N/A 

Special Vlt+Cpt 320512 20430 132042 N/A 

Img+Img 48843 20636 119712 N/A 

AWT 

1.6 

OpenGL 
Vlt+Cpt 180073 264550 247536 N/A 

CWT-DX MSVM None Img+Img 20164 263162 N/A N/A 

1.4 None Img+Img 88599 263157 142585 116550 

1.5 None Img+Img 97546 38859 151209 136115 CWT-GL 

1.6 None Img+Img 101388 157563 159235 N/A 
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Table 25. Rendered items per second of rectangle filling tests. 

OS 

Toolkit JRE 
System 

Property 

Graphics 

API 
Windows 

XP 

Windows 

Vista 

Fedora 

Core 6 

Mac OS 

X 

MSVM None Img+Img 116551 24473 N/A N/A 

1.1 None Img+Img 116822 92266 N/A N/A 

1.2 None Img+Img 72046 92764 N/A N/A 

1.3 None Img+Img 73064 93691 10825 12319 

Img+Img 54014 58116 61728 127877 
None 

Vlt+Cpt 77002 56796 62266 127442 1.4 

Special Vlt+Cpt 77041 54864 34956 128205 

Img+Img 54545 55268 63559 143266 
None 

Vlt+Cpt 24374 49180 63345 147928 

Special Vlt+Cpt 24378 84745 46196 58433 

Img+Img 58640 84889 86206 N/A 

1.5 

OpenGL 
Vlt+Cpt 58846 50200 92137 N/A 

Img+Img 57983 51387 64766 N/A 
None 

Vlt+Cpt 24378 51404 64766 N/A 

Special Vlt+Cpt 105708 19825 46845 N/A 

Img+Img 29862 19955 45358 N/A 

AWT 

1.6 

OpenGL 
Vlt+Cpt 87977 54288 109897 N/A 

CWT-DX MSVM None Img+Img 24473 54248 N/A N/A 

1.4 None Img+Img 92266 54268 100603 75757 

1.5 None Img+Img 92764 25037 102529 80000 CWT-GL 

1.6 None Img+Img 93691 82417 104166 N/A 
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Table 26. Rendered items per second of round rectangle tests. 

OS 

Toolkit JRE 
System 

Property 

Graphics 

API 
Windows 

XP 

Windows 

Vista 

Fedora 

Core 6 

Mac OS 

X 

MSVM None Img+Img 57981 56284 N/A N/A 

1.1 None Img+Img 58049 33245 N/A N/A 

1.2 None Img+Img 55844 33714 N/A N/A 

1.3 None Img+Img 51318 36638 39011 2258 

Img+Img 53975 92764 90634 19022 
None 

Vlt+Cpt 31165 91968 91463 19013 1.4 

Special Vlt+Cpt 30574 46210 43029 19044 

Img+Img 47953 54864 92193 19391 
None 

Vlt+Cpt 35071 47953 92592 19515 

Special Vlt+Cpt 34738 2874 39113 50985 

Img+Img 29982 2858 38749 N/A 

1.5 

OpenGL 
Vlt+Cpt 29411 44078 38480 N/A 

Img+Img 82965 44860 94279 N/A 
None 

Vlt+Cpt 35646 44994 94696 N/A 

Special Vlt+Cpt 54387 13954 60681 N/A 

Img+Img 34152 14058 58892 N/A 

AWT 

1.6 

OpenGL 
Vlt+Cpt 36945 75872 42722 N/A 

CWT-DX MSVM None Img+Img 56284 75872 N/A N/A 

1.4 None Img+Img 33245 75833 46699 72709 

1.5 None Img+Img 33714 28619 45058 65673 CWT-GL 

1.6 None Img+Img 36638 34028 56053 N/A 
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Table 27. Rendered items per second of round rectangle filling tests. 

OS 

Toolkit JRE 
System 

Property 

Graphics 

API 
Windows 

XP 

Windows 

Vista 

Fedora 

Core 6 

Mac OS 

X 

MSVM None Img+Img 75187 10534 N/A N/A 

1.1 None Img+Img 77399 29509 N/A N/A 

1.2 None Img+Img 18265 30072 N/A N/A 

1.3 None Img+Img 11963 32495 7040 2069 

Img+Img 25653 43152 46554 32651 
None 

Vlt+Cpt 40927 42277 46816 32658 1.4 

Special Vlt+Cpt 40021 16929 17568 32873 

Img+Img 25693 11831 48200 33594 
None 

Vlt+Cpt 41061 24220 47938 33890 

Special Vlt+Cpt 40529 1687 21431 28527 

Img+Img 16960 1690 10025 N/A 

1.5 

OpenGL 
Vlt+Cpt 16950 23900 10023 N/A 

Img+Img 31853 24887 48732 N/A 
None 

Vlt+Cpt 41806 25008 48574 N/A 

Special Vlt+Cpt 21222 10367 19454 N/A 

Img+Img 20740 10585 18912 N/A 

AWT 

1.6 

OpenGL 
Vlt+Cpt 15316 30637 18522 N/A 

CWT-DX MSVM None Img+Img 10534 30537 N/A N/A 

1.4 None Img+Img 29509 30624 44299 39968 

1.5 None Img+Img 30072 18268 43053 39557 CWT-GL 

1.6 None Img+Img 32495 14345 53342 N/A 
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Table 28. Rendered items per second of arc tests. 

OS 

Toolkit JRE 
System 

Property 

Graphics 

API 
Windows 

XP 

Windows 

Vista 

Fedora 

Core 6 

Mac OS 

X 

MSVM None Img+Img 47006 47709 N/A N/A 

1.1 None Img+Img 46201 65905 N/A N/A 

1.2 None Img+Img 30593 66401 N/A N/A 

1.3 None Img+Img 27052 75766 21270 2390 

Img+Img 37220 54825 119426 14820 
None 

Vlt+Cpt 27512 53513 120096 14829 1.4 

Special Vlt+Cpt 27036 27943 30832 14810 

Img+Img 33783 26009 124792 15058 
None 

Vlt+Cpt 30959 34193 124069 15146 

Special Vlt+Cpt 30681 2888 29347 40053 

Img+Img 24267 2871 28571 N/A 

1.5 

OpenGL 
Vlt+Cpt 23745 31558 28489 N/A 

Img+Img 48496 32334 129645 N/A 
None 

Vlt+Cpt 31465 32580 130434 N/A 

Special Vlt+Cpt 40816 12509 39861 N/A 

Img+Img 26389 12649 38719 N/A 

AWT 

1.6 

OpenGL 
Vlt+Cpt 26164 45689 32587 N/A 

CWT-DX MSVM None Img+Img 47709 45899 N/A N/A 

1.4 None Img+Img 65905 45871 71564 114416 

1.5 None Img+Img 66401 23012 66341 105857 CWT-GL 

1.6 None Img+Img 75766 22528 86206 N/A 



 

 128 

Table 29. Rendered items per second of arc filling tests. 

OS 

Toolkit JRE 
System 

Property 

Graphics 

API 
Windows 

XP 

Windows 

Vista 

Fedora 

Core 6 

Mac OS 

X 

MSVM None Img+Img 43377 12486 N/A N/A 

1.1 None Img+Img 43314 49011 N/A N/A 

1.2 None Img+Img 15723 56681 N/A N/A 

1.3 None Img+Img 12239 63085 8001 2036 

Img+Img 18934 32815 40672 16781 
None 

Vlt+Cpt 28414 32064 40794 16759 1.4 

Special Vlt+Cpt 28232 14625 14869 16799 

Img+Img 19098 11980 41367 16998 
None 

Vlt+Cpt 28653 18270 41152 17109 

Special Vlt+Cpt 28354 2041 18272 27377 

Img+Img 12909 2041 10360 N/A 

1.5 

OpenGL 
Vlt+Cpt 12892 18116 10365 N/A 

Img+Img 32523 18808 41829 N/A 
None 

Vlt+Cpt 28746 19003 41666 N/A 

Special Vlt+Cpt 17476 8743 21761 N/A 

Img+Img 21312 8867 21011 N/A 

AWT 

1.6 

OpenGL 
Vlt+Cpt 14460 31289 17504 N/A 

CWT-DX MSVM None Img+Img 12486 31551 N/A N/A 

1.4 None Img+Img 49011 31605 69637 69092 

1.5 None Img+Img 56681 18603 64906 67688 CWT-GL 

1.6 None Img+Img 63085 13201 83472 N/A 
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Table 30. Rendered items per second of oval tests. 

OS 

Toolkit JRE 
System 

Property 

Graphics 

API 
Windows 

XP 

Windows 

Vista 

Fedora 

Core 6 

Mac OS 

X 

MSVM None Img+Img 52065 51089 N/A N/A 

1.1 None Img+Img 53040 61602 N/A N/A 

1.2 None Img+Img 25201 63317 N/A N/A 

1.3 None Img+Img 21766 72538 17562 2789 

Img+Img 32916 70224 131810 11713 
None 

Vlt+Cpt 29964 69897 132978 11694 1.4 

Special Vlt+Cpt 29428 23629 27168 11730 

Img+Img 29019 21425 138248 11853 
None 

Vlt+Cpt 33474 30407 138121 11900 

Special Vlt+Cpt 33119 2886 25884 34309 

Img+Img 21713 2877 24638 N/A 

1.5 

OpenGL 
Vlt+Cpt 21331 27347 24537 N/A 

Img+Img 67114 28005 144369 N/A 
None 

Vlt+Cpt 33821 28248 145348 N/A 

Special Vlt+Cpt 36629 12028 52065 N/A 

Img+Img 30870 12160 50437 N/A 

AWT 

1.6 

OpenGL 
Vlt+Cpt 36864 61702 40718 N/A 

CWT-DX MSVM None Img+Img 51089 62421 N/A N/A 

1.4 None Img+Img 61602 62499 58456 96215 

1.5 None Img+Img 63317 26543 55066 82964 CWT-GL 

1.6 None Img+Img 72538 32757 69864 N/A 
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Table 31. Rendered items per second of oval filling tests. 

OS 

Toolkit JRE 
System 

Property 

Graphics 

API 
Windows 

XP 

Windows 

Vista 

Fedora 

Core 6 

Mac OS 

X 

MSVM None Img+Img 13665 11586 N/A N/A 

1.1 None Img+Img 13663 47232 N/A N/A 

1.2 None Img+Img 13718 46684 N/A N/A 

1.3 None Img+Img 10206 53511 6813 2526 

Img+Img 17299 37453 40420 15898 
None 

Vlt+Cpt 11181 37119 40639 15939 1.4 

Special Vlt+Cpt 11136 12810 14116 15974 

Img+Img 17211 10123 40181 16196 
None 

Vlt+Cpt 11907 16663 40584 16253 

Special Vlt+Cpt 11844 1866 17251 26014 

Img+Img 12395 1870 10378 N/A 

1.5 

OpenGL 
Vlt+Cpt 12340 16368 10385 N/A 

Img+Img 35859 17087 41597 N/A 
None 

Vlt+Cpt 11928 17325 41106 N/A 

Special Vlt+Cpt 16662 8511 21616 N/A 

Img+Img 22391 8606 20821 N/A 

AWT 

1.6 

OpenGL 
Vlt+Cpt 16720 33244 18698 N/A 

CWT-DX MSVM None Img+Img 11586 34514 N/A N/A 

1.4 None Img+Img 47232 34522 57033 60777 

1.5 None Img+Img 46684 19612 53918 57780 CWT-GL 

1.6 None Img+Img 53511 15255 68057 N/A 
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Appendix B  Results of Macro-Benchmark 

The macro-benchmark program is to simulate a Bomberman game. The panel size of 

the game is 560×395. On average, the game draws 196 opaque images, 122 transparent 

images and 14 text characters in each frame. Among the transparent images, about 58 are 

runtime images which are dynamically created during runtime. We measured the average 

frame rate of the Bomberman game in rendering 20000 frames. 

Table 32. Average frame rate (in FPS) of the Bomberman game. 

The numbers with “*” mean that the screen was not rendered correctly. 

OS 
Toolkit JRE 

System 
Property 

Graphics API Windows 
XP 

Windows 
Vista 

Fedora 
Core 6 

Mac OS X 
10.4.11 

CWT-DX MSVM None Img+Img 245 280 N/A N/A 

1.4 None Img+Img 484 408 357 412 

1.5 None Img+Img 518 395 387 449 CWT-GL 

1.6 None Img+Img 544 405 365 N/A 

MSVM None Img+Img 101 99  N/A  N/A 

1.1 None Img+Img 98 94  N/A  N/A 

1.2 None Img+Img 98 67  N/A  N/A 

1.3 None Img+Img 182 99 62 20 

Img+Img 306 232 100 218 

Img+Cpt 293 217 94 225 

Cpt+Img 301 227 100 216 

Cpt+Cpt 217 222 94 227 

Vlt+Img 220 288 101 217 

None 

Vlt+Cpt 258 132 94 271 

Img+Img 304 234 116 217 

Img+Cpt 285 224 75 225 

Cpt+Img 307 237 115 217 

Cpt+Cpt 286 222 108 226 

Vlt+Img 210 290 118 217 

AWT 

1.4 

Special 

Vlt+Cpt 200 292 110 272 
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Table 33. Average frame rate (in FPS) of the Bomberman game, where JRE∈{1.5}. 

The numbers with “*” mean that the screen was not rendered correctly. 

OS 
Toolkit JRE 

System 
Property 

Graphics API Windows 
XP 

Windows 
Vista 

Fedora 
Core 6 

Mac OS X 
10.4.11 

Img+Img 322 295 88 322 
Img+Cpt 295 274 97 341 

Img+CptVlt 296 272 96 343 
Cpt+Img 321 295 74 321 
Cpt+Cpt 242 277 97 343 

Cpt+CptVlt 299 273 98 345 
CptVlt+Img 220 299 88 320 
CptVlt+Cpt 256 275 97 344 

CptVlt+CptVlt 259 278 97 345 
Vlt+Img 222 291 88 356 
Vlt+Cpt 256 275 91 464 

None 

Vlt+CptVlt 259 273 97 467 
Img+Img 318 291 121 269 
Img+Cpt 299 277 115 244 

Img+CptVlt 294 277 117 245 
Cpt+Img 317 294 120 265 
Cpt+Cpt 299 277 116 240 

Cpt+CptVlt 297 277 116 241 
CptVlt+Img 212 294 121 265 
CptVlt+Cpt 199 274 116 240 

CptVlt+CptVlt 205 273 117 237 
Vlt+Img 211 298 122 264 
Vlt+Cpt 202 271 117 287 

Special 

Vlt+CptVlt 204 273 117 285 
Img+Img *86 37 37  N/A 
Img+Cpt 127 47 178  N/A 

Img+CptVlt 90 39 40  N/A 
Cpt+Img 45 *33 110  N/A 
Cpt+Cpt 44 32 94  N/A 

Cpt+CptVlt 44 32 105  N/A 
CptVlt+Img 85 38 37  N/A 
CptVlt+Cpt 124 47 178  N/A 

CptVlt+CptVlt 90 39 37  N/A 
Vlt+Img *85 38 37  N/A 
Vlt+Cpt 127 47 178  N/A 

AWT 1.5 

OpenGL 

Vlt+CptVlt 89 39 40  N/A 
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Table 34. Average frame rate (in FPS) of the Bomberman game, where JRE∈{1.6}. 

The numbers with “*” mean that the screen was not rendered correctly. 

OS 
Toolkit JRE 

System 
Property 

Graphics API Windows 
XP 

Windows 
Vista 

Fedora 
Core 6 

Mac OS X 
10.4.11 

Img+Img 340 315 108 N/A 
Img+Cpt 325 301 98 N/A 

Img+CptVlt 323 304 111 N/A 
Cpt+Img 339 316 84 N/A 
Cpt+Cpt 324 303 111 N/A 

Cpt+CptVlt 326 301 110 N/A 
CptVlt+Img 227 312 104 N/A 
CptVlt+Cpt 274 300 112 N/A 

CptVlt+CptVlt 275 300 112 N/A 
Vlt+Img 224 312 104 N/A 
Vlt+Cpt 274 296 73 N/A 

None 

Vlt+CptVlt 277 297 112 N/A 
Img+Img 331 307 124 N/A 
Img+Cpt 319 296 118 N/A 

Img+CptVlt 324 296 119 N/A 
Cpt+Img 340 311 122 N/A 
Cpt+Cpt 327 301 117 N/A 

Cpt+CptVlt 323 296 118 N/A 
CptVlt+Img 283 316 116 N/A 
CptVlt+Cpt 510 303 119 N/A 

CptVlt+CptVlt 272 300 120 N/A 
Vlt+Img 281 313 124 N/A 
Vlt+Cpt 519 300 119 N/A 

Special 

Vlt+CptVlt 272 301 119 N/A 
Img+Img 43 *30 113 N/A 
Img+Cpt 43 32 108 N/A 

Img+CptVlt 2 2 2 N/A 
Cpt+Img 43 32 113 N/A 
Cpt+Cpt 43 *32 85 N/A 

Cpt+CptVlt 2 2 2 N/A 
CptVlt+Img 104 78 115 N/A 
CptVlt+Cpt 327 304 302 N/A 

CptVlt+CptVlt 338 319 308 N/A 
Vlt+Img 104 79 115 N/A 
Vlt+Cpt 327 303 *302 N/A 

AWT 1.6 

OpenGL 

Vlt+CptVlt 338 319 308 N/A 
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Appendix C  Porting Guide 

Before port Java programs to CWT, check that the Java GUI code only access 1.1 

functionalities.  

C.1  Import Statements 

Simply change the import statements that use Java AWT (java.awt) to use CWT 

(com.cyc.lib.cwt). Then, recompile the programs.  

 

Original Java AWT Code:  
import java.awt.*; 

import java.applet.*; 

import javax.swing.*; 

CWT code:  
import com.cyc.lib.cwt.*; 

import com.cyc.lib.cwt.applet.*; 

import com.cyc.lib.swing.*; 

 

C.2  Double buffering 

CWT internally implements double-buffering technology. Therefore, for better 

rendering performance, code for double rendering can be removed.  

 

Original Java AWT Code:  
public void paint(Graphics g) { 

    Dimension d = getSize(); 

    if((offImage == null) ||  

        (d.width != offImage.getWidth(this) ||  
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        (d.height != offImage.getHeight(this))) { 

        //Create offscreen buffer 

        offImage = createImage(d.width, d.height); 

        offGraphics = offImage.getGraphics(); 

    } 

    //Perform rendering using offGraphics 

    //Copy offscreen buffer to screen 

    g.drawImage(offImage, 0, 0, this); 

} 

CWT Code:  
public void paint(Graphics g) { 

    //Perform rendering using g 

} 

 

C.3  Active Rendering 

In each normal repaint, CWT copies altered areas of the off-screen buffer to screen. In 

the case of active rendering, however, CWT will not copy the altered content to screen. 

Therefore, in this case, a new method flip() introduced in the Graphics class should be 

called to trigger the repaint procedure on all the components atop the altered area, and copy 

the area to screen.  

 

Original Java AWT Code:  
Graphics g = component.getGraphics(); 

//perform rendering 

CWT Code:  
Graphics g = component.getGraphics(); 

//perform rendering 

g.flip(); 
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C.4  <applet> Tag in Html 

CWT wraps Java Applet. Therefore, when using Java Applet, the html code which 

launches your programs should be modified first so that CwtApplet can launch your Applet 

programs.  

 

Original Java AWT Code:  
<applet code=YourApplet.class> 

</applet> 

CWT code:  
<applet code=com.cyc.lib.cwt.applet.CwtApplet.class> 

    <param name="cwtapplet" value="YourApplet"> 

</applet> 

 

C.5  JavaScript 

Since Applet now is wrapped in CWT, new methods are provided to obtain the Applet 

instance for accessing JavaScript. The Applet instance can be reached by calling 

getAppletContext().getNativeApplet().  

 

Original Java AWT Code:  
import java.applet.Applet; 

import netscape.javascript.JSObject; 

public class YourApplet extends Applet 

{ 

    void foo() 

    { 

        JSObject jso =JSObject.getWindow(this); 

        //Use jso to call JavaScript 

    } 

} 
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CWT Code:  
import com.cyc.lib.cwt.applet.Applet; 

import netscape.javascript.JSObject; 

public class YourApplet extends Applet { 

    void foo() { 

        JSObject jso =JSObject.getWindow(getAppletContext(). 

                                                getNativeApplet()); 

        //Use jso to call JavaScript 

    } 

} 

 

C.6  CWT Implementations 

Programmers can specify the system property "cwt.toolkit" to assign one of three 

implementations to run.  

� CWT-AWT 
-Dcwt.toolkit=com.cyc.lib.cwt.impl.awt.AwtToolkit 

� CWT-GL 
-Dcwt.toolkit=com.cyc.lib.cwt.impl.fbo.GlToolkit 

� CWT-DX 
-Dcwt.toolkit=com.cyc.lib.cwt.impl.dx3.Dx3Toolkit 

Programmers can also specify the applet parameter "cwt.toolkit" as follows.  

� CWT-AWT 

<param name="cwt.toolkit" value="com.cyc.lib.cwt.impl.awt.AwtToolkit"> 

� CWT-GL 

<param name="cwt.toolkit" value="com.cyc.lib.cwt.impl.fbo.GlToolkit"> 

� CWT-DX 

<param name="cwt.toolkit" value="com.cyc.lib.cwt.impl.dx3.Dx3Toolkit"> 
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C.7  More Useful APIs 

CWT adds some methods to AWT API for giving programmers more abilities to 

manipulate game objects.  

� com.cyc.lib.cwt.Component 

void setOpaque(boolean b) 

If true the components background will be filled with the background color. 

Otherwise, the background is transparent, and whatever is underneath will 

show through. The default value is false. This attribute will affect the 

background of most components: Canvas, Checkbox, Choice, Label, List, 

Scrollbar, ScrollPane, Panel, TextArea and TextField. 

boolean isOpaque() 

Check if the component background is transparent or not. 

void setOpacity(float opacity) 

Make the components be drawn in translucent mode and whatever is 

underneath will show through. Opacity value is between 0.0 (totally 

transparent) to 1.0 (totally opaque). The default value is 1.0. 

float getOpacity() 

Get opacity value of this component. The value is between 0.0 (totally 

transparent) to 1.0 (totally opaque). 

� com.cyc.lib.cwt.Window 

void addGLEventListener(Object listener) 

Add a javax.media.opengl.GLEventListener to CWT-GL internal 

GLCanvas. If multiple listeners are added to the GLCanvas, they are notified 

of events in an arbitrary order  
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� com.cyc.lib.cwt.impl.dx3.Dx3Toolkit 

static com.ms.directX.DirectDraw getDirectDraw() 

Access the DirectDraw object to get full control of rendering. The 

DirectDraw object can be used to create offscreen images, query the 

capabilities of the graphics card and perform other DirectDraw specific 

operations, supported by Microsoft Java SDK.  

� com.cyc.lib.cwt.impl.dx3.Dx3Image 

com.ms.directX.DirectDrawSurface getDirectDrawSurface() 

Get DirectDraw surfaces of CWT images to handle the pixels of the images.  

� com.cyc.lib.cwt.impl.fbo.GlImage 

void setPriority(float priority) 

Set priority of images to minimize texture memory thrashing. The value is 

between 0.0 and 1.0.  

� com.cyc.lib.cwt.impl.fbo.GlGraphics 

static void setGlyphFontSizeThreshold(int fontSize) 

Set the threshold of font size for enabling geometry-based rendering. If 

rendered font size is bigger than or equals to the threshold, the text engine 

uses geometry-based rendering. Otherwise, use texture-based rendering. 

Default value is 28.  

static void setTextCacheSize(int bytes) 

Specify the maximum memory size for text cache. Default value is one 

megabyte.  
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