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ABSTRACT

Various techniques for construction of a machine guide dog using a two-mirror
omni-camera and an autonomous Vvehicle for navigations on sidewalks are proposed.
The autonomous vehicle can compute 3D information from acquired omni-images to
localize itself using pre-selected landmarks, and guide a blind person to follow a
planned path to a destination on a sidewalk. Firstly, a method for learning the
sidewalk ‘environment is proposed to construct a navigation map, including a
navigation path, along-path landmark locations, and relevant vehicle guidance
parameters. Next, a navigation system with self-localization and automatic guidance
capabilities using landmarks including curb lines, tree trunks, stop lines on roads,
lawn corners, traffic cones, and signboards is proposed. By the use of a
space-mapping technique, three space line detection techniques for use directly on the
omni-image are proposed, which can be used to compute the 3D position of a specific
space line in the shape of a sidewalk landmark.

Moreover, based on the techniques for detecting three space lines, techniques for

detections and localizations of the above-mentioned natural and artificial landmarks



are proposed. Using these vehicle self-localization techniques, imprecise vehicle
positions due to incremental mechanic errors can be adjusted. In addition, for the
purpose of continuous navigation, a curb line following technique is proposed as well
to guide the vehicle along a sidewalk when landmarks are not available during the
navigation process. To detect landmarks in the outdoor environment, techniques for
dynamic threshold adjustments are also proposed for adapting the system’s capability
to varying lighting conditions in navigation environments.

Good experimental results showing the flexibility and feasibility of the proposed

methods for real applications are also included.
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Chapter 1
Introduction

1.1 Motivation

There are millions of blind people in the world. Some of them use blind canes to
travel on the road. However, blind canes can only be used to detect obstacles at short
distances by blind people. Besides using blind canes, a better choice is to use guide
dogs. Guide dogs can assist blind people to avoid obstacles and walk in indoor or
outdoor environments smoothly even if there is no barrier-free facility along the way.
For the welfare of blind-people, guide dogs.not only improve the safety, but also
enhance the quality, of their lives.

However, there are few guide dogs in Taiwan. According to the information
provided by Taiwan Guide Dog Association [20] and Taiwan Foundation for the blind
[21] in 2012, there are almost sixty thousand blind people but just twenty-eight guide
dogs in Taiwan. This rate is too low to provide sufficient supports for the blind people.
The reasons why guide dogs are so few are listed below:

1. only certain breeds of dogs can be trained as guide dogs;

2. atrainer has to spend very much time to teach a young guide dog;

3. the individual difference between the personalities of the master and the

guide dog is a problem which should be solved,;

4. it costs at least one million NT dollars to train a guide dog.

It is wished in this study to utilize technology and knowledge to solve this
problem of guide dog shortage, so we follow the idea of providing a machine guide
dog for each blind person. Each machine guide dog can be a replacement for a real

one because it can be manufactured very quickly once designed to be effective. A



machine guide dog basically is constructed by the use of an autonomous vehicle and a
camera. To implement a machine guide dog, it is desired that a vision-based
autonomous vehicle can automatically navigate in outdoor environments and keep
watch over the camera’s field of view (FOV) automatically. It is also hoped that when
the vehicle detects a risk area like a hole or an obstacle along the way, it can safely
guide the blind person to avoid the danger; and when the autonomous vehicle reaches
the destination, it will inform the blind person so.

For this purpose, the critical problem is how to navigate a vision-based
autonomous vehicle successfully in outdoor environments. Normally, an autonomous
vehicle is equipped with. an odometer, and we can use the odometer readings to
compute the current position of the vehicle with respect to its initial position of a
navigation session. However, the position which the odometer provides is often not
sufficiently precise because the autonomous vehicle usually suffers from incremental
mechanic errors due to manufacturing imprecision. One good solution is to
continually estimate the vehicle position by monitoring natural or artificial objects in
the surroundings along the navigation path, which is a sidewalk in this study.

In normal cases, a blind person has to pass regular scenes with objects along
sidewalks, so we may train the autonomous vehicle beforehand to recognize the path
and the surrounding objects, just like training a guide dog in the place. That is to say,
we may let the autonomous vehicle to “remember” along-path landmarks in advance,
and construct the on-board navigation system to capture the current landmark
information during each navigation session.

In summary, the goal of this study is to develop a vision-based autonomous
vehicle for use as a machine guide dog on sidewalks. The system is expected to
possess the following capabilities:

1. learning paths on sidewalks semi-automatically;

2



2. learning common landmarks along sidewalks;
3. navigating automatically along sidewalks using learned landmarks for
localization;

4. navigating to goals successfully on learned paths.

1.2 Survey of Related Works

In this section, we conduct a survey of related works about assistances to the
blind people, including new application systems for the blind, localization techniques
in indoor or outdoor environments, and landmark detection via the use of stereo
omni-cameras.

More and more research results about developing walking aids for the blind
people have appeared. As an improvement on the blind cane, an easy way is to install
a sensor device on a blind cane so as to detect obstacles at a certain distance.
Borenstein and Ulrich [1] developed the “GuideCane” which can detect obstacles by
ultrasonic sensors to help blind people to pass dangerous areas. Some helpful
navigation systems for the blind were also proposed. Ivanchenko et al. [2] proposed a
system for impaired wheelchair users to detect the presence of obstacles or other
terrain features by computer vision techniques and warn the user. A robotic travel aid
(RTA) called HITOMI was proposed by Mori et al. [3] which can detect vehicles and
pedestrians using multiple sensors. Besides, Hsieh [4] utilized two cameras installed
on a cap to find accessible obstacles and regions in unknown environments and alert
the impaired person by voice. Likewise, Shang [5] used two cameras assembled on
the shoulder to walk independently in known or unknown environments.

In addition, localization is an important issue in implementing a navigation
system. Willis and Helal [6] provided a navigation system for the blind which uses the

radio frequency identification (RFID) technology to identify locations in buildings
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and rooms. Lisa et al. [7] utilized a DGPS (differential GPS) device to localize a blind
person in indoor and outdoor environments. Also, Chen and Tsai [8] proposed an
indoor autonomous vehicle navigation system using ultrasonic sensors. In outdoors,
the GPS can be used as a localization system for the vehicle [9].

Furthermore, vision-based sensors have been widely utilized for vehicle
navigation. Atiya and D. Hager [10] proposed the vision-based system which
computes the location in real-time. Chen and Tsai [11] proposed a vehicle localization
technique which modifies the position of a vehicle by keeping watch over learned
objects. Another method of vehicle localization in indoor environments by watching
house corners was proposed by Chiang and Tsai [12]. Moreover, a system which uses
stereo cameras and a low-cost GPS sensor was proposed by Agrawal and Konolige
[13]. Tsai and Tsai [14] used a PTZ camera and an ultrasonic sensor to direct vehicle
patrolling and people following successfully. Another application using a combination
of cameras and other devices was proposed by Lopez et al. [15], who connected a
laser and a robot’s camera to compute the robot location.

An omni-directional camera has the advantage of having a large FOV in contrast
with a traditional CCD camera. Because of this advantage, we choose to use the
omni-camera to design the machine guide dog system in this study. So, we conduct a
survey of related works about vehicle navigation systems using omni-cameras as well
here. To enhance the accuracy of localization, Lui and Jarvis [16] implemented an
algorithm which implements omni-directional vision on a GPU. To detect landmarks
in environments, Fu et al. [17] proposed a navigation system with embedded
omni-vision for landmark recognition. A method which was conducted to achieve
vehicle self-localization by matching omni-directional images was proposed by
Ishizuka et al [18]. Wu and Tsai [19] detected circular landmarks on ceilings to

conduct vehicle indoor navigation.



1.3 Overview of Proposed System

The goal of this study is to lead a vision-based machine guide dog to navigate in
outdoor environments automatically. The most important task to achieve this goal is
vehicle localization. The method for vehicle localization we propose is to detect
landmarks along the path. Besides, some strategies for navigation on the learned path
are proposed for use in this system. In this section, we will introduce the vision-based
autonomous vehicle system which we use in this study. The operation process of this
system may be divided into two stages: the learning stage and the navigation stage.
The learning stage includes primarily the task of training the autonomous vehicle to
acquire the along-path information useful for vehicle guidance before navigation.
Then, we conduct vehicle navigation along the path which we pre-select in the
navigation stage. The details of the two stages are illustrated in Figs. 1.1 and 1.2,
respectively, and discussed in the following.

A. The learning stage

In the process of learning which is necessary before the vehicle can navigate, at
first we combine the camera system into the autonomous vehicle. Unfortunately, the
camera system does not perfectly match the vehicle’s structure. It should so be
calibrated to find the relation between the image coordinates and the real-world
locations. In this system, we utilize a two-mirror omni-camera system as the visual
sensor. Because of the special structure of the two-mirror omni-camera system, its
parameters cannot be acquired and calculated easily. Therefore, we adopt a
space-mapping method proposed by Jeng and Tsai [20] to solve the problem. We get
accordingly a space-mapping table, called pano-table, to calibrate the camera system
instead. After we finish the calibration work, we can obtain the range data of

concerned feature points in an omni-image directly using the pano-table and continue



the navigation. Secondly, we learn relevant path information for vehicle guidance,
including the environment parameters, the vehicle position in the path, the location of
each used landmark, and some landmark segmentation parameters.

After we guide the vehicle to a particular spot, a path learning work is started. In
this phase of the learning stage, we propose the use of two navigation modes: one
being navigation by following the sidewalk; the other manual control by the trainer. If
we choose the first mode, the autonomous vehicle starts to navigate to the goal and
the information of the vehicle pose at each visited spot is recorded. If we want the
system to “memorize” a specific landmark along the path, we can use the second
mode to achieve the landmark information acquisition and position estimation.
Besides, each path we choose is along a sidewalk in an_outdoor environment, and
some information about the outdoor environment along the path is also recorded
during this phase of learning. Finally, all of the data so learned are integrated into a set
of path information.

B. The navigation stage

As we mentioned above, the path information which is acquired in the learning
stage is used in the navigation stage. In the navigation stage, three major works are
conducted by the vehicle. One is moving forward, another is obstacle detection, and
the third is vehicle location estimation and modification.

Generally, the vehicle can move forward continually toward the goal we
pre-select. Between every two nodes in a path, the vehicle can choose one of two
navigation modes— navigation by the vehicle odometer (called the blind navigation
mode) and navigation by the side walk. When the navigation by the side walk mode is
selected, the vehicle detects the sidewalk curb with a prominent color continually and
adopts a line following technique to guide the vehicle. When no curb can be used

along the current path segment, the system is set in the navigation by the vehicle
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odometer mode and moves forward “blindly” according to the odometer reading on
the pre-selected path. Also, it is desired to find fixed obstacles and have a strategy to

pass dangerous areas.

Calibration the camera
system on vehicle

Begin to learn
a navigation
path

Navigation by
Sidewalk following

Landmark
detection

Landmark
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Environment
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Vehicle pose
information

v
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position
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path information
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Figure 1.1 Flowchart of proposed learning stage.
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Figure 1.2 Flowchart of navigation stage.

Moreover, we use some objects which are commonly seen along sidewalks, such
as trees, road stop lines, traffic cones, signboards, and corner points of the lawn, to
localize the vehicle in this study. That is, we modify the vehicle position with respect
to each located landmark to eliminate accumulated mechanical or vision-processing
errors during the navigation process. Finally, we propose three new vertical space line
detection methods to calculate the locations of detected landmarks. By all of these
techniques, the autonomous vehicle can navigate safely to the end of the navigation

stage hopefully.

1.4 Contribution of This Study



Some contributions of this study are described as follows.

A semi-automatic system for training an autonomous vehicle for outdoor
navigation along sidewalks using ordinarily-seen objects seen along paths is
proposed.

Two new space line detection techniques and two localization techniques using
the pano-mapping table are proposed.

Schemes for detecting natural landmarks like corner points of the lawn and trees
for vehicle localization are proposed.

Techniques for detection and localization of artificial landmarks (signboards,
stop line on road, traffic cones) are proposed.

A method for correcting the mechanical errors of the vehicle position resulting
from long-time autonomous vehicle navigation is proposed.

A method for dynamically adjusting the guidance parameters for outdoor

navigation is proposed.

1.5 “Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, we introduce

the configurations of the proposed system and the system processes. In Chapter 3, the

proposed method for learning guidance parameters and navigation paths are described.

In Chapter 4, we describe the proposed navigation strategies, including ideas,

guidance techniques, and detailed navigation algorithms. In Chapter 5, the two

proposed new space line detection techniques are introduced and their applications for

natural landmark detection are described; and in Chapter 6, their applications for

artificial landmark detection are described. In Chapter 7, we show some experimental

results of sidewalk navigation to show the feasibility of the proposed system. At last,

some conclusions and suggestions for future works are given in Chapter 8.

9



Chapter 2
System Design and Processes

2.1 ldeas of System Design

As mentioned in Chapter 1, many good facilities for the blind people have been
proposed in the past. Using a vision-based autonomous vehicle as a machine guide
dog is a good idea because the trainer does not have to spend much time to train it and
it can work all day without taking a rest. If the vehicle is equipped with a camera, it
will be able to “see” the environment around and avoid obstacles along the way.
However, the task of combining the camera and the vehicle system is not easy to
accomplish. We need a control unit which connects the camera and the vehicle system,
analyzes the acquired image data, integrates all the information, and makes decisions.
In this chapter, we will describe in Section 2.2 the software and hardware systems of
the proposed machine guidance dog which accomplishes the above-mentioned tasks,
and the detail of the proposed method for 3D data acquisition using the camera will be
described in Section 2.3.

Because originally the vehicle does not have “knowledge” to navigate on the
sidewalk, it will cause accidents, like collisions with obstacles or falling outside the
sidewalk. Therefore, before the machine guide dog can navigate by itself, we should
“teach” it to know the outdoor information and deal with different conditions. In
addition, strict strategies for navigation should be designed to protect the blind people
and the vehicle from accidents. Finally, the vehicle should be designed to be capable
of navigating along a learned path again and again. To reach the above goals, we have

to organize the system processes for the autonomous vehicle system well. The system
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processes will be described in Section 2.4, including the learning process in Section

2.4.1 and the navigation process in Section 2.4.2.

2.2 System Configuration

To construct the proposed system, we adopt a Pioneer 3-DX vehicle which is
made by MobileRobots Inc. The vehicle is equipped with an imaging system
composed of a stereo omni-camera. The imaging system is not only part of the vehicle
system but also plays an important role of accumulating the information data and
locating the wvehicle. The autonomous vehicle and other associated hardware
equipments will be introduced- in Section 2.2.1, and the camera system will be
described in Section 2.2.2. Besides the hardware, software is needed to provide a
friendly interface to users in order to control the vehicle conveniently. The software

system we develop for use in the study will be described in Section 2.2.3.

2.2.1 Hardware configuration

The hardware architecture of the proposed machine guide dog is shown in Figure
2.1. It can be partitioned into three principal systems: the vehicle system, the camera
system, and the control system. We will describe these systems, respectively, in the
following.

In the vehicle system, the Pioneer 3-DX as mentioned is shown is Figure 2.2,
which has a 44cmx38cmx22cm aluminum body with two 19cm wheels and a 7cm
caster. It can reach a speed of 5.76 kilometer per hour on flat floors; has the maximum
rotation speed of 300 degrees per second; and can climb up an incline with the largest
slope of 30 degrees. Moreover, the vehicle has sixteen ultrasonic sensors. They are

installed around the vehicle body. The vehicle can carry payloads up to 23kg. It has
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three 12V rechargeable lead-acid batteries and can run 18-24 hours if the batteries are
fully charged initially. Furthermore, the vehicle is equipped with an odometer which
records the pose of the vehicle, including the position and the orientation with respect
to its initial pose, for each navigation cycle. The odometer provides also the readings

of the vehicle speed, the battery voltage, etc.

(©

Figure 2.1 Three different views of the used hardware architecture, which includes a vehicle and a

stereo camera. (a) A 45° view. (b) A front view. (c) A side view.

The second part of the system hardware is the camera system. It is a two-mirror
omni-camera which consists of one perspective camera, one lens, and two reflective
mirrors of different sizes, all integrated into a single structure. A picture of the camera

system is shown Figure 2.3. The perspective camera and the lens are shown in Figure
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2.4. The camera is of the model ARCAM-200SO, which is produced by ARTRAY
Company with the size of 33mmx33mmx50mm and the resolution of 2.0M pixels.
The detailed specifications of the camera are listed in Table 2.1. The lens is produced
by Sakai Co. and has a variable focal length of 6-15mm. The two reflective mirrors
are produced by Micro-Star International Co. The structure of the camera system will

be described in more detail in the next section.

!‘p--,
=

(b)
Figure 2.2 The Autonomous vehicle, Pioneer 3-DX, produced by MobileRobots Inc., used in this study.
(a) A back view. (b) A front view.

In the control system, we utilize a laptop computer as the main unit. It is of
model R840 produced by TOSHIBA Computer Inc. as shown in Figure 2.5. We use an
RS-232 to connect the laptop computer and the autonomous vehicle and use a USB to

connect the computer and the camera system. The specification of the laptop is listed
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in Table 2.2.

Figure 2.3 The camera system used in this study.

(a) (b)
Figure 2.4 The used camera and lens. (2) The camera of model Arcam-200so produced by ARTRAY
Co. (b) The lens produced by Sakai Co.

Table 2.1 The specification of Arcam-200so.

Size 33mmx33mmx50mm
CMOS Size 1/2” (6.4 x 4.8mm)
Mount C-mount

Max resolution 2.0 M pixels

Frame per second with max resolution | 8 fps
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Figure 2.5 The laptop computer of model TOSHIBA R840 used in this study.

2.2.2 Structure of used two-mirror omni-camera

Inthis section we will introduce the two-mirror omni-camera we use in this study.
As shown in Figure 2.6, a space point G is projected by the two mirrors onto the
image plane of the camera system. The light ray coming from point G is reflected by
the two mirrors to go through the lens center. The two mirrors are both made to be of
the hyperboloidal shape. We will call the big mirror Mirror B, and the small one
Mirror S, respectively, in the sequel of this thesis. As is well known, the hyperboloidal
shape has two focal points: one being the focal point of Mirror S which is denoted by
fsand the other the focal point of Mirror B which is denoted by f, subsequently. The
configuration of the two mirrors is designed in such a way that the focal points of the
two mirrors are located at an identical point which is just the lens center f. of the
camera. Besides, the distance from the mirror center of Mirror B to the mirror center
of Mirror S has a length of 20 cm according to our manual measurement in this study.
We call it the baseline. The detailed information of the two hyperboloidal-shaped

mirrors is listed in Table 2.3.
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Table 2.2 Specification of the laptop computer.

CPU Intel Sandy Bridge Core i5-2410M 2.3GHz
RAM 4G DDR 1333MHz
GPU AMD Radeon HD 6450 /1024MB
HDD Size 640 GB
Table 2.3 Specifications of the used two hyperboloidal-shaped mirrors.
Radius Parameter a Parameter B
Mirror S 2cm 2.41cm 4.38 cm
Mirror B 12 cm 11.46 cm 9.68 cm

In spite of having two focal points, the hyperboloidal shape has another property
as shown Figure 2.7: if a light way goes through one of the focal point, it will be
reflected to go through the other focal point by the mirror. This property has been
utilized to construct the omni-camera in a previous study [22] . According to this
property, a space point G will first go into the centers of the two mirrors, then
reflected by the mirrors to go through the lens center f., and finally projected onto the
CMOS sensor of the camera. Therefore, we have two distinct image points

corresponding to the single space point G. Based on such a phenomenon, we can

compute the range data of G. The detail will be described later in this chapter.
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Figure 2.6 An illustration of the two-mirror omni-camera and a space point projected on the CMOS

sensor of the camera.

In addition, initially we place the two-mirror omni-camera in such a way that the
axis going through Mirror S and Mirror B is perpendicular to the ground, as illustrated
in Figure 2.7. However, it was found out in [22] that in the resulting fields of view
(FOV’s) of mirrors B and S, the overlapping area on the ground is too small to be
useful for computing precise range data. In this study, it is desired that the FOV is as
large as possible. To solve this problem, the camera system is slanted for an angle of
yas shown in Figure 2.8. It can be seen that the overlapping region is now bigger than

before.

Mirror B

Mirror S

Figure 2.7 The reflection property of the two hyperboloidal-shaped mirrors in the camera system.
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Figure 2.8 Two different placements.of the two-mirror omni-camera on the vehicle and the region of
overlapping. (a) The optical-axis-going through the two mirrors is parallel to the ground. (b) The

optical axis through the two mirrors is slanted up for an angle of .

2.2.3 Software configuration

MobileRobots Inc., which provides the autonomous vehicle for use in this study,
provides an application iInterface, called ARIA (Advanced Robotics Interface
Application), for the user to control the vehicle. The ARIA is an object-oriented
interface which can be used under the Linux or Win32 operating system using the C**
language. Therefore, we can use the ARIA to communicate with the embedded sensor
system in the vehicle and obtain the information which the vehicle offers to control
the position of the vehicle.

For the camera system, the ARTRAY provides a tool which is called Capture
Module Software Developer Kit (SDK). It is an object-oriented interface and its
application interface is written in several computer languages like C, C*™*, VB.net,
C”.net and Delphi. We use the SDK to capture image frames with the camera and

change many parameters of the camera, such as the exposure. To develop our control
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system, we use Borland C** Builder 6 with updated pack 4 on the Windows XP
operating system. The Borland C** Builder 6 is a GUI-based interface development
environment (IDE) software. It is convenient for us to provide a friendly interface for

the user.

2.3 3D Data Acquisition by the
Two-mirror Omni-camera

2.3.1 Review of imaging principle of two-mirror

omni-camera

In this section, we review the two-mirror omni-camera proposed in Huang and
Tsai [22] and used in this study, as well as the formulas for range data computation
using images captured by such a camera system. First, we review the image projection
principle of an omni-camera. As shown in Figure 2.9, we use the two coordinate
systems, the image coordinate system (ICS) and the camera coordinate system (CCS),
to illustrate the principle of imaging process. The image coordinate system is a
two-dimensional U-V coordinate system and the other is a three-dimensional X-Y-Z
coordinate system. The origin of the first one is the center of the omni-image, and the
second is the focal point of the hyperboloidal-shaped mirror. As mentioned previously,
a light ray G at (x, y, z) in the CCS go through the focal point of the
hyperboloidal-shaped mirror O, and reflected by the mirror. Then, it goes through the
other focal point at center of lens O.. Finally it is projected onto an image point | on
the omni-image plane at (u, v). As a result, each image point in an omni-image can be
specified by an elevation angle « and an azimuth angle €. After the azimuth angle &

and the elevation angle « are obtained, we are able to calculate the location of the
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space point G.
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Figure 2.9 Imaging principle of a space point G using an omni-camera.

2.3.2 Derivation of formulas for 3D data acquisition

In this section, we will introduce the principle of the computation of the 3D
range data. We will now define the direction of the camera coordinate system (CCS)
CCSjocar in Figure 2.10. As seen in the figure, two light rays from G in CCSjycq 9O
through the center of Mirror S and that of Mirror B, and o and o, are the elevation
angles, respectively. The points O, Oy, G form a triangle AOsO,G which is illustrated
in Figure 2.11. We know the distance from Os to O, by manual measurement which is
called the baseline in the last section. We can derive the following equations by the

law of sines based on the geometry:
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94 ____ 0 (2.1)
sin(90° +¢,))  sin(e, — )

Then, we can calculate accordingly the baseline as follows:
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Figure 2.10 The cameras coordinate system CCS,. , and a space point G projected on the

omni-image acquired by the two-mirror. omni-camera.

Then, we want to know the azimuth angles of the two light rays. According to
the property of rotational invariance of the omni-image, these two azimuth angles
actually are equal, which we denote by 6. From Figure 2.12, the azimuth &in the ICS

can be computed by using the image coordinates (ui, vi) of G according to the

following equations:
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by Equation (2.2) and the gle 0 by Equation

After obtaining the distance o

(2.3), we can compute the position of G, hamel global coordinates (X, Y, Z), in

CCS,,.a by the following equatic
X = d x cosag X sind,
Y = d x cosag X Siné,

Z = dx sina,. (2.4)
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Figure 2.12 An illustration of a space point G at coordinates (X, Y, Z) in CCS,,. -

As _mentioned previously, the camera system we use in this study is not set

parallel to the ground so as to enlarge the overlapping area of both mirrors; instead, it

is slanted up for an angle of yas shown 2.13. It is desired that the Z-axis of CCS,
could be parallel to the ground. We define another camera coordinate system CCS
which coincides with CCS, ,, except the Z-axis is be elevated by an angle of y.

Finally, we can use a rotational matrix R to represent the G in the CCS by the

following equations:

1 0 0
R=|0 cos(—y) -sin(-y)|; (2.5)
0 sin(-y) cos(—y)

X! 1 0 0 X
Y'|=|0 cos(—y) —sin(=y)|Y |. (2.6)
Z' 0 sin(—y) cos(-y) || Z
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2.4 System Operation Processes

2.4.1. Learning process

In the learning process, it Is important for the autonomous vehicle to “learn” the
selected path and conduct navigation automatically. In this section, we will describe
the information which the vehicle should “memorize” in detail. Initially, the vehicle
has to record where the selected path in the outdoor environment is. For this study, the
experimental place is a sidewalk in the campus of National Chiao Tung University.
Because the vehicle navigates on the sidewalk, we can take the advantage of the
sidewalk curb to implement a ““curb following” function for vehicle guidance. It also
helps the vehicle to calibrate the odometer precisely. In addition, the lighting
condition is a concern in the outdoor environment. So, the different location
information must be recorded in the navigation path.

Moreover, another odometer calibration method adopted in this study is via
landmark detection. By this method, the trainer can choose the landmarks which
should be learned in the selected path, and decide where to localize the vehicle by the

learning landmarks. Next, landmark detection is accomplished by a space line
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detection technique in this study, which is described in Chapter 5. After collecting
enough information of the learned landmark, some parameters for landmark detection
and the position of each landmark can be recorded.

To facilitate the user to learn navigation paths, a user learning interface is
designed for the trainer. They may use it to control the autonomous vehicle to
construct the navigation path. Furthermore, after the vehicle detects a landmark, we
provide a semi-automatic learning process to adjust the parameters which we sat
initially for the trainer to deal with some varying conditions of the environment. Also,
the trainer should establish the navigation rules in advance for the vehicle to follow in
the navigation process.

At last, after leading the autonomous vehicle to the destination, the learning
process is finished. The learned information is organized into a learned path which is
composed of several path nodes with guidance parameters. We finally acquire the
navigation path map which combined the landmark information and the environment
information, and store in the disk. The entire learning process proposed in this study is

shown in Figure 2.14.

2.4.2 Navigation process

In the navigation process, the autonomous vehicle can analyze the current
location using various stored information obtained in the learned process and navigate
to the next node on the learned path. The entire navigation process proposed in this
study is shown in Figure 2.15.

In general, the autonomous vehicle analyzes the current environment node by
node to navigate to the goal according to the learned information data retrieved from
the storage. Before the vehicle starts to navigate to the next node, the environment

information should be checked by the autonomous vehicle. If the image is too dark or
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too light, the vehicle can be “confused” by the image we got from the camera system.
According to the learning environment information, the system was designed to be

able to adjust the exposure of the camera dynamically if necessary.
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Figure 2.14 Learning process.

Besides, the autonomous vehicle always checks if any obstacle exists in front of
the vehicle. As soon as an obstacle is found and checked to be too close to the vehicle,
a procedure of collision avoidance is started automatically to perform collision

avoidance. In addition, if the vehicle gets a node of “landmark detection,” the
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autonomous vehicle will adjust the detection pose and load the parameters for
landmark detection. If a landmark is found successfully, the landmark’s position is
used to modify the odometer of the vehicle; if not, some strategy of recovering the
landmark are started, such as changing the parameters for landmark detection or

changing the pose of the vehicle to detect landmark successfully.

Start of navigation

Read a new node and . .
»
A navigation initialization b b NSl E O

Vehicle localization procedure Obstacle avoidance loop
Remedy of Modify v
W FIGlRE & vehicle » Localize obstacle
detection location
" obstacle -.Yes
A ’_f . detected? — 1
No 7
L;g:i?;:k . Collision
localization avoidance
Y Vehicle navigation loop
Landmark
No found? Sidewalk Yes
following?
Sidewalk feature
Landmark No extraction
4 feature v
extraction Blin& Navigation by
v q
* navigation 5|dewe_1|k
following

Initialization to \ [

detect landmark
A A

Yes Vehicle _ Yes “Arriving ata
localization? node?

A

Landmark
information

kNo

Arrive at terminal

End of navigation

Figure 2.15 Navigation process.
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Chapter 3
_earning Strategy for Automatic
Navigation

3.1 Introduction

The purpose of the learning process for the proposed machine guide dog system
is to create a path on a sidewalk to guide a blind person to a selected destination.
Before starting to learn a path, we have to do some works. First, at first we have to
choose some landmarks-for-vehicle localization. Then, we have to calibrate the
camera system. The third task is to infer some guidance parameters. At last, we
should adopt a learning strategy to learn certain information about each selected

landmark.

3.1.1 Selected landmarks in outdoor environments

for this study

When the vehicle is in the navigation process, mechanic errors usually will
accumulate up to cause imprecise odometer readings of the vehicle location and
orientation. To solve such problems, in this study we adopt the approach of vehicle
localization using landmarks. For this purpose, some objects should be selected as
landmarks at first to conduct the localization work. Chou and Tsai [23] detected the
light pole and the hydrant to localize the vehicle. In this study, we select instead some
other natural and artificial objects as landmarks, which are commonly seen on
sidewalks. Specifically, we select two types of natural landmarks, tree trunk and lawn

corner, for vehicle localization in this study, as shown in Figure 3.1. Also selected for
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the same purpose are three types of artificial landmarks, namely, signboard, traffic
cone, and stop line on roads, as shown in Figure 3.2. With more types of landmarks so
selected, we can have more information along the way for localization, and we can
then guide the autonomous vehicle to the destination more reliably. The detailed
proposed methods for vehicle localization using landmarks will be introduced later in
Chapters 5 and 6. In this chapter, we discuss the learning process for these landmarks

and other information.

(@ (b)

Figure 3.1 Two types of natural landmarks selected for use in this study. (a) Tree landmark. (b) Lawn

corner point.

3.1.2 Camera calibration

As mentioned in Chapter 1, it is @ complicated task to calibrate a camera’s
intrinsic and extrinsic parameters. A space-mapping technique [24], called
pano-mapping, is adopted instead in this study to “calibrate” the two-mirror
omni-camera system used in this study. We will introduce the adopted technique in

Section 3.2.

3.1.3 Learning of guidance parameters
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To navigate in outdoor environments, a trainer of the proposed vehicle system
should guide the system to learn and record some parameters of the sidewalk
environment for use in the navigation process. The parameters to be learned in this
study include image segmentation thresholds and some other environment parameters.
The proposed technique for learning the adopted environment parameters will be
described in Section 3.4.1. Also, the proposed method for learning the used image
segmentation thresholds will be described in Section 3.4.2. Finally, a process which

we propose to create the navigation path is described in Section 3.5.3.

(b)

Figure 3.2 Three artificial landmarks used in this study. (a) Tree landmark. (b) Road stop line

landmark. (c) Signboard landmark.
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3.2 Camera Calibration by
Space-mapping Approach

To calibrate the camera system used in this study, we use the pano-mapping
technique proposed by Jeng and Tsai [24]. Specifically, it is desired to establish a
pano-mapping table to record the relations between the locations of image points and
those of the corresponding real-world points. For this, as mentioned in Chapter 2, we
assume first that a light ray going through a world-space point P with the elevation
angle « and the azimuth angle 6 is projected onto a specific point p at coordinates (u,
v) in the omni-image. The pano-mapping table specifies the relation between the
coordinates (u, v) of the pixel p in the image and the azimuth-elevation angle pair
(6, o) of the corresponding world-space point P. We construct the pano-mapping table
once, and the table can be looked up to retrieve 3D information forever. Specifically,
we establish two pano-mapping tables for Mirrors S and B, respectively, in the camera

system used in this study. The details are described in the following algorithm.

Algorithm 3.1 Construction of pano-mapping tables.

Input: two sets of six landmark point pairs (p;, Pi) and (q;, Q;) selected in advance
manually where p;-and g; are points in an omni-image | and P; and Q; are the
corresponding points in the world space.

Output: two pano-mapping tables of dimension Mx N for Mirrors B and S.

Steps.

Step. 1. Let the six known image pixels p; be located at coordinates (uj, vi,) in the

Mirror B region in omni-image | and the six corresponding known
world-space points P; be at coordinates (X, yi, zi) in the camera coordinate

system, wherei =1, 2, ..., 6, as shown in Figure 3.3.
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Step. 2.

Step. 3.

Step. 4.

Step. 5.

Step. 6.

Similarly let the six known image pixels g; be located at coordinates (U;, V;,)
in the Mirror S region in omni-image | and the six corresponding known
world-space points Q; be at coordinates (X;, Yj, Zj) in the camera coordinate
system, where j=1, 2, ..., 6.

Calculate the radial distances ri and R; in the image plane from the image

pixels p; and g; to the image center, respectively, by the following equations:

= USRS AU (3.1)

resulting in six pairs of radial distances r; and R; for Mirrors S and B,
respectively.
Calculate the elevation angles ¢; and S; for the world-space points P; and Q;,

respectively, by the following equations:

a =tan(z I\ +Y)i B=tan }(Z /X7 +Y?), (3.2)

resulting in six pairs of elevation angles for Mirrors S and B, respectively.

Under the assumption that the surface geometries of Mirrors S and B are
radially symmetric in the range of 360 degrees, use two radial stretching
functions, denoted as fs and fg, to describe the relationship between the radial
distances rj and the elevation angles «; as well as that between R;and ;,

respectively, by the following equations where i =1, 2, ..., 6:

2 3 5

ri:fs(ozi)zso+sl><ozi1+sz><ozi +S; %, +S4xai4+ss><ai ;
Ri:fB(ﬁ’i):b0+blxIBil+b2xﬁ’iz+b3x,8i3+b4x,8i4+b5xﬂi5. (3.3)

Solve the above 6-th degree polynomial equations for fa and fg by the uses of

the six radial-distance pairs for Mirrors S and B, respectively, obtained in
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Step 4 as well as a numerical method to obtain the coefficients ao through as
and bg through bs.
Step. 7. By the use of the function fg with the known coefficients by through bs,
construct a pano-mapping table Tg for Mirror B in a form as that shown in
Table 3.1(a) according to the following rule:
for each world-space point P; with the azimuth-elevation pair (6i, ),
compute the corresponding image coordinates (ujj, vij) by the following

equations:
U; =T XC0SE; V=T xsing, . (3.4)

Step. 8. In a similar way, construct a pano-mapping table Ts for Mirror S by the use
of the function fs with the known coefficients sy through ss in a form as that

shown in Table 3.1(b).

Figure 3.3 Illustration of constructing pano-mapping tables in this study.
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Table 3.1 Two pano-mapping tables used for the two-mirror omni-camera used in this study. (a)

Pano-mapping table used for Mirror B. (b) Pano-mapping table used for Mirror S.

01 9% 0% a9 0%
P | (Ui, Vi) | (U5, V) | (U, V5) | (UG, Vi) | ... (U, V1)
Pa | (U2 V) | (U2 V%) | (U V) | (Ua2 Va2) | - (us2, V)
P3| (U3, Vi) | (U%,V%3) | (U%s V) | (U43, Va3) | - (u'ss, V's3)
Pa | (U1 Via) | (U%, V) | (U%a, Vi) | (Ul Vi) (U'ss, V)
Pr | (Ui, vin) | (Ubr, Var) | (U%rn Vi) | (U, Vian) (u’st, V1)
(a)
6 & & & oY
o (U1, V11) (Ua1, V1) (Us1, Va1) (Ua1, Va1) (Uwmz, Viva)
[27] (U2, V12) (uzz, V22) (usz, Va2) (Ugz, Va2) (Unz, Vi)
a3 (uss, V13) (uzs, V23) (uss, Va3) (Ugs, Vaz) (Unms, Viis)
a (U4, V1a) | (Uz4, V2s) | (U3, V3a) | (Usa, Vaa) (Umar Viva)
oN (U, Van) | (uan, Van) | (Usn, Van) | (Uan, Van) (Unmn, Vi)
(b)

3.3 Coordinate Systems

In_this study, the following four coordinate systems are used to describe the
vehicle location and the navigation environment. The coordinate systems are
illustrated in Figure 3.4 and defined in the following.

(1). Image coordinate system (ICS, denoted as u-v): The origin O, of the image
coordinate system is located at the center of the image plane, and the u-v plane
coincides with the image plane.

(2). Camera coordinate system (CCS, denoted as X-Y-Z): The origin Oc of the CCS is
located at the focal point of Mirror B. The X-Z plane is parallel to the ground and
the Y-axis is perpendicular to the ground.

(3). Vehicle coordinate system (VCS, denoted as Vx-Vy): The origin Oy, of the vehicle
coordinate system is located at the center of the autonomous vehicle, and the
Vx-Vy plane coincides with the image plane.

(4). Global coordinate system (GCS, denoted as Gx-Gy): The origin Og of this system
is always set at the start position of the vehicle in the navigation path, and the

Gx-Gy plane coincides with the ground.
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When the vehicle is moving in the navigation session, we have to know the
relationships among the coordinate systems. It is advantageous to utilize an odometer
to localize the vehicle position in the GCS, though the odometer readings are not very
accurate all the time. At the beginning of each navigation process, the VCS and CCS
follow the vehicle, and the VCS coincides with the GCS. After the vehicle moves for
a short distance, as illustrated in Figure 3.5, and stops at a position V at world
coordinates (Cx, Cy) with a rotation angle 6, we can derive the coordinate
transformation between the coordinates (Vx, Vy) of the VCS and the coordinates (Gy,

Gy) of the GCS by the following equations:

LGXJ_{cose —sin&JLVXJJ{CXJ
G, sin@ cos@ ||V, | |C, : (3.5)
o '\ Mirror B
Vv
ozqéiyirror S
O u “a! | e
A
Omni-image 4 Image 3
Oqi plane X' ~
(a) (b)
Navigation
Environment
Gy
0o Gx
(c) (d)

Figure 3.4 Four coordinate systems used in this study. (a) The ICS. (b) The CCS. (c) The VCS. (d) The
GCS.
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Vy

VCS >

V(Cx, Cv)

*Ges -Gy

Figure 3.5 A vehicle at coordinates (Cy, Cy) with a rotation angle & with respect to the GCS.

Besides, the relationship between the CCS and the VCS is illustrated in Figure
3.6. Because the origin of the CCS which projects onto the ground does not coincide
with the origin of the VCS, we have to provide the transformation function. As
illustrated in Figure 3.7, there is a distance between the two origins, which we denote
as Sy, on the Vy-axis. Thus, the transformation function between the CCS and the VCS

can be derived by the following equations:

V., =X: V. =Z4+8S.. (3.6)
X Y y

Vy

S

Th d
e groun Vy VCS

Figure 3.6 An illustration of the relation between the CCS and the VCS.
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3.4 Learning of environment and
landmark parameters

3.4.1 Learning of environment intensity in windows

In the navigation process, we navigate the vehicle along the learned path. Because the
aim is to navigate along the path again and again in this study, each landmark is
usually projected onto a fixed region in the image. By this property, we can define
regions of interest (ROIS) in the image as shown in Figure 3.7, which are also called
environment windows. Some advantages can be obtained from this approach as
follows:

1. we can reduce the computation time for detecting the desired landmark;

2. if a feature similar to the detected landmark appears in the environment, it is

easy to distinguish the object from the noise.

Figure 3.7 A pair of environment windows for road stop line detection.

However, this property alone does not solve the problem totally in outdoor

environments. According to our experimental experience, varying lighting conditions
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influence the results of the environment analysis work as well. For instance, as shown
in Figure 3.9(a), because of the overexposure duo to the lighting condition, the feature
of the curb line is not obvious enough to be recognized. For this reason, we provide a
system which is based on Chou and Tsai [23] for the trainer to adjust the exposure of
the camera for the purpose of detecting the landmark successfully. When the system
adjusts the exposure of the camera to a suitable value, it means that the landmark we
want to detect can be extracted well in this condition. Then, we may record the image
illumination parameter into the path information as part of the learned parameters. To
be more specific, we learn a suitable image intensity, called environment intensity
hereafter, on the image in the environment windows during the learning process. A

detailed algorithm for the above process is described in the following.

Algorithm 3.2 Learning of the environment intensity parameter at a path node.
Input: a relevant set of environment windows Wing for a certain path node with a
pre-selected landmark under the assumption that the vehicle arrives at the node
currently.
Output: an environment intensity parameter Igp.
Steps.
Step 1. Adjust the camera exposure and acquire a suitable image I
Step 2. Check if the desired landmark feature is well imaged in the current
illumination: if not, go to Step 1; otherwise, continue.
Step 3. For each pixel in image Il with color (R, G, B) in wing of Wing, calculate
its intensity value Y; by the following equation and record Y; into a set Sy:
Y, =0.299x R+0.587xG +0.114x B. (3.7)
Step 4. Calculate an average value lg, of all Y; in the following way as output by the

use of the data in Sy where N is the size of wing of Wingp:
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= (3.8)

Some examples of suitable illuminations for navigation tasks are shown in Figures
3.8(b), and 3.9(b). The environment intensity parameters learned in the above way for
them will be recorded as part of the learning result of landmark detection described

later.

Figure 3.8 Two different illuminations for curb line detection. (a) An instance of overexposure. (b) A

suitable case.

3.4.2 Learning of artificial landmark segmentation

parameters

It is very important for us to localize landmarks in this study. Before landmark
localization, we have to utilize some segmentation methods for image analysis. In this
section, we introduce the segmentation parameters proposed for use in this study for
artificial landmark segmentation. Regarding natural landmark detection, we utilize the
moment-preserving thresholding proposed by Tsai [26] to conduct landmark

segmentation. The moment-preserving thresholding will be introduced in Chapter 5.
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Also, the used landmark detection methods will be described in Chapters 5 and 6.

(1) For sidewalk curb segmentation — we use the color information (hue and
saturation) and the image thresholding technique to find the curb feature in the
image utilizing the HSI color model first. Then we adopt the Canny edge
detection technique to extract the desired landmark shape. The thresholds for hue
and saturation values are collected as a set of curb segmentation parameters.
Also, for the road stop line and the traffic cone, we conduct similar works.

(2) For signboard segmentation — we use the HSI color model to extract the
signboard shape. The threshold values for hue and saturation and also the contour
of the signboard described by the principal components obtained from principal
component analysis are collected as a set of signboard segmentation parameters.

(3) For tree segmentation — we use the moment-preserving thresholding as
mentioned previously to extract the tree shape. The contour of the tree also
described by principal components obtained from principal component analysis

is collected as a set of tree segmentation parameters.

(a) (b)

Figure 3.9 Two different illuminations for signboard detection. (a) An instance of underexposure. (b)

A suitable case.

When conducting landmark learning, the trainer can detect a desired landmark by

a user interface of the system, and adjust the values of the related set of segmentation
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parameters. After obtaining an appropriate result from the landmark detection process,
the segmentation parameters and the learned landmark information which the trainer
will use are recorded together as part of the learned path. The process for learning

landmark segmentation parameters is shown in Figure 3.10.

Start to Adjust Record the
| N . Detect Extract landmark related
earn segmentation landmark eature well? segmentation
landmark parameters parameters

No

*

Figure 3.10 The process for learning landmark segmentation parameters.

3.5 “Learning-Processes for Creating a
Navigation Path

In this section, we introduce the proposed method for learning a navigation path
in the learning process. The method proposed-is based on Chou and Tsai [23]. In the
learning process, we use the odometer to localize the wvehicle position and
approximate the detected landmark position in general. The proposed strategy for
learning landmarks for vehicle localization is described in Section 3.5.1. Additionally,
there are some obstacles on the sidewalk along the way. The obstacles may block the
vehicle. As shown in Figure 3.11, there is a hole on the sidewalk. It may cause the
vehicle to fall outside the sidewalk. Thus, we propose a method to learn the positions
of such obstacles along the way, called fixed obstacles hereafter. The method is
described in Section 3.5.2. Finally, we introduce the entire proposed procedure to

learn a navigation path in Section 3.5.3.

41



3.5.1 Strategy for learning landmark positions and

related vehicle poses

We introduce the proposed strategy for learning a landmark and its position in
this section. Simply speaking, for a landmark to be learned well, we have to guide the
vehicle to appropriate positions to detect it. To increase the accuracy of the position of
the learned landmark, we take images of the landmark a number of times from a
number of different positions or different directions. The reason why we take multiple
images is that the outdoor condition might cause the taken images to be all different,
especially when there are clouds floating across the sun in the sky during the noon
time. After we collect multiple-images.and analyze the feature data, a more precise
landmark position with the corresponding vehicle pose can be obtained. Then, it is

recorded as part of the learned navigation path.

Figure 3.11 A fixed obstacle in a navigation path which may cause the vehicle to fall outside the

sidewalk.

To be more specific, after we detect the landmark in omni-images a multiple
times with the vehicle in different poses, we can calculate the mean of all the detected
landmark positions as an estimated landmark position, denoted as Pjangmark-
Furthermore, we choose the vehicle pose among the multiple ones, which is closest to

the one to yield the estimated Pjangmark, fOr use as the learned pose, denoted as Pyenicle,
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corresponding to the estimated Pjangmark- The detailed algorithm for the above process

is described in the following.

Algorithm 3.2 Learning of the landmark position and related vehicle pose.

Input: a landmark type of the appointed landmark to be learned.

Output: an estimated landmark position Piangmark @and a corresponding vehicle pose
Puenicle-

Steps.

Step 1. Initialize three parameters i, j and k to be zeros, where i, j and k represent the
k-th landmark detection, the j-th vehicle orientation, and the i-th vehicle
position, respectively.

Step 2. Guide the vehicle to a position V; = (Px;, Py;) and record this vehicle position
Vi into a set Sy.

Step 3. Turn the vehicle into an orientation Th;j; and record this orientation into a set
Sth.

Step 4. According to the type of landmark, localize the landmark by the use of the
corresponding localization technique (described in Chapter 5) to obtain the
landmark position pix = (Xijk, Yij), and record this landmark position pjjx into
aset Sp.

Step 5. Go to Step 4 for K times as needed, and record the number of recoded
landmark positions in the j-th vehicle orientation and the i-th vehicle
position, denoted as N;; = K.

Step 6. Go to Step 3 for J times as needed, and record the number of different
vehicle orientations in the i-th vehicle position, denoted as N; = J.

Step 7. Go to Step 2 for | times as needed, and record the number of the different

vehicle position, denoted as N = 1.
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Step 8. Compute the desired landmark position Pjangmark USINg the set S. by the
following equation:

N

N;

1 Q&g 1
plandmark N N Z “ pijk N N; Z Z(Xijk ' yijk) ' (39)

i=1 j=1 k=1

M
M
Z
M
M
Z

Step 9. In Sy, select the c-th vehicle pose v. = (PXc, Pyc), where v; has the minimum
distance to Pjangmark cOmputed in terms of the Euclidean distance.
Step 10. Choose a median orientation The from all Thea in S, where a is 1 through

N, and set the desired vehicle position Pyenicie @S Pyenicle= (PXc, PYc, The).

3.5.2 Learning of fixed obstacles in a navigation path

In this section, we propose a function for use on the learning interface which can
be used to learn fixed obstacles. It is based on Chou and Tsai [23]. When we guide the
vehicle to a location where a fixed obstacle is projected onto the image region of both
Mirrors S and B, we utilize this function to learn the fixed obstacle. We know that the
fixed obstacle is located on the sidewalk, so we can-use this property to learn the fixed
obstacles more easily. As shown in Figure 3.12, first we use the mouse to click the
position of the fixed obstacle on the region of Mirror B in the image. Then, the system
will record the pixel in the image for use later to calculate the learned position of the
fixed obstacle. After selecting sufficient obstacle points in the omni image, the
position of the fixed obstacles Wops and some parameters for avoiding the obstacles
are recorded together as part of the learned path information. Finally, the trainer may
set the distance parameters to let the vehicle cross the fixed obstacle safely. The
detailed algorithm to implement the above-mentioned ideas is described in the

following.
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Algorithm 3.3 Computation of fixed obstacle positions.

Input: an image linput, the distance from the center of Mirror B to the ground, and a set

Sops Of the image points in the region of Mirror B, denoted as b; = (uy;, vai), where i =1

through N.

Output: a fixed obstacle position Wops.

Steps.

Step 1. Manually choose the fixed obstacle point b; at coordinates (uyj, vii) in the
region of Mirror B in li;puc @and record b;.

Step 2. Repeat Steps 1 for N times.

Step 3. For a set of points.bj,.calculate the 3D position (cyi, Cyi, C.i) Of point C; in the
CCS by the derivations mentioned in Section 2.3.2 using the two
pano-mapping tables.

Step 4. Use the camera coordinates (Cyi, Cyi, Cs;i) Of point C; and the coordinate
transformation from the CCS to the WCS described by Equations (3.4) and
(3.5) to calculate the position (X, yi) of the corresponding point W; on the
ground in the WCS, and record W; into a set Wops.

Step 5. Repeat Steps 3 and 4 for N times.

Step 6. Derive the position (obsy, obsy) of point Weps in the WCS as the location of
the obstacle by the following equations:

13 13
obs,==>"x; obs,==>"y,. (3.10)
N & N

i=1

3.5.3 Algorithm for path learning

In this section, we introduce the method we propose to establish a navigation path in
the learning process. We define eleven types of navigation nodes in this study, as

listed in Table 3.2. These navigation nodes include a set of different works which have
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to be conducted by the vehicle. We guide the vehicle to learn a navigation path which
we select, and some pre-selected landmarks by the utilization of the navigation node
are recorded. Also, other parameters, like the environment intensity and landmark
segmentation parameter, are recorded in the learned path. When the learning process
is terminated, construction of the navigation path is finished. A navigation path
consists of a number of the navigation nodes and some relevant parameters. When the
navigation process is started, the navigation path can be used for vehicle navigation
successfully. The detailed algorithm to implement the learning system is described in
the following, and a flowchart of the process for navigation path creation is illustrated

in Figure 3.13

Svetem Fde lmage Proosss Yaw Coptum Tool Capture Imags

;
;
!

Figure 3.12 A learning interface for the trainer to learn the position of the fixed obstacle by clicking

mouse on corresponding points in the image region of Mirror B.

Algorithm 3.4 Creation of a navigation path.
Input: Odometer readings of vehicle poses, denoted as (Px, Py, Pw), where Py and Py
represent the vehicle location and Py, represents the direction of the vehicle, in the

WCS.
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Output: A set of navigation nodes denoted as Npagh.

Steps.

Step 1. Record into Npan the start node Npegin Of Type O with the odometer readings

(Px, Py, Pw) = (0, 0, 0).

Step 2. Set the navigation mode, and let the vehicle to navigate forward until

arriving at a destination node and stop the vehicle.

Step 3. According to the appointed navigation mode, record into Nyan the current

vehicle pose, denoted as Newr = (Px; Py, Pw) obtained from the odometer

readings in Type 1 or Type 2; and select one of the following seven

additional learning tasks.

(1)

@)

(3)

(4)

()

(6)

Learn a tree landmark by the method described in Section 5.4.2 to
obtain a tree position Ny and the related vehicle pose Ncar, and record
Ncar In Type 4 and Niree In Type 5 into Npah.

Learn a corner of the lawn landmark by the method (with the detail in
Section 5.4.2), obtain a tree position Ngor and the related vehicle pose
Near, and record Near In Type 4 and Neo, in“Type 6 into Npah.

Learn a traffic cone landmark by the method mentioned in Section
3.4.2, obtain a traffic cone position N and the related vehicle pose Ncar,
and record Ncar In Type 4 and Nic in Type 7 into Npath.

Learn a road stop line landmark by the method mentioned in Section
3.4.2, obtain a road stop line position Ny, and the related vehicle pose
Ncar, and record Ncar in Type 4 and Ny in Type 8 into Nyath.

Learn a signboard landmark by the method mentioned in Section 3.4.2,
obtain a signboard position Nsg and the related vehicle pose N¢ar, and
record Ncar in Type 4 and Ngg in Type 9 into Npath.

Learn a fixed obstacle Nqps using the proposed function discussed in
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Step 4.

Step 5.

Section 3.5, and record Noys in Type 10 into Npath.

(7) Learn a curb line calibration node Ncai, where the vehicle can “see” a
complete curb line segment without occlusion and will calibrate its
pose by the “seen” curb line information in the navigation process, and
record Neaii in Type 3 into Npath.

Go to Step 2 if the destination is not reached yet, where the destination

position is selected by the trainer.

Record the terminal node Neng, denoted as (Px, Py, Pw), according to the

current odometer readings, in Type 0 into Npath.

Table 3.2 Eleven different types of navigation path nodes.

Type of number Type of node
Type O Start / Terminal node
Type 1 Curb-following navigation node
Type 2 Blind navigation node
Type 3 Curb-line calibration node
Type 4 Localization node
Type 5 Tree landmark node
Type 6 Corner of the lawn landmark node
Type 7 Traffic cone landmark node
Type 8 Road stop line landmark node
Type 9 Signboard landmark node
Type 10 Fixed obstacle node
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Figure 3.13 The process for navigation path creation.
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Chapter 4
Navigation Strategy in Outdoor
Environments

4.1 Strategy for Automatic Navigation

After learning the navigation environment, we get the learned environment
information including guidance parameters and a navigation path. Then, we can use
them to navigate the vehicle automatically in the learned path. But, it is usually
difficulty to let the autonomous-vehicle “walk” safely in the complicated conditions
on sidewalks. In this chapter, we introduce some strategy for automatic safe vehicle
navigation. The principles of conducting the navigation work are described in Section

4.2.1. The detailed algorithm for the navigation process is introduced in Section 4.3.

4.1.1 \ehicle localization by alone-path objects

As mentioned in Chapter 2, Because of manufacturing imprecision, the
autonomous vehicle wusually suffers from incremental mechanic errors during
navigation, causing unstable navigation trajectories. To solve the problem, the strategy
adopted in this study is to guide the vehicle to constantly localize its position by the
learned fixed landmark position. In Chapter 5, the techniques for localizing a
landmark along a navigation path will be introduced. Then we can adjust the vehicle

posture by changing its orientation and position to modify the odometer.

4.1.2 Dynamic Adjustment learning parameters in
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navigation process

Because of the varying lighting condition on the sidewalk, it is not good to
always adopt fixed guidance parameters recorded in the learning process to conduct
image analysis works. We adopt a “flexible” strategy to accomplish such works in this
study, i.e., techniques for dynamic guidance parameter adjustment are designed for
use in vehicle navigation. The techniques are based on Chou and Tsai [23]. Also, we
use the contour of the signboard to help the vehicle to adjust the learned parameters
for signboard detection by principal component analysis (PCA). The method will be

introduced in Chapter 6.

4.2 . Guidance Technique in Navigation
Process

4.2.1 Principle of proposed navigation process

When the vehicle starts navigation, how to arrive at the node recorded in the
learning process is an important issue. In this section, we describe the principles [23]
behind the proposed technique for vehicle navigation on the learned path. When the
vehicle prepares to start navigation, it retrieves a navigation path and some guidance
parameters which were recorded in the learning process. The navigation path consists
of plenty of sequential nodes, so the vehicle can be guided to the destination through
the nodes sequentially. Because the vehicle has mechanic errors, it usually reaches the
next node at an imprecise location. So some principles are proposed for use to guide
the vehicle to correct such errors and navigate safely to the desired destination. They
are described as follows.

(1). The vehicle always follows the sidewalk curb except when it is necessary to
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).

3).

(4).

detect farther landmarks or to avoid obstacles. After detecting and localizing the
curb line, the vehicle modifies its orientation to maintain a safe distance with
respect to the curb on the sidewalk.

The vehicle localizes its position and corrects the odometer along the navigation
path after every constant-time interval. According to the landmark information
which we learned, the vehicle detects and localizes the landmark by the use of
the proposed landmark localization techniques. Finally, we conduct adjustment
of the vehicle pose.

The vehicle always keeps navigating safely by avoiding collisions along the path.
After learning the positions of fixed obstacles, the vehicle conducts a specific
procedure to dodge the static obstacle. The procedure will be introduced in
Section 4.2.3.

When detecting a landmark using techniques such as dynamic thresholding, the

vehicle can adjust guidance parameters if necessary.

General speaking, the vehicle usually localizes itself by the odometer readings

to conduct node-based navigation. Considering the mechanic errors, we establish two

conditions to decide whether the vehicle has arrived at the next node in node-based

navigation. The two conditions are introduced in the following.

(1).

).

Condition 1 — as shown in Figure 4.1(a), the distance disty between the current
vehicle position V and the position of the next node Node;j:; should be smaller
than a threshold thr;.

Condition 2 — as shown in Figure 4.1(b), the distance disty between the next
node Nodej;; and the position of the projection of the vehicle on the vector

formed by Node; and Node;j.1 should be smaller than a threshold thr.

By checking the above two conditions, the vehicle can be guided to navigate to
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the next node and move to the destination. A flowchart illustrating the proposed

node-based navigation is shown in Figure 4.2.

(b)

Figure 4.1 Two conditions to decide if the vehicle arrives at the next node in the navigation process.

(a) According to the distance between the vehicle position and the next node position. (b) According
to the distance between the next node position and the position of the projection of the vehicle on

the vector connecting the current node and the next node.

4.2.2 Automatic vehicle localization by selected

landmarks on sidewalks

Although the odometer provides three values Py, Py, and Py, for the vehicle to
identify its position (Pyx, Py) and moving direction Py, they are in general too
imprecise to guide the vehicle to the next position correctly in the node-based
navigation. To reduce the influence of the incremental mechanic errors on the
vehicle’s navigation, we may employ as many landmarks along the path as possible.
Then, we can use the landmark position to calibrate the odometer reading. In this

section, we introduce the proposed technique to calibrate the vehicle position. As
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shown in Figure 4.3, at first we use the curb line landmark to modify the orientation
reading Py, of the odometer. When the vehicle arrives at the position of a recorded
landmark, we utilize the proposed method for detecting landmarks to calculate its
position and then adjust the current position (P, Py) of the vehicle provided by the
odometer. Combining the above two strategies, we can make the vehicle reach the

next node more precisely.

Loading the Learned
navigation path

Coduct calibration of Y Conduct obstacle
vehicle pose avoidance
P Read a new node -
Conti Vehicle starts
—— navigation
navigation to node
—>

\J v Obstacle
Adjust . Avoidance
guidance Sldewallf curb Odom(::-ter procedure

following following

parameters
No heck if react
next node?

Vehicle stops
navigation

Read a landmark Read a fixed
node obstacle node

Figure 4.2 Proposed node-based navigation process.

(A) Adjustment of the odometer reading of the vehicle position conducted near the
curb line.

Figure 4.4 illustrates the relation between two different positions of the vehicle,

the curb, and the landmark. The process of adjustment of the vehicle pose using the

sidewalk curb line is divided into two steps. When the vehicle arrives at a position

which we recorded, we detect the straight curb line segment which is seen in the
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omni-image, and calculate the slope angle with respect to the vehicle. Compared
with the learned navigation path, we can estimate the current direction of the vehicle.
After adjusting the direction, then we start to detect the landmark and obtain its
position. According to the landmark position we recorded in the learning process, we
utilize the vehicle orientation which we just calibrate to compute the current vehicle
position by the relation between the landmark position and the vehicle position in the
GCS as shown in Figure 4.5. The adopted method to calibrate the odometer is

described in the following algorithm.

Algorithm 4.3 Conductingadjustment of the odometer reading of the vehicle
position near the curb line.

Input: a recorded landmark position Lyecorg, the odometer readings of the vehicle pose,
a recorded slope angle @ of the curb line, and a recoded vehicle pose V, (Px, Py,
Pin).

Output: none.

Steps.

Step 1. Turn the vehicle to the recorded direction Py,, compute the curb line detection
process which Is described in Chapter 6, and compute the slope angle 6’ of the
curb line relative to the vehicle direction.

Step 2. Compute an adjustment angle .4; by the following equation:
gadj =0 - 19, (4.1)

and modify the orientation odometer reading to be 8,; which is then taken as
the correct vehicle orientation Py,
Step 3. Detect the landmark in the acquired image and compute its position at L in

the CCS (using the method described in Chapter 5); and by the coordinate
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transformation between the CCS and the VVCS described in Equation (3.6) with
Lces in the CCS as input, compute the landmark position Lycs and describe it
with coordinates (ly, ly) in the VCS.

Step 4. From the learned navigation path, obtain the recorded landmark position L ecorg
at coordinates (Cy, C,) in the GCS, and use the calibrated orientation Py’ to

compute the current vehicle position (Xcaii, Ycai) in the GCS by the following

- C, N co_sPth'l sin Ry || 1, | (42)
Ycali Cy —sIn Pth COSPthI Iy

Step 5. Replace the imprecise position readings of the odometer, (Px’, Py’), by the

equations:

calculated vehicle position (Xcaii, Yecaii)-

(B) Adjustment of the odometer reading of the vehicle position conducted far off the
curb line.

The process for adjustment of the odometer reading of the vehicle position
conducted far off the curb line is similar-to the above-mentioned process for
adjustment near the curb line. The detail of the process is shown in Figure 4.6. First,
we detect and localize a nearby curb line segment for the purpose to adjust the
orientation reading in a similar way as described previously at a node P; in the
learned path. Next, we conduct a slight difference step, i.e., we guide the vehicle a
step further to another node V,, which is a location recorded in the navigation path far
off the curb line, for the purpose of detecting the landmark at a close location.
Comparing the two adjustment processes, the second one might cause some
mechanical errors and provides erroneous odometer readings after the vehicle moves
from V; to V,. For this, after detecting the landmark and localizing it, we use the same

technique to compute the current vehicle position by the relation between the
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landmark position and the vehicle position in the GCS as described previously.

Start vehicle localization

v

Curb landmark
detection

Recorded curb Curb line slope 6

line slope 8
Odometer

Orientation

Detect landmark
position

Landmark position in
CCS

Compute
landmark position
In VCS

Landmark position in

Learned Landmark VCS

position in GCS

Vehicle
odometer Update

End vehicle localization

Correct vehicle position
in GCS

Figure 4.3 Proposed odometer reading adjustment process.
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Figure 4.5 Landmark detection for vehicle localization at position T. (a) At coordinates (I, ly) in VCS.
(b) At coordinates (Cy, C,) in GCS.

4.2.3 Fixed-obstacle avoidance process

58



As mentioned in Chapter 3, there might be fixed obstacles along the path. A
fixed obstacle might block the vehicle or cause it to fall outside the sidewalk. So we
propose a strategy to help the vehicle avoid the obstacle safely, as described in the
following.

As shown in Figure 4.7, the vehicle is navigating to reach a node V; in the
learned path. The next node V, is just occupied by an obstacle. According to the
obstacle parameters Oy and Oy recorded in the learned navigation path which specify
how far the vehicle should keep away from the obstacle, we utilize the two parameters
to compute three locations by which we can insert three respective nodes in the
navigation path as shown.in Figure 4.7. The first is placed at the left rear side with
respect to the obstacle position. The second is placed at the left front side. And the last
is placed right in front of the obstacle. From the third newly-placed node, the vehicle
can go back to the original path. By visiting the three new nodes in sequence, the

vehicle can dodge the obstacle successfully and be guided to visit node V3.

4.3 "Detailed Algorithm-of Navigation
Process

In this section, we Introduce the detailed algorithm proposed in this study for
vehicle navigation in the navigation process. With the learned information, the vehicle
navigates along the learned path by the way of visiting each recorded node
consecutively and finishes works at specific positions until reaching the destination
point. The flowchart of the whole navigation process is shown in Figure 4.8. The

whole navigation process is described in the following algorithm.
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Landmark

Figure 4.6 Process of odometer calibration position is far off the curb line. The vehicle detects the
curb line at V; to calibrate the orientation and then navigates to V, to calibrate the position using

landmark.
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V3
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Figure 4.7 Process of fixed obstacle avoidance. We insert the Nodeayoigi, Nodeavoig2, and

Nodeavoigs.for obstacle avoidance in the original navigation path.

Algorithm 4.3 Navigation Process.

Input: a learned navigation path Nyan With relevant guidance parameters, and learned

data of camera parameters.
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Output: none.

Steps.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Read from Npam a navigation node Npeq and relevant guidance parameters.

Rotate the vehicle toward the next node Npext..

If a curb line following mode is adopted, modify the vehicle direction after

localizing the curb landmark using the dynamic threshold adjustment

technique as described in Section 6.1.1 [23].

Check if the next node Ny IS reached by the mentioned two principles in

Section 4.2.1: if not, go to Step 3; otherwise, continue.

If a fixed obstacle -node.is read from Npam, insert obstacle avoidance nodes

Into the navigation path and go to Step 8.

If a landmark node is read from Npam, take the following steps and then go to

Step 8.

(1) Adjust the exposure value to the desired illumination in the relevant
environment windows in the image.

(2) Detect the landmark and calculate the landmark position as described in
Chapters 5 and 6.

(3) Utilize the position of the landmark to localize the vehicle position and
modify the odometer reading as described in Section 4.2.

If a curb line calibration node is read from Npan, modify the orientation

reading of the odometer after detecting and localizing a curb line segment, as

described in Section 4.2.

Repeat Steps 1 through 7 until there exists no remaining node in Npath.
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Chapter 5

Natural Landmark Detection In
Images Using New Space Line
Detection Technique

5.1 ldea of Proposed Space Line
Detection Technique

In this study, it is desired to develop a space line detection method to localize
landmarks on the navigation-path for vehicle navigation. However, compared to the
result of using the traditional projective camera, the projection of a space line on an
omni-image using an omni-camera is not a line shape but a conic-section curve [25].
Wu and. Tsai [25] proposed a line detection method which detects lines in an H-shaped
landmark for use in automatic helicopter landing, as illustrated in Figure 5.1. Firstly,
they proved that the projection of a space line in the omni-image Is a conic-section
curve. Then, by using a 2D Hough transform, they extracted the conic section curve in
the omni-image and localized the boundary lines of the H shape for conducting the
helicopter landing.

However, Wu and Tsai’s method is based on the fact that the parameters of the
hyperboloidal mirror are known. It is known that the parameters of a hyperboloidal
mirror cannot be calibrated easily. As mentioned in Chapter 3, it is more convenient
for us to utilize the pano-mapping table to calibrate the camera. Thus, we propose
new space line detection techniques in this study by the use of the pano-mapping
table. We utilize the space plane which goes through the space line and the center of

the mirror, instead of trying to obtain directly the conic section curve in the
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omni-image. By the use of the two-mirror camera system, the proposed line detection
technique is introduced in Section 5.2.1. Besides, we derive a method to obtain 3D
information of three vertical lines based on the method for line detection proposed in

this study. The derivation of 3D information is introduced in Section 5.2.2.

omni - camera

(@) (b)
Figure 5.1 Wu and Tsai [25] proposed a line detection method for the omni-image to-conduct
automatic helicopter landing. (a) Illustration of automatic helicopter landing on a helipad with a

circled H shape. (b) An omni-image of a simulated helipad.

Finally, by the use of the proposed space line detection technique, many types of
landmarks can be detected and utilized for vehicle navigation. We introduce the
proposed tree trunk detection method in Section 5.4 and the proposed lawn corner
detection technique in Section 5.5. Artificial landmark localization also utilizes these

methods, which will be introduced in Chapter 6.

5.2 Proposed Technique for Space Line
Detection
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5.2.1 Line detection using pano-mapping table

If we want to detect a space line which is projected onto the omni-image, it costs
much time to calibrate the camera parameters. In this section, a space line detection
technique [23] for use on omni-images which are taken by the two-mirror
omni-camera used in this study is proposed. Instead of directly obtaining the conic
section curve, we detect the space plane which goes through a specified line and the
mirror center. In the following, we describe the proposed detection process.

Assume that a pano-mapping table has been established in advance. Also,
assume that the space line L to be detected is projected by Mirror B onto the
omni-image, and that G is any space point on L. At first, we propose a way to
represent a vector which goes through G and the center of mirror Og used in this study.
A light ray going through the space point G is projected by Mirror B onto an image
point I'as shown in Figure 5.2. The mirror center Og and G together form a vector Vg’
denoted as (Gx’; Gy G;) in the CCSjecai. This vector Vg’ can be described using the

azimuth and elevation angles dand a by the following equations:

G, =cosaxcosd; G/ =cosaxsingd; G, =sina. (5.1)

Also, as mentioned previously, to increase the front FOV of the camera, we make
the camera system slant up for a specific angle, denoted as y. By the use of the
rotation matrix introduced in Equation (2.5), the transformation function between the
coordinates (X', Y', Z') of the original CCSj,cq and the coordinates (X, Y, Z) of the

rotated CCS can be described as follows:

X 1 0 0 X'
Y |=|0 cos(—y) —sin(=y) |l Y |. (5.2)
z 0 sin(—y) cos(-y) || Z'
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According to the coordinate transformation described by Equation (5.2), we can
convert the vector Vg “into a new one Vg, which represents the vector with an azimuth
angle @ and an elevation angle o going through the mirror center in the rotated CCS

and may be described by the following equations:

G, COSa xC0Sé
Ve =| G, |=| cosaxsin@xcosy +sinaxsiny |. (5.3)
G, —COS @ x Sin @ +Sin o x COS

z’

P
v \ / Y
I(uyv) /

/ Omni-image CCSiocal

\

X
a_1= E

Os

Figure 5.2 A space point with an elevation angle « and an azimuth angle 6.

Then, as shown in Figure 5.3, let I, be the conic section curve resulting from
projecting the space line L onto the omni-image. Also, let Q be the space plane which
goes through L and the mirror center Og. Assume that the coordinates (X, Y, Z) of a
point is on the space plane Q, and let Ng = (I, m, n) be the normal vector of the space

plane Q. Then, the space plane Q may be described by:
IX+mY+nZ=0. (5.4)

Besides, because the normal vector Ng and the vector V¢ are perpendicular to
each other, the coefficients in (5.4) actually are related to the elements of the vector
V¢ of Q by the equality No-Ve = (I, m, n)-(Gy, Gy, G;) = 0 which we describe in the

following:

NQ‘VG = (I, m, n)'(Gx, Gy, Gz) = IGX + mGy + nGZ = O. (5.5)
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e

i/ omni-image

Oc
Figure 5.3 A space line L projected on I in an omni-image.
Then, substituting Equation (5.3) into Equation (5.5), we get

I(cosaxC0S@) +m x (CosarxSiNE@ xCosy + Sina xSiny)
+nx(—cosaxsin@+sinaxcosy) =0. (5.6)
Equation (5.6) may be divided by Gy to get

y (cos a xsin@xcos y +sin a xsin y) . (—cosaxsin@+sinaxcosy)
(cosax cosd) (cosa xcosé)

0.

l+m

(5.7)
However, the above equation consists of the three unknown parameters I, m, and n
which represent the normal of the space plane Q. For the purpose of equation
reduction, we assume that n is not equal to zero. Then, we may divide Equation (5.7)

by n to get an alternative form as follows:

I m_ (cosa xsin@xcos y +sin a xsin y) N (—cosaxsin@+sinaxcosy)

n n (cos a xcos 6) (cos a xcos #)

0.
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(5.8)

We may reduce Equation (5.8) further to get the following result:

(cosaxsin@xcos y +sina xsin y) N (—cosaxsin@+sina xcosy)

B+ Ax 0
(cosa xcos6) (cosaxcos6)
(5.9)
where A = m/n, B = I/n, which may be rewritten as
B+Aap+a;=0 (5.10)
where
COS & xSIN @ x COS ¥ +Sin a xSin
Alm B:I—,ao:( 4 7)’
n n (cos arx cos )

_ (=cosaxsin@+sinaxcosy)
(cos o xcos )

q

Finally, we utilize two variables A and B, as shown by (5.10), to represent the
parameters |, m, and n. In summary, we can use a simple technique using the 2D
Hough transform to compute the parameters A and B. A detailed algorithm is

introduced in the following.

Algorithm 5.1 Space line detection.

Input: an input edge-point image leqge Which includes the conic section projection L’
in an image leqge OF @ space line L, and the pano-mapping table for Mirror B.

Output: the values of the two parameters Amax and Bmax, representing a normal vector
of the space plane described by Equation (5.10).

Steps.

Step 1. Set up a 2D Hough space S with the parameters A and B and set all cell

values to be zero.
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Step2. For an edge point | at coordinates (u, V) in legge, and look up the
pano-mapping table to obtain a corresponding azimuth-elevation angle pair
(6, o).

Step 3. Compute the parameter values A and B by Equation (5.9) using 8and «; and
if A, B, 6, and o satisfy Equation (5.9), then increment the count in the cell
(A, B) of the Hough space S by one.

Step 4. Repeat Steps 2 and 3 until all the edge points in leqge are computed.

Step 5. Take the cell (Amax, Bmax) With-a maximum count in S as output.

We can obtain the normal vector (I, m, n) from the above-presented algorithm;
however, it costs much time to-calculate the 2D Hough transform. Chou and Tsai [23]
proposed a method which detects a vertical line by using a 1D Hough transform and
the normal vector of the space plane. The vertical line, called Ly line hereafter, is
parallel to the Y-axis line in the GCS. In this study, we propose a method for detecting
two specific lines. One line of the two is parallel to the X-axis, called the Lx line. The
other is parallel to the Z-axis, called the Lz line. These three specific lines are
illustrated in Figure 5.4. We will describe them, respectively

At first, we review the method for Ly line detection. Note that the direction
vector of Ly is Dy = (dvx, dyy, dyz) =(0, 1, 0). Therefore, Equation (5.5) leads to OxI + 1
xm+ Oxn = 0. Then, it is easy to figure out that m is equal to zero. Thus, Equation (5.7)

can be reduced to be the following equation:

(—cosa xsin@+sin o xcos y)
X =
(cos a xcos 6)

l+n 0.

(5.11)

By Equation (5.10), we may reduce Equation (5.11) to be
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B+a,=0 (5.12)

or equivalently, to be

B =-a;. (513)

In a similar way as described in Algorithm 5.1, we can use a 1D Hough
transform to find the parameter B, which represents a normal vector of the specific
space plane through the Ly line and the mirror center.

Then, it can be that the direction vector of the Lx IS Dx = (dxx, dxy, dx.) = (1, 0, 0).
Therefore, Equation (5.5) leads to 1xl + Oxm+ Oxn = 0. Then, it is easy to figure out

that | is equal to zero. Thus, Equation (5.7) can.be reduced to the following equation:

iR (cosa xsin@xcosy +sina xsin y) P (=cosaxsin@+sina xcosy)

(cos ar x cos 6) (cosc x cos 6) 0.
(5.14)
By Equation (5.10), we can reduce Equation (5.14) to be
Axa,+a, =0, (5.15)
or equivalently,
- (5.16)

So we can also use Algorithm 5.1 to find the parameter A, which represents a normal

vector of the specific plane through the Ly line and the mirror center.
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Figure 5.4 Three specific space lines.

The last one is about Lz line detection in the space. The direction vector of the
horizontal line Lz is Dz =(dzx, dzy, dz) = (0, 0, 1). Thus, Equation (5.5) leads to OxI +
Oxm+ 1xn = 0, or equivalently, n = 0. Equation (5.7) can thus be reduced to be the

following equation:

y (Cosaxsin@xcosy +sina xsiny)

| +m — 0. (5.17)
By Equation (5.10), we can reduce Equation (5.17) to be
| +mxa, =0, (5.18)
or equivalently,
-a,=K (5.19)
where
=(cosozxsin9><cos;/+sino:><sin7/) L
(cos a x cos 0) S T

Again, we can use a simple 1D Hough transform technique to compute the
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parameters K. The detailed algorithm is introduced in the following.

Algorithm 5.2 L7 space line detection.
Input: an input edge-point image leqqe Which includes the conic section projection L’
in an image leqge Of @ Lz space line L, and the pano-mapping table for Mirror
B.
Output: the values of the parameter Kmax representing a normal vector of the space
plane described by Equation (5.16).
Steps.
Step 1. Setupa 1D Hough space S with the parameter K and set all cell values to be
zero.
Step 2. For an edge point | at coordinates (u, V) in ledge, 100K up the pano-mapping
table and obtain a corresponding azimuth-elevation angle pair (6, ).
Step 3.... Compute the parameter K by Equation (5.19) using #and «, and if K, &, and
a satisfy Equation (5.19), then increment the count in the cell K of the
Hough space S by one.
Step 4. Repeat Steps 2 and 3 until all the edge points in leqqe are processed.

Step 5.  Take the cell Knax With a maximum count in S as output.

5.2.2 3D data computation using three space lines

In this section, based on the proposed space line detection technique described in
the previous section, we can derive the 3D data from three vertical space lines from

the omni-image, as described subsequently.

(A) 3D data computation using a Ly line.

As shown in Figure 5.5, a Lx space line is projected onto I; and I, on the
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regions of Mirrors B and S, respectively. The center Og of Mirror B is located at
coordinates (0, 0, 0) in the CCS as we previously assumed. We can calculate the
position of the center Og of Mirror S by the slant angle » and the length of baseline
which is denoted as b to be (0, bsiny, bcosy) in the CCS coordinates system.
According to Equation (5.4), two space planes Qi and Q. going through Ly and the

center of mirror, Og and Os, respectively, can be described by the following equations:

IgX + mgY + ngZ = 0; (520)

IsX + mg(Y — bsiny) + ng(Z — bcosy) =0, (5.21)

where (Is , mg, ng) represents the normal vector of Q; and (Is, ms, ns) represents that

of Q..
Os( 0, bx siny ', bx cosy )
Y
W
ol &
(0,0,0)
N
—~ \ TyLine
m -

Ground Plane

Figure 5.5 A space line projected onto I, 5 and I, on two mirrors in the used two-mirror omni-camera.

As mentioned previously, the direction vector of Ly is Dy = (dvx, dvy, dvz) = (0, 1,

0). Thus, we know that mg and ms are both zero, and the above two space plane
equations can be reduced into the following forms:

IgX + ngZ = 0; (5.22)

IsX + ng(Z — bcosy) =0, (5.23)

or equivalently,
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B X+Z=0; (5.24)
BoX+ (Z — bcosy) =0, (5.25)
where B; = Ig/ng and B, = lg/ng.

Solving Equations (5.24) and (5.25), we can obtain the following desired solution

for X and Z:
X = bxcos;/;
Bz_B1
Z=-BxX=-B,xX +bxcosy. (5.26)

It is noted that Equation (5.26) cannot be solved when B; is equal to B,, resulting in a

parallelism between the two space planes Q; and Q.

(B) 3D data computation using a Lx line.
The process for 3D computation using a Lx line is similar to that using a Ly line.
As shown in Figure 5.6, the equations of Qs and Q, may be described in the

following:

lg1X + mg1Y + ngiZ =0; (527)

IsiX + msy(Y — bsiny) + nsi(Z — bcosy) =0, (5.28)

where (lg; , mg1, Ng1) represents the normal vector of Qz and (ls; , ms;, Ns;) represents
that of Q.
As mentioned previously, the direction vector of the Lx is Dx = (dxx, dxy, dx;) = (1,
0, 0). Thus, we know that Ig; and ls; are both zero, and the above two space plane
equations can be reduced into the following forms:
Mg1Y + Ng1Z =0; (5.29)
ms1(Y — bsiny) +ns;(Z — bcosy) =0, (5.30)

or equivalently,
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AY +Z=0; (5.31)
A, (Y — bsiny)+(Z — bcosy) =0, (5.32)
where A= mBllngl and A= m51/n51.

Solving Equations (5.31) and (5.32), we can obtain the following desired solution

for Y and Z:
v A, xbxsiny +bxcosy .
A-A '
Z=-AxY =Axbxsiny—A,xY +bxcosy. (5.33)

It is noted that Equation (5.33) cannot be solved when A; is equal to A, resulting in a

parallelism between the two space planes Q3 and Q.

Os( 0, bx siny , bx cosy )

Ground Plane

Figure 5.6 A space line projected onto I 3and I, , on two mirrors in the used two-mirror omni-camera.

(C) 3D data computation using a Lz line.

As shown in Figure 5.7, the equations of Qs and Qg may be described as follows:

lgoX + mgoY + nNgoZ =0; (534)

X + msz(Y — bSin]/) + ngz(z — bCOS}/) =0, (535)

where (Is2 , Mgz, Ngy) represents the normal vector of Qs and (lsz , Ms2, Nsy) represents
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that of Q.

Os( 0, bx siny ,bx cosy )

N \ L, line

Ground Plane

Figure 5.7 A space line projected onto I s and I, ¢ on two mirrors in the used two-mirror omni-camera.

The direction vector of the Lz line is Dz = (dz, dzy, dz) = (0, 0, 1). Thus, we
know that ng, and ns; are both zero. Thus, the above two space plane equations can be

reduced into the following forms:

lgoX + mgoY = 0; (536)
Is2X + msp(Y — bsiny) =0 (5.37)
which are equivalent to
KiX+Y=0; (5.38)
KoX + (Y = bsiny) =0, (5.39)

where K = Igo/ mgz and K = Isp/ ms,. By solving Equations (5.38) and (5.39), we can

obtain the following desired solution for X and Y:

X = bxsiny bxsiny-Y
K2_Kl Kz ,

Y =-K; xX. (5.40)
It is noted that Equation (5.40) cannot be solved when K; is equal to K5, resulting

in a parallelism between the two space planes Qs and Qs.
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5.3 Proposed Method for Tree Trunk
Detection

In this section, we introduce the proposed method to localize a tree trunk. At first,
we introduce the used method to describe a tree trunk contour and the learning of the
tree trunk contour in Section 5.3.1. Next, we extract a feature of the tree trunk by
moment-preserving thresholding [26] in Section 5.3.2. Then, estimating the position
of tree trunk is described in Section 5.3.3. Finally, some experimental results for tree
trunk detection by the proposed method are given in Section 5.3.4. The process of the

tree trunk localization is illustrated in Figure 5.8.

Tree trunk
Input ) DTS- Contour |Y€S middle line VIEE TS
nputomni= | preserving [ > analvsis > osition »  position
Image threshold Y coIr)nputation estimation
-
No Tree trun
location

Figure 5.8 Proposed method for tree trunk localization.

5.3.1 Tree trunk contour description

After conducting tree trunk segmentation in the omni-image, we want to ensure
that the result of segmentation is correct. In this study, we use the center of a group of
feature points and a simple description with two specific parameters obtained by
principal component analysis (PCA) to ensure that the object which we want is
existing. The method proposed is based on Chou and Tsai [23]. When it conducts the
segmentation results, it utilizes the feature point to compute the covariance matrix Cy
in the image. After obtaining the two eigenvalues and the two corresponding
eigenvectors of the matrix C,, we calculate the center of the feature points of the tree

trunk, the length ratio » of the two eigenvalues of C,, and the rotational angle @
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between the ICS and the principal component, respectively. Then, we utilize w and n
to describe the tree trunk contour as shown in Figure 5.9. The detailed algorithm is

described as the follows.

Algorithm 5.3 Tree trunk contour parameter computation.

Input: an input bi-level image linp,e Which includes the feature points of a tree trunk

appearing in an omni-image.

Output: Three tree trunk contour parameters, the center my of all the feature points

using their coordinates, a rotational angle o, and a length ratio 7.

Steps.

Step 1. = Scan each feature point p with.coordinates (u, v) in linpu:, COMpute the center
myx = (ux, vx) Of all the feature points using their coordinates, and calculate
the covariance matrix Cy of these feature points using their coordinates and
M.

Step 2. Compute the eigenvectors e; = (U, V1) and e, = (U, V) and the two
corresponding eigenvalues A; and A, of matrix Cy, where e; represents the
first principal component and e, the second.

Step 3. By the two eigenvectors e; and e,, and the two eigenvalues A; and A,
compute two parameters, the rotational angle @ of the first principal
component e; with respect to the v-axis in the ICS and the ratio 7 of 1, to 4,
by the following equations:

o=tan'(L); =4 (5.21)
ul X’Z

Step 4. Take my, w, and 7 as outputs.
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Figure 5.9 Principal component analysis for the tree trunk contour. (a) lllustrated principal
components, €; and e,, on the omni-image. (b) A rotation angle o between the ICS and the

computed principal components.

Additionally, because the vehicle cannot arrive at the same position to detect the
tree trunk, the projections of the tree trunk on omni-images cause a little difference of
their positions. To solve this problem, we guide the vehicle to take many of
omni-images from different positions and directions in the learning process. After
conducting the process of extracting the tree trunk-feature points, we use the images
to compute three parameters @, 7i, and my, the center of the entire group of feature
points. Collecting all of parameters, we set the tree trunk parameters in a range from a
minimum angle @nmin to @ maximum angle @max, and set a range from a minimum ratio
Imin t0 @ Maximum ratio 7max. Also, we calculate the average of the center of tree
trunk, and then set a threshold value Vieigne in the ICS to check that the height of the
center of tree trunk is true. Finally, we record the five parameters Vheight, @min, @ax,
Imin, and 77max @S the tree contour thresholds. In the navigation process, if the
computed the height of the center of the tree trunk, the rotational angle o, and the
ratio » in tree truck detection are not in the learned ranges, we decide that the result

of detection is not a pre-selected tree trunk.
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5.3.2 Moment-preserving thresholding for tree trunk

segmentation

In outdoor environments, it is difficult to detect the natural landmark like trees
because the natural landmark does not have obvious color information. So we should
find a strategy to detect it. In this section, we utilize the moment-preserving
thresholding technique to extract feature points of the tree trunk.

In outdoor environments, varying lighting conditions will influence the image
intensity. The moment-preserving thresholding approach to automatic threshold
selection for segmenting desired object out of a given image is adopted in this study.
We segment the tree trunk-from-an omni-image by thresholding the difference image f
into a bi-level image by the use of a threshold value Th. The details are described in
the following.

Given an environment window in the image f with n pixels whose gray value at a

pixel with coordinates (x, y) is donated by f(x, y), the i-th moment m; is defined as
m, =322f‘(x,y), i=0,1,2 3. (5.41)
[T

The moments can be computed by the use of the gray-level histogram in the following

way, where n;j is the total number of pixels in f with gray value z; and p; = nj/n:
\ 1 1 ; 3 { 4
m, :Han(zj)'Zij(zj)', i=0,1 2 3. (5.42)
j=0 j=0

Assume that the image resulting from thresholding only contains two gray values
Zo and z;, with z; being larger than zo. The method is to choose a threshold value to
judge the pixel value in the gray-level in the environment window to be z, or z;. To
find the desired Th, we can solve two equations described by Equations (5.41) and

(5.42) to obtain po and py, as described in the following:
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m, m 1-m, m| 1|m, —m,
Cd = CO = — y Cl = H
m m, Cy My m, Cy M  —M,
1 ! 1 !
Zy :E|:_Cl_(clz _4C0)2} Z; :E _C1+(012_4C0)2} (5.43)
1 1] 1|1 1] .
Py = 7z, 1, v Po= p, Mz v b= Po-

To obtain the threshold value Th, we need to accumulate the probability values from
the smallest gray value until the accumulated value reaches po, as described by the

following equation:

1
P =Han. (5.44)

7j<t

Finally, conducting the thresholding work, all pixels in the environment window
in the image f are scanned and their values are compared to the threshold value Th. If
a pixel value in f is larger than Th, the corresponding pixel in the bi-level image b is
labeled by “0”; else, it is labeled by “1.” We regard the region labeled by “0” as a tree

trunk region.

5.3.3 Tree trunk localization

By using the tree trunk contour extraction process described above, we want to
find the vertical axis line of the tree trunk to localize the tree trunk. We assume that
the desired vertical line goes through both centers of the tree trunk appearing in the
regions of Mirrors S and B in the omni-image. After extracting the two center
positions of the tree trunk in the regions of Mirrors S and B, we can obtain further the
two space planes which go through the axis line and the two mirror centers,

respectively, by the use of the proposed vertical line detection method [23]. Finally,
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we can obtain the tree trunk position by the located axis line using the information of

the two space planes. The detailed process is described as follows.

Algorithm 5.4 Tree trunk location computation.

Input: an input bi-level image Iy which includes tree trunk feature points, and an

environment window Winy.

Output: a tree trunk position Gy in the CCS.

Steps.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Compute the center Cg with coordinates (Ug, ug) of the tree trunk feature
points in wing of Winy and the center Cs with coordinates (us, us) of the tree
trunk feature points-in-wing of Wing;.

Look up the pano-mapping table to obtain the corresponding elevation angle
ag and azimuth angle Gz of Cg and the corresponding elevation angle as and
azimuth angle & of Cs.

By Equation (5.13), compute the parameter value Bg corresponding to Cg
using @z and ag as well as the parameter value Bs corresponding to Cs using
6 and as.

By the use of Bg and Bs, compute the position coordinates X and Z of the
axis line L of the tree trunk by Equation (5.26).

Compute the tree trunk position Gy with coordinates (X, Yi, Zi) in the CCS
as follows:

Xe = X;yw=-H,zw =2 (5.45)
where H is the height of the camera center.

Take Gy as output.

5.3.4 Experimental results for tree trunk detection
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Some experimental results for tree trunk detection are shown in this section. The
input image with a tree trunk on the regions of Mirrors S and B, respectively, is
shown in Figure 5.10. The result of tree trunk segmentation using the
moment-preserving threshold technique is shown in Figure 5.11. Finally, the result of
detecting the vertical axis line of the tree trunk and the obtained tree trunk position are

shown in Figure 5.12.

Figure 5.11 Tree trunk segmentation by moment-preserving thresholding.
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Figure 5.12 The result of tree truck detection and its position. (a) The result image of extracting the
vertical axis line of the tree trunk. (b) The related tree truck position with respect to the vehicle

position.

5.4 Proposed Method for Lawn Corner
Detection
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5.4.1 Lawn corner detection and localization

In this section we introduce the proposed method for lawn corner detection. As
shown in Figure 5.13, the lawn corner is too obscure to recognize in the omni-image,
so we can only see the part of the lawn corner By these observations, the detection is
divided into two stages. When the vehicle arrives at the detection position, it detects a
space line firstly. Then, it is guided to turn left, and detects another space line. The
two space lines then are drawn to cross to form a corner. In this way, we can obtain

the 3D data of the lawn corner successfully.

(a) (b)

Figure 5.13 Two different camera systems take the lawn corner. (a) By digital camera. (b) By

omni-camera.

Generally speaking, the lawn has the special color of green. We utilize this color
information to extract the lawn boundary. Unfortunately, the grove is in front of the
lawn as shown in Figure 5.13. It is too dark to obtain the color information. By the use
of image intensity difference between the lawn and the floor, we can detect an Lx
space line on the ground instead of detecting the lawn object. First, we detect the lawn
object using the moment-preserving thresholding technique as described previously in

Section 5.3.2. Then, we obtain the boundary line between the lawn and the sidewalk
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using the Canny edge detection technique. By the use of the edge-point image, we use
the above-mentioned space line detection technique to find an Ly space line on the
ground. The detailed algorithm for implementing this idea of lawn corner detection is

described as follows.

Algorithm 5.5 lawn boundary line detection.

Input: an input image linput, @ pano-mapping table for Mirrors B, and a set of

environment windows Win,c.

Output: the parameters Amax representing the parameters of space planes through the

boundary lines of the lawn and then through the Mirror B center

Steps.

Step 1. For linpye in the environment window Winge, use the moment-preserving
threshold to find the lawn object, and obtain a bi-level image ;.

Step 2. For Iy in the environment window Win.c, use the Canny edge detector to
conduct edge detection to extract the feature points of the boundary lines of
the lawn, and obtainan edge-point image leqge:

Step 3. Seta 1D space S with parameter A and initialize all cell counts to be zero.

Step 4. For each edge point | at coordinates (u, v) in wing of Win,c, look up the
pano-mapping table to obtain an azimuth angle &and an elevation angle «.

Step 5. Compute A by Equation (5.16) using dand «, and increment by 1 the value
of the cell with parameter A in S.

Step 6. Repeat Steps 4 and 5 until all edge points in wing of Win,¢ are computed.

Step 7. Find the cell, denoted as Anax , With the maximum value in space S

After conducting the boundary of detection, we can obtain the space plane which

goes through the boundary line on the ground. Then, the vehicle should turn left to
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detect another Lx space line. After we get two corresponding space plane parameters
Avirst and Asecond, We Utilize the results to compute the location of the lawn corner. The

detailed algorithm is introduced as follows.

Algorithm 5.6 Lawn corner position computation.

Input: two corresponding space plane parameters Asrsi and Asecong Obtained from
Algorithm 5.4, of a lawn appearing in an omni-image and the height of
ground H.

Output: a lawn position G.¢ in the CCS.

Steps.

Step 1. By Asrt and H, compute one boundary space line L; of the lawn by

Equation (5.23) and obtain its equation as follows:
o=l — H¥ 257, (5.46).
Step 2. By Asecondg and H, compute one boundary space line L, of the lawn by
Equation (5.23) and obtain.its equation as follows:
e e (5.47).
Step 3. Compute the coordinates (X.c, Yic, zic) of the lawn corner position G.c in
the CCS as follows:
Xic = giic = = hliZic'S.7] (5.48)
where H is the height of the camera center.

Step 4. take G ¢ as output.

5.4.2 Experimental results for lawn corner detection

An input image with the projection of a lawn corner on the regions of Mirror B is
shown in Figure 5.14. The result of the lawn boundary detection is shown in Figure

5.15.
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Figure 5.15 Two result of Ly line detection.
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Chapter 6

Artificial Landmark Detection In
Images Using Space Line
Detection Technique

6.1 Proposed Technigue for Curb Line
Following

To conduct vehicle navigations on sidewalks, Chou and Tsal [23] proposed a
technique to detect curb lines and compute their locations with respect to the vehicle.
In this section, based on the method proposed by Chou and Tsai, we propose a new
method to localize the curb line by the use of the projection of a curb line onto the
region.of Mirror B in the omni-image.

In this section, we review the method [23] in Section 6.1.1. In Section 6.1.2, the
curb line localization method we propose is introduced. Finally, some experimental

results for curb detection are shown in Section 6.1.3.

6.1.1 Review of adopted curb line following

Chou and Tsai [23] proposed a method for curb line detection. By the use of an
environment window, a curb line segment can be detected in the window. First, the
curb line color feature is extracted by the use of the HSI color model. Then, some
morphological process including erosion and dilation operations are performed to
eliminate small noise. Within the bi-level image I, which includes the curb feature

points, the inner boundary points of the curb line are found and their positions in the
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CCS are computed. The property that the curb line is on the floor is utilized to
compute the boundary point positions instead of using the space-mapping method. By
the use of Mirror B, suppose that a space point G at coordinates (X, Y, Z) is projected
onto the omni-image with an azimuth angle #and an elevation angle a. As mentioned
in Section 5.2.1, we can represent the vector from the mirror center Og to space point

G using the following equation:

G, COS @ x oS &
Ve =| Gy |=| cosaxsin@xcosy +sinaxsiny |. (5.3)
G —COS xSin @ +Sin & x€0S .

Figure 6.1 A detected curb line and the inner boundary points of the curb line on the omni-image.

Besides, according to the knowledge that the height H of the center of Mirror B
is known in advance, one can get Y = —H. Accordingly, Equation (5.3) can be

rewritten as follows, which describe the position of P:

—H x(cos a xcos 6)

X = ’
(cosa xsin@xcosy +sina xsiny)
Y=-H;
Z_—H x(—Ccosaxsind+sinaxcosy) 6.1)

" (cosa xsin@xcosy +sinaxsiny)

After calculating the position of the curb line boundary point in the CCS, it can
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be transformed from the CCS into the VCS. Then, the data are used to fit the line L to

get its equation as follows:

Y=ax+bh, (6.2)

where the two parameters, a and b, are calculated by the following equations:

nZXiyi _inzyi
_ 4

i=1 i=1

a N n n 2 '
nz & (Z X, j
ixizzn: Yi _ixiyiixi
b — =1 i=1 i=1 i=1 (63)

with (x;, ;) being the position coordinates of a boundary point.

Furthermore, a more precise position of the curb line can be estimated using the
dynamic color thresholding technique by adjusting the saturation threshold in a
pre-defined fixed range. After using all possible pre-selected threshold values in this
range to extract curb boundary points, the best saturation threshold value can be
estimated according to the minimum sum of errors in the results of fitting the curb
boundary points with the computed line. A result of applying dynamic color

thresholding technique is shown in Figure 6.2.

(b)

Figure 6.2 Two images of curb segmentation resulting from using different threshold values (a) The

segmentation result with original threshold value. (b) The segmentation result image by dynamic

thresholding.
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Finally, the slope angle of L and the distance d to the vehicle can be computed by

the following equation:

eztanltiJ; d= b , (6.4)

6.1.2 Proposed curb line localization technique

In this section we describe the proposed method of curb line localization. As
usual we get the feature points of the curb line by color information. Then, we use the
Canny edge detector to obtain the two boundary lines of the curb line. In the resulting
edge-point image, we use the proposed Lz line detection method to find the two
boundary lines based on a 1D Hough transform technique. Then, we choose the inner
boundary line to.compute its position. The proposed algorithm for curb line detection

as discussed above is described as follows.

Algorithm 6.1 Curb line boundary detection.

Input: a bi-level image linpye OF the feature points of a curb line, a pano-mapping table

for Mirrors B, and an environment window Wingy.

Output: the parameters Kimner representing the space planes going through the inner

boundary lines of the curb line and the Mirror B center.

Steps.

Step 1. For linput in the environment window Wing,, use the Canny edge detector to
conduct edge detection to extract the feature points of the boundary lines of the
lawn, and obtain an edge-point image ledge.

Step 2. Set up a 1D space S with parameters K and initialize all cell counts to be

zero.

Step 3.  For each edge point | at coordinates (u, v) in wing of Wing., look up the
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pano-mapping table to obtain an azimuth &and an elevation angle «.
Step 4. Compute K by Equation (5.19) using #and «, and increment by 1 the value
of the cell with parameter K in S.
Step 5. Repeat Steps 3 and 4 until all edge points in wing of Wing_ are computed.
Step 6.  Find the cell, denoted as Kjnner, With the maximum value in space S.

Step 7. Take Kinner as the output.

After successfully detecting the inner boundary line of a curb line, we can use it
to compute the inner curb line location. By the parameter Kiqner Obtained by the above
algorithm and the height H. of the center of Mirror B, we can rewrite Equation (5.40)

to obtain the position of the inner curb line L as follows:

Y=-H. (6.5)

6.1.3 " Experimental results of curb-line detection

Some experimental results of curb detection using the proposed localization
method are given in this section. An input omni-image with a curb line is shown in
Figure 6.3. The extracted curb boundary points and computed best-fit line from Figure
6.3 are shown in Figure 6.4. The method for localizing the curb line using a 1D
Hough transform is shown in Figure 6.5. Besides, we collected the statistics of our
experimental results for curb detection as shown in Table 6.1. Comparing the method
we propose with that by Chou and Tsai [23], we see that the error ratios of our method
are more stable and smaller. By this result, we utilize the fitting line method to
compute the slope angle of curb line and use a 1D Hough transform to localize the

curb line in the navigation process.
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Figure 6.4 The curb line detection method proposed by Chou and Tsai (a) the curb line segmentation

result. (b) lllustration of extracted curb boundary points and a fitting line.
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Figure 6.5 The curb line detection method (a) the curb line segmentation result. (b) The related curb

line position with respect to the vehicle position.
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Table 6.1 Comparison of two methods for curb line detection.

Distance Curb line fitting 1-D Hough Error ratio in Curb
method method line fitting
40 38 43 5.00%
40 39 43 2.50%
40 38 43 5.00%
40 38 43 5.00%
40 39 43 2.50%
40 38 45 5.00%
40 37 43 7.50%
40 37 43 7.50%
40 39 45 2.50%
40 38 43 5.00%
50 49 53 2.00%
50 50 53 0.00%
50 48 54 4.00%
50 48 54 4.00%
50 49 54 2.00%
50 48 53 4.00%
50 48 53 4.00%
50 47 53 6.00%
50 49 53 2.00%
50 48 53 4.00%
60 57 62 5.00%
60 58 63 3.33%
60 57 63 5.00%
60 56 63 6.67%
60 57 64 5.00%
60 56 64 6.67%
60 58 64 3.33%
60 58 63 3.33%
60 56 63 6.67%
60 58 64 3.33%
70 59 71 15.71%
70 54 71 22.86%
70 56 el 20.00%
70 98 70 21.43%
70 56 71 20.00%
70 54 71 22.86%
70 65 71 7.14%
70 54 71 22.86%
70 54 70 22.86%
70 54 71 22.86%
Average 8.16% 5.44%

6.2 Proposed Method for Signboard
Detection

6.2.1 Signboard detection

The idea of the proposed method for signboard detection is to detect the contour

of the signboard, like we do in detecting the tree trunk. Then, we use the boundary
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line of the signboard to localize it. Combining the two techniques, we can localize the
signboard more precisely. The entire process to localize a signboard is shown in

Figure 6.6. The computation of the signboard position is described in the next section.

Signboard

: Feature Signboard
Input omni-
P points  |-»| Contogr » 'boundg_ry I position
image ; analysis line position S
extraction . estimation
computation -
4 Signboard
Dynamic Threshold location

Adjustment

Figure 6.6 Proposed method of signboard localization.

Due to the obvious color of the signboard, we use the HSI color model to extract
the signboard from an image. In order to handle the varying lighting condition in the
outdoor environment, we utilize the hue and saturation values to obtain the signboard
feature. The transformation of a color (R, G, B) in the RGB color space into a

corresponding color (H, S, 1) in the HSI color space is as follows:

|6 ifB<=G,
1360-09, if B<G'’

3 : ;
S zl_m[mm(R,G, B)I;

I=%(R+G+B), (6.6)
where

[R-G)+(R-B)

6 =cos™ 5 —
[(R-G)"+(R-B)(G-B)]

We define two hue values, donated as Hpin and Hpax, as the hue threshold values for
extracting the blue feature of the signboard. We also define a saturation threshold
value to choose the feature of the signboard. These parameters are used together to

classify the signboard feature points.
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Besides, varying lighting conditions will influence the hue and saturation
features. Based on the learned signboard contour, we propose a dynamic color
thresholding scheme to adjust the saturation threshold value of Sy, in a fixed range [So,
S1], where Sp and S; are learned in advance in different lighting conditions in the
learning stage. Detailed algorithm to extract signboard feature points is described as

follows.

Algorithm 6.2 Signboard detection by dynamic thresholding.
Input: an input image linpue INCluding a signboard; the learned five signboard contour
parameters, M, @min, @Gax, Mmin, @NA 7max; tWo hue threshold values Hy,in and
Hmax; @ saturation-threshold Si,; and a set of environment windows Winsg.
Output: a bi-level image lp; with feature points of the signboard, and an adjusted
saturation threshold Sq.
Steps.
Step 1. Initialize an empty bi-level image Iy for labeling feature points and set all
pixel values as zero.
Step 2. Scan each pixel 1y, with coordinates (u, v) in Wingg, compute its hue value
hw and saturation value sy, by Equation (6.6), and if hyy, is between Hp, and
Hmax and sy, is larger than Sy, then label Iy, by “17in Iy;.
Step 3. Apply erosion and dilation operations to the bi-level image I;.
Step4. Conduct connected component labeling, and find a maximum connected
component M in Ip;.
Step 5. Apply Algorithm 5.3 to M in Iy to obtain three contour parameters, the
center of feature points my = (uy, V), the rotational angle » and the length
ratio n of M.

Step 6. If Vin < Vx, @min < @ < @max AN 7min < 77 < 7Jmax, then take M in ly; and Sy, as
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outputs; else, adjust the threshold Sy, in the range [So, Si] and go to Step 1.

6.2.2 Signboard position computation

In this section, we describe how to compute the signboard position. The method
proposed is based on Chou and Tsai [23]. We utilize morphological operations
including erosion and set difference to conduct boundary extraction. Then, we use the
Ly line detection method to find one vertical boundary line based on a 1D Hough

transform technique. The detailed algorithm is described as follows.

Algorithm 6.3 Signboard boundary line detection.

Input: an input image linput, two pano-mapping tables for Mirrors S and B, and an
environment window Winsg.

Output: two parameters Bg; and Bs; representing the two space planes going through
the boundary line of the signboard and the Mirror B center and the Mirror S
center, respectively.

Steps.

Step 1. For linput, Use morphological operations to conduct edge detection to extract
the feature points of the boundary lines of the signboard, and obtain an
edge-point image ledge.

Step 2. Set a 1D space S with parameter B and initialize all cell counts to be zero.

Step 3.  For each edge point | at coordinates (u, v) in wing of Wingg, look up the
pano-mapping table to obtain an azimuth @and an elevation angle «.

Step 4. Compute B by Equation (5.13) using dand «, and increment by 1 the value
of the cell with parameter B in S.

Step 5. Repeat Steps 3 and 4 until all edge points in wing of Wingg are computed.

Step 6.  Find the cell, denoted as Bg;, with the maximum value in space S
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Step 7.  Take Bg; as the output.
Step 8. In the same way, repeat Steps 2 through 7 in wing of Winsg for Mirror S and

take the obtained two corresponding parameters Bs; as outputs.

After we obtain the space plane which goes through its boundary line, we use the
resulting two parameters to compute the signboard location. In addition, we also can
localize the middle line position to check whether the distance is close to the known

width of the signboard. The detailed algorithm is described in the following.

Algorithm 6.4 Signboard position computation.
Input: two corresponding space plane parameters Bgy and Bs; obtained from
Algorithm 6.3, of a signboard appearing in an omni-image.
Output: the signboard position Gsg in the CCS.
Steps.
Step 1. By Bg; and Bs;, compute one boundary space line L; of the signboard by
Equation (5.26) and obtain its equation as follows:
XD Gz (6.7)
Step 2.  Apply Algorithm 5.4 to compute the middle line signboard location and
obtain its equation as follows:
XEXa Y= -H, 2= 75 (6.8)

Step 3. Compute the distance d between the two lines by the following equation:

d=y(X,~ X,)* +(Z,~Z,)* . (6.9)
Step 4. If |d — Dgiameter] = Thp where Dgiameter represents the pre-measured width of
the signboard and Thp is a pre-defined threshold, then go to Step 5; else,

show a message saying that there is no signboard and exit.

Step 5. Compute the coordinates (Xsg, Ysg, zss) Of the signboard position Gsg in the
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CCS as follows:
Xse =Xy, Yss= —H; zss=2; (6.10)
where H is the height of the camera center.

Step 6. Take Ggp as the output.

6.2.3 Experimental results of signboard detection

Some experimental results for signboard detection are shown in this section. The
input image with a signboard in the regions of Mirrors S and B, respectively, is shown
in Figure 6.7. The result of signboard segmentation using the initial threshold values
is shown in Figure 6.8(a).-Next, the result of signboard segmentation by dynamic
thresholding Is shown in Figure 6.8(b). Finally, the result of detecting the vertical axis

line of the signboard and the obtained signboard position are shown in Figure 6.9.

Figure 6.7 The omni-image with a signboard.
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(@ (b)
Figure 6.8 Two result images of signboard segmentation with different threshold values (a) The result
of signboard segmentation with original threshold value. (b) The result image of signboard

segmentation by dynamic thresholding.
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Figure 6.9 The result of signboard detection and obtained signboard position. (a) The result image of

extracting the Ly line of the signboard (b) The related signboard position with respect to the vehicle

position.

6.3 Proposed Method for Detecting Stop
Lines on Roads

It is advantageous for the vehicle to be able to detect the landmark and calibrate
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its odometer. Except for the landmarks on the sidewalk, we also can use those
landmarks on the road path for vehicle localization. There are some landmarks which
are usually seen on the road. One of them is the stop line. In this section, we introduce
the method we propose in this study for detecting a stop line on a road and localizing

its position.

6.3.1 Detection and localization of stop lines on roads

As shown in Figure 3.2(b), because the stop line on roads is artificial, it has the
obvious color information. We can utilize it to extract its boundary lines. Specifically,
we also use the HSI color model to extract the feature points of the stop line on roads.
Then, we utilize the Canny edge detector to detect the boundary line. Finally, we
detect one Lz line and two Lx lines to obtain the entire boundary information. A

detailed algorithm for implementing the above idea is described as follows.

Algorithm 6.5 Detection of boundary lines of stop lines on roads.

Input: a bi-level image linpue Which includes the feature points of a stop line on roads
appearing in an omni-image, two pano-mapping tables for Mirrors S and B,
and an environment window Winy,.

Output: six parameters Agi, Agz, As1, Asi, Ksg,and Ks; representing the parameters of
six space planes through the boundary line of the stop line and the Mirror B
center and the Mirror S center, respectively.

Steps.

Step 1. For linput in the environment window Winy,, use the Canny edge detector to

conduct edge detection to extract the feature points of the boundary lines of
the stop line, and obtain an edge-point image ledge.

Step 2. Set up a 1D Hough space S; with parameter A, and initialize all cell counts
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Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.
Step 11.
Step 12.

Step 13.

to be zero.

For each edge point | at coordinates (u, v) in wing of Winy,, look up the
pano-mapping table to obtain the corresponding azimuth angle & and
elevation angle a.

Compute A by Equation (5.16) using #and «, and increment by 1 the value
of the cell with parameter B in S;.

Repeat Steps 3 and 4 until all edge points in wing of Winsg are computed.
Find the two cells, denoted as Agi and Ag, with two maximum values in
space S;

Set a 1D Hough space S, with parameter K, and initialize all cell counts to
be be zero.

For each edge point | at coordinates (u, v) in wing of Winy,, look up the
pano-mapping table to obtain the corresponding azimuth angle 6 and
elevation angle a.

Compute K by Equation (5.19) using € and a, and increment by 1 the value
of the cell with parameter K in S,.

Repeat Steps 8 and 9 until all edge points in wing of Winsg are computed.
Find the cells, denoted as Kg;, with the maximum values in space S

Take Ag1, Ag, and Kg; as outputs.

In the same way, repeat Steps 2 through 12 in wing of Winsg for Mirror S
and take the obtained three corresponding parameters Asi, Asz, and Ks; as

outputs.

By the use of the six known corresponding space planes obtained in the above

algorithm, we can compute two corners of the stop line on, denoted as Ci, and Coy,

respectively, in the CCS as illustrated in Figure 6.10. Next, we check whether the
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distance between Ci, and Coy Is close to the known width of the stop line. If not, we
assume that the detected two L lines are not the boundary lines of a stop line. Finally,
we compute the center position between C;, and Cq,; for use as the position Gy, of the
stop line on the road. The detailed algorithm to estimate the position of the stop line is

described in the following algorithm.

Algorithm 6.6 Computing the position of a stop line on the road.

Input: two corresponding space plane parameters Ag; and As;, four other
corresponding parameters Ag,, As2, Kg1, and Ks; obtained from Algorithm 6.5,
of the stop line on roads appearing in an omni-image.

Output: the position of the stop-line on the road, Gy, in the CCS.

Steps.

Step 1. By Ag; and As;, compute one boundary space line Ly of the stop line by

Equation (5.33) and obtain its equation as follows:
N (6.11)

Step 2. « By Ag, and As;, compute one boundary-space line Ly of the stop line by

Equation (5.33) and obtain its equation as follows:
Y=Yy Z=27, (6.12)

Step 3. By Kg; and Ks;, compute one boundary space line L; of the stop line by

Equation (5.40) and obtain its equation as follows:
X=Xy Y=VYa. (6.13)

Step 4. Compute the width between the two lines by the following equation:

d=[2,-7,|. (6.14)

Step 5. If |[d — Dyigtn] = Thw where Dyigth represents the pre-measured width of the
stop line and Thy is a pre-defined threshold, then go to Step 6; else, show a

message saying that there is no stop line and exit.
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Step 6. Compute the coordinates (Xw., Ywt, zwr) of the position of the stop line on

roads Gy, in the CCS as follows:

Xwe = (Kot X0)/2; ywe = (Ya+ Y2+ Y3)/3; 2w = (21 +22)/2. (6.15)

Step 7. Take Gy, as the output.

CCS |~

COUI( XOUf, yDUh

me )
\

Gwi( Xwe, Yo, 2w )

Cil Xiny Vi Zin) ~—

Road-stop line «——_

Road

Figure 6.10 Two obtained corners of Cij,, and Cqyt of a stop line on the road in the CCS.

6.3.2 Experimental results of detection of stop lines

on roads

An input image with the projection of a stop line on the regions of Mirrors S and
B is shown in Figure 6.11. After conducting the feature extraction and Canny edge
detection processes, we obtain an edge-point image as shown in Figure 6.12. The
result of stop line detection is shown in Figure 6.13(a) and the relative stop line

position with respect to the vehicle is shown in Figure 6.13(b).
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Figure 6.12 The result of stop line segmentation by the Canny edge detector.
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Figure 6.13 The result of stop line on detection and position computation. (a) The resulting

image of extracting the Lx and Lz lines of the stop line. (b) The relative position of the stop line

with respect to the vehicle position.

6.4 Proposed Method for Detecting and
Localizing Traffic cones

6.4.1 Detection and localization of traffic cones
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When engineering works are conducted on sidewalks, the workers usually put
traffic cones near the working area to warn people. For this situation, we propose to
detect traffic cones and use them as landmarks. The proposed method for traffic cone
detection is similar to that for stop line detection. But here we detect one Lz line and
one Lx lines to carry out the detection of the traffic cone. After successfully detecting
the boundary lines of the traffic cone by Algorithm (6.5), we can utilize two
parameters, Ag; and Kgi, to compute its position. Because the traffic cone is located
on the sidewalk, we can use it to compute the position of the traffic cone. The detailed
algorithm to estimate the position of a traffic cone is described in the following

algorithm.

Algorithm 6.6 Computing the traffic cone position.

Input: the height of the camera center H, one space plane parameters Ag; and another
parameter Kg; obtained from Algorithm 6.5, of the traffic cone appearing in
an omni-image.

Output: the traffic cone position Gr¢ in the CCS.

Steps.

Step 1. By Agi and H, compute the position of the traffic cone by Equation (5.33)

and obtain its equation as follows:

Y=-H Z=Z. (6.16)

Step 2. By Kgiand H, compute the position of the traffic cone by Equation (5.40)

and obtain its equation as follows:

X=X, Y=-H. (6.17)
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Step 3. Compute the coordinates (Xrc, Yrc, Zrc) of the position Grc of the traffic

cone in the CCS as follows:

Xtc =X2; Yrc=-H; z1c=2s. (6.18)

Step 4. Take Grc as output.

Besides, we also utilize this corner to compute the Ly line. We solve the

Equations (5.16) and (5.19) to obtain the equation:

-4
A=—2 6.19
B (6.19)
which is equivalent to
AxK =-B (6.20)
where
B=-a (5.21)

Finally, we can illustrate the Ly line which goes through the corner point and is

perpendicular to the ground by the Equation (6.20).

6.4.2 Experimental results of traffic cone detection

Some experimental results of detecting the traffic cone using the proposed
method are given in this section. An input omni-image with a traffic cone is shown in
Figure 6.14. After conducting the feature extraction and Canny edge detection
processes, we obtain an edge-point image as shown in Figure 6.15. The final result of
traffic cone detection is shown in Figure 6.16(a) and the relative position of the traffic

cone with respect to the vehicle is shown in Figure 6.16(b).
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Figure 6.14 The omni-image with a traffic cone.

&
Figure 6.15 The result of traffic cone segmentation using the Canny edge detector.
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Figure 6.16 The result of traffic cone detection and the obtained position of the traffic cone. (a)
The result image of extracting the Ly, Ly, and Lz lines of the traffic cone (b) The relative

position of the traffic cone with respect to the vehicle position.
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Chapter 7
Experimental Results and
Discussions

7.1 EXxperimental Results

In this section, we will show some experimental results of the proposed vehicle
navigation system for use as a machine guide dog in the learning and navigation
processes. The experimental environment was an outdoor sidewalk in National Chiao
Tung University as shown-in-Figure 7.1(a). We illustrate the outdoor environment
including a gray sidewalk, a red curb line, and some landmarks as shown in Figure

7.1(b). The portion to the right of the red curb line is part of an around-campus road.

Signboard Stop line
on road

Fixed
Obstacle
Traffic cone@

Lawn
comer

Tree trunk

Sidiwal Road

(b)
Figure 7.1 The experimental environment. (a) A side view. (b) Illustration of the

environment.

In the learning process, a trainer guided the vehicle by the use of a learning
interface as shown in Figure 7.2 to construct a navigation path. The trainer navigated

the vehicle to conduct learning tasks on the vehicle system along the path. After
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arriving at appropriate locations on the sidewalk, the vehicle was commanded to learn

the positions of specific landmarks like signboard, tree trunk, stop line,

..., etc. In

addition, the position of the fixed obstacle was recorded manually by localizing its

position on the omni-image as shown in Figure 7.3. At the end of the learning process,

the trainer obtained a navigation map with a navigation path and other environment

landmarks as illustrated in Figure 7.4.

9855602 Guidance Robot
System File Image Process Yiew Capture Tool Captore Image

| Hist| Festue | ImgProcess | SubProcess | Map | Main [ Cames)
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Figure 7.2 The Learning interface of the proposed vehicle system.
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In the navigation process, the vehicle started from the same pasition just like in

the learning process and navigated along the recorded navigation path nodes with the

curb line following technique. Then, the vehicle detected many types of landmarks

and localized its position. Some results of landmark detection are shown in Figure 7.5.

By conducting curb detection, the vehicle kept its path parallel to the curb. A result of

curb detection is given in Figure 7.6. Besides, after detecting the fixed obstacle in the

navigation path, the vehicle adopted the obstacle avoidance procedure to avoid it as

shown in Figures 7.7. Finally, the vehicle reached the appointed terminal node

successfully, and the path map with a record of each vehicle position in the navigation
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process is illustrated in Figure 7.8.

(b)

Figure 7.3 Learning of a fixed obstacle. (a) The position of fixed obstacle on the omni-image

(Lime-colored points clicked by the trainer). (b) Computed fixed obstacle positions in the real world.
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Figure 7.4 Illustration of the learned navigation path.

Figure 7.5 Some results of landmark detection. (a) A tree trunk detection result with Ly line drawn in

red. (b) A traffic cone detection result with Ly, Ly, and Lz line drawn in dark blue, lime, and navy
blue, respectively. (c) A lawn corner detection result with two boundary lines drawn in navy blue.
(d) The result of stop line with three boundary lines drawn in yellow and navy blue, respectively. (e)

A signboard detection result with Ly line drawn in red and lime, respectively.
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‘Figure 7.6 The result of curb line detection.

Figure 7.7 The vehicle reads the fixed obstacle position from the navigation path and change the

path to avoid it. (a)~(d) show the process of fixed obstacle avoidance.

In Table 7.1, we show the errors in percentage between the actual position of the
landmarks and the estimated positions of the landmarks of 8 times of navigations

using the proposed system. From the table, we see that the average error of the
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landmark position is 7.52%. These small error percentages show that the precision of

the proposed system is satisfactory for real applications.
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Figure 7.8 The recorded path map in the navigation process. (Blue points represent the vehicle path
and other points with different color represent different localized landmark positions in different

detections).

7.2 Discussions

By analyzing the experimental results of the vehicle navigation, we find some
problems. Firstly, for sidewalk curb detection, we detect the curb with a specific
surface in the campus of National Chiao Tung University. More kinds of curb lines
with different colors should be learned for the line following technique. Also, the light
reflection caused by the plastic camera enclosure created in the omni-image also
causes ill effects in image analysis. A possible solution is to learn these specific

regions in advance and ignore them when conducting image processing. Furthermore,
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we may spend much time to detect the Lx line and localize it. A possible solution is to

implement an embedded system to speed up the calculation. Finally, more

experiments in different environments should also be conducted to test our system

more thoroughly.

Table 7.1 Precision of estimated landmark positions and their error percentages.

o ) Estimated Average
navigation % Estimated _
Real position y landmark estimated
No. position
error landmark error
1 224.19 6.20%
2 237.20 0.76%
3 234.24 1.99%
4 235.42 1.50%
Tree trunk z 239.01 53660 1019 3.11%
6 214.71 10.17%
7 233.08 2.48%
8 237.20 0.76%
1 331.44 11.10%
2 314.04 15.77%
2 336.40 9.77%
Lawn 4 354.98 4.78%
372.81 5 7.81%
corner 5 336.77 9.67%
6 338.92 9.09%
7 366.90 1.59%
8 369.98 0.76%
1 161.79 3.20%
2 150.65 9.86%
- 3 161.68 3.27%
Traffic 4 . 154.42 7.61% .
cone 5 : 168.73 0.95% .
6 157.33 5.87%
7 165.56 0.94%
8 182.05 8.92%
1 175.28 1.68%
2 207.40 16.33%
. 3 189.44 6.26%
Stop line 4 212.74 19.33% .
5 178.28 199.89 12.12% 12.69%
on road 6 219.26 22.98%
7 185.30 3.94%
8 211.96 18.89%
1 251.93 10.57%
2 221.76 2.67%
3 198.92 12.70%
- 0,
Signboard L -
6 242.62 6.48%
7 186.00 18.37%
8 222.19 2.48%
Average 7.52%
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Chapter 8
Conclusions and Suggestions for
Future Works

8.1 Conclusions

Construction of a .machine guide dog using a two-mirror omni-camera and an
autonomous vehicle has been proposed in this study. To implement such as a system,
several methods have been proposed.

At first, by the pano-mapping technique. proposed by Jeng and Tsai [25], we
calibrate the two-mirror omni-camera used In this study by recording the relationship
between the image pixels and the real-world azimuth and elevation angles. Next, by
the use of a learning interface designed in this study, a trainer can guide the vehicle to
navigate on a sidewalk and construct a navigation path conveniently including the
path nodes, alone-path landmarks, and relevant guidance parameters.

Next, two new space line detection techniques based on the pano-mapping
technique have been proposed. Each space line, which when projected on an
omni-image becomes ‘@ conic-section curve, is detected by the use of analytic
formulas and the Hough transform technique. In addition, for the three types of space
line which exists in landmarks like the tree trunk, the lawn corner, the signboard, the
stop line on roads, and the traffic cone, we can further compute its position directly
using omni-images according to the pano-mapping technique.

Also, several landmark detection techniques have been proposed for conducting
vehicle navigation. Firstly, a curb line detection technique has been proposed for use

to guide the vehicle on a safe path as well as to adjust the odometer reading of the
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vehicle orientation. Next, some natural and artificial landmark detection techniques
have been proposed as well. The three types of space lines found in these landmarks
using the techniques can be used to localize the vehicle in the navigation process.
Furthermore, to conduct the landmark detection works more effectively in the outdoor
environment, techniques for dynamic threshold adjustments have also been proposed,
which can be used to handle different lighting conditions.

Good landmark detection results and successful navigation sessions on a
sidewalks in the National Chiao Tung university campus show the feasibility of the

proposed methods.

8.2 “Suggestions for Future Works

According to our experience obtained in this study, several suggestions and
related interesting issues worth further investigations in the future are stated in the
following:

(1) it seems necessary to develop some techniques to detect moving objects, like
pedestrians walking on the sidewalk or people riding bikes;

(2) it is a challenge to detect natural landmarks which have no obvious color
information to conduct vehicle navigation in more complicated outdoor
environments;

(3) it is desired to design a new camera system which has a smaller size for more
convenient uses by the blind people;

(4) it is a challenge to develop additional techniques to guide the vehicle to pass
crossroads, like recognizing traffic signals and following zebra crossings, etc.;

(5) it may be necessary to add the capability of warning the user via sound in danger

conditions.
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(6) It is interesting to combine other facilities like range finders to implement the

system for more complicated applications.

(7) Itis desired to utilize properties of trigonometric functions to reduce the range of

the Hough space to speed up the computation time.
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