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A Study on Construction of a Machine Guide Dog 

Using a Two-mirror Omni-camera and an 

Autonomous Vehicle on Sidewalks 

 

Student: Chih-Wei Huang  Advisor: Wen-Hsiang Tsai 

 

Institute of Multimedia Engineering 

College of Computer Science 

National Chiao Tung University 

ABSTRACT 

Various techniques for construction of a machine guide dog using a two-mirror 

omni-camera and an autonomous vehicle for navigations on sidewalks are proposed. 

The autonomous vehicle can compute 3D information from acquired omni-images to 

localize itself using pre-selected landmarks, and guide a blind person to follow a 

planned path to a destination on a sidewalk. Firstly, a method for learning the 

sidewalk environment is proposed to construct a navigation map, including a 

navigation path, along-path landmark locations, and relevant vehicle guidance 

parameters. Next, a navigation system with self-localization and automatic guidance 

capabilities using landmarks including curb lines, tree trunks, stop lines on roads, 

lawn corners, traffic cones, and signboards is proposed. By the use of a 

space-mapping technique, three space line detection techniques for use directly on the 

omni-image are proposed, which can be used to compute the 3D position of a specific 

space line in the shape of a sidewalk landmark. 

Moreover, based on the techniques for detecting three space lines, techniques for 

detections and localizations of the above-mentioned natural and artificial landmarks 
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are proposed. Using these vehicle self-localization techniques, imprecise vehicle 

positions due to incremental mechanic errors can be adjusted. In addition, for the 

purpose of continuous navigation, a curb line following technique is proposed as well 

to guide the vehicle along a sidewalk when landmarks are not available during the 

navigation process. To detect landmarks in the outdoor environment, techniques for 

dynamic threshold adjustments are also proposed for adapting the system’s capability 

to varying lighting conditions in navigation environments. 

Good experimental results showing the flexibility and feasibility of the proposed 

methods for real applications are also included. 
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以雙鏡面環場攝影機及自動車作人行道上導盲犬之研

究 

 

研究生：黃致瑋  指導教授：蔡文祥 博士 

國立交通大學多媒體工程研究所 

 

摘要 

本研究提出了一個應用於機器導盲犬在人行道上行走的自動車系統，利用一

部搭載雙鏡面環場攝影機的自動車當實驗平台，在環場影像中直接求出實際物體

的立體資訊，並引領盲人沿著規劃的路徑行走。首先，我們利用建立的環境學習

系統來記錄導航地圖，此地圖包含自動車在戶外環境中行走的路徑、路徑中附近

路標的位置，以及相關的導航參數。接著，利用人行道上常出現的路標(人行道

路緣、樹幹、草地角點、交通錐、道路白線和招牌)作自動車定位，以輔助導航。 

此外，我們提出空間映射的方法來發展新的直線偵測技術，在環場影像上直

接偵測出直線特徵，並計算出人行道上與自動車相互平行或垂直的直線位置，藉

以偵測前述自然特徵物及人工特徵物之位置，作機械誤差之校正，並計算出正確

的自動車位置。 

最後，本研究也提出動態調整門檻值的技術，讓系統適應戶外環境的各種光

影變化所造成的影響。實驗結果顯示本研究所提方法完整可行。 
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Chapter 1  

Introduction 

1.1 Motivation 

There are millions of blind people in the world. Some of them use blind canes to 

travel on the road. However, blind canes can only be used to detect obstacles at short 

distances by blind people. Besides using blind canes, a better choice is to use guide 

dogs. Guide dogs can assist blind people to avoid obstacles and walk in indoor or 

outdoor environments smoothly even if there is no barrier-free facility along the way. 

For the welfare of blind people, guide dogs not only improve the safety, but also 

enhance the quality, of their lives. 

However, there are few guide dogs in Taiwan. According to the information 

provided by Taiwan Guide Dog Association [20] and Taiwan Foundation for the blind 

[21] in 2012, there are almost sixty thousand blind people but just twenty-eight guide 

dogs in Taiwan. This rate is too low to provide sufficient supports for the blind people. 

The reasons why guide dogs are so few are listed below: 

1. only certain breeds of dogs can be trained as guide dogs; 

2. a trainer has to spend very much time to teach a young guide dog; 

3. the individual difference between the personalities of the master and the 

guide dog is a problem which should be solved; 

4. it costs at least one million NT dollars to train a guide dog. 

It is wished in this study to utilize technology and knowledge to solve this 

problem of guide dog shortage, so we follow the idea of providing a machine guide 

dog for each blind person. Each machine guide dog can be a replacement for a real 

one because it can be manufactured very quickly once designed to be effective. A 
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machine guide dog basically is constructed by the use of an autonomous vehicle and a 

camera. To implement a machine guide dog, it is desired that a vision-based 

autonomous vehicle can automatically navigate in outdoor environments and keep 

watch over the camera’s field of view (FOV) automatically. It is also hoped that when 

the vehicle detects a risk area like a hole or an obstacle along the way, it can safely 

guide the blind person to avoid the danger; and when the autonomous vehicle reaches 

the destination, it will inform the blind person so. 

For this purpose, the critical problem is how to navigate a vision-based 

autonomous vehicle successfully in outdoor environments. Normally, an autonomous 

vehicle is equipped with an odometer, and we can use the odometer readings to 

compute the current position of the vehicle with respect to its initial position of a 

navigation session. However, the position which the odometer provides is often not 

sufficiently precise because the autonomous vehicle usually suffers from incremental 

mechanic errors due to manufacturing imprecision. One good solution is to 

continually estimate the vehicle position by monitoring natural or artificial objects in 

the surroundings along the navigation path, which is a sidewalk in this study. 

In normal cases, a blind person has to pass regular scenes with objects along 

sidewalks, so we may train the autonomous vehicle beforehand to recognize the path 

and the surrounding objects, just like training a guide dog in the place. That is to say, 

we may let the autonomous vehicle to “remember” along-path landmarks in advance, 

and construct the on-board navigation system to capture the current landmark 

information during each navigation session. 

In summary, the goal of this study is to develop a vision-based autonomous 

vehicle for use as a machine guide dog on sidewalks. The system is expected to 

possess the following capabilities: 

1. learning paths on sidewalks semi-automatically; 
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2. learning common landmarks along sidewalks; 

3. navigating automatically along sidewalks using learned landmarks for 

localization; 

4. navigating to goals successfully on learned paths. 

1.2 Survey of Related Works 

In this section, we conduct a survey of related works about assistances to the 

blind people, including new application systems for the blind, localization techniques 

in indoor or outdoor environments, and landmark detection via the use of stereo 

omni-cameras. 

More and more research results about developing walking aids for the blind 

people have appeared. As an improvement on the blind cane, an easy way is to install 

a sensor device on a blind cane so as to detect obstacles at a certain distance. 

Borenstein and Ulrich [1] developed the “GuideCane” which can detect obstacles by 

ultrasonic sensors to help blind people to pass dangerous areas. Some helpful 

navigation systems for the blind were also proposed. Ivanchenko et al. [2] proposed a 

system for impaired wheelchair users to detect the presence of obstacles or other 

terrain features by computer vision techniques and warn the user. A robotic travel aid 

(RTA) called HITOMI was proposed by Mori et al. [3] which can detect vehicles and 

pedestrians using multiple sensors. Besides, Hsieh [4] utilized two cameras installed 

on a cap to find accessible obstacles and regions in unknown environments and alert 

the impaired person by voice. Likewise, Shang [5] used two cameras assembled on 

the shoulder to walk independently in known or unknown environments.  

In addition, localization is an important issue in implementing a navigation 

system. Willis and Helal [6] provided a navigation system for the blind which uses the 

radio frequency identification (RFID) technology to identify locations in buildings 

http://tw.wrs.yahoo.com/_ylt=A3eg.86XL51PMAgA7DjhbB4J/SIG=12qgus439/EXP=1335730199/**http%3a/tw.dictionary.yahoo.com/dictionary%3fp=assemble%26docid=1006517
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and rooms. Lisa et al. [7] utilized a DGPS (differential GPS) device to localize a blind 

person in indoor and outdoor environments. Also, Chen and Tsai [8] proposed an 

indoor autonomous vehicle navigation system using ultrasonic sensors. In outdoors, 

the GPS can be used as a localization system for the vehicle [9]. 

Furthermore, vision-based sensors have been widely utilized for vehicle 

navigation. Atiya and D. Hager [10] proposed the vision-based system which 

computes the location in real-time. Chen and Tsai [11] proposed a vehicle localization 

technique which modifies the position of a vehicle by keeping watch over learned 

objects. Another method of vehicle localization in indoor environments by watching 

house corners was proposed by Chiang and Tsai [12]. Moreover, a system which uses 

stereo cameras and a low-cost GPS sensor was proposed by Agrawal and Konolige 

[13]. Tsai and Tsai [14] used a PTZ camera and an ultrasonic sensor to direct vehicle 

patrolling and people following successfully. Another application using a combination 

of cameras and other devices was proposed by Lopez et al. [15], who connected a 

laser and a robot’s camera to compute the robot location. 

An omni-directional camera has the advantage of having a large FOV in contrast 

with a traditional CCD camera. Because of this advantage, we choose to use the 

omni-camera to design the machine guide dog system in this study. So, we conduct a 

survey of related works about vehicle navigation systems using omni-cameras as well 

here. To enhance the accuracy of localization, Lui and Jarvis [16] implemented an 

algorithm which implements omni-directional vision on a GPU. To detect landmarks 

in environments, Fu et al. [17] proposed a navigation system with embedded 

omni-vision for landmark recognition. A method which was conducted to achieve 

vehicle self-localization by matching omni-directional images was proposed by 

Ishizuka et al [18]. Wu and Tsai [19] detected circular landmarks on ceilings to 

conduct vehicle indoor navigation. 
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1.3 Overview of Proposed System 

The goal of this study is to lead a vision-based machine guide dog to navigate in 

outdoor environments automatically. The most important task to achieve this goal is 

vehicle localization. The method for vehicle localization we propose is to detect 

landmarks along the path. Besides, some strategies for navigation on the learned path 

are proposed for use in this system. In this section, we will introduce the vision-based 

autonomous vehicle system which we use in this study. The operation process of this 

system may be divided into two stages: the learning stage and the navigation stage. 

The learning stage includes primarily the task of training the autonomous vehicle to 

acquire the along-path information useful for vehicle guidance before navigation. 

Then, we conduct vehicle navigation along the path which we pre-select in the 

navigation stage. The details of the two stages are illustrated in Figs. 1.1 and 1.2, 

respectively, and discussed in the following. 

A. The learning stage 

In the process of learning which is necessary before the vehicle can navigate, at 

first we combine the camera system into the autonomous vehicle. Unfortunately, the 

camera system does not perfectly match the vehicle’s structure. It should so be 

calibrated to find the relation between the image coordinates and the real-world 

locations. In this system, we utilize a two-mirror omni-camera system as the visual 

sensor. Because of the special structure of the two-mirror omni-camera system, its 

parameters cannot be acquired and calculated easily. Therefore, we adopt a 

space-mapping method proposed by Jeng and Tsai [20] to solve the problem. We get 

accordingly a space-mapping table, called pano-table, to calibrate the camera system 

instead. After we finish the calibration work, we can obtain the range data of 

concerned feature points in an omni-image directly using the pano-table and continue 
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the navigation. Secondly, we learn relevant path information for vehicle guidance, 

including the environment parameters, the vehicle position in the path, the location of 

each used landmark, and some landmark segmentation parameters. 

After we guide the vehicle to a particular spot, a path learning work is started. In 

this phase of the learning stage, we propose the use of two navigation modes: one 

being navigation by following the sidewalk; the other manual control by the trainer. If 

we choose the first mode, the autonomous vehicle starts to navigate to the goal and 

the information of the vehicle pose at each visited spot is recorded. If we want the 

system to “memorize” a specific landmark along the path, we can use the second 

mode to achieve the landmark information acquisition and position estimation. 

Besides, each path we choose is along a sidewalk in an outdoor environment, and 

some information about the outdoor environment along the path is also recorded 

during this phase of learning. Finally, all of the data so learned are integrated into a set 

of path information. 

B. The navigation stage 

As we mentioned above, the path information which is acquired in the learning 

stage is used in the navigation stage. In the navigation stage, three major works are 

conducted by the vehicle. One is moving forward, another is obstacle detection, and 

the third is vehicle location estimation and modification. 

Generally, the vehicle can move forward continually toward the goal we 

pre-select. Between every two nodes in a path, the vehicle can choose one of two 

navigation modes─ navigation by the vehicle odometer (called the blind navigation 

mode) and navigation by the side walk. When the navigation by the side walk mode is 

selected, the vehicle detects the sidewalk curb with a prominent color continually and 

adopts a line following technique to guide the vehicle. When no curb can be used 

along the current path segment, the system is set in the navigation by the vehicle 
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odometer mode and moves forward “blindly” according to the odometer reading on 

the pre-selected path. Also, it is desired to find fixed obstacles and have a strategy to 

pass dangerous areas. 
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Figure 1.1 Flowchart of proposed learning stage. 
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Figure 1.2 Flowchart of navigation stage. 

 

Moreover, we use some objects which are commonly seen along sidewalks, such 

as trees, road stop lines, traffic cones, signboards, and corner points of the lawn, to 

localize the vehicle in this study. That is, we modify the vehicle position with respect 

to each located landmark to eliminate accumulated mechanical or vision-processing 

errors during the navigation process. Finally, we propose three new vertical space line 

detection methods to calculate the locations of detected landmarks. By all of these 

techniques, the autonomous vehicle can navigate safely to the end of the navigation 

stage hopefully. 

1.4 Contribution of This Study 
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Some contributions of this study are described as follows. 

1. A semi-automatic system for training an autonomous vehicle for outdoor 

navigation along sidewalks using ordinarily-seen objects seen along paths is 

proposed. 

2. Two new space line detection techniques and two localization techniques using 

the pano-mapping table are proposed. 

3. Schemes for detecting natural landmarks like corner points of the lawn and trees 

for vehicle localization are proposed. 

4. Techniques for detection and localization of artificial landmarks (signboards, 

stop line on road, traffic cones) are proposed. 

5. A method for correcting the mechanical errors of the vehicle position resulting 

from long-time autonomous vehicle navigation is proposed. 

6. A method for dynamically adjusting the guidance parameters for outdoor 

navigation is proposed. 

1.5 Thesis Organization 

The remainder of this thesis is organized as follows. In Chapter 2, we introduce 

the configurations of the proposed system and the system processes. In Chapter 3, the 

proposed method for learning guidance parameters and navigation paths are described. 

In Chapter 4, we describe the proposed navigation strategies, including ideas, 

guidance techniques, and detailed navigation algorithms. In Chapter 5, the two 

proposed new space line detection techniques are introduced and their applications for 

natural landmark detection are described; and in Chapter 6, their applications for 

artificial landmark detection are described. In Chapter 7, we show some experimental 

results of sidewalk navigation to show the feasibility of the proposed system. At last, 

some conclusions and suggestions for future works are given in Chapter 8.
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Chapter 2  

System Design and Processes 

2.1 Ideas of System Design 

As mentioned in Chapter 1, many good facilities for the blind people have been 

proposed in the past. Using a vision-based autonomous vehicle as a machine guide 

dog is a good idea because the trainer does not have to spend much time to train it and 

it can work all day without taking a rest. If the vehicle is equipped with a camera, it 

will be able to “see” the environment around and avoid obstacles along the way. 

However, the task of combining the camera and the vehicle system is not easy to 

accomplish. We need a control unit which connects the camera and the vehicle system, 

analyzes the acquired image data, integrates all the information, and makes decisions. 

In this chapter, we will describe in Section 2.2 the software and hardware systems of 

the proposed machine guidance dog which accomplishes the above-mentioned tasks, 

and the detail of the proposed method for 3D data acquisition using the camera will be 

described in Section 2.3. 

Because originally the vehicle does not have “knowledge” to navigate on the 

sidewalk, it will cause accidents, like collisions with obstacles or falling outside the 

sidewalk. Therefore, before the machine guide dog can navigate by itself, we should 

“teach” it to know the outdoor information and deal with different conditions. In 

addition, strict strategies for navigation should be designed to protect the blind people 

and the vehicle from accidents. Finally, the vehicle should be designed to be capable 

of navigating along a learned path again and again. To reach the above goals, we have 

to organize the system processes for the autonomous vehicle system well. The system 
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processes will be described in Section 2.4, including the learning process in Section 

2.4.1 and the navigation process in Section 2.4.2. 

2.2 System Configuration 

To construct the proposed system, we adopt a Pioneer 3-DX vehicle which is 

made by MobileRobots Inc. The vehicle is equipped with an imaging system 

composed of a stereo omni-camera. The imaging system is not only part of the vehicle 

system but also plays an important role of accumulating the information data and 

locating the vehicle. The autonomous vehicle and other associated hardware 

equipments will be introduced in Section 2.2.1, and the camera system will be 

described in Section 2.2.2. Besides the hardware, software is needed to provide a 

friendly interface to users in order to control the vehicle conveniently. The software 

system we develop for use in the study will be described in Section 2.2.3. 

2.2.1 Hardware configuration 

The hardware architecture of the proposed machine guide dog is shown in Figure 

2.1. It can be partitioned into three principal systems: the vehicle system, the camera 

system, and the control system. We will describe these systems, respectively, in the 

following. 

In the vehicle system, the Pioneer 3-DX as mentioned is shown is Figure 2.2, 

which has a 44cm×38cm×22cm aluminum body with two 19cm wheels and a 7cm 

caster. It can reach a speed of 5.76 kilometer per hour on flat floors; has the maximum 

rotation speed of 300 degrees per second; and can climb up an incline with the largest 

slope of 30 degrees. Moreover, the vehicle has sixteen ultrasonic sensors. They are 

installed around the vehicle body. The vehicle can carry payloads up to 23kg. It has 
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three 12V rechargeable lead-acid batteries and can run 18-24 hours if the batteries are 

fully charged initially. Furthermore, the vehicle is equipped with an odometer which 

records the pose of the vehicle, including the position and the orientation with respect 

to its initial pose, for each navigation cycle. The odometer provides also the readings 

of the vehicle speed, the battery voltage, etc. 

 

 

 

(a) 

 

(b) 

 

(c) 

Figure 2.1 Three different views of the used hardware architecture, which includes a vehicle and a 

stereo camera. (a) A 45
o 
view. (b) A front view. (c) A side view. 

The second part of the system hardware is the camera system. It is a two-mirror 

omni-camera which consists of one perspective camera, one lens, and two reflective 

mirrors of different sizes, all integrated into a single structure. A picture of the camera 

system is shown Figure 2.3. The perspective camera and the lens are shown in Figure 
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2.4. The camera is of the model ARCAM-200SO, which is produced by ARTRAY 

Company with the size of 33mm×33mm×50mm and the resolution of 2.0M pixels. 

The detailed specifications of the camera are listed in Table 2.1. The lens is produced 

by Sakai Co. and has a variable focal length of 6-15mm. The two reflective mirrors 

are produced by Micro-Star International Co. The structure of the camera system will 

be described in more detail in the next section. 

 

In the control system, we utilize a laptop computer as the main unit. It is of 

model R840 produced by TOSHIBA Computer Inc. as shown in Figure 2.5. We use an 

RS-232 to connect the laptop computer and the autonomous vehicle and use a USB to 

connect the computer and the camera system. The specification of the laptop is listed 

 

(a) 

 

(b) 

Figure 2.2 The Autonomous vehicle, Pioneer 3-DX, produced by MobileRobots Inc., used in this study. 

(a) A back view. (b) A front view. 
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in Table 2.2. 

 

 

 

 
(a) (b) 

Figure 2.4 The used camera and lens. (a) The camera of model Arcam-200so produced by ARTRAY 

Co. (b) The lens produced by Sakai Co. 

Table 2.1 The specification of Arcam-200so. 

Size 33mm×33mm×50mm 

CMOS Size 1/2” (6.4 × 4.8mm) 

Mount C-mount 

Max resolution 2.0 M pixels 

Frame per second with max resolution 8 fps 

 

Figure 2.3 The camera system used in this study. 
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Figure 2.5 The laptop computer of model TOSHIBA R840 used in this study. 

2.2.2 Structure of used two-mirror omni-camera 

In this section we will introduce the two-mirror omni-camera we use in this study. 

As shown in Figure 2.6, a space point G is projected by the two mirrors onto the 

image plane of the camera system. The light ray coming from point G is reflected by 

the two mirrors to go through the lens center. The two mirrors are both made to be of 

the hyperboloidal shape. We will call the big mirror Mirror B, and the small one 

Mirror S, respectively, in the sequel of this thesis. As is well known, the hyperboloidal 

shape has two focal points: one being the focal point of Mirror S which is denoted by 

fs and the other the focal point of Mirror B which is denoted by fb subsequently. The 

configuration of the two mirrors is designed in such a way that the focal points of the 

two mirrors are located at an identical point which is just the lens center fc of the 

camera. Besides, the distance from the mirror center of Mirror B to the mirror center 

of Mirror S has a length of 20 cm according to our manual measurement in this study. 

We call it the baseline. The detailed information of the two hyperboloidal-shaped 

mirrors is listed in Table 2.3. 
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Table 2.2 Specification of the laptop computer. 

CPU Intel Sandy Bridge Core i5-2410M 2.3GHz 

RAM 4G DDR 1333MHz 

GPU AMD Radeon HD 6450 /1024MB 

HDD Size 640 GB 

 

Table 2.3 Specifications of the used two hyperboloidal-shaped mirrors. 

 Radius Parameter a Parameter B 

Mirror S 2 cm 2.41 cm 4.38 cm 

Mirror B 12 cm 11.46 cm 9.68 cm 

 

In spite of having two focal points, the hyperboloidal shape has another property 

as shown Figure 2.7: if a light way goes through one of the focal point, it will be 

reflected to go through the other focal point by the mirror. This property has been 

utilized to construct the omni-camera in a previous study [22] . According to this 

property, a space point G will first go into the centers of the two mirrors, then 

reflected by the mirrors to go through the lens center fc , and finally projected onto the 

CMOS sensor of the camera. Therefore, we have two distinct image points 

corresponding to the single space point G. Based on such a phenomenon, we can 

compute the range data of G. The detail will be described later in this chapter. 
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In addition, initially we place the two-mirror omni-camera in such a way that the 

axis going through Mirror S and Mirror B is perpendicular to the ground, as illustrated 

in Figure 2.7. However, it was found out in [22] that in the resulting fields of view 

(FOV’s) of mirrors B and S, the overlapping area on the ground is too small to be 

useful for computing precise range data. In this study, it is desired that the FOV is as 

large as possible. To solve this problem, the camera system is slanted for an angle of 

as shown in Figure 2.8. It can be seen that the overlapping region is now bigger than 

before. 

 

Mirror B

Mirror S

fbfs
fC

 
Figure 2.7 The reflection property of the two hyperboloidal-shaped mirrors in the camera system. 

 

fb

fs

fc

G

CMOS sensor

Mirror B

Mirror S

Lens

Baseline

 
Figure 2.6 An illustration of the two-mirror omni-camera and a space point projected on the CMOS 

sensor of the camera. 
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Mirror B

Mirror S

 

(a) 

Mirror B

Mirror S γ

 

(b) 

Figure 2.8 Two different placements of the two-mirror omni-camera on the vehicle and the region of 

overlapping. (a) The optical axis going through the two mirrors is parallel to the ground. (b) The 

optical axis through the two mirrors is slanted up for an angle of. 

2.2.3 Software configuration 

MobileRobots Inc., which provides the autonomous vehicle for use in this study, 

provides an application interface, called ARIA (Advanced Robotics Interface 

Application), for the user to control the vehicle. The ARIA is an object-oriented 

interface which can be used under the Linux or Win32 operating system using the C
++

 

language. Therefore, we can use the ARIA to communicate with the embedded sensor 

system in the vehicle and obtain the information which the vehicle offers to control 

the position of the vehicle. 

For the camera system, the ARTRAY provides a tool which is called Capture 

Module Software Developer Kit (SDK). It is an object-oriented interface and its 

application interface is written in several computer languages like C, C
++

, VB.net, 

C
#
.net and Delphi. We use the SDK to capture image frames with the camera and 

change many parameters of the camera, such as the exposure. To develop our control 
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system, we use Borland C
++

 Builder 6 with updated pack 4 on the Windows XP 

operating system. The Borland C
++

 Builder 6 is a GUI-based interface development 

environment (IDE) software. It is convenient for us to provide a friendly interface for 

the user. 

2.3 3D Data Acquisition by the 

Two-mirror Omni-camera 

2.3.1 Review of imaging principle of two-mirror 

omni-camera 

In this section, we review the two-mirror omni-camera proposed in Huang and 

Tsai [22] and used in this study, as well as the formulas for range data computation 

using images captured by such a camera system. First, we review the image projection 

principle of an omni-camera. As shown in Figure 2.9, we use the two coordinate 

systems, the image coordinate system (ICS) and the camera coordinate system (CCS), 

to illustrate the principle of imaging process. The image coordinate system is a 

two-dimensional U-V coordinate system and the other is a three-dimensional X-Y-Z 

coordinate system. The origin of the first one is the center of the omni-image, and the 

second is the focal point of the hyperboloidal-shaped mirror. As mentioned previously, 

a light ray G at (x, y, z) in the CCS go through the focal point of the 

hyperboloidal-shaped mirror Om, and reflected by the mirror. Then, it goes through the 

other focal point at center of lens Oc. Finally it is projected onto an image point I on 

the omni-image plane at (u, v). As a result, each image point in an omni-image can be 

specified by an elevation angle and an azimuth angle After the azimuth angle 

and the elevation angle  are obtained, we are able to calculate the location of the 
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space point G. 
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Figure 2.9 Imaging principle of a space point G using an omni-camera. 

2.3.2 Derivation of formulas for 3D data acquisition 

In this section, we will introduce the principle of the computation of the 3D 

range data. We will now define the direction of the camera coordinate system (CCS) 

CCSlocal in Figure 2.10. As seen in the figure, two light rays from G in CCSlocal go 

through the center of Mirror S and that of Mirror B, and1 and2 are the elevation 

angles, respectively. The points Os, Ob, G form a triangle OsObG which is illustrated 

in Figure 2.11. We know the distance from Os to Ob by manual measurement which is 

called the baseline in the last section. We can derive the following equations by the 

law of sines based on the geometry: 
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Figure 2.10 The cameras coordinate system localCCS , and a space point G projected on the 

omni-image acquired by the two-mirror omni-camera. 

 

Then, we want to know the azimuth angles of the two light rays. According to 

the property of rotational invariance of the omni-image, these two azimuth angles 

actually are equal, which we denote by . From Figure 2.12, the azimuth  in the ICS 

can be computed by using the image coordinates (u1, v1) of G according to the 

following equations: 
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(a) (b) 

Figure 2.11 An illustration of the relation between a space point G and the two mirrors in the used 

camera. (a) A side view of G projected onto the two mirrors. (b) A triangle ObOsG used in deriving 

3D data. 
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After obtaining the distance d by Equation (2.2) and the azimuth angle θ by Equation 

(2.3), we can compute the position of G, namely, the global coordinates (X, Y, Z), in 

localCCS  by the following equations: 

 X ＝ d ×  cosαa ×  sinθ, 

 Y ＝ d ×  cosαa ×  sinθ, 

 Z ＝ d ×  sinαa. (2.4) 
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Figure 2.12 An illustration of a space point G at coordinates (X, Y, Z) in localCCS . 

As mentioned previously, the camera system we use in this study is not set 

parallel to the ground so as to enlarge the overlapping area of both mirrors; instead, it 

is slanted up for an angle of  as shown 2.13. It is desired that the Z-axis of localCCS  

could be parallel to the ground. We define another camera coordinate system CCS 

which coincides with localCCS  except the Z-axis is be elevated by an angle of  

Finally, we can use a rotational matrix R to represent the G in the CCS by the 

following equations: 
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2.4 System Operation Processes 

2.4.1 Learning process 

In the learning process, it is important for the autonomous vehicle to “learn” the 

selected path and conduct navigation automatically. In this section, we will describe 

the information which the vehicle should “memorize” in detail. Initially, the vehicle 

has to record where the selected path in the outdoor environment is. For this study, the 

experimental place is a sidewalk in the campus of National Chiao Tung University. 

Because the vehicle navigates on the sidewalk, we can take the advantage of the 

sidewalk curb to implement a “curb following” function for vehicle guidance. It also 

helps the vehicle to calibrate the odometer precisely. In addition, the lighting 

condition is a concern in the outdoor environment. So, the different location 

information must be recorded in the navigation path. 

Moreover, another odometer calibration method adopted in this study is via 

landmark detection. By this method, the trainer can choose the landmarks which 

should be learned in the selected path, and decide where to localize the vehicle by the 

learning landmarks. Next, landmark detection is accomplished by a space line 

Z’Y
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X

CCS



CCS’

X’

Y’

 

Figure 2.13 The relation between the two camera coordinate systems CCS and localCCS . 
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detection technique in this study, which is described in Chapter 5. After collecting 

enough information of the learned landmark, some parameters for landmark detection 

and the position of each landmark can be recorded. 

To facilitate the user to learn navigation paths, a user learning interface is 

designed for the trainer. They may use it to control the autonomous vehicle to 

construct the navigation path. Furthermore, after the vehicle detects a landmark, we 

provide a semi-automatic learning process to adjust the parameters which we sat 

initially for the trainer to deal with some varying conditions of the environment. Also, 

the trainer should establish the navigation rules in advance for the vehicle to follow in 

the navigation process. 

At last, after leading the autonomous vehicle to the destination, the learning 

process is finished. The learned information is organized into a learned path which is 

composed of several path nodes with guidance parameters. We finally acquire the 

navigation path map which combined the landmark information and the environment 

information, and store in the disk. The entire learning process proposed in this study is 

shown in Figure 2.14. 

2.4.2 Navigation process 

In the navigation process, the autonomous vehicle can analyze the current 

location using various stored information obtained in the learned process and navigate 

to the next node on the learned path. The entire navigation process proposed in this 

study is shown in Figure 2.15.  

In general, the autonomous vehicle analyzes the current environment node by 

node to navigate to the goal according to the learned information data retrieved from 

the storage. Before the vehicle starts to navigate to the next node, the environment 

information should be checked by the autonomous vehicle. If the image is too dark or 
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too light, the vehicle can be “confused” by the image we got from the camera system. 

According to the learning environment information, the system was designed to be 

able to adjust the exposure of the camera dynamically if necessary. 

 

 

Besides, the autonomous vehicle always checks if any obstacle exists in front of 

the vehicle. As soon as an obstacle is found and checked to be too close to the vehicle, 

a procedure of collision avoidance is started automatically to perform collision 

avoidance. In addition, if the vehicle gets a node of “landmark detection,” the 
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Figure 2.14 Learning process. 
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autonomous vehicle will adjust the detection pose and load the parameters for 

landmark detection. If a landmark is found successfully, the landmark’s position is 

used to modify the odometer of the vehicle; if not, some strategy of recovering the 

landmark are started, such as changing the parameters for landmark detection or 

changing the pose of the vehicle to detect landmark successfully. 
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Figure 2.15 Navigation process. 
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Chapter 3  

Learning Strategy for Automatic 

Navigation 

3.1 Introduction 

The purpose of the learning process for the proposed machine guide dog system 

is to create a path on a sidewalk to guide a blind person to a selected destination. 

Before starting to learn a path, we have to do some works. First, at first we have to 

choose some landmarks for vehicle localization. Then, we have to calibrate the 

camera system. The third task is to infer some guidance parameters. At last, we 

should adopt a learning strategy to learn certain information about each selected 

landmark. 

3.1.1 Selected landmarks in outdoor environments 

for this study 

When the vehicle is in the navigation process, mechanic errors usually will 

accumulate up to cause imprecise odometer readings of the vehicle location and 

orientation. To solve such problems, in this study we adopt the approach of vehicle 

localization using landmarks. For this purpose, some objects should be selected as 

landmarks at first to conduct the localization work. Chou and Tsai [23] detected the 

light pole and the hydrant to localize the vehicle. In this study, we select instead some 

other natural and artificial objects as landmarks, which are commonly seen on 

sidewalks. Specifically, we select two types of natural landmarks, tree trunk and lawn 

corner, for vehicle localization in this study, as shown in Figure 3.1. Also selected for 
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the same purpose are three types of artificial landmarks, namely, signboard, traffic 

cone, and stop line on roads, as shown in Figure 3.2. With more types of landmarks so 

selected, we can have more information along the way for localization, and we can 

then guide the autonomous vehicle to the destination more reliably. The detailed 

proposed methods for vehicle localization using landmarks will be introduced later in 

Chapters 5 and 6. In this chapter, we discuss the learning process for these landmarks 

and other information. 

 

3.1.2 Camera calibration 

As mentioned in Chapter 1, it is a complicated task to calibrate a camera’s 

intrinsic and extrinsic parameters. A space-mapping technique [24], called 

pano-mapping, is adopted instead in this study to “calibrate” the two-mirror 

omni-camera system used in this study. We will introduce the adopted technique in 

Section 3.2. 

3.1.3 Learning of guidance parameters 

 

(a) 

 

(b) 

Figure 3.1 Two types of natural landmarks selected for use in this study. (a) Tree landmark. (b) Lawn 

corner point. 
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To navigate in outdoor environments, a trainer of the proposed vehicle system 

should guide the system to learn and record some parameters of the sidewalk 

environment for use in the navigation process. The parameters to be learned in this 

study include image segmentation thresholds and some other environment parameters. 

The proposed technique for learning the adopted environment parameters will be 

described in Section 3.4.1. Also, the proposed method for learning the used image 

segmentation thresholds will be described in Section 3.4.2. Finally, a process which 

we propose to create the navigation path is described in Section 3.5.3. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3.2 Three artificial landmarks used in this study. (a) Tree landmark. (b) Road stop line 

landmark. (c) Signboard landmark. 
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3.2 Camera Calibration by 

Space-mapping Approach 

To calibrate the camera system used in this study, we use the pano-mapping 

technique proposed by Jeng and Tsai [24]. Specifically, it is desired to establish a 

pano-mapping table to record the relations between the locations of image points and 

those of the corresponding real-world points. For this, as mentioned in Chapter 2, we 

assume first that a light ray going through a world-space point P with the elevation 

angle α and the azimuth angle θ is projected onto a specific point p at coordinates (u, 

v) in the omni-image. The pano-mapping table specifies the relation between the 

coordinates (u, v) of the pixel p in the image and the azimuth-elevation angle pair 

( of the corresponding world-space point P. We construct the pano-mapping table 

once, and the table can be looked up to retrieve 3D information forever. Specifically, 

we establish two pano-mapping tables for Mirrors S and B, respectively, in the camera 

system used in this study. The details are described in the following algorithm. 

Algorithm 3.1 Construction of pano-mapping tables. 

Input: two sets of six landmark point pairs (pi, Pi) and (qj, Qj) selected in advance 

manually where pi and qi are points in an omni-image I and Pi and Qj are the 

corresponding points in the world space. 

Output: two pano-mapping tables of dimension M× N for Mirrors B and S. 

Steps. 

Step. 1. Let the six known image pixels pi be located at coordinates (ui, vi,) in the 

Mirror B region in omni-image I and the six corresponding known 

world-space points Pi be at coordinates (xi, yi, zi) in the camera coordinate 

system, where i = 1, 2, …, 6, as shown in Figure 3.3. 
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Step. 2. Similarly let the six known image pixels qj be located at coordinates (Uj, Vj,) 

in the Mirror S region in omni-image I and the six corresponding known 

world-space points Qj be at coordinates (Xj, Yj, Zj) in the camera coordinate 

system, where j = 1, 2, …, 6. 

Step. 3. Calculate the radial distances ri and Rj in the image plane from the image 

pixels pi and qj to the image center, respectively, by the following equations: 

 
2 2 2 2

; .i i i i i ir u u R U V     (3.1) 

resulting in six pairs of radial distances ri and Ri for Mirrors S and B, 

respectively. 

Step. 4. Calculate the elevation angles αi and βi for the world-space points Pj and Qj, 

respectively, by the following equations: 

 
2 2 2 21 1tan ( / ); tan ( / )i i i i i i i iz x y Z X Y      , (3.2) 

resulting in six pairs of elevation angles for Mirrors S and B, respectively. 

Step. 5. Under the assumption that the surface geometries of Mirrors S and B are 

radially symmetric in the range of 360 degrees, use two radial stretching 

functions, denoted as fS and fB, to describe the relationship between the radial 

distances ri and the elevation angles αi as well as that between Rj and βj, 

respectively, by the following equations where i = 1, 2, …, 6: 

 
1 2 3 4 5

0 1 2 3 4 5( )i S i i i i i ir f s s s s s s                 ;  

 
1 2 3 4 5

0 1 2 3 4 5( )i B i i i i i iR f b b b b b b                 . (3.3) 

Step. 6. Solve the above 6-th degree polynomial equations for fA and fB by the uses of 

the six radial-distance pairs for Mirrors S and B, respectively, obtained in 
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Step 4 as well as a numerical method to obtain the coefficients a0 through a5 

and b0 through b5. 

Step. 7. By the use of the function fB with the known coefficients b0 through b5, 

construct a pano-mapping table TB for Mirror B in a form as that shown in 

Table 3.1(a) according to the following rule: 

for each world-space point Pij with the azimuth-elevation pair (θi, j), 

compute the corresponding image coordinates (uij, vij) by the following 

equations: 

 cos ; sinij j i ij j iu r v r     . (3.4) 

Step. 8. In a similar way, construct a pano-mapping table TS for Mirror S by the use 

of the function fS with the known coefficients s0 through s5 in a form as that 

shown in Table 3.1(b). 

 

 

 

 

Figure 3.3 Illustration of constructing pano-mapping tables in this study. 
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Table 3.1 Two pano-mapping tables used for the two-mirror omni-camera used in this study. (a) 

Pano-mapping table used for Mirror B. (b) Pano-mapping table used for Mirror S. 
 

 1 2 3 4 … S 

1 (u11, v11) (u21, v21) (u31, v31) (u41, v41) … (uS1, vS1) 

 2 (u12, v12) (u22, v22) (u32, v32) (u42, v42) … (uS2, vS2) 

 3 (u13, v13) (u23, v23) (u33, v33) (u43, v43) … (uS3, vS3) 

 4 (u14, v14) (u24, v24) (u34, v34) (u44, v44) … (uS4, vS4) 

 … … … … … … 

 T (u1T, v1T) (u2T, v2T) (u3T, v3T) (u4T, v4T) … (uST, vST) 

 (a) 
 

 1 2 3 4 … M 

1 (u11, v11) (u21, v21) (u31, v31) (u41, v41) … (uM1, vM1) 

2 (u12, v12) (u22, v22) (u32, v32) (u42, v42) … (uM2, vM2) 

3 (u13, v13) (u23, v23) (u33, v33) (u43, v43) … (uM3, vM3) 

4 (u14, v14) (u24, v24) (u34, v34) (u44, v44) … (uM4, vM4) 

 … … … … … … 

N (u1N, v1N) (u2N, v2N) (u3N, v3N) (u4N, v4N) … (uMN, vMN) 

(b) 

3.3 Coordinate Systems 

In this study, the following four coordinate systems are used to describe the 

vehicle location and the navigation environment. The coordinate systems are 

illustrated in Figure 3.4 and defined in the following. 

(1). Image coordinate system (ICS, denoted as u-v): The origin OI of the image 

coordinate system is located at the center of the image plane, and the u-v plane 

coincides with the image plane. 

(2). Camera coordinate system (CCS, denoted as X-Y-Z): The origin OC of the CCS is 

located at the focal point of Mirror B. The X-Z plane is parallel to the ground and 

the Y-axis is perpendicular to the ground. 

(3). Vehicle coordinate system (VCS, denoted as VX-VY): The origin OV of the vehicle 

coordinate system is located at the center of the autonomous vehicle, and the 

VX-VY plane coincides with the image plane. 

(4). Global coordinate system (GCS, denoted as GX-GY): The origin OG of this system 

is always set at the start position of the vehicle in the navigation path, and the 

GX-GY plane coincides with the ground. 
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When the vehicle is moving in the navigation session, we have to know the 

relationships among the coordinate systems. It is advantageous to utilize an odometer 

to localize the vehicle position in the GCS, though the odometer readings are not very 

accurate all the time. At the beginning of each navigation process, the VCS and CCS 

follow the vehicle, and the VCS coincides with the GCS. After the vehicle moves for 

a short distance, as illustrated in Figure 3.5, and stops at a position V at world 

coordinates (Cx, Cy) with a rotation angle θ, we can derive the coordinate 

transformation between the coordinates (VX, VY) of the VCS and the coordinates (GX, 

GY) of the GCS by the following equations: 

 

cos sin

sin cos

x x x

y yy

G V C

V CG

 

 

       
       
       .  (3.5) 
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Figure 3.4 Four coordinate systems used in this study. (a) The ICS. (b) The CCS. (c) The VCS. (d) The 

GCS. 
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Besides, the relationship between the CCS and the VCS is illustrated in Figure 

3.6. Because the origin of the CCS which projects onto the ground does not coincide 

with the origin of the VCS, we have to provide the transformation function. As 

illustrated in Figure 3.7, there is a distance between the two origins, which we denote 

as Sy, on the Vy-axis. Thus, the transformation function between the CCS and the VCS 

can be derived by the following equations: 

 XV X ;  Y yV Z S  . (3.6) 
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Figure 3.6 An illustration of the relation between the CCS and the VCS. 
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Figure 3.5 A vehicle at coordinates (Cx, Cy) with a rotation angle θ with respect to the GCS. 
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3.4 Learning of environment and 

landmark parameters 

3.4.1 Learning of environment intensity in windows  

In the navigation process, we navigate the vehicle along the learned path. Because the 

aim is to navigate along the path again and again in this study, each landmark is 

usually projected onto a fixed region in the image. By this property, we can define 

regions of interest (ROIs) in the image as shown in Figure 3.7, which are also called 

environment windows. Some advantages can be obtained from this approach as 

follows: 

1. we can reduce the computation time for detecting the desired landmark; 

2. if a feature similar to the detected landmark appears in the environment, it is 

easy to distinguish the object from the noise. 

 

 
Figure 3.7 A pair of environment windows for road stop line detection. 

However, this property alone does not solve the problem totally in outdoor 

environments. According to our experimental experience, varying lighting conditions 
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influence the results of the environment analysis work as well. For instance, as shown 

in Figure 3.9(a), because of the overexposure duo to the lighting condition, the feature 

of the curb line is not obvious enough to be recognized. For this reason, we provide a 

system which is based on Chou and Tsai [23] for the trainer to adjust the exposure of 

the camera for the purpose of detecting the landmark successfully. When the system 

adjusts the exposure of the camera to a suitable value, it means that the landmark we 

want to detect can be extracted well in this condition. Then, we may record the image 

illumination parameter into the path information as part of the learned parameters. To 

be more specific, we learn a suitable image intensity, called environment intensity 

hereafter, on the image in the environment windows during the learning process. A 

detailed algorithm for the above process is described in the following. 

Algorithm 3.2  Learning of the environment intensity parameter at a path node. 

Input: a relevant set of environment windows Winset for a certain path node with a 

pre-selected landmark under the assumption that the vehicle arrives at the node 

currently. 

Output: an environment intensity parameter Ien. 

Steps. 

Step 1. Adjust the camera exposure and acquire a suitable image Iall. 

Step 2. Check if the desired landmark feature is well imaged in the current 

illumination: if not, go to Step 1; otherwise, continue. 

Step 3. For each pixel in image Iall with color (R, G, B) in winB of Winset, calculate 

its intensity value Yi by the following equation and record Yi into a set SY: 

 0.299 0.587 0.114iY R G B      . (3.7) 

Step 4. Calculate an average value Ien of all Yi in the following way as output by the      

use of the data in SY where N is the size of winB of Winen:  
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 1

1 N

en i

i

I Y
N 

  .
 (3.8) 

Some examples of suitable illuminations for navigation tasks are shown in Figures 

3.8(b), and 3.9(b). The environment intensity parameters learned in the above way for 

them will be recorded as part of the learning result of landmark detection described 

later. 

 

 

(a) 

 

(b) 

Figure 3.8 Two different illuminations for curb line detection. (a) An instance of overexposure. (b) A 

suitable case. 

3.4.2 Learning of artificial landmark segmentation 

parameters 

It is very important for us to localize landmarks in this study. Before landmark 

localization, we have to utilize some segmentation methods for image analysis. In this 

section, we introduce the segmentation parameters proposed for use in this study for 

artificial landmark segmentation. Regarding natural landmark detection, we utilize the 

moment-preserving thresholding proposed by Tsai [26] to conduct landmark 

segmentation. The moment-preserving thresholding will be introduced in Chapter 5. 
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Also, the used landmark detection methods will be described in Chapters 5 and 6. 

(1) For sidewalk curb segmentation  we use the color information (hue and 

saturation) and the image thresholding technique to find the curb feature in the 

image utilizing the HSI color model first. Then we adopt the Canny edge 

detection technique to extract the desired landmark shape. The thresholds for hue 

and saturation values are collected as a set of curb segmentation parameters. 

Also, for the road stop line and the traffic cone, we conduct similar works.  

(2) For signboard segmentation  we use the HSI color model to extract the 

signboard shape. The threshold values for hue and saturation and also the contour 

of the signboard described by the principal components obtained from principal 

component analysis are collected as a set of signboard segmentation parameters. 

(3) For tree segmentation  we use the moment-preserving thresholding as 

mentioned previously to extract the tree shape. The contour of the tree also 

described by principal components obtained from principal component analysis 

is collected as a set of tree segmentation parameters. 

 

 

When conducting landmark learning, the trainer can detect a desired landmark by 

a user interface of the system, and adjust the values of the related set of segmentation 

 

(a) 

 

(b) 

Figure 3.9 Two different illuminations for signboard detection. (a) An instance of underexposure. (b) 

A suitable case. 
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parameters. After obtaining an appropriate result from the landmark detection process, 

the segmentation parameters and the learned landmark information which the trainer 

will use are recorded together as part of the learned path. The process for learning 

landmark segmentation parameters is shown in Figure 3.10. 

 

3.5 Learning Processes for Creating a 

Navigation Path 

In this section, we introduce the proposed method for learning a navigation path 

in the learning process. The method proposed is based on Chou and Tsai [23]. In the 

learning process, we use the odometer to localize the vehicle position and 

approximate the detected landmark position in general. The proposed strategy for 

learning landmarks for vehicle localization is described in Section 3.5.1. Additionally, 

there are some obstacles on the sidewalk along the way. The obstacles may block the 

vehicle. As shown in Figure 3.11, there is a hole on the sidewalk. It may cause the 

vehicle to fall outside the sidewalk. Thus, we propose a method to learn the positions 

of such obstacles along the way, called fixed obstacles hereafter. The method is 

described in Section 3.5.2. Finally, we introduce the entire proposed procedure to 

learn a navigation path in Section 3.5.3. 

Adjust 
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Figure 3.10 The process for learning landmark segmentation parameters. 
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3.5.1 Strategy for learning landmark positions and 

related vehicle poses 

We introduce the proposed strategy for learning a landmark and its position in 

this section. Simply speaking, for a landmark to be learned well, we have to guide the 

vehicle to appropriate positions to detect it. To increase the accuracy of the position of 

the learned landmark, we take images of the landmark a number of times from a 

number of different positions or different directions. The reason why we take multiple 

images is that the outdoor condition might cause the taken images to be all different, 

especially when there are clouds floating across the sun in the sky during the noon 

time. After we collect multiple images and analyze the feature data, a more precise 

landmark position with the corresponding vehicle pose can be obtained. Then, it is 

recorded as part of the learned navigation path. 

 

To be more specific, after we detect the landmark in omni-images a multiple 

times with the vehicle in different poses, we can calculate the mean of all the detected 

landmark positions as an estimated landmark position, denoted as Plandmark. 

Furthermore, we choose the vehicle pose among the multiple ones, which is closest to 

the one to yield the estimated Plandmark, for use as the learned pose, denoted as Pvehicle, 

 
Figure 3.11 A fixed obstacle in a navigation path which may cause the vehicle to fall outside the 

sidewalk. 
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corresponding to the estimated Plandmark. The detailed algorithm for the above process 

is described in the following. 

Algorithm 3.2 Learning of the landmark position and related vehicle pose. 

Input: a landmark type of the appointed landmark to be learned. 

Output: an estimated landmark position Plandmark and a corresponding vehicle pose 

Pvehicle. 

Steps. 

Step 1. Initialize three parameters i, j and k to be zeros, where i, j and k represent the 

k-th landmark detection, the j-th vehicle orientation, and the i-th vehicle 

position, respectively. 

Step 2. Guide the vehicle to a position Vi = (Pxi, Pyi) and record this vehicle position 

Vi into a set SV. 

Step 3. Turn the vehicle into an orientation Thij and record this orientation into a set 

STh. 

Step 4. According to the type of landmark, localize the landmark by the use of the 

corresponding localization technique (described in Chapter 5) to obtain the 

landmark position pijk = (xijk, yijk), and record this landmark position pijk into 

a set SL. 

Step 5. Go to Step 4 for K times as needed, and record the number of recoded 

landmark positions in the j-th vehicle orientation and the i-th vehicle 

position, denoted as Nij = K. 

Step 6. Go to Step 3 for J times as needed, and record the number of different 

vehicle orientations in the i-th vehicle position, denoted as Ni = J. 

Step 7. Go to Step 2 for I times as needed, and record the number of the different 

vehicle position, denoted as N = I. 
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Step 8. Compute the desired landmark position Plandmark using the set SL by the 

following equation: 

 
1 1 1 1 1 1

1 1 1 1

1 1
( , )

ij iji i

i i

N NN NN N

landmark ijk ijk ijkN NN N
i j k i j k

ij ij

i j i j
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N N
     

   

  
 

. (3.9) 

Step 9. In SV, select the c-th vehicle pose vc = (Pxc, Pyc), where vc has the minimum 

distance to Plandmark computed in terms of the Euclidean distance. 

Step 10. Choose a median orientation Thc from all Thca in STh, where a is 1 through 

Nc, and set the desired vehicle position Pvehicle as Pvehicle= (Pxc, Pyc, Thc). 

3.5.2 Learning of fixed obstacles in a navigation path 

In this section, we propose a function for use on the learning interface which can 

be used to learn fixed obstacles. It is based on Chou and Tsai [23]. When we guide the 

vehicle to a location where a fixed obstacle is projected onto the image region of both 

Mirrors S and B, we utilize this function to learn the fixed obstacle. We know that the 

fixed obstacle is located on the sidewalk, so we can use this property to learn the fixed 

obstacles more easily. As shown in Figure 3.12, first we use the mouse to click the 

position of the fixed obstacle on the region of Mirror B in the image. Then, the system 

will record the pixel in the image for use later to calculate the learned position of the 

fixed obstacle. After selecting sufficient obstacle points in the omni image, the 

position of the fixed obstacles Wobs and some parameters for avoiding the obstacles 

are recorded together as part of the learned path information. Finally, the trainer may 

set the distance parameters to let the vehicle cross the fixed obstacle safely. The 

detailed algorithm to implement the above-mentioned ideas is described in the 

following. 
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Algorithm 3.3  Computation of fixed obstacle positions. 

Input: an image Iinput, the distance from the center of Mirror B to the ground, and a set 

Sobs of the image points in the region of Mirror B, denoted as bi = (u1i, v1i), where i = 1 

through N. 

Output: a fixed obstacle position Wobs. 

Steps. 

Step 1. Manually choose the fixed obstacle point bi at coordinates (u1i, v1i) in the 

region of Mirror B in Iinput and record bi. 

Step 2. Repeat Steps 1 for N times. 

Step 3. For a set of points bi, calculate the 3D position (cxi, cyi, czi) of point Ci in the 

CCS by the derivations mentioned in Section 2.3.2 using the two 

pano-mapping tables. 

Step 4. Use the camera coordinates (cxi, cyi, czi) of point Ci and the coordinate 

transformation from the CCS to the WCS described by Equations (3.4) and 

(3.5) to calculate the position (xi, yi) of the corresponding point Wi on the 

ground in the WCS, and record Wi into a set Wobs. 

Step 5. Repeat Steps 3 and 4 for N times. 

Step 6. Derive the position (obsx, obsy) of point Wobs in the WCS as the location of 

the obstacle by the following equations: 

 
1

1 N

x i

i

obs x
N 

  ;  
1

1 N

y i

i

obs y
N 

  . (3.10) 

3.5.3 Algorithm for path learning 

In this section, we introduce the method we propose to establish a navigation path in 

the learning process. We define eleven types of navigation nodes in this study, as 

listed in Table 3.2. These navigation nodes include a set of different works which have 
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to be conducted by the vehicle. We guide the vehicle to learn a navigation path which 

we select, and some pre-selected landmarks by the utilization of the navigation node 

are recorded. Also, other parameters, like the environment intensity and landmark 

segmentation parameter, are recorded in the learned path. When the learning process 

is terminated, construction of the navigation path is finished. A navigation path 

consists of a number of the navigation nodes and some relevant parameters. When the 

navigation process is started, the navigation path can be used for vehicle navigation 

successfully. The detailed algorithm to implement the learning system is described in 

the following, and a flowchart of the process for navigation path creation is illustrated 

in Figure 3.13 

 

 

Figure 3.12 A learning interface for the trainer to learn the position of the fixed obstacle by clicking 

mouse on corresponding points in the image region of Mirror B. 

Algorithm 3.4  Creation of a navigation path. 

Input: Odometer readings of vehicle poses, denoted as (Px, Py, Pth), where Px and Py 

represent the vehicle location and Pth represents the direction of the vehicle, in the 

WCS. 



 

 47 

Output: A set of navigation nodes denoted as Npath. 

Steps. 

Step 1. Record into Npath the start node Nbegin of Type 0 with the odometer readings 

(Px, Py, Pth) = (0, 0, 0). 

Step 2. Set the navigation mode, and let the vehicle to navigate forward until 

arriving at a destination node and stop the vehicle. 

Step 3. According to the appointed navigation mode, record into Npath the current 

vehicle pose, denoted as Ncur = (Px, Py, Pth) obtained from the odometer 

readings in Type 1 or Type 2; and select one of the following seven 

additional learning tasks. 

(1) Learn a tree landmark by the method described in Section 5.4.2 to 

obtain a tree position Ntree and the related vehicle pose Ncar, and record 

Ncar in Type 4 and Ntree in Type 5 into Npath. 

(2) Learn a corner of the lawn landmark by the method (with the detail in 

Section 5.4.2), obtain a tree position Ncor and the related vehicle pose 

Ncar, and record Ncar in Type 4 and Ncor in Type 6 into Npath. 

(3) Learn a traffic cone landmark by the method mentioned in Section 

3.4.2, obtain a traffic cone position Ntc and the related vehicle pose Ncar, 

and record Ncar in Type 4 and Ntc in Type 7 into Npath. 

(4) Learn a road stop line landmark by the method mentioned in Section 

3.4.2, obtain a road stop line position NWL and the related vehicle pose 

Ncar, and record Ncar in Type 4 and NWL in Type 8 into Npath. 

(5) Learn a signboard landmark by the method mentioned in Section 3.4.2, 

obtain a signboard position NSB and the related vehicle pose Ncar, and 

record Ncar in Type 4 and NSB in Type 9 into Npath. 

(6) Learn a fixed obstacle Nobs using the proposed function discussed in 
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Section 3.5, and record Nobs in Type 10 into Npath. 

(7) Learn a curb line calibration node Ncali, where the vehicle can “see” a 

complete curb line segment without occlusion and will calibrate its 

pose by the “seen” curb line information in the navigation process, and 

record Ncali in Type 3 into Npath. 

Step 4. Go to Step 2 if the destination is not reached yet, where the destination 

position is selected by the trainer. 

Step 5.  Record the terminal node Nend, denoted as (Px, Py, Pth), according to the 

current odometer readings, in Type 0 into Npath. 

 

Table 3.2 Eleven different types of navigation path nodes. 

 

Type of number Type of node  

Type 0 Start / Terminal node  

Type 1 Curb-following navigation node 

Type 2 Blind navigation node 

Type 3 Curb-line calibration node 

Type 4 Localization node 

Type 5 Tree landmark node 

Type 6 Corner of the lawn landmark node 

Type 7 Traffic cone landmark node 

Type 8 Road stop line landmark node 

Type 9 Signboard landmark node 

Type 10 Fixed obstacle node 
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Figure 3.13 The process for navigation path creation. 
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Chapter 4  

Navigation Strategy in Outdoor 

Environments 

4.1 Strategy for Automatic Navigation 

After learning the navigation environment, we get the learned environment 

information including guidance parameters and a navigation path. Then, we can use 

them to navigate the vehicle automatically in the learned path. But, it is usually 

difficulty to let the autonomous vehicle “walk” safely in the complicated conditions 

on sidewalks. In this chapter, we introduce some strategy for automatic safe vehicle 

navigation. The principles of conducting the navigation work are described in Section 

4.2.1. The detailed algorithm for the navigation process is introduced in Section 4.3. 

4.1.1 Vehicle localization by alone-path objects 

As mentioned in Chapter 2, Because of manufacturing imprecision, the 

autonomous vehicle usually suffers from incremental mechanic errors during 

navigation, causing unstable navigation trajectories. To solve the problem, the strategy 

adopted in this study is to guide the vehicle to constantly localize its position by the 

learned fixed landmark position. In Chapter 5, the techniques for localizing a 

landmark along a navigation path will be introduced. Then we can adjust the vehicle 

posture by changing its orientation and position to modify the odometer. 

 

4.1.2 Dynamic Adjustment learning parameters in 
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navigation process 

Because of the varying lighting condition on the sidewalk, it is not good to 

always adopt fixed guidance parameters recorded in the learning process to conduct 

image analysis works. We adopt a “flexible” strategy to accomplish such works in this 

study, i.e., techniques for dynamic guidance parameter adjustment are designed for 

use in vehicle navigation. The techniques are based on Chou and Tsai [23]. Also, we 

use the contour of the signboard to help the vehicle to adjust the learned parameters 

for signboard detection by principal component analysis (PCA). The method will be 

introduced in Chapter 6. 

4.2 Guidance Technique in Navigation 

Process 

4.2.1 Principle of proposed navigation process 

When the vehicle starts navigation, how to arrive at the node recorded in the 

learning process is an important issue. In this section, we describe the principles [23] 

behind the proposed technique for vehicle navigation on the learned path. When the 

vehicle prepares to start navigation, it retrieves a navigation path and some guidance 

parameters which were recorded in the learning process. The navigation path consists 

of plenty of sequential nodes, so the vehicle can be guided to the destination through 

the nodes sequentially. Because the vehicle has mechanic errors, it usually reaches the 

next node at an imprecise location. So some principles are proposed for use to guide 

the vehicle to correct such errors and navigate safely to the desired destination. They 

are described as follows. 

(1). The vehicle always follows the sidewalk curb except when it is necessary to 
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detect farther landmarks or to avoid obstacles. After detecting and localizing the 

curb line, the vehicle modifies its orientation to maintain a safe distance with 

respect to the curb on the sidewalk. 

(2). The vehicle localizes its position and corrects the odometer along the navigation 

path after every constant-time interval. According to the landmark information 

which we learned, the vehicle detects and localizes the landmark by the use of 

the proposed landmark localization techniques. Finally, we conduct adjustment 

of the vehicle pose. 

(3). The vehicle always keeps navigating safely by avoiding collisions along the path. 

After learning the positions of fixed obstacles, the vehicle conducts a specific 

procedure to dodge the static obstacle. The procedure will be introduced in 

Section 4.2.3. 

(4). When detecting a landmark using techniques such as dynamic thresholding, the 

vehicle can adjust guidance parameters if necessary. 

General speaking, the vehicle usually localizes itself by the odometer readings 

to conduct node-based navigation. Considering the mechanic errors, we establish two 

conditions to decide whether the vehicle has arrived at the next node in node-based 

navigation. The two conditions are introduced in the following. 

(1). Condition 1  as shown in Figure 4.1(a), the distance distX between the current 

vehicle position V and the position of the next node Nodei+1 should be smaller 

than a threshold thr1. 

(2). Condition 2  as shown in Figure 4.1(b), the distance distY between the next 

node Nodei+1 and the position of the projection of the vehicle on the vector 

formed by Nodei and Nodei+1 should be smaller than a threshold thr2. 

By checking the above two conditions, the vehicle can be guided to navigate to 
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the next node and move to the destination. A flowchart illustrating the proposed 

node-based navigation is shown in Figure 4.2. 

 

Nodei Nodei+1

thr1

V

distX
Vehicle current position

 

(a) 

Nodei Nodei+1

thr2

V2

distY

Vehicle current position

 

(b) 

Figure 4.1 Two conditions to decide if the vehicle arrives at the next node in the navigation process. 

(a) According to the distance between the vehicle position and the next node position. (b) According 

to the distance between the next node position and the position of the projection of the vehicle on 

the vector connecting the current node and the next node. 

4.2.2 Automatic vehicle localization by selected 

landmarks on sidewalks 

Although the odometer provides three values Px, Py, and Pth for the vehicle to 

identify its position (Px, Py) and moving direction Pth, they are in general too 

imprecise to guide the vehicle to the next position correctly in the node-based 

navigation. To reduce the influence of the incremental mechanic errors on the 

vehicle’s navigation, we may employ as many landmarks along the path as possible. 

Then, we can use the landmark position to calibrate the odometer reading. In this 

section, we introduce the proposed technique to calibrate the vehicle position. As 
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shown in Figure 4.3, at first we use the curb line landmark to modify the orientation 

reading Pth of the odometer. When the vehicle arrives at the position of a recorded 

landmark, we utilize the proposed method for detecting landmarks to calculate its 

position and then adjust the current position (Px, Py) of the vehicle provided by the 

odometer. Combining the above two strategies, we can make the vehicle reach the 

next node more precisely. 

 (A) Adjustment of the odometer reading of the vehicle position conducted near the 

curb line. 

Figure 4.4 illustrates the relation between two different positions of the vehicle, 

the curb, and the landmark. The process of adjustment of the vehicle pose using the 

sidewalk curb line is divided into two steps. When the vehicle arrives at a position 

which we recorded, we detect the straight curb line segment which is seen in the 
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Figure 4.2 Proposed node-based navigation process. 
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omni-image, and calculate the slope angle with respect to the vehicle. Compared 

with the learned navigation path, we can estimate the current direction of the vehicle. 

After adjusting the direction, then we start to detect the landmark and obtain its 

position. According to the landmark position we recorded in the learning process, we 

utilize the vehicle orientation which we just calibrate to compute the current vehicle 

position by the relation between the landmark position and the vehicle position in the 

GCS as shown in Figure 4.5. The adopted method to calibrate the odometer is 

described in the following algorithm. 

 

Algorithm 4.3 Conducting adjustment of the odometer reading of the vehicle 

position near the curb line. 

Input: a recorded landmark position Lrecord, the odometer readings of the vehicle pose, 

a recorded slope angle θ of the curb line, and a recoded vehicle pose VL (Px, PY, 

Pth). 

Output: none. 

Steps. 

Step 1. Turn the vehicle to the recorded direction Pth, compute the curb line detection 

process which is described in Chapter 6, and compute the slope angle θ of the 

curb line relative to the vehicle direction. 

Step 2. Compute an adjustment angle θadj by the following equation: 

 adj =  ′ –  (4.1) 

and modify the orientation odometer reading to be θadj which is then taken as 

the correct vehicle orientation Pth′. 

Step 3. Detect the landmark in the acquired image and compute its position at Lccs in 

the CCS (using the method described in Chapter 5); and by the coordinate 
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transformation between the CCS and the VCS described in Equation (3.6) with 

Lccs in the CCS as input, compute the landmark position LVCS and describe it 

with coordinates (lx, ly) in the VCS. 

Step 4. From the learned navigation path, obtain the recorded landmark position Lrecord 

at coordinates (Cx, Cy) in the GCS, and use the calibrated orientation Pth′ to 

compute the current vehicle position (Xcali, Ycali) in the GCS by the following 

equations: 

 
cos sin

sin cos

x xcali th th

y ycali th th

C lX P ' P '

C lY P ' P '

      
       

      
. (4.2) 

Step 5. Replace the imprecise position readings of the odometer, (PX′, PY′), by the 

calculated vehicle position (Xcali, Ycali). 

(B) Adjustment of the odometer reading of the vehicle position conducted far off the 

curb line. 

The process for adjustment of the odometer reading of the vehicle position 

conducted far off the curb line is similar to the above-mentioned process for 

adjustment near the curb line. The detail of the process is shown in Figure 4.6. First, 

we detect and localize a nearby curb line segment for the purpose to adjust the 

orientation reading in a similar way as described previously at a node P1 in the 

learned path. Next, we conduct a slight difference step, i.e., we guide the vehicle a 

step further to another node V2, which is a location recorded in the navigation path far 

off the curb line, for the purpose of detecting the landmark at a close location. 

Comparing the two adjustment processes, the second one might cause some 

mechanical errors and provides erroneous odometer readings after the vehicle moves 

from V1 to V2. For this, after detecting the landmark and localizing it, we use the same 

technique to compute the current vehicle position by the relation between the 
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landmark position and the vehicle position in the GCS as described previously. 
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Figure 4.3 Proposed odometer reading adjustment process. 
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Figure 4.4 A recorded vehicle position V and the current vehicle position V in the GCS. 
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Figure 4.5 Landmark detection for vehicle localization at position T. (a) At coordinates (lx, ly) in VCS. 

(b) At coordinates (Cx, Cy) in GCS. 

4.2.3 Fixed-obstacle avoidance process 
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As mentioned in Chapter 3, there might be fixed obstacles along the path. A 

fixed obstacle might block the vehicle or cause it to fall outside the sidewalk. So we 

propose a strategy to help the vehicle avoid the obstacle safely, as described in the 

following. 

As shown in Figure 4.7, the vehicle is navigating to reach a node V1 in the 

learned path. The next node V2 is just occupied by an obstacle. According to the 

obstacle parameters Ox and Oy recorded in the learned navigation path which specify 

how far the vehicle should keep away from the obstacle, we utilize the two parameters 

to compute three locations by which we can insert three respective nodes in the 

navigation path as shown in Figure 4.7. The first is placed at the left rear side with 

respect to the obstacle position. The second is placed at the left front side. And the last 

is placed right in front of the obstacle. From the third newly-placed node, the vehicle 

can go back to the original path. By visiting the three new nodes in sequence, the 

vehicle can dodge the obstacle successfully and be guided to visit node V3. 

4.3 Detailed Algorithm of Navigation 

Process 

In this section, we introduce the detailed algorithm proposed in this study for 

vehicle navigation in the navigation process. With the learned information, the vehicle 

navigates along the learned path by the way of visiting each recorded node 

consecutively and finishes works at specific positions until reaching the destination 

point. The flowchart of the whole navigation process is shown in Figure 4.8. The 

whole navigation process is described in the following algorithm. 
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Figure 4.6 Process of odometer calibration position is far off the curb line. The vehicle detects the 

curb line at V1 to calibrate the orientation and then navigates to V2 to calibrate the position using 

landmark. 
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Algorithm 4.3  Navigation Process. 

Input: a learned navigation path Npath with relevant guidance parameters, and learned 

data of camera parameters. 
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Figure 4.7 Process of fixed obstacle avoidance. We insert the Nodeavoid1, Nodeavoid2, and 

Nodeavoid3.for obstacle avoidance in the original navigation path. 
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Output: none. 

Steps. 

Step 1. Read from Npath a navigation node Nnext and relevant guidance parameters. 

Step 2. Rotate the vehicle toward the next node Nnext.. 

Step 3. If a curb line following mode is adopted, modify the vehicle direction after 

localizing the curb landmark using the dynamic threshold adjustment 

technique as described in Section 6.1.1 [23]. 

Step 4. Check if the next node Nnext is reached by the mentioned two principles in 

Section 4.2.1: if not, go to Step 3; otherwise, continue. 

Step 5. If a fixed obstacle node is read from Npath, insert obstacle avoidance nodes 

into the navigation path and go to Step 8. 

Step 6. If a landmark node is read from Npath, take the following steps and then go to 

Step 8. 

(1) Adjust the exposure value to the desired illumination in the relevant 

environment windows in the image. 

(2) Detect the landmark and calculate the landmark position as described in 

Chapters 5 and 6. 

(3) Utilize the position of the landmark to localize the vehicle position and 

modify the odometer reading as described in Section 4.2. 

Step 7. If a curb line calibration node is read from Npath, modify the orientation 

reading of the odometer after detecting and localizing a curb line segment, as 

described in Section 4.2. 

Step 8. Repeat Steps 1 through 7 until there exists no remaining node in Npath. 
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Figure 4.8 Flowchart of detailed proposed navigation process. 
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Chapter 5  

Natural Landmark Detection in 

Images Using New Space Line 

Detection Technique 

5.1 Idea of Proposed Space Line 

Detection Technique 

In this study, it is desired to develop a space line detection method to localize 

landmarks on the navigation path for vehicle navigation. However, compared to the 

result of using the traditional projective camera, the projection of a space line on an 

omni-image using an omni-camera is not a line shape but a conic-section curve [25]. 

Wu and Tsai [25] proposed a line detection method which detects lines in an H-shaped 

landmark for use in automatic helicopter landing, as illustrated in Figure 5.1. Firstly, 

they proved that the projection of a space line in the omni-image is a conic-section 

curve. Then, by using a 2D Hough transform, they extracted the conic section curve in 

the omni-image and localized the boundary lines of the H shape for conducting the 

helicopter landing. 

However, Wu and Tsai’s method is based on the fact that the parameters of the 

hyperboloidal mirror are known. It is known that the parameters of a hyperboloidal 

mirror cannot be calibrated easily. As mentioned in Chapter 3, it is more convenient 

for us to utilize the pano-mapping table to calibrate the camera. Thus, we propose 

new space line detection techniques in this study by the use of the pano-mapping 

table. We utilize the space plane which goes through the space line and the center of 

the mirror, instead of trying to obtain directly the conic section curve in the 
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omni-image. By the use of the two-mirror camera system, the proposed line detection 

technique is introduced in Section 5.2.1. Besides, we derive a method to obtain 3D 

information of three vertical lines based on the method for line detection proposed in 

this study. The derivation of 3D information is introduced in Section 5.2.2. 

 

Finally, by the use of the proposed space line detection technique, many types of 

landmarks can be detected and utilized for vehicle navigation. We introduce the 

proposed tree trunk detection method in Section 5.4 and the proposed lawn corner 

detection technique in Section 5.5. Artificial landmark localization also utilizes these 

methods, which will be introduced in Chapter 6. 

 

5.2 Proposed Technique for Space Line 

Detection 

omni - camera

 
 

(a) (b) 

Figure 5.1 Wu and Tsai [25] proposed a line detection method for the omni-image to conduct 

automatic helicopter landing. (a) Illustration of automatic helicopter landing on a helipad with a 

circled H shape. (b) An omni-image of a simulated helipad. 
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5.2.1 Line detection using pano-mapping table 

If we want to detect a space line which is projected onto the omni-image, it costs 

much time to calibrate the camera parameters. In this section, a space line detection 

technique [23] for use on omni-images which are taken by the two-mirror 

omni-camera used in this study is proposed. Instead of directly obtaining the conic 

section curve, we detect the space plane which goes through a specified line and the 

mirror center. In the following, we describe the proposed detection process. 

Assume that a pano-mapping table has been established in advance. Also, 

assume that the space line L to be detected is projected by Mirror B onto the 

omni-image, and that G is any space point on L. At first, we propose a way to 

represent a vector which goes through G and the center of mirror OB used in this study. 

A light ray going through the space point G is projected by Mirror B onto an image 

point I as shown in Figure 5.2. The mirror center OB and G together form a vector VG, 

denoted as (Gx, Gy, Gz) in the CCSlocal. This vector VG can be described using the 

azimuth and elevation angles  and α by the following equations: 

 cos cosxG '    ; cos sinyG '    ; sinzG '  . (5.1) 

Also, as mentioned previously, to increase the front FOV of the camera, we make 

the camera system slant up for a specific angle, denoted as . By the use of the 

rotation matrix introduced in Equation (2.5), the transformation function between the 

coordinates (X′, Y′, Z′) of the original CCSlocal and the coordinates (X, Y, Z) of the 

rotated CCS can be described as follows: 

 

1 0 0

0 cos( ) sin( )

0 sin( ) cos( )

X X'

Y Y'

Z Z'

 

 

     
     

   
     
           

. (5.2) 
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According to the coordinate transformation described by Equation (5.2), we can 

convert the vector VG into a new one VG, which represents the vector with an azimuth 

angle  and an elevation angle α going through the mirror center in the rotated CCS 

and may be described by the following equations: 

 

cos cos

cos sin cos sin sin

cos sin sin cos

x

G y

z

G

V G

G

 

    

   

   
   

     
   
         

. (5.3) 

Then, as shown in Figure 5.3, let IL be the conic section curve resulting from 

projecting the space line L onto the omni-image. Also, let Q be the space plane which 

goes through L and the mirror center OB. Assume that the coordinates (X, Y, Z) of a 

point is on the space plane Q, and let NQ = (l, m, n) be the normal vector of the space 

plane Q. Then, the space plane Q may be described by: 

 0lX mY nZ   . (5.4) 

Besides, because the normal vector NQ and the vector VG are perpendicular to 

each other, the coefficients in (5.4) actually are related to the elements of the vector 

VG of Q by the equality NQVG = (l, m, n)(Gx, Gy, Gz) = 0 which we describe in the 

following: 

 NQVG = (l, m, n)(Gx, Gy, Gz) = lGx + mGy + nGz = 0. (5.5) 
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Figure 5.2 A space point with an elevation angle α and an azimuth angle . 
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Figure 5.3 A space line L projected on IL in an omni-image. 

Then, substituting Equation (5.3) into Equation (5.5), we get 

(cos cos ) (cos sin cos sin sin )l m             .

( cos sin sin cos ) 0n           . (5.6) 

 Equation (5.6) may be divided by Gx to get 

(cos sin cos sin sin ) ( cos sin sin cos )
0

(cos cos ) (cos cos )
l m n

        

   

       
    

 
. 

  (5.7) 

However, the above equation consists of the three unknown parameters l, m, and n 

which represent the normal of the space plane Q. For the purpose of equation 

reduction, we assume that n is not equal to zero. Then, we may divide Equation (5.7) 

by n to get an alternative form as follows: 

(cos sin cos sin sin ) ( cos sin sin cos )
0

(cos cos ) (cos cos )

l m

n n

        

   

       
   

 
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(5.8) 

We may reduce Equation (5.8) further to get the following result: 

(cos sin cos sin sin ) ( cos sin sin cos )
0

(cos cos ) (cos cos )
B A

        

   

       
   

 
 

  (5.9) 

where A = m/n, B = l/n, which may be rewritten as 

 B + A a0+ a1 = 0 (5.10) 

where 

m
A

n
 , 

l
B

n
 , 0

(cos sin cos sin sin )

(cos cos )
a

    

 

   



, 

1

( cos sin sin cos )

(cos cos )
a

   

 

   



. 

Finally, we utilize two variables A and B, as shown by (5.10), to represent the 

parameters l, m, and n. In summary, we can use a simple technique using the 2D 

Hough transform to compute the parameters A and B. A detailed algorithm is 

introduced in the following. 

Algorithm 5.1  Space line detection. 

Input: an input edge-point image Iedge which includes the conic section projection L’ 

in an image Iedge of a space line L, and the pano-mapping table for Mirror B. 

Output: the values of the two parameters Amax and Bmax, representing a normal vector 

of the space plane described by Equation (5.10). 

Steps. 

Step 1. Set up a 2D Hough space S with the parameters A and B and set all cell 

values to be zero. 
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Step 2. For an edge point I at coordinates (u, v) in Iedge, and look up the 

pano-mapping table to obtain a corresponding azimuth-elevation angle pair 

( α). 

Step 3. Compute the parameter values A and B by Equation (5.9) using  and α; and 

if A, B, , and α satisfy Equation (5.9), then increment the count in the cell 

(A, B) of the Hough space S by one. 

Step 4. Repeat Steps 2 and 3 until all the edge points in Iedge are computed. 

Step 5. Take the cell (Amax, Bmax) with a maximum count in S as output. 

We can obtain the normal vector (l, m, n) from the above-presented algorithm; 

however, it costs much time to calculate the 2D Hough transform. Chou and Tsai [23] 

proposed a method which detects a vertical line by using a 1D Hough transform and 

the normal vector of the space plane. The vertical line, called LY line hereafter, is 

parallel to the Y-axis line in the GCS. In this study, we propose a method for detecting 

two specific lines. One line of the two is parallel to the X-axis, called the LX line. The 

other is parallel to the Z-axis, called the LZ line. These three specific lines are 

illustrated in Figure 5.4. We will describe them, respectively 

At first, we review the method for LY line detection. Note that the direction 

vector of LY is DY = (dYx, dYy, dYz) = (0, 1, 0). Therefore, Equation (5.5) leads to 0×l + 1

×m+ 0×n = 0. Then, it is easy to figure out that m is equal to zero. Thus, Equation (5.7) 

can be reduced to be the following equation: 

( cos sin sin cos )
0

(cos cos )
l n

   

 

   
  


. 

  (5.11) 

By Equation (5.10), we may reduce Equation (5.11) to be 
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 1 0B a   (5.12) 

or equivalently, to be 

 B = a1. (5.13)  

In a similar way as described in Algorithm 5.1, we can use a 1D Hough 

transform to find the parameter B, which represents a normal vector of the specific 

space plane through the LY line and the mirror center. 

Then, it can be that the direction vector of the LX is DX = (dXx, dXy, dXz) = (1, 0, 0). 

Therefore, Equation (5.5) leads to 1×l + 0×m+ 0×n = 0. Then, it is easy to figure out 

that l is equal to zero. Thus, Equation (5.7) can be reduced to the following equation: 

(cos sin cos sin sin ) ( cos sin sin cos )
0

(cos cos ) (cos cos )
m n

        

   

       
   

 
. 

  (5.14) 

By Equation (5.10), we can reduce Equation (5.14) to be 

 0 1 0,A a a    (5.15) 

or equivalently, 

 1

0

a
A

a


   (5.16) 

So we can also use Algorithm 5.1 to find the parameter A, which represents a normal 

vector of the specific plane through the LX line and the mirror center. 
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The last one is about LZ line detection in the space. The direction vector of the 

horizontal line LZ is DZ = (dZx, dZy, dZz) = (0, 0, 1). Thus, Equation (5.5) leads to 0×l + 

0×m+ 1×n = 0, or equivalently, n = 0. Equation (5.7) can thus be reduced to be the 

following equation: 

  
(cos sin cos sin sin )

0
(cos cos )

l m
    

 

   
  


. (5.17) 

By Equation (5.10), we can reduce Equation (5.17) to be 

  0 0l m a   , (5.18) 

or equivalently, 

  0a K    (5.19) 

where 

0

(cos sin cos sin sin )

(cos cos )
a

    

 

   



, 

l
K

m
 . 

Again, we can use a simple 1D Hough transform technique to compute the 
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Figure 5.4 Three specific space lines. 
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parameters K. The detailed algorithm is introduced in the following. 

Algorithm 5.2  LZ space line detection. 

Input: an input edge-point image Iedge which includes the conic section projection L’ 

in an image Iedge of a LZ space line L, and the pano-mapping table for Mirror 

B. 

Output: the values of the parameter Kmax representing a normal vector of the space 

plane described by Equation (5.16). 

Steps. 

Step 1. Set up a 1D Hough space S with the parameter K and set all cell values to be 

zero. 

Step 2. For an edge point I at coordinates (u, v) in Iedge, look up the pano-mapping 

table and obtain a corresponding azimuth-elevation angle pair ( α). 

Step 3. Compute the parameter K by Equation (5.19) using  and α, and if K, , and 

α satisfy Equation (5.19), then increment the count in the cell K of the 

Hough space S by one. 

Step 4. Repeat Steps 2 and 3 until all the edge points in Iedge are processed. 

Step 5. Take the cell Kmax with a maximum count in S as output. 

5.2.2 3D data computation using three space lines 

In this section, based on the proposed space line detection technique described in 

the previous section, we can derive the 3D data from three vertical space lines from 

the omni-image, as described subsequently. 

(A) 3D data computation using a LY line. 

As shown in Figure 5.5, a LX space line is projected onto IL1 and IL2 on the 
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regions of Mirrors B and S, respectively. The center OB of Mirror B is located at 

coordinates (0, 0, 0) in the CCS as we previously assumed. We can calculate the 

position of the center OS of Mirror S by the slant angleand the length of baseline 

which is denoted as b to be (0, bsin, bcos) in the CCS coordinates system. 

According to Equation (5.4), two space planes Q1 and Q2 going through LY and the 

center of mirror, OB and OS, respectively, can be described by the following equations: 

 lBX + mBY + nBZ = 0; (5.20) 

 lSX + mS(Y － bsin + nS(Z － bcos) = 0, (5.21) 

where (lB , mB , nB) represents the normal vector of Q1 and (lS , mS , nS) represents that 

of Q2. 

As mentioned previously, the direction vector of LY is DY = (dYx, dYy, dYz) = (0, 1, 

0). Thus, we know that mB and mS are both zero, and the above two space plane 

equations can be reduced into the following forms: 

 lBX + nBZ = 0; (5.22) 

 lSX + nS(Z － bcos) = 0, (5.23) 

or equivalently, 
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Y
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(0,0,0)

 

Figure 5.5 A space line projected onto IL1 and IL2 on two mirrors in the used two-mirror omni-camera. 
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 B1X + Z = 0; (5.24) 

 B2X+ (Z － bcos) = 0, (5.25) 

where B1 = lB/nB and B2 = lS/nS. 

Solving Equations (5.24) and (5.25), we can obtain the following desired solution 

for X and Z: 

 
2 1

cosb
X

B B





; 

 1 2 cosZ B X B X b         . (5.26) 

It is noted that Equation (5.26) cannot be solved when B1 is equal to B2, resulting in a 

parallelism between the two space planes Q1 and Q2. 

(B) 3D data computation using a LX line. 

The process for 3D computation using a LX line is similar to that using a LY line. 

As shown in Figure 5.6, the equations of Q3 and Q4 may be described in the 

following: 

 lB1X + mB1Y + nB1Z = 0; (5.27) 

 lS1X + mS1(Y － bsin + nS1(Z － bcos) = 0, (5.28) 

where (lB1 , mB1 , nB1) represents the normal vector of Q3 and (lS1 , mS1 , nS1) represents 

that of Q4. 

As mentioned previously, the direction vector of the LX is DX = (dXx, dXy, dXz) = (1, 

0, 0). Thus, we know that lB1 and lS1 are both zero, and the above two space plane 

equations can be reduced into the following forms: 

 mB1Y + nB1Z = 0; (5.29) 

 mS1(Y － bsin + nS1(Z － bcos) = 0, (5.30) 

or equivalently, 
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 A1Y + Z = 0; (5.31) 

 A2 ( Y － bsin + (Z － bcos) = 0, (5.32) 

where A1 = mB1/nB1 and A2 = mS1/nS1. 

Solving Equations (5.31) and (5.32), we can obtain the following desired solution 

for Y and Z: 

 2

2 1

sin cosA b b
Y

A A

    



; 

 1 2 2sin cosZ A Y A b A Y b           . (5.33) 

It is noted that Equation (5.33) cannot be solved when A1 is equal to A2, resulting in a 

parallelism between the two space planes Q3 and Q4. 

 

 (C) 3D data computation using a LZ line. 

As shown in Figure 5.7, the equations of Q5 and Q6 may be described as follows: 

 lB2X + mB2Y + nB2Z = 0; (5.34) 

 lS2X + mS2(Y － bsin)  + nS2(Z － bcos) = 0, (5.35) 

where (lB2 , mB2 , nB2) represents the normal vector of Q5 and (lS2 , mS2 , nS2) represents 
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Figure 5.6 A space line projected onto IL3 and IL4 on two mirrors in the used two-mirror omni-camera. 
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that of Q6. 

 

The direction vector of the LZ line is DZ = (dZx, dZy, dZz) = (0, 0, 1). Thus, we 

know that nB2 and nS2 are both zero. Thus, the above two space plane equations can be 

reduced into the following forms: 

 lB2X + mB2Y = 0; (5.36) 

 lS2X + mS2(Y  bsin) = 0 (5.37) 

which are equivalent to 

 K1X + Y = 0; (5.38) 

 K2X + (Y  bsin = 0, (5.39) 

where K1 = lB2/ mB2 and K2 = lS2/ mS2. By solving Equations (5.38) and (5.39), we can 

obtain the following desired solution for X and Y: 

2 1 2

sin sin
;

b b Y
X

K K K

   
 


 

 1 .Y K X    (5.40) 

It is noted that Equation (5.40) cannot be solved when K1 is equal to K2, resulting 

in a parallelism between the two space planes Q5 and Q6. 
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Figure 5.7 A space line projected onto IL5 and IL6 on two mirrors in the used two-mirror omni-camera. 
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5.3 Proposed Method for Tree Trunk 

Detection 

In this section, we introduce the proposed method to localize a tree trunk. At first, 

we introduce the used method to describe a tree trunk contour and the learning of the 

tree trunk contour in Section 5.3.1. Next, we extract a feature of the tree trunk by 

moment-preserving thresholding [26] in Section 5.3.2. Then, estimating the position 

of tree trunk is described in Section 5.3.3. Finally, some experimental results for tree 

trunk detection by the proposed method are given in Section 5.3.4. The process of the 

tree trunk localization is illustrated in Figure 5.8. 

 

5.3.1 Tree trunk contour description 

After conducting tree trunk segmentation in the omni-image, we want to ensure 

that the result of segmentation is correct. In this study, we use the center of a group of 

feature points and a simple description with two specific parameters obtained by 

principal component analysis (PCA) to ensure that the object which we want is 

existing. The method proposed is based on Chou and Tsai [23]. When it conducts the 

segmentation results, it utilizes the feature point to compute the covariance matrix Cx 

in the image. After obtaining the two eigenvalues and the two corresponding 

eigenvectors of the matrix Cx, we calculate the center of the feature points of the tree 

trunk, the length ratio  of the two eigenvalues of Cx, and the rotational angle  
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Figure 5.8 Proposed method for tree trunk localization. 
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between the ICS and the principal component, respectively. Then, we utilize  and  

to describe the tree trunk contour as shown in Figure 5.9. The detailed algorithm is 

described as the follows. 

Algorithm 5.3  Tree trunk contour parameter computation. 

Input: an input bi-level image Iinput which includes the feature points of a tree trunk 

appearing in an omni-image. 

Output: Three tree trunk contour parameters, the center mx of all the feature points 

using their coordinates, a rotational angle , and a length ratio . 

Steps. 

Step 1. Scan each feature point p with coordinates (u, v) in Iinput, compute the center 

mx = (ux, vx) of all the feature points using their coordinates, and calculate 

the covariance matrix Cx of these feature points using their coordinates and 

mx. 

Step 2. Compute the eigenvectors e1 = (u1, v1) and e2 = (u2, v2) and the two 

corresponding eigenvalues1 and 2 of matrix Cx, where e1 represents the 

first principal component and e2 the second. 

Step 3. By the two eigenvectors e1 and e2, and the two eigenvalues 1 and , 

compute two parameters, the rotational angle  of the first principal 

component e1 with respect to the v-axis in the ICS and the ratio  of 1 to 2 

by the following equations: 

 1 1

1

tan ( )
v

u
  ;  1

2





 . (5.21) 

Step 4. Take mx, , and as outputs. 
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(a) (b) 

Figure 5.9 Principal component analysis for the tree trunk contour. (a) Illustrated principal 

components, e1 and e2, on the omni-image. (b) A rotation angle   between the ICS and the 

computed principal components. 

Additionally, because the vehicle cannot arrive at the same position to detect the 

tree trunk, the projections of the tree trunk on omni-images cause a little difference of 

their positions. To solve this problem, we guide the vehicle to take many of 

omni-images from different positions and directions in the learning process. After 

conducting the process of extracting the tree trunk feature points, we use the images 

to compute three parameters i, i, and mx, the center of the entire group of feature 

points. Collecting all of parameters, we set the tree trunk parameters in a range from a 

minimum angle min to a maximum angle max, and set a range from a minimum ratio 

min to a maximum ratio max. Also, we calculate the average of the center of tree 

trunk, and then set a threshold value Vheight in the ICS to check that the height of the 

center of tree trunk is true. Finally, we record the five parameters Vheight, min, max, 

min, and max as the tree contour thresholds. In the navigation process, if the 

computed the height of the center of the tree trunk, the rotational angle , and the 

ratio  in tree truck detection are not in the learned ranges, we decide that the result 

of detection is not a pre-selected tree trunk. 
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5.3.2 Moment-preserving thresholding for tree trunk 

segmentation 

In outdoor environments, it is difficult to detect the natural landmark like trees 

because the natural landmark does not have obvious color information. So we should 

find a strategy to detect it. In this section, we utilize the moment-preserving 

thresholding technique to extract feature points of the tree trunk. 

In outdoor environments, varying lighting conditions will influence the image 

intensity. The moment-preserving thresholding approach to automatic threshold 

selection for segmenting desired object out of a given image is adopted in this study. 

We segment the tree trunk from an omni-image by thresholding the difference image f 

into a bi-level image by the use of a threshold value Th. The details are described in 

the following. 

Given an environment window in the image f with n pixels whose gray value at a 

pixel with coordinates (x, y) is donated by f(x, y), the i-th moment mi is defined as  

1
( , ),    0, 1,  2,  3i

i

x y

m f x y i
n

  .    (5.41) 

The moments can be computed by the use of the gray-level histogram in the following 

way, where nj is the total number of pixels in f with gray value zj and pj = nj/n: 

 
1 1

'

0 0

1
( ) ( ) ,    0,  1,  2,  3i i

i j j j j

j j

m n z p z i
n  

    . (5.42) 

Assume that the image resulting from thresholding only contains two gray values 

z0 and z1, with z1 being larger than z0. The method is to choose a threshold value to 

judge the pixel value in the gray-level in the environment window to be zo or z1. To 

find the desired Th, we can solve two equations described by Equations (5.41) and 

(5.42) to obtain p0 and p1, as described in the following: 
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 (5.43) 

To obtain the threshold value Th, we need to accumulate the probability values from 

the smallest gray value until the accumulated value reaches p0, as described by the 

following equation: 

 0

 

1
.

j

j

z t

p n
n 

   (5.44) 

Finally, conducting the thresholding work, all pixels in the environment window 

in the image f are scanned and their values are compared to the threshold value Th. If 

a pixel value in f is larger than Th, the corresponding pixel in the bi-level image b is 

labeled by “0”; else, it is labeled by “1.” We regard the region labeled by “0” as a tree 

trunk region. 

5.3.3 Tree trunk localization 

By using the tree trunk contour extraction process described above, we want to 

find the vertical axis line of the tree trunk to localize the tree trunk. We assume that 

the desired vertical line goes through both centers of the tree trunk appearing in the 

regions of Mirrors S and B in the omni-image. After extracting the two center 

positions of the tree trunk in the regions of Mirrors S and B, we can obtain further the 

two space planes which go through the axis line and the two mirror centers, 

respectively, by the use of the proposed vertical line detection method [23]. Finally, 



 

 83 

we can obtain the tree trunk position by the located axis line using the information of 

the two space planes. The detailed process is described as follows. 

Algorithm 5.4 Tree trunk location computation. 

Input: an input bi-level image Ibi which includes tree trunk feature points, and an 

environment window Wintt. 

Output: a tree trunk position Gtt in the CCS. 

Steps. 

Step 1. Compute the center CB with coordinates (uB, uB) of the tree trunk feature 

points in winB of Wintt and the center CS with coordinates (uS, uS) of the tree 

trunk feature points in winS of Wintt. 

Step 2. Look up the pano-mapping table to obtain the corresponding elevation angle 

αB and azimuth angle  of CB and the corresponding elevation angle αS and 

azimuth angle S of CS. 

Step 3. By Equation (5.13), compute the parameter value BB corresponding to CB 

using  and αB as well as the parameter value BS corresponding to CS using 

S and αS. 

Step 4. By the use of BB and BS, compute the position coordinates X and Z of the 

axis line L of the tree trunk by Equation (5.26). 

Step 5. Compute the tree trunk position Gtt with coordinates (xtt, ytt, ztt) in the CCS 

as follows: 

 xtt = X; ytt = H, ztt = Z (5.45) 

  where H is the height of the camera center. 

Step 6. Take Gtt as output. 

5.3.4 Experimental results for tree trunk detection 
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Some experimental results for tree trunk detection are shown in this section. The 

input image with a tree trunk on the regions of Mirrors S and B, respectively, is 

shown in Figure 5.10. The result of tree trunk segmentation using the 

moment-preserving threshold technique is shown in Figure 5.11. Finally, the result of 

detecting the vertical axis line of the tree trunk and the obtained tree trunk position are 

shown in Figure 5.12. 

 

 

Figure 5.10 The input image with a tree trunk. 

 

 

Figure 5.11 Tree trunk segmentation by moment-preserving thresholding. 
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(a) 

 

(b) 

Figure 5.12 The result of tree truck detection and its position. (a) The result image of extracting the 

vertical axis line of the tree trunk. (b) The related tree truck position with respect to the vehicle 

position. 

 

5.4 Proposed Method for Lawn Corner 

Detection 
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5.4.1 Lawn corner detection and localization 

In this section we introduce the proposed method for lawn corner detection. As 

shown in Figure 5.13, the lawn corner is too obscure to recognize in the omni-image, 

so we can only see the part of the lawn corner By these observations, the detection is 

divided into two stages. When the vehicle arrives at the detection position, it detects a 

space line firstly. Then, it is guided to turn left, and detects another space line. The 

two space lines then are drawn to cross to form a corner. In this way, we can obtain 

the 3D data of the lawn corner successfully. 

 

 

(a) 

 

(b) 

Figure 5.13 Two different camera systems take the lawn corner. (a) By digital camera. (b) By 

omni-camera. 

Generally speaking, the lawn has the special color of green. We utilize this color 

information to extract the lawn boundary. Unfortunately, the grove is in front of the 

lawn as shown in Figure 5.13. It is too dark to obtain the color information. By the use 

of image intensity difference between the lawn and the floor, we can detect an LX 

space line on the ground instead of detecting the lawn object. First, we detect the lawn 

object using the moment-preserving thresholding technique as described previously in 

Section 5.3.2. Then, we obtain the boundary line between the lawn and the sidewalk 
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using the Canny edge detection technique. By the use of the edge-point image, we use 

the above-mentioned space line detection technique to find an LX space line on the 

ground. The detailed algorithm for implementing this idea of lawn corner detection is 

described as follows. 

Algorithm 5.5  lawn boundary line detection. 

Input: an input image Iinput, a pano-mapping table for Mirrors B, and a set of 

environment windows WinLC. 

Output: the parameters Amax representing the parameters of space planes through the 

boundary lines of the lawn and then through the Mirror B center  

Steps. 

Step 1. For Iinput in the environment window WinLC, use the moment-preserving 

threshold to find the lawn object, and obtain a bi-level image Ibi. 

Step 2. For Ibi in the environment window WinLC, use the Canny edge detector to 

conduct edge detection to extract the feature points of the boundary lines of 

the lawn, and obtain an edge-point image Iedge. 

Step 3. Set a 1D space S with parameter A and initialize all cell counts to be zero. 

Step 4. For each edge point I at coordinates (u, v) in winB of WinLC, look up the 

pano-mapping table to obtain an azimuth angle  and an elevation angle α. 

Step 5. Compute A by Equation (5.16) using  and α, and increment by 1 the value 

of the cell with parameter A in S. 

Step 6. Repeat Steps 4 and 5 until all edge points in winB of WinLC are computed. 

Step 7. Find the cell, denoted as Amax , with the maximum value in space S 

 

After conducting the boundary of detection, we can obtain the space plane which 

goes through the boundary line on the ground. Then, the vehicle should turn left to 
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detect another LX space line. After we get two corresponding space plane parameters 

Afirst and Asecond, we utilize the results to compute the location of the lawn corner. The 

detailed algorithm is introduced as follows. 

Algorithm 5.6 Lawn corner position computation. 

Input: two corresponding space plane parameters Afirst and Asecond obtained from 

Algorithm 5.4, of a lawn appearing in an omni-image and the height of 

ground H. 

Output: a lawn position GLC in the CCS. 

Steps. 

Step 1. By Afirst and H, compute one boundary space line L1 of the lawn by 

Equation (5.23) and obtain its equation as follows: 

 Y = －H;  Z= Z1. (5.46). 

Step 2. By Asecond and H, compute one boundary space line L2 of the lawn by 

Equation (5.23) and obtain its equation as follows: 

 Y = －H;  Z= X1. (5.47). 

Step 3. Compute the coordinates (xLC, yLC, zLC) of the lawn corner position GLC in 

the CCS as follows: 

 XLC = X1;  yLC = －H;  zLC = Z1 (5.48) 

where H is the height of the camera center. 

Step 4. take GLC as output. 

5.4.2 Experimental results for lawn corner detection 

An input image with the projection of a lawn corner on the regions of Mirror B is 

shown in Figure 5.14. The result of the lawn boundary detection is shown in Figure 

5.15. 
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Figure 5.14 Two different directions in the image for lawn corner detection. 

 

  

Figure 5.15 Two result of LX line detection. 
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Chapter 6  

Artificial Landmark Detection in 

Images Using Space Line 

Detection Technique 

6.1 Proposed Technique for Curb Line 

Following 

To conduct vehicle navigations on sidewalks, Chou and Tsai [23] proposed a 

technique to detect curb lines and compute their locations with respect to the vehicle. 

In this section, based on the method proposed by Chou and Tsai, we propose a new 

method to localize the curb line by the use of the projection of a curb line onto the 

region of Mirror B in the omni-image.  

In this section, we review the method [23] in Section 6.1.1. In Section 6.1.2, the 

curb line localization method we propose is introduced. Finally, some experimental 

results for curb detection are shown in Section 6.1.3. 

6.1.1 Review of adopted curb line following 

Chou and Tsai [23] proposed a method for curb line detection. By the use of an 

environment window, a curb line segment can be detected in the window. First, the 

curb line color feature is extracted by the use of the HSI color model. Then, some 

morphological process including erosion and dilation operations are performed to 

eliminate small noise. Within the bi-level image Ib which includes the curb feature 

points, the inner boundary points of the curb line are found and their positions in the 



 

 91 

CCS are computed. The property that the curb line is on the floor is utilized to 

compute the boundary point positions instead of using the space-mapping method. By 

the use of Mirror B, suppose that a space point G at coordinates (X, Y, Z) is projected 

onto the omni-image with an azimuth angle  and an elevation angle . As mentioned 

in Section 5.2.1, we can represent the vector from the mirror center OB to space point 

G using the following equation: 
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Besides, according to the knowledge that the height H of the center of Mirror B 

is known in advance, one can get Y = －H. Accordingly, Equation (5.3) can be 

rewritten as follows, which describe the position of P: 
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After calculating the position of the curb line boundary point in the CCS, it can 

 
 

Figure 6.1 A detected curb line and the inner boundary points of the curb line on the omni-image. 
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be transformed from the CCS into the VCS. Then, the data are used to fit the line L to 

get its equation as follows: 

 Y = ax + b, (6.2) 

where the two parameters, a and b, are calculated by the following equations: 

  1 1 1

2

2

1 1

n n n

i i i i

i i i

n n

i i

i i

n x y x y

a

n x x

  

 




 

  
 

  

 

, 

 

2

1 1 1 1

2

2

1 1

n n n n

i i i i i

i i i i

n n

i i

i i

x y x y x

b

n x x

   

 




 

  
 

   

 

 (6.3) 

with (xi, yi) being the position coordinates of a boundary point. 

Furthermore, a more precise position of the curb line can be estimated using the 

dynamic color thresholding technique by adjusting the saturation threshold in a 

pre-defined fixed range. After using all possible pre-selected threshold values in this 

range to extract curb boundary points, the best saturation threshold value can be 

estimated according to the minimum sum of errors in the results of fitting the curb 

boundary points with the computed line. A result of applying dynamic color 

thresholding technique is shown in Figure 6.2. 

 

  
(a) (b) 

Figure 6.2 Two images of curb segmentation resulting from using different threshold values (a) The 

segmentation result with original threshold value. (b) The segmentation result image by dynamic 

thresholding. 
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Finally, the slope angle of L and the distance d to the vehicle can be computed by 

the following equation: 

 
1 1

tan
a

   
  

 
;  

21

b
d

a



. (6.4) 

6.1.2 Proposed curb line localization technique 

In this section we describe the proposed method of curb line localization. As 

usual we get the feature points of the curb line by color information. Then, we use the 

Canny edge detector to obtain the two boundary lines of the curb line. In the resulting 

edge-point image, we use the proposed LZ line detection method to find the two 

boundary lines based on a 1D Hough transform technique. Then, we choose the inner 

boundary line to compute its position. The proposed algorithm for curb line detection 

as discussed above is described as follows. 

Algorithm 6.1  Curb line boundary detection. 

Input: a bi-level image Iinput of the feature points of a curb line, a pano-mapping table 

for Mirrors B, and an environment window WinRL. 

Output: the parameters Kinner representing the space planes going through the inner 

boundary lines of the curb line and the Mirror B center. 

Steps. 

Step 1. For Iinput in the environment window WinRL, use the Canny edge detector to 

conduct edge detection to extract the feature points of the boundary lines of the 

lawn, and obtain an edge-point image Iedge. 

Step 2. Set up a 1D space S with parameters K and initialize all cell counts to be 

zero. 

Step 3. For each edge point I at coordinates (u, v) in winB of WinRL, look up the 
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pano-mapping table to obtain an azimuth  and an elevation angle α. 

Step 4. Compute K by Equation (5.19) using  and α, and increment by 1 the value 

of the cell with parameter K in S. 

Step 5. Repeat Steps 3 and 4 until all edge points in winB of WinRL are computed. 

Step 6. Find the cell, denoted as Kinner, with the maximum value in space S. 

Step 7. Take Kinner as the output. 

 

After successfully detecting the inner boundary line of a curb line, we can use it 

to compute the inner curb line location. By the parameter Kinner obtained by the above 

algorithm and the height H of the center of Mirror B, we can rewrite Equation (5.40) 

to obtain the position of the inner curb line L as follows: 

 
inner

H
X

K
 , 

 Y H  . (6.5) 

6.1.3 Experimental results of curb line detection 

Some experimental results of curb detection using the proposed localization 

method are given in this section. An input omni-image with a curb line is shown in 

Figure 6.3. The extracted curb boundary points and computed best-fit line from Figure 

6.3 are shown in Figure 6.4. The method for localizing the curb line using a 1D 

Hough transform is shown in Figure 6.5. Besides, we collected the statistics of our 

experimental results for curb detection as shown in Table 6.1. Comparing the method 

we propose with that by Chou and Tsai [23], we see that the error ratios of our method 

are more stable and smaller. By this result, we utilize the fitting line method to 

compute the slope angle of curb line and use a 1D Hough transform to localize the 

curb line in the navigation process. 
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Figure 6.3 An omni-image with curb line landmark. 

 

 

(a) 

 

(b) 

Figure 6.4 The curb line detection method proposed by Chou and Tsai (a) the curb line segmentation 

result. (b) Illustration of extracted curb boundary points and a fitting line. 

 

 

(a) 

 

(b) 

Figure 6.5 The curb line detection method (a) the curb line segmentation result. (b) The related curb 

line position with respect to the vehicle position. 
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Table 6.1 Comparison of two methods for curb line detection. 

Distance 
Curb line fitting 

method 

1-D Hough 

method 

Error ratio in Curb 

line fitting 

Error ratio in 

1-D Hough 
40 38 43 5.00% 7.50% 
40 39 43 2.50% 7.50% 
40 38 43 5.00% 7.50% 
40 38 43 5.00% 7.50% 
40 39 43 2.50% 7.50% 
40 38 45 5.00% 12.50% 
40 37 43 7.50% 7.50% 
40 37 43 7.50% 7.50% 
40 39 45 2.50% 12.50% 
40 38 43 5.00% 7.50% 
50 49 53 2.00% 6.00% 
50 50 53 0.00% 6.00% 
50 48 54 4.00% 8.00% 
50 48 54 4.00% 8.00% 
50 49 54 2.00% 8.00% 
50 48 53 4.00% 6.00% 
50 48 53 4.00% 6.00% 
50 47 53 6.00% 6.00% 
50 49 53 2.00% 6.00% 
50 48 53 4.00% 6.00% 
60 57 62 5.00% 3.33% 
60 58 63 3.33% 5.00% 
60 57 63 5.00% 5.00% 
60 56 63 6.67% 5.00% 
60 57 64 5.00% 6.67% 
60 56 64 6.67% 6.67% 
60 58 64 3.33% 6.67% 
60 58 63 3.33% 5.00% 
60 56 63 6.67% 5.00% 
60 58 64 3.33% 6.67% 
70 59 71 15.71% 1.43% 
70 54 71 22.86% 1.43% 
70 56 71 20.00% 1.43% 
70 55 70 21.43% 0.00% 
70 56 71 20.00% 1.43% 
70 54 71 22.86% 1.43% 
70 65 71 7.14% 1.43% 
70 54 71 22.86% 1.43% 
70 54 70 22.86% 0.00% 
70 54 71 22.86% 1.43% 

Average 8.16% 5.44% 

6.2 Proposed Method for Signboard 

Detection 

6.2.1 Signboard detection 

The idea of the proposed method for signboard detection is to detect the contour 

of the signboard, like we do in detecting the tree trunk. Then, we use the boundary 
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line of the signboard to localize it. Combining the two techniques, we can localize the 

signboard more precisely. The entire process to localize a signboard is shown in 

Figure 6.6. The computation of the signboard position is described in the next section. 

 

Feature 

points 

extraction

Contour 

analysis

Signboard 

position 

estimation

Signboard 

location

Input omni-

image

Dynamic Threshold 

Adjustment

Signboard 

boundary 

line position 

computation

 

Figure 6.6 Proposed method of signboard localization. 

Due to the obvious color of the signboard, we use the HSI color model to extract 

the signboard from an image. In order to handle the varying lighting condition in the 

outdoor environment, we utilize the hue and saturation values to obtain the signboard 

feature. The transformation of a color (R, G, B) in the RGB color space into a 

corresponding color (H, S, I) in the HSI color space is as follows: 
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. 

We define two hue values, donated as Hmin and Hmax, as the hue threshold values for 

extracting the blue feature of the signboard. We also define a saturation threshold 

value to choose the feature of the signboard. These parameters are used together to 

classify the signboard feature points. 
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Besides, varying lighting conditions will influence the hue and saturation 

features. Based on the learned signboard contour, we propose a dynamic color 

thresholding scheme to adjust the saturation threshold value of Sth in a fixed range [S0, 

S1], where S0 and S1 are learned in advance in different lighting conditions in the 

learning stage. Detailed algorithm to extract signboard feature points is described as 

follows. 

Algorithm 6.2  Signboard detection by dynamic thresholding. 

Input: an input image Iinput including a signboard; the learned five signboard contour 

parameters, mth, min, max, min, and max; two hue threshold values Hmin and 

Hmax; a saturation threshold Sth; and a set of environment windows WinSB. 

Output: a bi-level image Ibi with feature points of the signboard, and an adjusted 

saturation threshold Sth. 

Steps. 

Step 1. Initialize an empty bi-level image Ibi for labeling feature points and set all 

pixel values as zero. 

Step 2. Scan each pixel Iuv with coordinates (u, v) in WinSB, compute its hue value 

huv and saturation value suv by Equation (6.6), and if huv is between Hmin and 

Hmax and suv is larger than Sth, then label Iuv by “1” in Ibi. 

Step 3. Apply erosion and dilation operations to the bi-level image Ibi. 

Step 4. Conduct connected component labeling, and find a maximum connected 

component M in Ibi. 

Step 5. Apply Algorithm 5.3 to M in Ibi to obtain three contour parameters, the 

center of feature points mx = (ux, vx), the rotational angle  and the length 

ratio  of M. 

Step 6. If vth  vx, min <  < max and min <  < max, then take M in Ibi and Sth as 
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outputs; else, adjust the threshold Sth in the range [S0, S1] and go to Step 1. 

6.2.2 Signboard position computation 

In this section, we describe how to compute the signboard position. The method 

proposed is based on Chou and Tsai [23]. We utilize morphological operations 

including erosion and set difference to conduct boundary extraction. Then, we use the 

LY line detection method to find one vertical boundary line based on a 1D Hough 

transform technique. The detailed algorithm is described as follows. 

Algorithm 6.3  Signboard boundary line detection. 

Input: an input image Iinput, two pano-mapping tables for Mirrors S and B, and an 

environment window WinSB. 

Output: two parameters BB1 and BS1 representing the two space planes going through 

the boundary line of the signboard and the Mirror B center and the Mirror S 

center, respectively. 

Steps. 

Step 1. For Iinput, use morphological operations to conduct edge detection to extract 

the feature points of the boundary lines of the signboard, and obtain an 

edge-point image Iedge. 

Step 2. Set a 1D space S with parameter B and initialize all cell counts to be zero. 

Step 3. For each edge point I at coordinates (u, v) in winB of WinSB, look up the 

pano-mapping table to obtain an azimuth  and an elevation angle α. 

Step 4. Compute B by Equation (5.13) using  and α, and increment by 1 the value 

of the cell with parameter B in S. 

Step 5. Repeat Steps 3 and 4 until all edge points in winB of WinSB are computed. 

Step 6. Find the cell, denoted as BB1, with the maximum value in space S 
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Step 7. Take BB1 as the output. 

Step 8. In the same way, repeat Steps 2 through 7 in winS of WinSB for Mirror S and 

take the obtained two corresponding parameters BS1 as outputs. 

After we obtain the space plane which goes through its boundary line, we use the 

resulting two parameters to compute the signboard location. In addition, we also can 

localize the middle line position to check whether the distance is close to the known 

width of the signboard. The detailed algorithm is described in the following. 

Algorithm 6.4 Signboard position computation. 

Input: two corresponding space plane parameters BB1 and BS1 obtained from 

Algorithm 6.3, of a signboard appearing in an omni-image. 

Output: the signboard position GSB in the CCS. 

Steps. 

Step 1. By BB1 and BS1, compute one boundary space line L1 of the signboard by 

Equation (5.26) and obtain its equation as follows: 

 X = X1;  Z= Z1. (6.7) 

Step 2. Apply Algorithm 5.4 to compute the middle line signboard location and 

obtain its equation as follows: 

 X = X2; Y =H, Z = Z2. (6.8) 

Step 3. Compute the distance d between the two lines by the following equation: 

 
2 2

1 2 1 2( ) ( )d X X Z Z    . (6.9) 

Step 4. If |d – Ddiameter| ≦ ThD where Ddiameter represents the pre-measured width of 

the signboard and ThD is a pre-defined threshold, then go to Step 5; else, 

show a message saying that there is no signboard and exit. 

Step 5. Compute the coordinates (xSB, ySB, zSB) of the signboard position GSB in the 
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CCS as follows: 

 XSB = X1;  ySB = －H;  zSB = Z1. (6.10) 

where H is the height of the camera center. 

Step 6. Take GSB as the output. 

6.2.3 Experimental results of signboard detection 

Some experimental results for signboard detection are shown in this section. The 

input image with a signboard in the regions of Mirrors S and B, respectively, is shown 

in Figure 6.7. The result of signboard segmentation using the initial threshold values 

is shown in Figure 6.8(a). Next, the result of signboard segmentation by dynamic 

thresholding is shown in Figure 6.8(b). Finally, the result of detecting the vertical axis 

line of the signboard and the obtained signboard position are shown in Figure 6.9. 

 

 

 

Figure 6.7 The omni-image with a signboard. 
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6.3 Proposed Method for Detecting Stop 

Lines on Roads 

It is advantageous for the vehicle to be able to detect the landmark and calibrate 

(a) (b) 

Figure 6.8 Two result images of signboard segmentation with different threshold values (a) The result 

of signboard segmentation with original threshold value. (b) The result image of signboard 

segmentation by dynamic thresholding. 

 

 

(a) (b) 

Figure 6.9 The result of signboard detection and obtained signboard position. (a) The result image of 

extracting the LY line of the signboard (b) The related signboard position with respect to the vehicle 

position. 



 

 103 

its odometer. Except for the landmarks on the sidewalk, we also can use those 

landmarks on the road path for vehicle localization. There are some landmarks which 

are usually seen on the road. One of them is the stop line. In this section, we introduce 

the method we propose in this study for detecting a stop line on a road and localizing 

its position. 

6.3.1 Detection and localization of stop lines on roads 

As shown in Figure 3.2(b), because the stop line on roads is artificial, it has the 

obvious color information. We can utilize it to extract its boundary lines. Specifically, 

we also use the HSI color model to extract the feature points of the stop line on roads. 

Then, we utilize the Canny edge detector to detect the boundary line. Finally, we 

detect one LZ line and two LX lines to obtain the entire boundary information. A 

detailed algorithm for implementing the above idea is described as follows. 

Algorithm 6.5  Detection of boundary lines of stop lines on roads. 

Input: a bi-level image Iinput which includes the feature points of a stop line on roads 

appearing in an omni-image, two pano-mapping tables for Mirrors S and B, 

and an environment window WinWL. 

Output: six parameters AB1, AB2, AS1, AS1, KB1,and KS1 representing the parameters of 

six space planes through the boundary line of the stop line and the Mirror B 

center and the Mirror S center, respectively. 

Steps. 

Step 1. For Iinput in the environment window WinWL, use the Canny edge detector to 

conduct edge detection to extract the feature points of the boundary lines of 

the stop line, and obtain an edge-point image Iedge. 

Step 2. Set up a 1D Hough space S1 with parameter A, and initialize all cell counts 
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to be zero. 

Step 3. For each edge point I at coordinates (u, v) in winB of WinWL, look up the 

pano-mapping table to obtain the corresponding azimuth angle  and 

elevation angle α. 

Step 4. Compute A by Equation (5.16) using  and α, and increment by 1 the value 

of the cell with parameter B in S1. 

Step 5. Repeat Steps 3 and 4 until all edge points in winB of WinSB are computed. 

Step 6. Find the two cells, denoted as AB1 and AB2, with two maximum values in 

space S1 

Step 7. Set a 1D Hough space S2 with parameter K, and initialize all cell counts to 

be be zero. 

Step 8. For each edge point I at coordinates (u, v) in winB of WinWL, look up the 

pano-mapping table to obtain the corresponding azimuth angle  and 

elevation angle α. 

Step 9. Compute K by Equation (5.19) using  and α, and increment by 1 the value 

of the cell with parameter K in S2. 

Step 10. Repeat Steps 8 and 9 until all edge points in winB of WinSB are computed. 

Step 11. Find the cells, denoted as KB1, with the maximum values in space S2 

Step 12. Take AB1, AB2, and KB1 as outputs. 

Step 13. In the same way, repeat Steps 2 through 12 in winS of WinSB for Mirror S 

and take the obtained three corresponding parameters AS1, AS2, and KS1 as 

outputs. 

 

By the use of the six known corresponding space planes obtained in the above 

algorithm, we can compute two corners of the stop line on, denoted as Cin and Cout, 

respectively, in the CCS as illustrated in Figure 6.10. Next, we check whether the 
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distance between Cin and Cout is close to the known width of the stop line. If not, we 

assume that the detected two LX lines are not the boundary lines of a stop line. Finally, 

we compute the center position between Cin and Cout for use as the position GWL of the 

stop line on the road. The detailed algorithm to estimate the position of the stop line is 

described in the following algorithm. 

Algorithm 6.6  Computing the position of a stop line on the road. 

Input: two corresponding space plane parameters AB1 and AS1, four other 

corresponding parameters AB2, AS2, KB1, and KS1 obtained from Algorithm 6.5, 

of the stop line on roads appearing in an omni-image. 

Output: the position of the stop line on the road, GWL, in the CCS. 

Steps. 

Step 1. By AB1 and AS1, compute one boundary space line LX of the stop line by 

Equation (5.33) and obtain its equation as follows: 

 Y= Y1;  Z= Z1. (6.11) 

Step 2. By AB1 and AS1, compute one boundary space line LX of the stop line by 

Equation (5.33) and obtain its equation as follows: 

 Y = Y2;  Z= Z2. (6.12) 

Step 3. By KB1 and KS1, compute one boundary space line LZ of the stop line by 

Equation (5.40) and obtain its equation as follows: 

 X = X1;  Y= Y3. (6.13) 

Step 4. Compute the width between the two lines by the following equation: 

 1 2d Z Z  . (6.14) 

Step 5. If |d – Dwidth| ≦ ThW where Dwidth represents the pre-measured width of the 

stop line and ThW is a pre-defined threshold, then go to Step 6; else, show a 

message saying that there is no stop line and exit. 
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Step 6. Compute the coordinates (xWL, yWL, zWL) of the position of the stop line on 

roads GWL in the CCS as follows: 

 XWL = (X2+ X1)/2;  yWL = (Y1 + Y2 + Y3)/3;  zWL = (Z1 +Z2)/2. (6.15) 

Step 7. Take GWL as the output. 
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Figure 6.10 Two obtained corners of Cin and Cout of a stop line on the road in the CCS. 

6.3.2 Experimental results of detection of stop lines 

on roads 

An input image with the projection of a stop line on the regions of Mirrors S and 

B is shown in Figure 6.11. After conducting the feature extraction and Canny edge 

detection processes, we obtain an edge-point image as shown in Figure 6.12. The 

result of stop line detection is shown in Figure 6.13(a) and the relative stop line 

position with respect to the vehicle is shown in Figure 6.13(b). 
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Figure 6.11 The omni-image with a stop line on the road. 

 

 

Figure 6.12 The result of stop line segmentation by the Canny edge detector. 
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(a) 

 
(b) 

Figure 6.13 The result of stop line on detection and position computation. (a) The resulting 

image of extracting the LX and LZ lines of the stop line. (b) The relative position of the stop line 

with respect to the vehicle position. 

6.4 Proposed Method for Detecting and 

Localizing Traffic cones 

6.4.1 Detection and localization of traffic cones 
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When engineering works are conducted on sidewalks, the workers usually put 

traffic cones near the working area to warn people. For this situation, we propose to 

detect traffic cones and use them as landmarks. The proposed method for traffic cone 

detection is similar to that for stop line detection. But here we detect one LZ line and 

one LX lines to carry out the detection of the traffic cone. After successfully detecting 

the boundary lines of the traffic cone by Algorithm (6.5), we can utilize two 

parameters, AB1 and KB1, to compute its position. Because the traffic cone is located 

on the sidewalk, we can use it to compute the position of the traffic cone. The detailed 

algorithm to estimate the position of a traffic cone is described in the following 

algorithm. 

Algorithm 6.6  Computing the traffic cone position. 

Input: the height of the camera center H, one space plane parameters AB1 and another 

parameter KB1 obtained from Algorithm 6.5, of the traffic cone appearing in 

an omni-image. 

Output: the traffic cone position GTC in the CCS. 

Steps. 

Step 1. By AB1 and H, compute the position of the traffic cone by Equation (5.33) 

and obtain its equation as follows: 

 Y =H;  Z= Z1. (6.16) 

Step 2. By KB1 and H, compute the position of the traffic cone by Equation (5.40) 

and obtain its equation as follows: 

 X= X2,  Y =H. (6.17) 
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Step 3. Compute the coordinates (xTC, yTC, zTC) of the position GTC of the traffic 

cone in the CCS as follows: 

 XTC =X2;  yTC =H;  zTC = Z1. (6.18) 

Step 4. Take GTC as output. 

 

Besides, we also utilize this corner to compute the LY line. We solve the 

Equations (5.16) and (5.19) to obtain the equation: 

 1a
A

K





 (6.19) 

which is equivalent to  

 A K B    (6.20)  

where 

 1B a   (5.21)  

Finally, we can illustrate the LY line which goes through the corner point and is 

perpendicular to the ground by the Equation (6.20). 

6.4.2 Experimental results of traffic cone detection 

Some experimental results of detecting the traffic cone using the proposed 

method are given in this section. An input omni-image with a traffic cone is shown in 

Figure 6.14. After conducting the feature extraction and Canny edge detection 

processes, we obtain an edge-point image as shown in Figure 6.15. The final result of 

traffic cone detection is shown in Figure 6.16(a) and the relative position of the traffic 

cone with respect to the vehicle is shown in Figure 6.16(b). 
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Figure 6.14 The omni-image with a traffic cone. 

 

 

Figure 6.15 The result of traffic cone segmentation using the Canny edge detector. 
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(a) 

 

(b) 

Figure 6.16 The result of traffic cone detection and the obtained position of the traffic cone. (a) 

The result image of extracting the LX, LY, and LZ lines of the traffic cone (b) The relative 

position of the traffic cone with respect to the vehicle position. 
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Chapter 7  

Experimental Results and 

Discussions 

7.1 Experimental Results 

In this section, we will show some experimental results of the proposed vehicle 

navigation system for use as a machine guide dog in the learning and navigation 

processes. The experimental environment was an outdoor sidewalk in National Chiao 

Tung University as shown in Figure 7.1(a). We illustrate the outdoor environment 

including a gray sidewalk, a red curb line, and some landmarks as shown in Figure 

7.1(b). The portion to the right of the red curb line is part of an around-campus road. 

 

 

Lawn 

corner

Signboard

Traffic cone

Fixed 

Obstacle

RoadSidewal

k

Tree trunk

Stop line 

on road

 

(a) (b) 

Figure 7.1 The experimental environment. (a) A side view. (b) Illustration of the 

environment. 

 

In the learning process, a trainer guided the vehicle by the use of a learning 

interface as shown in Figure 7.2 to construct a navigation path. The trainer navigated 

the vehicle to conduct learning tasks on the vehicle system along the path. After 
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arriving at appropriate locations on the sidewalk, the vehicle was commanded to learn 

the positions of specific landmarks like signboard, tree trunk, stop line, …, etc. In 

addition, the position of the fixed obstacle was recorded manually by localizing its 

position on the omni-image as shown in Figure 7.3. At the end of the learning process, 

the trainer obtained a navigation map with a navigation path and other environment 

landmarks as illustrated in Figure 7.4. 

 

 

Figure 7.2 The Learning interface of the proposed vehicle system. 

 

In the navigation process, the vehicle started from the same position just like in 

the learning process and navigated along the recorded navigation path nodes with the 

curb line following technique. Then, the vehicle detected many types of landmarks 

and localized its position. Some results of landmark detection are shown in Figure 7.5. 

By conducting curb detection, the vehicle kept its path parallel to the curb. A result of 

curb detection is given in Figure 7.6. Besides, after detecting the fixed obstacle in the 

navigation path, the vehicle adopted the obstacle avoidance procedure to avoid it as 

shown in Figures 7.7. Finally, the vehicle reached the appointed terminal node 

successfully, and the path map with a record of each vehicle position in the navigation 
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process is illustrated in Figure 7.8. 

 

 

 

(a) 

 

(b) 

Figure 7.3 Learning of a fixed obstacle. (a) The position of fixed obstacle on the omni-image 

(Lime-colored points clicked by the trainer). (b) Computed fixed obstacle positions in the real world. 

Blind navigation node

Start / Terminal node
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node

Vehicle localization 
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(a) (b) 

  

(c) 

  

(d) (e) 

Figure 7.5 Some results of landmark detection. (a) A tree trunk detection result with LY line drawn in 

red. (b) A traffic cone detection result with LX, LY, and LZ line drawn in dark blue, lime, and navy 

blue, respectively. (c) A lawn corner detection result with two boundary lines drawn in navy blue. 

(d) The result of stop line with three boundary lines drawn in yellow and navy blue, respectively. (e) 

A signboard detection result with LY line drawn in red and lime, respectively. 

 

Figure 7.4 Illustration of the learned navigation path. 
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Figure 7.6 The result of curb line detection. 

 

  
(a) (b) 

  
(c) (d) 

Figure 7.7 The vehicle reads the fixed obstacle position from the navigation path and change the 

path to avoid it. (a)~(d) show the process of fixed obstacle avoidance. 

 

In Table 7.1, we show the errors in percentage between the actual position of the 

landmarks and the estimated positions of the landmarks of 8 times of navigations 

using the proposed system. From the table, we see that the average error of the 
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landmark position is 7.52%. These small error percentages show that the precision of 

the proposed system is satisfactory for real applications. 

 

 

Figure 7.8 The recorded path map in the navigation process. (Blue points represent the vehicle path 

and other points with different color represent different localized landmark positions in different 

detections). 

7.2 Discussions 

By analyzing the experimental results of the vehicle navigation, we find some 

problems. Firstly, for sidewalk curb detection, we detect the curb with a specific 

surface in the campus of National Chiao Tung University. More kinds of curb lines 

with different colors should be learned for the line following technique. Also, the light 

reflection caused by the plastic camera enclosure created in the omni-image also 

causes ill effects in image analysis. A possible solution is to learn these specific 

regions in advance and ignore them when conducting image processing. Furthermore, 
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we may spend much time to detect the LX line and localize it. A possible solution is to 

implement an embedded system to speed up the calculation. Finally, more 

experiments in different environments should also be conducted to test our system 

more thoroughly. 

 

Table 7.1 Precision of estimated landmark positions and their error percentages. 

 
navigation 

No. 
Real position 

Estimated 

position 

Estimated 

landmark 

error 

Average 

estimated 

landmark error 

Tree trunk 

1 

239.01 

224.19 6.20% 

3.11% 

2 237.20 0.76% 

3 234.24 1.99% 

4 235.42 1.50% 

5 236.60 1.01% 

6 214.71 10.17% 

7 233.08 2.48% 

8 237.20 0.76% 

Lawn 

corner 

1 

372.81 

331.44 11.10% 

7.81% 

2 314.04 15.77% 

3 336.40 9.77% 

4 354.98 4.78% 

5 336.77 9.67% 

6 338.92 9.09% 

7 366.90 1.59% 

8 369.98 0.76% 

Traffic 

cone 

1 

167.14 

161.79 3.20% 

5.08% 

2 150.65 9.86% 

3 161.68 3.27% 

4 154.42 7.61% 

5 168.73 0.95% 

6 157.33 5.87% 

7 165.56 0.94% 

8 182.05 8.92% 

Stop line 

on road 

1 

178.28 

175.28 1.68% 

12.69% 

2 207.40 16.33% 

3 189.44 6.26% 

4 212.74 19.33% 

5 199.89 12.12% 

6 219.26 22.98% 

7 185.30 3.94% 

8 211.96 18.89% 

Signboard 

1 

227.85 

251.93 10.57% 

8.91% 

2 221.76 2.67% 

3 198.92 12.70% 

4 263.36 15.59% 

5 222.30 2.44% 

6 242.62 6.48% 

7 186.00 18.37% 

8 222.19 2.48% 

Average 7.52% 
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Chapter 8  

Conclusions and Suggestions for 

Future Works 

8.1 Conclusions 

Construction of a machine guide dog using a two-mirror omni-camera and an 

autonomous vehicle has been proposed in this study. To implement such as a system, 

several methods have been proposed. 

At first, by the pano-mapping technique proposed by Jeng and Tsai [25], we 

calibrate the two-mirror omni-camera used in this study by recording the relationship 

between the image pixels and the real-world azimuth and elevation angles. Next, by 

the use of a learning interface designed in this study, a trainer can guide the vehicle to 

navigate on a sidewalk and construct a navigation path conveniently including the 

path nodes, alone-path landmarks, and relevant guidance parameters. 

Next, two new space line detection techniques based on the pano-mapping 

technique have been proposed. Each space line, which when projected on an 

omni-image becomes a conic-section curve, is detected by the use of analytic 

formulas and the Hough transform technique. In addition, for the three types of space 

line which exists in landmarks like the tree trunk, the lawn corner, the signboard, the 

stop line on roads, and the traffic cone, we can further compute its position directly 

using omni-images according to the pano-mapping technique. 

Also, several landmark detection techniques have been proposed for conducting 

vehicle navigation. Firstly, a curb line detection technique has been proposed for use 

to guide the vehicle on a safe path as well as to adjust the odometer reading of the 
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vehicle orientation. Next, some natural and artificial landmark detection techniques 

have been proposed as well. The three types of space lines found in these landmarks 

using the techniques can be used to localize the vehicle in the navigation process. 

Furthermore, to conduct the landmark detection works more effectively in the outdoor 

environment, techniques for dynamic threshold adjustments have also been proposed, 

which can be used to handle different lighting conditions. 

Good landmark detection results and successful navigation sessions on a 

sidewalks in the National Chiao Tung university campus show the feasibility of the 

proposed methods. 

8.2 Suggestions for Future Works 

According to our experience obtained in this study, several suggestions and 

related interesting issues worth further investigations in the future are stated in the 

following: 

(1) it seems necessary to develop some techniques to detect moving objects, like 

pedestrians walking on the sidewalk or people riding bikes; 

(2) it is a challenge to detect natural landmarks which have no obvious color 

information to conduct vehicle navigation in more complicated outdoor 

environments; 

(3) it is desired to design a new camera system which has a smaller size for more 

convenient uses by the blind people; 

(4) it is a challenge to develop additional techniques to guide the vehicle to pass 

crossroads, like recognizing traffic signals and following zebra crossings, etc.; 

(5) it may be necessary to add the capability of warning the user via sound in danger 

conditions. 
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(6) It is interesting to combine other facilities like range finders to implement the 

system for more complicated applications. 

(7) It is desired to utilize properties of trigonometric functions to reduce the range of 

the Hough space to speed up the computation time. 
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