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補償光子在漸進性光子映射中之應用 
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           蔡侑庭教授 

 

 

國立交通大學多媒體工程研究所 

 

 

摘要 

 

 漸進性光子映射演算法(Progressive Photon Mapping)由傳統全域照明技術之一的

光子映射演算法(Photon Mapping)所改進而來，改變了傳統光子映射演算法的架構，使

得光子只需儲存擊點(hit point)的資訊。 

本篇論文根據光子映射演算法提出一個易實作且直覺的補償光子(Compensation 

Photon)應用在漸進性光子映射演算法。在互動式的場景中，當場景中物體位置變化時

藉由補償光子可以不用每個畫面都須重新設置擊點的位置，並且重新潑灑所有光子。補

償光子將移動的物體影響至場景中的能量抵銷，包含了物體移動範圍內的能量以及物體

影響至場景的能量，使得下一個畫面中不用重新潑灑所有光子，只需潑灑物體移動的範

圍以及影響到的區域所需的光子即可。不用計算與前一個畫面相同能量的區域，因此可

以使得漸進性光子映射演算法在互動式場景中達到加速的效果。 
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ABSTRACT 

 

 Progressive photon mapping is a simple and robust progressive global illumination 

algorithm based on photon mapping. It changes traditional photon mapping's framework , 

such that we only need to store the hit point information of each photon. 

 

 In this thesis, we introduce a compensation photon to the progressive photon mapping, 

which is simple and easy to implement. In interactive environments, when an object moves, 

via the compensation photon, there is no need to set all hit point and re-emit all the photons. 

Using compensation photon to offset the power in the scene coming from the moving object, 

we can find the areas there have the same power as the previous frame. There is no need to 

re-emit all the photons to render the entire frame. We just emit to the areas where 

compensation photon has offset. Therefore we save the time which is taken by emitting 

unnecessary photons to render the scene.  
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Chapter 1 

Introduction 

 

1.1 Motivation 

 In computer graphics, real-time global illumination in dynamic scene is still a big 

challenge today. Due to the inherent complexity of light transport, causing effects such as 

interreflection, caustics, many global illumination approaches are built on ray tracing[2] or 

photon mapping[7].  Conventional rendering algorithms can render high-quality images but 

take so much time. With the enhancement of GPU architectures in recent years, conventional 

rendering algorithms can improve performance by using parallel computing to obtain high 

quality image.  

 

 Progressive photon mapping[6] and related researches have been proposed in recent 

years. Progressive photon mapping improves the solution of the rendering equation by 

including specular-diffuse-specular (SDS) light paths. However, computing a single noise-free 

image is still time-consuming. Especially for animations, the computation time grows linearly 

with the number of frames if a consistent simulation result is required. Up to now, there is no 

method to speed up progressive photon mapping in the dynamic scene especially for the 

object moving without predefined path. 

 

 To handle global illumination in dynamic scenes, alleviating the needs for explicit 

visibility computation is very important. Antiradiance[4] proposed to treat visibility implicitly, 

and compensate for light transmitted extraneously. Based on this idea, we propose the 
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compensation photon to compensate extraneous light transmission. Like antiradiance, our 

approach shifts visibility computation to local iteration by emitting additional directional 

compensation photon in the scene. In animation, there is no need to emit all the photons to 

render the next frame. 

 

 The goal of this thesis is to speed up the progressive photon mapping in dynamic scenes. 

In our proposed approach, we add compensation photons in the progressive photon mapping 

architecture to compensate the energy. Our major contributions are as follows: 

1. We propose a new type of photon, called the compensation photon. 

2. A reformulation of progressive photon mapping architecture for dynamic scenes. 

3. Speed up the performance of the original progressive photon mapping in dynamic 

scenes. 

 

 

1.2 System Overview 

  An overview of our proposed rendering architecture is shown in Figure1.1. Our method 

is built based on the progressive photon mapping. Before the objects move, we need to 

eliminate the different illumination between frames. In order to achieve this purpose, we emit 

the compensation photons and update the information of hit points. After tracing any types of 

photon, we gather the photons to evaluate radiance and update the information of hit points in 

the gathering pass. After the objects move, we need to compensate the illumination when 

computing the current frame. We emit the positive radiance photons along two types of path. 

We will discuss this in later chapters. After emitting enough photons, then we can get the 

image of current frame. 
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Figure 1.1 The flowchart of our proposed rendering architecture. 
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Chapter 2 

Related Works 
 

 In this chapter, we review previous related works. First we focus on the photon mapping 

and progressive photon mapping. Then we briefly survey real-time global illumination 

algorithms for the dynamic scene.  

 

2.1 Photon Mapping 

 Photon Mapping[8] is a two-pass method to solve the rendering equation. In the first step, 

photons are emitted from the light sources, where each photon stores an equal portion of the 

total emitted flux. Using Russian Roulette to distribute photons along the scene and store the 

photons which will be on the diffuse surfaces finally. In the second step, the algorithm 

determines the radiance for each pixel by accumulating the flux of all the photons that are 

found inside a search area around the pixel position. To reduce the cost of final gathering step, 

Ma and McCool[11] use a hash grid rather than a k-d tree to store the photons. Photon 

Mapping is a biased technique that effectively blurs the real radiance value due to the fixed 

search radius. But it can render the caustic effect effectively.  

 

2.2 Progressive Photon Mapping 

 Photon Mapping distributes a finite number of photons inside a fixed search radius. To 

remove this limitation, Progressive Photon Mapping[6] extends this idea to progressive 

photon statistics. Progressive Photon Mapping changes the original architecture of the photon 

mapping. Instead of storing the original photons, only the number and the total flux inside the 
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search region are stored. Unlike the photon mapping, Progressive Photon Mapping is a 

multi-pass algorithm, as shown in Figure 2.1. The first pass is the ray tracing pass. An 

ordinary ray tracing is used to find all the visible surfaces in the scene visible through each 

pixel. For each ray path, the algorithm stores all hit points along the path where the surface 

has a non-specular component in the BRDF. Then the subsequent passes use the photon 

tracing. In the photon tracing step, it accumulates photon power at the hit points found in the 

ray tracing pass. At each photon tracing pass, it emits a given number of photons into the 

scene and traces them to build a photon map. After each photon tracing pass, it loops through 

all hit points and finds photons within the radius of each hit point. Finally they use the added 

photons to refine the estimate of the illumination. The radiance at each hit point is evaluated 

as follows : 

N̂(x) = N(x) + αM(x)       (1) 

R̂(x) = R(x) − 𝑑R(x) = R(x)√
N(x)+αM(x)

N(x)+M(x)
     (2) 

τN̂(𝑥, 𝜔⃑⃑ ) =  τN+M(𝑥, 𝜔⃑⃑ )
N(x)+αM(x)

N(x)+M(x)
     (3) 

𝐿(𝑥, 𝜔⃑⃑ ) =  
1

πR(x)2
τ(𝑥,𝜔⃑⃑⃑ )

𝑁𝑒𝑚𝑖𝑡𝑡𝑒𝑑
      (4) 

where N is the number of photons detected inside a circular region with radius R in current 

photon tracing pass. M is the number of photons found in next photon tracing pass, but only a 

fraction α, 0 < 𝛼 < 1,  of new photons are needed. While the number of accumulated 

photons is increasing, the radius R should be reduced. Accordingly, the flux τ is also adjusted. 

After each photon tracing pass, the radiance at the each hit point can be evaluated. Then the 

photon tracing pass is updated until  
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Figure 2.1 Progressive photon mapping uses ray tracing in the first pass followed by one or 

more photon tracing passes. 

 

 

2.3 Instant Radiosity 

  Instant radiosity[9] is a widely used algorithm for approximating global illumination in 

interactive rendering. Instant radiosity is a bidirectional method that first creates a set of 

virtual point lights(VPLs) using random walks that trace light paths starting from the primary 

light sources. It is similar to the photon tracing. Direct contribution of these VPLs then 

approximates the entire multi-bounce light transport in the scene. The conceptually simple 

idea is decomposing global illumination to point light source, and combined with shadow 

mapping. Due to the shadow computation has significant impact on the rendering 

performance, there are a lot of works tried to reduce this cost. For example, the reflective 

shadow map[3] treats each viewing pixel from light source as a VPL. Then it computes the 

contribution of each surface normal while ignores the occlusion of objects. The imperfect 

shadow map[15] bases on the observation that shadows caused by indirect lighting are more 

blurred. So it renders low resolution shadow map from each VPL, and then use pull-push to 

fill holes of coarse shadow map. It uses these imperfect shadow maps to solve the occlusion 

problem of traditional VPL.  



 

7 
 

 

 But the major limitation of instant radiosity is that it is only suitable for the scene with 

diffuse or moderately glossy surfaces and only support once bouncing itself.  

 

Figure 2.2 The results of Instant Radiosity 

 

 

2.4 Global Illumination in Dynamic Scenes 

  In Stochastic Progressive Photon Mapping[5], Weiss and Grosch[20] proposed methods 

to reduce the cost of the computation in dynamic scene like objects moving on a pre-defined 

path, and material/texture changes. They first load both the static scene and the dynamic 

geometry for all K frames into main memory. By re-using photon and hit point information 

for multiple frames, the computation time can be reduced. But there is a big limitation that it 

can only compute the objects on pre-defined path.  

 

 Dachsbacher[4] proposed the antiradiance to reduce the computation time of explicit 

visibility. They observe that if visibility is ignored, some light is transmitted extraneously 

through opaque objects and needs to be canceled out. This is why they introduce a new 

quantity called antiradiance which corresponds to the light that needs to be removed. It shifts 

visibility computation to simple local iterations by maintaining additional directional 
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antiradiance information with samples in the scene which is easy to parallelize on a GPU. Our 

proposed method use a similar idea to create the compensation photon which reduces the 

radiance which exists in the scene at the previous frame and does not exist at the current 

frame. 
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Chapter 3 

Algorithm 
 

 In this chapter, we discuss our proposed algorithm to speed up the progressive photon 

mapping. We render direct illumination by using a similar phong lighting model based on the 

demo of progressive photon mapping of NVIDIA Optix. We only implement our algorithm on 

indirect illumination and rigid body object. The following figures in this chapter are shown as 

the indirect illumination part of the scene. All the processes are performed on the GPU. 

Before the objects move, we perform the following steps for a static frame: 

1. Ray tracing pass. 

2. Photon tracing pass. 

3. Gathering pass. 

4. Iterate photon tracing and gathering pass until enough photons emitted. 

 When we start to move the objects, we perform: 

1. We emit the compensation photons towards the area where the moving objects may 

affect the illumination in the scene. 

2. Gathering the compensation photons to render the scene. 

After we move the objects, for the dynamic frames, we perform: 

1. Update the information of hit points. 

2. We emit the positive radiance photons to compensate the indirect radiance that the 

next frame needs.  

3. Gathering the positive radiance photons to render the scene. 

4. Repeat step 6 until enough photons emitted. 
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3.1 Overview 

 In this section, we describe our concept of our algorithm. In progressive photon mapping, 

if objects are moved in the scene, it would do the algorithm again and do not keep any 

information of previous frame. The concept of our algorithm is to keep the information of 

previous frame and use the information to render the next frame effectively. Most important 

information in the scene is the radiance. We only discuss indirect radiance in our algorithm. 

How we keep the indirect radiance is to eliminate the different indirect radiance between two 

frames.  

 

 In figure 1.1, we introduced overview of our algorithm. The key points in our algorithm 

are eliminating illumination and compensating the scene. We describe the process of these 

two parts more detail here. To eliminate the indirect radiance, we divide the indirect radiance 

into two parts. The first part is the indirect radiance bounced by moving volume. Before the 

objects are moved, we emit compensation photon towards the moving volume to bounce the 

photons to eliminate the indirect radiance. So we first define the emitting region of 

compensation photons, then we emit the photons within this region. We discuss more detail in 

section 3.3. After each compensation photon tracing pass, we calculate the radiance in 

gathering pass.  The other part is the indirect radiance bounced to the moving volume of 

moving objects. We directly update the hit points in the moving volume to set the radiance to 

zero. The flow chart of eliminating radiance is shown as figure 3.1. We update the hit points 

after objects are moved. 
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Figure 3.1 The flow chart of eliminating radiance. 

 

 To compensate the radiance the next frame needs, we also compensate two parts of 

indirect radiance. To compensate the radiance on moving volume, we use testing photons to 

get the directions. We use these directions to emit the positive radiance photons to bounce the 

photons to the moving volume. We discuss more detail in section 3.5. To compensate the 

indirect radiance outside the moving volume, we emit the positive radiance photons towards 

the moving volume by using the same emitting region of compensation photons. The flow 

chart of compensating the scene is shown as figure 3.2. 

 

Figure 3.2 The flow chart of compensating the scene. 
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3.2 Data Structures 

 Similar to the progressive photon mapping, for each hit point, we store its coordinate and 

the normal vector, the ray direction, scaling factors including BRDF, the associated pixel 

location, a radius, the intercepted flux, and the number of photons within the radius. 

  

 After the ray tracing pass, we get the information of each hit point. Then we trace the 

photons along the scene. At each hit point, we obtain the energy from light source. In order to 

attach photons on object surface, we build an one-dimensional buffer called photon map. The 

size of photon map depends on the number of the photons emitted in each pass. All of the ray 

tracing, photon tracing, and gathering passes are performed on GPU by using Nvidia 

Optix[13].  

 

 We use a list to store the serial number of the hit points which we update. We discuss 

this in section 3.4. We store the directions of testing photons emitted from light source. We 

discuss this in section 3.5. 

 

3.3 Compensation Photon 

 In the progressive photon mapping, if there is an object moved in the scene, the 

algorithm will do the ray tracing pass again and emit all the photons. We found that, when the 

objects moved in the scene, the radiance in the scene may not change at every frame. So we 

need to detect and keep the same radiance between the current frame and the next frame.  

 

 We propose a new type of photon called the compensation photon. We use this photon 

to eliminate the indirect radiance in the scene that is not needed for the next frame. Then we 

can get a frame, which only contains the same radiance between two frames. We observe that 
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the most difference between the current frame and the next frame is the indirect radiance 

bounced to the moving volume of the moving objects, as the yellow area shown in Figure 3.3. 

We set the size and the position of the moving volume in ray tracing pass. We compare the 

positions of hit points in the current frame with the positions of hit points in the next frame. 

The area where the positions of the hit points are different is called moving volume. 

Furthermore, the indirect radiance produced by photons hitting on the moving volume and 

bounced to side is also different. The major function of the compensation photon is to 

eliminate the indirect radiance produced by the moving volume. 

 

 

Figure 3.3 Two images only render indirect illumination. (a) Before tall box moves. (b) After 

tall box moves. 

 

 To eliminate the indirect radiance outside the moving volume, we should emit the 

compensation photons towards the moving volume. The compensation photons hit the moving 

volume and bounced to side to eliminate the indirect radiance. Before we emit the 

compensation photons, we store the vertices of the object moved before and after. We use a 

point light to emit the compensation photons. If the light source of the scene is area light, we 

put the point light on the central of the area light. We should limit the emitting region of the 
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point light. To define the region where we should emit the photons, first we set the direction 

of the point light by connecting the central of the vertices with the point light. And then we 

project the vertices on the plane. The plane’s normal is the direction of point light. To set the 

position of plane, we set the plane through the central of the vertices. To project the vertices, 

we connect the vertices with point light and use the connection to calculate the intersection 

with the plane. We use a bounding rectangular to enclose all the vertices on the plane as 

moving area of moving objects as shown in Figure 3.4. Finally, we randomly emit the 

compensation photons through this bounding rectangular to eliminate the indirect radiance. In 

each compensation photon pass, we emit 256x256 photons. In Figure 3.3, the radiance of 

yellow areas is eliminated by the compensation photons. Note that we trace the compensation 

photons before the objects moved, because we need to eliminate the indirect radiance 

produced by moving objects before the objects move. 

‘ 

 

 

 

 

 

 

 

 

Figure 3.4 (a) Set the bounding rectangular from the point light’s view. (b)Emit the 

compensation photons in the region of moving volume. 

 

 

 

Point light 

The projection plane 

Bounding rectangular 
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3.4 Update Hit Points 

 After we trace the compensation photons, we move the objects. In Section 3.2, we 

mentioned that the most different part between two frames is the indirect radiance bounced to 

the moving volume of the moving objects. The hit points in the moving volume are almost 

changed. If we use the compensation photons to eliminate the radiance in this volume, it 

would be inefficient. Due to this, we directly update the information of hit points in the 

moving volume, and the information of other hit points remains the same. There is a black 

area in Figure 3.5 that shows the hit points we update. 

 

 Note that, during updating the hit points, we still loop through all the hit points to tag 

which hit point we have updated. Because the radiance of these hit points is set to zero, we 

should compensate these hit points more radiance then others hit points in next step. We use a 

list to store the serial numbers of the hit point we have updated. 

 

 

 

Figure 3.5 The image after emitting the compensation photon and update the hit points. 
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3.5 Compensate The Scene 

 After we move the objects, there are two parts in the scene where we should compensate 

in this pass. One is the indirect radiance bounced to the moving volume. The other is the 

indirect radiance produced by moving objects. To compensate the indirect radiance produced 

by the moving objects, we emit the photons with the path same as the path of the 

compensation photons as the green dashed region shown in Figure 3.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 The tracing paths are used to trace the photons to compensate the indirect radiance.  

 

To compensate the indirect radiance bounced to the moving volume, we can not just emit 

the positive radiance photons with the path same as the path of the compensation photons. In 

Figure 3.7, the orange dashed lines represent the photon tracing path inside the region, and the 

blue dashed lines represent the photon tracing path outside the region. It shows that there are a 

lot of photons accumulated by the hit point and the tracing path outside the region. 

 

 Before we move the objects, we emit the testing photons into the scene and store the 

 

The 

moving 

volume 
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directions of the photons emitted from light source. In Section 3.3, we stored the serial 

numbers of the hit points we have updated. We only use these stored hit points to accumulate 

the testing photons in the gathering pass. Therefore, we can get the directions from these 

accumulated testing photons. Then we can emit the photons to compensate the radiance by 

these directions effectively. Besides, we only use stored hit points to accumulate the positive 

photons in gathering pass. In the progressive photon mapping, it repeats the photon tracing 

pass many times. If we use these directions repeatedly, it will cause that the photons are over 

accumulated by some hit points and there would be a lot of highlight in the image, as shown 

in Figure 3.10. To solve this artifact, we jitter the directions respectively within a cone with 

opening angle α of the cone in each photon tracing pass. According to the experiments, if 

α is too large, the indirect radiance is compensated inefficiently. And if α is too small, the 

artifacts still exist. So we define the region of α within  10   In Figures 3.8 and 3.9, we 

can observe that we compensate the indirect radiance of the moving volume by these 

directions more effectively. 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 The tracing path of the photons, and the photons are accumulated by the hit points 

in the moving volume. 

 

The 

moving 

volume 
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Figure 3.8 The scene is compensated by the photons which tracing path only within the 

bounding rectangular. 

 

 

Figure 3.9 The scene is compensated by the photons which tracing path include the directions 

we record.  
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Figure 3.10 The artifact is caused by the directions of tracing photons without jittering. 

  

 

3.6 Radiance Evaluation 

 In the progressive photon mapping, it emits positive radiance photons in each photon 

tracing pass. After each photon tracing pass, it accumulates the photons to evaluate the 

radiance by looping through all the hit points and render an image in gathering pass. In each 

gathering pass, it does three steps. The first step is radius reduction. Each hit point has a 

radius. While the number of photons accumulated within this radius increases, the radius 

needs to be reduced. The second step is flux correction. When a hit point receives new 

photons, it needs to accumulate the flux carried by those photons. So it needs to adjust this 

flux to take into account the radius reduction. The third step is radiance evaluation. By using 

the radius, the current flux multiplied by the BRDF, and the total number of emitted photons 
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in order to normalize the flux, it can evaluate the radiance at each hit point. 

  

 In our approach, after we emit the positive radiance photons in the photon tracing pass, 

the radiance evaluation in the following gathering pass is the same with the progressive 

photon mapping. But we should reformulate the radiance evaluation after we emit our 

negative power compensation photons in each photon tracing pass.  

 

 For radius reduction, we reformulate this to radius addition. When the hit points 

accumulate the compensation photons, we reduce the number of the photons accumulated 

within the radius. The number is computed as follows: 

N̂(x) = N(x) − αM(x)        (5) 

whereN(x) is the current number of the photons accumulated, M(x) is  the additional 

number of the photons accumulated, andα, 0 < 𝛼 < 1, is only a fraction  

 

 By reducing the number of the accumulated photons, we can increase the radius as 

follows: 

R̂(x) = R(x) + 𝑑R(x) = R(x)√
N(x)−αM(x)

N(x)−M(x)
    (6) 

 If we over accumulate the negative power photons, it may cause the R(x) to turn to 

negative. We should clamp the value of the radius to one, if the value of the radius is less than 

zero. 

 

 For flux correction, we reformulate the flux evaluation as follows: 

τN̂(𝑥, 𝜔⃑⃑ ) =  τN−M(𝑥, 𝜔⃑⃑ )
N(x)−αM(x)

N(x)−M(x)
     (7) 
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where the quantity τ is represented as flux. If we over accumulate the negative radiance 

photons, it may cause the value of flux to be less than zero. We clamp the value of flux to zero, 

if the value of flux is less than zero. 

  

 For radiance evaluation, we use the Equation 4. mentioned in Section 2.2. 
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Chapter 4 

Implementation and Results 
 

 Our results are rendered on a desktop PC with Intel Core i7 930 CPU 2.8GHz and 

NVIDIA GeForce GTX 480 video card. All results are rendered at 768 x 768 pixels. 

 

 In the progressive photon mapping, direct illumination and indirect illumination are 

rendered by tracing the photons in photon tracing pass. In our approach, we render direct 

illumination by using a similar phong lighting model based on the demo of progressive 

photon mapping of NVIDIA Optix. We only implement our algorithm on indirect 

illumination.  

 

 GPUs are best at exploiting very high degrees of parallelism, and ray tracing fits that 

requirement perfectly. Optix is a simple but powerful abstract model of a ray tracer running 

entirely on the NVIDIA CUDA compute architecture. So we implement our approach by 

OpenGL, and the major computation part is performed by Optix engine including the ray 

tracing pass, the photon tracing pass, and the gathering pass. To store the data of each hit point 

and each photons, we use the buffer stored in GPU memory designed by Optix. This buffer 

can be accessed by CPU and GPU, and then we can access the data efficiently. In program, 

when we render the scene, we only compute the photon map on CPU. Other works are 

performed by GPU. 

 

 When sending mesh data into Optix, we should construct the geometry group in Optix 

context first. As shown in Figure 4.1, a geometry group can contain many geometry instances. 
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Each geometry group needs to have an acceleration object assigned for ray traversal to 

intersect. Each geometry instance represents a coupling of a single geometry node with a set 

of materials. Each geometry node is bounded with intersect program and bounding program. 

In intersect program, we compute the position of intersection of ray and geometry. In 

bounding program, we bound primitive data. In any-hit program and closet-hit program, we 

can trace the ray to obtain the external material such like shadow or indirect light. The 

difference between any-hit and closet-hit is using the ray payload or not. We use closet-hit 

program to obtain the information of ray payload such like color, normal. And any-hit 

program can only return hit geometry or not. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Optix data structure 
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 We render the scenes by the progressive photon mapping all in 15 seconds before the 

objects move. After the objects move, we spend 8 seconds rendering the next frame. In order 

to highlight our contribution, we show comparison images with the same performance. One 

uses our algorithm to render the scene. The other uses the progressive photon mapping to 

render the scene with same performance. 

 

 Figure 4.3, 4.6, and 4.9 display the moving objects moved in the scenes rendered using 

the progressive photon mapping. Figure 4.4, 4.7, and 4.10 display the moving objects moved 

in the scenes rendered by our algorithm. Figure 4.2, 4.5, and 4.8 display the ground truth of 

the scenes. Figure 4.2 - 4.4 display basic cornell box scene. Figure 4.5 - 4.7 display cornell 

box scene containing a complex model. Figure 4.8 - 4.10 display the effect of caustic in the 

wedding -band scene. 

  

 

 

 



 

25 
 

 

Figure 4.2 The ground truth of tall box moving in cornell box scene. 

 

Figure 4.3 Tall box moves in cornell box scene using PPM. 
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Figure 4.4 Tall box moves in cornell box scene using our method. 

 

 

Figure 4.5 The ground truth of bunny moving in cornell box scene. 
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Figure 4.6 Bunny moves in cornell box scene using PPM. 

 

 

Figure 4.7 Bunny moves in cornell box scene using our method. 



 

28 
 

 

Figure 4.8 The ground truth of middle ring moving in wedding-band scene. 

 

 

Figure 4.9 Middle ring moves in wedding-band scene using PPM. 



 

29 
 

 

 

Figure 4.10 Middle ring moves in wedding-band scene using our method. 

 

 

 

         Ground truth             PPM                 Our result 

Figure 4.11The comparison of figures 5.1 to 5.9 
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 In figure 4.11, we can observe that our result can render the indirect illumination part 

smoother. We can keep the radiance which the moving object did not affect, so we do not need 

to emit the same number of photons to render. Our result demonstrates that we can get more 

indirect illumination with same performance. Note that, the major concept of our algorithm is 

to keep the illumination between two frames. In others word, the moving objects make 

smaller influence to scene, we can keep more illumination between two frames. 

 

 Table 1 and 2 shows the experimental result of our rendering algorithm. We can observe 

that the effect of caustic in wedding-band scene needs more photons to render than other 

scenes.  

 

 

Scene Triangles Compensation 

photons 

(radius) 

Positive 

power 

photons 

(radius) 

Valid  

photons 

Time 

Cornell box 15 1310k(400) 7864k(400) 5854k 8s 

bunny 69473 918k(2) 8126k(2) 5373k 8s 

Wedding-band 41196 3146k(0.25) 3277k(0.25) 893k 4s 

Table 4.1：Detail statistics for scenes with our algorithm. The "radius" is the initial radius of 

hit point.  

 

Scene Triangles Total 

Photons 

(radius) 

Valid  

photons 

 

Time 

Cornell box 15 10485k(400) 6702k 8s 

bunny 69473 9961K(2) 6777k 8s 

Wedding-band 41196 8847k(0.25) 247k 4s 

 Table 4.2：Detail statistics for scenes with PPM.  
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Ground truth             PPM                 Our result 

Figure 4.12 The comparison of indirect illumination part 

 

 In figure 4.12, we can obviously observe the difference between our result and the result 

of the progressive photon mapping. The comparison part has no object moved. So this part 

keeps the same quality with the first frame. In the progressive photon mapping, accumulating 

more photons, the image will be smoother. The difference between the ground truth and our 

algorithm is smaller than the difference between the ground truth and the progressive photon 

mapping. 

 

 

 

 

 

 

 



 

32 
 

 

Chapter 5 

Conclusion and Future Works 
 

 In this thesis, we propose a GPU-based global illumination algorithm that speed up the 

progressive photon mapping in dynamic scenes. We propose a new idea to keep the same 

illumination between frames. For progressive photon mapping, we add a new type of photon 

called the compensation photon. Because we add a new type photon, it needs to reformulate 

the radiance evaluation to evaluate the radiance of compensation photon.  

 

 In order to trace positive power photons to compensate the scene, we find out two tracing 

mechanism on tracing path. One is tracing the photons towards the moving volume of the 

moving objects. The other is to use the directions we record to emit the photons to 

compensate the indirect radiance bounced by the moving volume. Finally we use these two 

tracing mechanism to compensate the scene. 

 

 In the future we would improve the compensating part. If we can compensate the indirect 

radiance of the moving volume effectively, we can spend less time rendering the scene. In 

addition to progressive photon mapping, we would like to speed up other global illumination 

in dynamic scenes such like instant radiosity, ray tracing. Our algorithm is performed based 

on fixed perspective. We would extend our algorithm to dynamic perspective. For application, 

we would apply our algorithm on editing program. 

 

 



 

33 
 

 

Reference 

 
[1] APPEL, A. 1968. Some techniques for shading machine renderings of solids. In 

AFIPS ’68 (Spring): Proceedings of the April30–May 2, 1968, spring joint computer 

conference, ACM, New York, NY, USA, 37–45. 

[2] COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Distributed ray tracing. In 

Proceedings of SIGGRAPH, 137–145. 

[3] DACHSBACHER, C., AND STAMMINGER, M. 2005. Reflective shadow maps. In 

Proc. of ACM SI3D ’05, ACM, New York, NY, USA, 203–231. 

[4] DACHSBACHER, C., STAMMINGER, C., DRETTAKIS, G., andDURAND, F. 2007. 

Implicit Visibility and Antiradiance for Interactive Global Illumination. ACM 

Transactions on Graphics(Proc. of SIGGRAPH) 26, 3. 

[5] HACHISUKA T., JENSEN H. W.: Stochastic progressive photon mapping. ACM 

Transactions on Graphics 28, 5 (2009), 1. 1, 2. 

[6] HACHISUKA, T., OGAKI, S., AND JENSEN, H. W. 2008. Progressive photon mapping. 

ACM Transactions on Graphics (SIGGRAPH Asia Proceedings) 27, 5, Article 130. 

[7] HERZOG, R., HAVRAN, V., KINUWAKI, S., MYSZKOWSKI, K., AND SEIDEL, H.-P. 

2007. Global illumination using photon ray splatting. In Eurographics 2007, vol. 26, 

503–513. 

[8] JENSEN, H. W. 1996. Global illumination using photon maps. In Proceedings of the 

eurographics workshop on Rendering techniques’96, Springer-Verlag, London, UK, 

21–30. 

[9] KELLER, A. 1997. Instant radiosity. In SIGGRAPH ’97: Proc. of the 24th annual 

conference on comp. graph. and interactive techniques, ACM Press/Addison-Wesley 

http://www-sop.inria.fr/reves/Carsten.Dachsbacher/
http://www-sop.inria.fr/reves/George.Drettakis


 

34 
 

Publishing Co., New York, NY, USA, 49–56. 

[10] LANDIS H. 2002. Production-ready global illumination. Course notes for SIGGRAPH 

2002 Course 16, RenderMan in Production. 

[11] MA, V. C. H., AND MCCOOL, M. D. 2002. Low latency photon mapping using block 

hashing. In HWWS ’02: Proc. of the ACM SIGGRAPH/EUROGRAPHICS conf. on 

Graph. hardware, Eurographics Association, Aire-la-Ville, Switzerland, 89–99. 

[12] MCGUIRE, M., AND LUEBKE, D. 2009. Hardware-Accelerated Global Illumination by 

Image Space Photon  Mapping. In Proceedings of the 2009 ACM 

SIGGRAPH/EuroGraphics conference on High Performance   Graphics. 

[13] PARKER, S. G., BIGLER, J., DIETRICH, A., FRIEDRICH, H., HOBEROC, K J., 

LUEBKE, D., MCALLISTER, D., MCGUIRE M., MORLEY, K., ROBISON, A., 

STICH, M. 2010. Optix: A general purpose ray tracing engine. ACM Transactions on 

Graphics. 

[14] PURCELL, T. J., DONNER, C., CAMMARANO, M., JENSEN, H. W., AND 

HANRAHAN, P. 2003. Photon mapping on programmable graphics hardware. In 

Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics 

Hardware, Eurographics Association, 41–50. 

[15] RITSCHEL, T., GROSCH, T., KIM, M., SEIDEL, H.-P., DACHSBACHER, C., AND 

KAUTZ, J. 2008. Imperfect shadow maps for efficient computation of indirect 

illumination. ACM Trans. Graph. 27, 5, 1–8. 

[16] ROBISON, A., AND SHIRLEY, P. 2009. Image space gathering. In Proceedings of the 

2009 ACM SIGGRAPH/EuroGraphics conferenceon High Performance Graphics. 

[17] SAITO, T., AND TAKAHASHI, T. 1990. Comprehensible rendering of 3-d shapes. 

SIGGRAPH Comput. Graph. 24, 4, 197–206. 

[18] WACHOWICZ, P. 2011.  Accelerating Photon Mapping with Photon Flipping and 

Invalidity Photons. Master thesis, University of Amsterdam. 



 

35 
 

[19] WANG, R., WANG, R., ZHOU, K., PAN, M., AND BAO, H. 2009. An efficient 

gpu-based approach for interactive global illumination. ACM Trans. Graph. 28, 3, 1–8. 

[20] WEISS, M., AND GROSCH, T. Stochastic Progressive Photon Mapping for Dynamic 

Scenes. EUROGRAPHICS 2012 / P. Cignoni, T. Ertl. (Guest Editors). Volume 31 (2012), 

Number 2. 

 

 


