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摘要

在本篇論文中，我們提出了一個新的冰融化模擬方法。這個方法是以粒子為

基礎的模型進行融化模擬。我們將場景中的粒子分為兩種：冰粒子與水粒子。冰

粒子用來表示場景中的冰，而水粒子用來表示水。

在我們的方法中，冰粒子含有一特別屬性，用來存取冰粒子附近水的體積，

我們稱之為虛擬水體積。冰粒子在吸收熱能後會將融化的部分轉化為虛擬水體

積，我們運用在冰模型表面傳遞虛擬水體積的方式模擬融化產生的水以及其在冰

表面的流動。當冰粒子中的虛擬水體積超過預設體積時，則會產生水粒子。

針對冰模型的融化內縮，我們使用新的方法計算標量場中各頂點的標量值，

這個方法將冰粒子的潛熱及虛擬水體積作為標量值計算的參數。接著我們應用三

維表面重構的方法建立冰模型的多邊形網格。

在渲染場景的部分，我們在場景中同時對冰粒子所生成的多邊形網格及水粒

子所代表的元球進行光線追蹤。我們將網格及元球分別使用階層包圍盒建構出階

層式架構，以利於射線的碰撞測試。我們的方法實作於圖形處理器上，在效能上

有不錯的表現。
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Abstract

In this thesis, we propose a novel ice melting simulation method based on a particle-

based model. We have two types of particles: ice particles and water particles. The ice

particles represent the ice model and the water particles represent water.

In our method, ice particles have an attribute named virtual water volume, which is

used to represent the fluid volume around this ice particle. An ice particle may increase

its amount of virtual water volume when the latent heat of the ice particle increases. We

simulate fluid flowing on the surface of the ice model by transferring the virtual water

volume between ice particles. A water particle is produced if the virtual water volume in

an ice particle is larger than default volume of the water particle.

For smoothly shrinking ice model, we propose a newmethod to calculate the potential

field. The latent heat of ice particles and virtual water volume are taken into account for

computing the potential field. We use marching cubes to construct the polygonal mesh for

the ice model.

To render the ice model and water particles, we propose a ray tracingmethod to render

them. The ice model is represented by the polygonal mesh, and water particles are con-

structed into metaballs. We use the bounding volume hierarchy (BVH) to create hierarchy

constructions to accelerate the process of ray tracing. Our method has been implemented

on GPUs. Experiment results show that our method is efficient and compute realistic ice

melting simulation.
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Chapter 1

Introduction

Simulation of natural phenomena, such as water, fire, and cloud, has been widely used

for applications, including commercial movies, games, and advertisment. Ice appears in

everyday life, for examples, ice cubes in drinks, frozen lakes, and icicle cave, etc. In

movies and games, ice melting is often depicted. Therefore, the focus of this thesis is on

achieving both realistic and high performance for ice melting simulation.

However, ice melting is a challenging research topic because of the complex char-

acteristics of ice. First, ice is semitransparent. Light can go through ice and it is also

reflected by ice. Second, when a portion of ice begins to melt, it becomes water directly.

There is no semi-solid produced in the ice melting process, and the solid part will shrink.

Third, water moves on the surface of ice. Nowadays, there are many techniques that have

been proposed for ice melting. We want to find a way to combine these studies, and also

render the result as realistically as possible. It is a big challenge.

In this thesis, we propose a novel method for ice melting simulation based on a

particle-based model. There are two types of particles: ice particles and water particles.

The ice particles represent the ice model, and the water particles represent water which is

melted from the ice model. The ice particle has an attribute named virtual water volume.

It is used to represent the water volume around the ice particle. We propose a method to

transfer the virtual water volume between ice particles and produce water particles.

We use a new method to calculate the potentail field and achieve smoothly shrinking
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for the ice model. The latent heat of ice particles and virtual water volume are taken

into account for computing the potential field. We use marching cubes to construct the

polygonal mesh for the ice model.

To rendering ice and water together, we propose a ray tracing method to render them

at the same time. The ray tracing method can render the scene with transparent objects.

Furthermore, we implement our system on GPUs and apply the OpenCL libraries for the

parallel computation.

1.1 Motivation

Ice is common in everyday life, and it is often seen on games and movies. In addition,

ice melting is one of the important natural phenomena in the real world. It is also an

important research area of physical simulation.

However, it is difficult to simulate ice melting realistically because the shape of the

solid part in simulating is not easily handled. Also, the shape of water droplet is difficult to

be constructed precisely based on themeshes, such as usingmarching cubes, in a relatively

low resolusion. It takes a lot of time to render ice and water as they are a transparent object.

We want to utilize the methods combined with marching cubes and metaballs to sim-

ulate the process of ice melting. Our method can model the ice model which shrinks

continuously while the ice model melts. Our method also handles water droplets merging.

1.2 Overview

Our method has two components: ice melting simulation and rendering.

The ice melting simulation is based on a particle-based model. The thermal energy

transferring within the object is considered. A set of ice particles represent ice, and these

ice particles transfer heat between each other. The latent heat will be saved in each ice

particle and the ice particle disappears when it obtains enough heat of fusion. From an-

other perspective, relative proportion of volume of an ice particle to the latent heat should
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becomes water. An attribute named virtual water volume is associated with an ice particle.

It represents the water volume nearby the ice particle. We simulate the water flows on the

surface of ice model by transferring virtual water volume. Furthermore, water particles

are constructed if the amount of virtual water volume in an ice particle is too much. The

smoothed particle hydrodynamics (SPH) is used to simulate the motion of water in our

method. It calculates the force for water particles based on the properties of water with

regard to pressure, viscosity, and density.

We construct a polygonal model for ice particles using the marching cubes method,

while water particles are represented by metaballs. The latent heat of ice particles and the

ratio of water volume are considered as for computing the potential field. The field value

is affected by the latent heat and the ratio between water volume and ice particles. With

the increase in the latent heat of an ice particle, the relative proportional volume of the ice

particle change to water, and then the field value decreases. On the other hand, the field

value increases if the water volume becomes larger.

To render ice model and water particles together, we use the ray tracing method. We

separate the ice particles and water particles, and render them using different methods.

We use the marching cubes to construct the polygonal mesh for the ice model, Then, we

build a BVH construction for them. Water particles are represented by metaballs. We use

an approximate algorithm to find the isosurface for the metaballs. Each ray is tested for

intersection for meshes and metaballs.

Figure 1.1 is the process for our method. The seven steps are shown below:

1. We input a polygonal model and voxelize it. Each voxel represents an ice particle.

2. We compute heat transfer for all particles. There are three ways that an ice particle

can absorb heat: other particles, air, and heat source. An ice particle is removed if

the latent heat of the ice particle is higher than the required heat energy.

3. The relative proportion of the volume of an ice particle to the latent heat becomes

virtual water volume and transforms between ice particles from high to low. A new

water particle is constructed if the virtual water volume in an ice particle is toomuch.
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Figure 1.1: Flow chart for our method.

4. Water particles move according to some forces, including hydromechanics, gravity,

and interfacial tension, etc.

5. We use a new method to compute the potential field. Then, we construct meshes for

ice particles using the marching cubes method.

6. We create BVH for the meshes and metaballs.

7. The ray tracing method traces on the BVHs of the meshes and metaballs, and shows

the rendering result on the screen. Then, we go back to step two for the next frame.

1.3 Contributions

The major contributions of this thesis are described as follows.

1. We propose a novel ice melting simulation method based on a particle-based model.

We use the virtual water volume transfer method to simulate water flowing on the

surface of the ice model. Virtual water volume is transferred between ice particles.

The virtual water volume tends to transfer from ice particle of higher position to ice
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particle of lower position. A water particle is constructed when the virtual water

volume in an ice particle is larger than a default volume.

2. We propose a new method to calculate the potential field. The latent heat of ice

particles and virtual water volume are considered for computing the potential field.

The latent heat of the ice particle increasing causes the field value around the ice

particle to decrease. In contrary, the field value increases if the virtual water volume

increases around the ice particle. We use marching cubes to construct a polygonal

mesh for the ice model. In this way, we can model the model shrinks when the ice

model melts.

3. To render ice model and water particles, we propose a new method for ray tracing

to the mesh and metaballs in the same scene. We use bounding volume hierarchy

(BVH) to create hierarchies for these two parts (i.e., meshes and metaballs). A

special principles of judgment is proposed to find intersections for rays using ray

tracing method.

4. The main parts of our system is implemented on GPUs. We use OpenCL to perform

the parallel computation.

1.4 Organization

The remaining chapters of the thesis are organized as follows. Chapter 2 reports the

related work about melting simulation and ray tracing. We present our ice melting simu-

lation method in Chapter 3. Our rendering algorithm is illustrated in Chapter 4. Chapter

5 presents experiments and discussions. Finally, Chapter 6 presents the conclusion and

future works.
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Chapter 2

Related Work

There are two main components in our system: melting simulation and ray tracing

method. For the melting simulation, we use a particle-based heat transfer method. For

rendering, GPU-based ray tracing is proposed in our system. In the following sections,

we present the related work for the melting simulation and ray tracing method.

2.1 Melting Simulation

There are many researches relate to melting solid object in the past. The basis of the

concept utilizes the thermodynamic heat transfer to conduct heat, and melts object.

Fujishiro et al. [FA01] simulated the melting of ice by using the morphology. This

method voxelize the polygonal model and conduct heat between voxels. However, this

method neglects fluid part that is formed due to melting.

Carlson et al. [NN94]melted solid object such as wax or clay, and also handledmelted

fluid by using Navier-Stokes equation. Although this method can simulate melted fluid

for the soil-like high stickiness object, it does not conform to the properties of water.

There were many techniques on melting ice [FGFR06][FM07][CMJG07]. These

methods also handle the motion of water, but they take several minutes for each frame.

Zhao et al. [ZY06] employed GPUs to accelerate the process. Solenthaler et al.

[SSP07] developed a unified particle model to simulate solid-fluid interactions, including
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melting, solidification, merging and splitting. Although the method can simulate melting

object at an interactive frame rates, it doesn't consider to the motion of water droplet.

Iwasaki et al. [IUDN10] proposed a method implemented on GPUs. The method

handles ice, water, and water droplet when melting occurred, and the execution time is

also less than the previous approaches. Our method is developed based on their method.

2.2 Ray Tracing

Ray tracing is one of the rendering technologies that is the most commonly used.

The property of ray tracing is that ray tracing can produce realistic scene according to

lights and objects characteristics, such as material and transparently. The first algorithm

is proposed by Arthur Appel et al. [App68] in 1968, but they didn't consider to the light

of reflection. Turner Whitted et al. [Whi80] proposed a method which used recursive ray

tracing including the effects of reflection, refraction and shadow. This method can render

realistic scene.

In the past, ray tracing cannot be used on the real-time or interactive system because

of a large amount of calculation. Ray tracing can only use to construct off-line videos such

as movies or animations. With the era of progress, two important techniques accelerate

the process of ray tracing.

In order to speed up ray tracing performance, previous techniques bundle many rays

in a packet, and use multithreading or SIMD to traverse and test intersection for rays. This

method successfully improves overall performance. The algorithm proposed by Wald et

al. [WMG+07] enlarges the packet size from 2*2 to 32*32, and greatly reduces the number

of intersection test.

Due to the development of Graphic Processing Unit (GPU), GPU became the main

tool for parallel computing. Ray Engine [CHH02] was the first ray tracing system imple-

mented on GPUs. Later, more and more techniques utilized multiprocessors of GPUs to

improve performance. For instance, Purcell et al. [PBMH02] employed programmable

graphics hardware to implement ray tracing algorithms.
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NVIDIA developed Compute Unified Device Architecture (CUDA) [NVI] language

in 2008. This is a parallel computing architecture for graphics processing. Further, Open

Computing Language (OpenCL) [Khr09] was developed by Apple Inc. in 2009, which is

a framework for writing programs that execute across heterogeneous platforms consisting

of central processing unit (CPUs), graphics processing unit (GPUs), and other processors.

Since the development of these two tools, researchers can design the programwith parallel

computing on GPUs effectively.

Ray-triangles intersection test spends the most time in ray tracing algorithms. There-

fore, a lot of acceleration constructions are proposed, such as kd-tree or Bounding Volume

Hierarchy (BVH).Most of the kd-tree constructions [FS05][HSHH07][PGSS07][ZHWG08]

and BVH constructions [WMG+07][LGS+09][PL10] were implemented on GPUs. We

use the method proposed by Lauterbach et al. [LGS+09] to create the acceleration con-

structions for our meshes.

In our system, we use an algorithm proposed by Kanamori et al. [KSN08] to render

water particles. This method improves realistic for the water droplets, but the execution

time increases when the number of water particles is higher. Kanamori et al. [GPP+10]

utilizes BVH to packet water particles and accelerates the rendering calculation.
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Chapter 3

Ice Melting Simulation

Ice is not a viscous substance, and water will flow when ice becomes water from

solid-state. There is no semi-solid in the ice melting process. The water from melted

ice will move on the surface of the ice model. Thus, the ice melting simulation has been

widely studied.

We propose a novel ice melting simulation method based on a particle-based model.

There are two types of particles: ice particles and water particles. The ice particles rep-

resent the ice model. Each ice particle has some attributes, such as position, temperature,

and latent heat, etc. There is an attribute named virtual water volume for an ice particle,

which is used to record the water volume produced by melting a portion of the ice particle.

The water particle also has some attributes, such as position, velocity, and force, etc.

Basically, the system of ice melting simulation has two components: heat transfer

and shape reducing. We use the method proposed by Iwasaki et al. [IUDN10] to transfer

heat. The amount of latent heat of an ice particle will be computed using the equation

of thermal energy transfer, and ice model will be melted via increasing latent heat. We

calculate virtual water volume transfer and employ marching cubes method to shrink the

shape of the ice model smoothly.

The flow chart of our ice melting method is shown in Figure 3.1. In the preprocessing

stage, we load a polygonal model and voxelize the model to a set of 3-dimension voxels.

Each voxel in the set represents an ice particle.
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Figure 3.1: Overview of our ice melting method.

In the run time stage, we do several steps each time step, including heat transfer,

phase transition, virtual water volume transfer, motion of particles, and marching cubes

construction. We introduce each step in the following sections.

3.1 Model Voxelization

Our method is based on particles, and motions of water particles are calculated based

on smoothed particle hydrodynamics (SPH). Therefore, we need to transform the inputted

polygonal models into particles.

Voxel is short for "volume pixel", and it is a cube in a 3-D lattice. In simple terms,

we can partition the 3-D scene into many voxels, and use the voxel model to represent

the polygonal model. To achieve model voxelization, we extend the 2-D scan-conversion

algorithm to 3-D space using [Kau87]. By using the scan-conversion algorithm, the voxels

which belonged to the meshes of the model will be found and collected in a set ν. Next,

we introduce this method in detail.

We partition the 3-D scene into uniform voxels. These voxels will be divided into

several 2-D layers by using one of the three axes, as shown in Figure 3.2(a). In each 2-D

layer, we shoot rays along the direction of rows and find intersections between the rays
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Figure 3.2: (a): Split the scene into voxels. (b): A layer of voxels.

and polygonal model, as shown in Figure 3.2(b). In general, each ray will intersect the

model in an even amount of times if the starting position of the ray is outside the polygonal

model. The intersections are the shells representing the surface of the polygonal model.

Then, we scan each row again and collect the voxels which are inside the shell surface to

the set ν one to another voxel. We repeat the same process for all 2-D layers. Finally, the

voxel model will be constructed by using the voxels that belong to the set ν.

After collecting all the voxels we want, each voxel is designated as an ice particle.

Each ice particle has some attributes: temperature, latent heat, position, virtual water vol-

ume, and indices of neighboring particles, etc. Temperature and latent heat are utilized in

the method of heat transfer and for deciding the phase of particles. Virtual water volume

is used for recording the amount of water volume which is produced by melting a portion

of the ice particle. We use an attribute called "indices of neighboring particles" to record

the six neighboring particles. If the number of neighboring particles is less than six, the

ice particle is an outward particle, and its will absorb the heat from the air.
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3.2 Heat Transfer

The ice particles absorb thermal energy and melt at each time step. The method is

based on Iwasaki et al. [IUDN10]. There are three ways to absorb heat for the ice particles,

as shown in Figure 3.3: other particles, air, and the heat source.

Figure 3.3: A sketch of heat transfer simulation.

In the following sections, we describe these three heat transfer processes.

3.2.1 Heat transfer between particles

The particle i absorbs heat from the other particles, which is calculated from the equa-

tion:
∂Ti

∂t
= Cd

∑
j∈Ni

mj
(Tj − Ti)

ρj
∇2W (rij, re) (3.1)

∇2W (rij, re) =
45

Πr6e
(re − rij) (3.2)

where ∂t is the time step. Ti is the temperature of the particle i, Ni is a set of particles

whose distance rij from particle i are smaller than the effective radius re,W is a smoothing

kernel function as the equation used for calculating viscosity, as shown in Equation 3.2,

and Cd is the thermal diffusion constant changing from different phase of particle i (i.e.

ice or water). We use Equation 3.1 to calculate heat transfer between particle i and its

neighboring particles.
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3.2.2 Heat transfer between ice particle and air

In general, we assumed that air is made up of particles, and heat transfer between air

and ice particles is calculated via Equation 3.1. However, this method requires extra air

particles and will increase the simulation time. In order to achieve better performance, we

approximate the temperature of air particles as a constant Tair. Therefore, the heat transfer

between ice particle and air can be simplified into the Newton's law of cooling:

Qi = h(Tair − Ti)δA, (3.3)

whereQi is the amount of heat absorbed by an ice particle i, h is the thermal conductivity,

and δA is the surface area of particle i which contact to the air. To obtain δA, we need to

compute the number of neighbors by using the attribute "indices of neighboring particles".

By subtracting the number of neighbors from six, we can get the number of face touching

the air, and the sum of area for these faces can be accumulated. After we computeQi, the

increase in the temperature ∆T is calculated from:

∆T =
Qi

Cm
, (3.4)

where C is the heat capacity of the ice, andm is the mass of an ice particle.

3.2.3 Thermal radiation from heat source

There are some heat sources in the scene, such as the sun or a heater, and these heat

sources will radiate thermal energy to the scene. We assume that the heat source emits

some particles carrying thermal energy, and we call these particles thermal photons. The

total thermal energy E is released from the heat source at each time step, and we can

compute the E via the equation:

E = εσT 4
sHdt, (3.5)

where ε is an emissivity factor, σ is the Stefan-Boltzmann constant, Ts is the temperature

of the heat source, H is the surface area of the heat source, and dt is the time step. The

sum of the thermal energy in each thermal photon is E. Therefore, at each time step, a
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photon has thermal energy Ep computed from Ep =
E

N
, where N represents the number

of photons emitted in a time step. Here we assume two kinds of heat source, rectangle and

sphere, as shown in Figure 3.4.

Figure 3.4: Two kinds of heat source. The left is a rectangle, and the right is a sphere.

For rectangle heat source, the photons are uniformly arranged and emitted from the

rectangle, and the directions of the photons emitted are perpendicular to the surface.

For sphere heat source, the photons are located on the surface, and each coordinate

of position P is calculated using the equation:

P = P0 + rB, (3.6)

B =


√
1− u2 cos θ

√
1− u2 sin θ

u

 , (3.7)

where P0 is the central position of sphere, r is the radius of the heat source, and B is a

vector related to the spherical coordinates which are based on the angles θ and ϕ. The

parameters θ and u = cosϕ of each photon are uniformly set in the limit interval θ ∈

[0, 2Π), and u ∈ [−1, 1]. The ray Dp of the photon emitting from the sphere heat source

is computed as Dp = P − P0.

We calculate the number of photons that hit to each ice particle using the ray-voxel

intersection test. To speed up the intersection test, our method test an intersection effi-

ciently between the ray and an ice particle by traversing voxels using 3DDDA algorithm

15



[AW87]. The increase in thermal energy δQi for the ice particle i is the product of the

multiplication of the thermal energy Ep by the number of photons hitting the particles i.

3.3 Phase Transition

We assume that an ice particle is constructed by a lot of molecules. When the tem-

perature of ice particle increases to 0◦C, the ice particle begins to absorb enthalpy of

fusion(i.e., heat of fusion for ice). A portion of the ice particle transfer when the latent

heat of the particle increases. We construct an attribute in each ice particle, named virtual

water volume, to record the water volume produced by melting a portion of the ice parti-

cle. The ice particle disappears when the temperature of the ice particle increases to 0◦C,

and also when the ice particle obtains enough latent heat.

Our method has two steps in the phase transition process:

1. Accumulate the thermal energy to each particle. The thermal energy will increase

the temperature or the latent heat of the ice particle. The ratio of latent heat will

affect the increase of the amount of the virtual water volume.

2. Check whether the ice particle absorbs enough thermal energy; if so, it is removed.

Renew the attribute "indices of neighboring particles" when the neighbors of ice

particle i disappear.

In the heat transfer process which we have described in previous section, each particle

obtains heat value δQi. For each ice particle i, we try to increase the temperature up to

0◦C by transforming energy δQi to temperature ∆T using Equation 3.4. Further, the rest

of the thermal energy are added into the latent heat Ei when the temperature reaches 0◦C.

We use the equation to calculate the ratio of the latent heat Eratio, as shown below:

Eratio =
Ei

Etotal

, (3.8)

where Etotal is the amount of energy which is needed to melt an ice particle:

Etotal = Ew ∗m. (3.9)
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Ew is a constant of heat energy related to the type of material, and m is mass of an ice

particle. To melt a kilogram of ice, about 79720 calories heat energy is needed.

We assume that a portion of ice particle transform to water when latent heat increases.

We use the following equation to transform a portion of volume of the ice particle into

virtual water volume:

∆V = Vd ∗
d

dt
Eratio, (3.10)

where ∆V is the amount of water volume in this time step that we add into virtual water

volume of ice particle, and Vd is default volume of whole ice particle. All ice particles

will increase the virtual water volume in each time step based on the ratio of latent heat.

The ice particle is removed when the Ei increases up to enthalpy of fusion Etotal. In

other words, the ice particle disappear when Eratio is equal to 1. When the ice particle i

absorbs enough heat energy it and disappears, we remove i from the attribute "indices of

neighboring particles" for the particles which is nearby the particle i.

3.4 Virtual Water Volume Transfer

Virtual water volume will be transferred between neighbors of ice particles from high

position to low position. We simulate the water flow on the surface of the ice model using

virtual water volume transfer. Furthermore, water particle is produced if there is too much

virtual water volume in an ice particle at the same time. The virtual water volume will be

a factor for effecting the marching cubes construction.

In the following sections, we will illustrate this method in detail. It will be separated

into two steps: virtual water volume transfer, water particles creation. After that, we will

describe two special cases in our method, and how we have handled them. The influence

for marching cubes from the virtual water volume will be described in Section 3.6.

3.4.1 Virtual water volume transfer

After we transform a portion of ice particle into the correspondly virtual water volume

in each frame, the virtual water volume can be transferred between ice particles freely. One
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Figure 3.5: Four cases of water volume transfer. P0 is the ice particle we are considering.

of the features of water is that it flows downwards, so we use this feature to transfer the

virtual water volume between ice particles. There are four cases to transfer the virtual

water volume via ice particles from high to low, as shown in Figure 3.5.

For each ice particle, we calculate the virtual water volume transfer for its four sides

(excluding upper and lower side). Each surface will be tested for these four cases (Fig-

ure 3.5) in a sequence.

In the first case, the ice particle P0 is tested with the neighboring particles. If there

exists an ice particle P1 and P1 has less amount of virtual water volume than P0, we put

P1 into the set of wanted particlesW . If there is no P1, the virtual water volume can flow

via that surface from high to low, and then we check case two. We put the particle P2 into

setW if P2 exists at the position like the case two which is shown in the figure. We will

perform case three if the P2 doesn't exist, because there is no particle blocking the flow.

Case three establishes if there is a particles P3 there, otherwise, case four happens.

We check the four cases for four side surfaces and save all the particles which can

be flowed through into the set W . Then, we reduce the portion of virtual water volume

from P0 and allocate the amount of virtual water volume to particles inW based on virtual

water volume of each particle. This is because water tends to transfer and converge at the

place with more water.
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3.4.2 Water particles creation

Sometimes, the virtual water volume in an ice particle has more than the default vol-

ume of a water particle Vd at the same time and there is no other way to transfer it. This ice

particle will decrease for the same amount of Vd and create a water particle. This situation

occurs usually on the bottom of ice model or drooping tip, such as icicles on the roof.

We create a water particle at the position nearby the center of this ice particle, and we

give an initial velocity to this new water particle. The direction of the initial velocity goes

outward to the ice model to avoid the attractiveness of the interior ice particles. These

water particles moves based on the smoothed particle hydrodynamics (SPH) and we will

describe in Section 3.5.

3.4.3 Special cases handling

There are two special cases in our virtual water volume transfer method. First, when

an ice particle absorbs enough amount of heat and is removed, the virtual water volume in

this ice particle will be lost. However, this result is not correct because the total volume

of the object is different after we ignore the virtual water volume in ice particles which

have been removed. To solve this problem, we transfer the virtual water volume from the

ice particle to the neighbors of this ice particle.

Second, the water particle may drop onto ice particles and stay on them, leading to

obvious unnatural result if the particle size is big. Therefore, we allocate the volume of

the water particle into the virtual water volume of these ice particles and delete the water

particle which is laid on the ice particles. In other words, this water particle changes back

to virtual water volume and flows on the surface of the ice model.
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3.5 Motion of Particles

The smoothed particle hydrodynamics (SPH) is used to simulate the motion of water

particles. The motion of the particles are calculated based on the Navier-Stokes equations:

du

dt
= −1

ρ
∇p+ µ∇2 + f, (3.11)

∇ · u = 0, (3.12)

where u is the velocity, ρ is the density, p is the pressure, µ is the dynamic viscosity coef-

ficient, and f represents the external forces. For particle-based simulation, the continuity

equation shown here as Equation 3.12 can be preserved automatically if no particle is

deleted or inserted and the particle mass is constant. The first and second terms on the

right-hand side of Equation 3.11 are the pressure force fpress and the viscosity force fvis,

respectively. So, the Equation 3.11 can be changed to:

du

dt
= fpress + fvis + f, (3.13)

where the third term f in the Equation 3.13 includes gravity, force of collision response,

and interfacial tension fi.

Figure 3.6: Interfacial tension proposes between ice particle and water particle, and be-

tween water particles.

The paper [IUDN10] observed the ice melting phenomenon and suggested that wa-

ter particle will move on the surface of the ice model before falling down, as shown in
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Figure 3.6. To implement this phenomenon, the virtual interfacial tension fi of the water

particle i is calculated by the following formula:

fi =
∑

j∈Nwater
i

kw
xj − xi

∥xj − xi∥2
+

∑
j∈N ice

i

kice
xj − xi

∥xj − xi∥2
, (3.14)

where xi is the position of the particle i, kw is the coefficient of the interfacial tension

between the water particles, kice is for water-ice interfacial tension, andNwater
i (N ice

i ) is a

set of water (ice) particles nearby particle i.

Figure 3.7: A sketch of Cartesian distance calculation.

To find out the neighboring particles Nwater
i and N ice

i for particle i, the computation

cost is high in calculating the distance two particles. In order to achieve an efficient simu-

lation, we calculate the Cartesian distance for two particles before we calculate the actual

distance, as shown in Figure 3.7.

The scene is split into many cubes with same size, and the width of one cube is one

Cartesian unit. First, each particle is represented by a Cartesian coordinate, which is a 3-D

index Ci based on the position of particle via Cartesian unit. Thus, we change the length

of effective radius of particle i to the number of Cartesian unitNr, and obtain the effective

region for the particle i. The Cartesian distanceNmax between particle i and j is obtained

using this formula:

Nmax = max(|Cix − Cjx|, |Ciy − Cjy|, |Ciz − Cjz|). (3.15)

We confirm that the particle j is in the region of particle i if the Nmax ≤ Nr. This
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method can reduce calculating timing by removing some unnecessary distance calculation

when two particles are too far away.

3.6 Marching Cubes Construction

There are two features in our marching cubes method, and we describe them as below.

First, we only need to construct the marching cubes for the ice particles. Our render-

ing method uses the method proposed in [KSN08] to find the isosurface for water particles

directly via ray tracing. Therefore, we don't need to construct the marching cubes for the

water particles. The advantages are that we can reduce the constructing time of marching

cubes construction for these water particles. Also, we get fewer triangles from marching

cubes construction, which speed up the ray-triangle intersection test in the rendering pro-

cedure. Best of all, the shape of water particles is represented more realistically by using

the method proposed in [KSN08] than using marching cubes method.

Secondly, we propose a novel method to calculate the potential field. We observe

that the animation of ice meshes is discontinuous when the ice particle immediately dis-

appears. That is because the influence from the ice particle to the potential field is lost.

However, ice melting simulation should be a continuous animation and the meshes made

by marching cubes cannot instantaneously change. The meshes should smoothly contract

inward. Moreover, the virtual water volume that retains in each ice particle should be

taken into account. Therefore, the field function is modified to:

Φ(x) = (
∑
j

(E ∗ (1− r

h
))2)

1

2 , (3.16)

where E has two parts:

E = Es + Ewv. (3.17)

Es is computed based on the shrinking ratio:

Es = 1− 3
√
Eratio, (3.18)

whereEratio is defined in Section 3.3. The ice particle is removedwhen theEratio becomes

1. We assume that an ice particle is constructed by a lot of molecules. The ratio between
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ice volume V and water will change according to Eratio. Also, the number of melted

molecules is proportional to total amount of volume V of melted molecules, Therefore,

we understand that Eratio is a 3-D unit. The field function for marching cubes is based

on distance between the vertices of cubes and the particle. However, the unit for field

function is 1-D, while Eratio is a 3-D unit. Therefore, we use the Equation 3.18 to obtain

reasonable value for Es.

The second term of Equation 3.17 Ewv is based on the virtual water volume in ice

particle, shown below:

Ewv =
3

√
Vi

Vd

, (3.19)

where Vi is the amount of of virtual water volume in the ice particle i, and Vd is the default

water volume of whole ice particle.

We can prove this equation by skipping the virtual water volume transfer step (i.e.,

the method introduced in Section 3.4). Then, Vi is equal to V , Eratio ≡ Vi

Vd

, and E =

Es +Ewv = 1. We add E into the basic equation of field function. After that, the meshes

constructed by marching cubes will shrink naturally.
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Chapter 4

Rendering

To render transparent fluid realistically, we use ray tracing to render the scene. The

ray tracing technique can compute the reflection and refraction of light, so it is good for

transparent objects. However, ray tracing costs a lot of time on calculating the intersection

between rays and objects in the scene, and also takes some time on computing the color for

the pixels. Therefore, we implement our system on the GPUs to accelerate computation

time. We separate the ice particle and water particle and use a unique methods to test for

the intersections.

We transfer the ice particles into polygonal mesh as described in Section 3.6, and the

accelerate construction linear bounding volume hierarchy (LBVH) is proposed. There-

fore, the computation time for the intersection test is reduced by tracing rays within the

hierarchy construction.

For water particles, our method is based on the method proposed by Kanamori et

al. [KSN08]. In their method, the isosurface of these water particles (metaballs) can

be found using ray tracing with the special principles of judgment. As illustrated in the

Section 3.6, the advantages of separating ice and water particles are that we can reduce the

construction time for these water particles. We also get fewer triangles from the marching

cubes method, which speeds up the testing of ray-triangle intersection when we render the

scene. Most of all, the shape of water particles is represented more realistically by using

the method proposed in [KSN08] than using the marching cubes method.
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In the following sections, we will introduce three components: LBVH construction,

the method to find the isosurface for water particles, and GPU-based ray tracing based on

meshes and metaballs.

4.1 LBVH Construction

The most time-consuming part of ray tracing is the ray-triangle intersection test. This

is especially true for transparent objects, which requires at least three times of test (inci-

dent ray, reflection ray, refraction ray). Therefore, many researches focus on hierarchy

accelerate construction, such as kd-tree or bounding volume hierarchies (BVH). We select

the linear bounding volume hierarchy (LBVH) method, which is proposed by Lauterbach

et al. [LGS+09]. This method uses the concept of Morton Code (or Z-Order Curve) to

sort triangles, and sorted list to construct BVH parallelly.

In ice melting simulation, the marching cubes method generates different polygo-

nal mesh in each frame, so we need to construct a new BVH at each time step. LBVH

can quickly build the accelerate construction with GPUs, so it is an essential part for our

method. Now, we will describe all the steps of the LBVH construction in detail.

4.1.1 Morton code construction

We calculate the axis-aligned bounding box (AABB) for each triangle and take the

barycenter of each primitive AABB as its representative point. We can quantize each of

the 3 coordinates of representative points into k-bit binary digits. The 3k-bit Morton code

for a point is constructed by interleaving the successive bits of these quantized coordinates.

For example, the representative points of a triangle is (0, 1, 3), and we assume k = 2.

It is changed to (00, 01, 11) as the binary digits, and then we interleave the successive bits

into 100110 via the sequence of axes (z, y, x).
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4.1.2 Morton code sorting

After changing all representative points to Morton code, we sort them using the paral-

lel radix sort algorithm which is proposed by NVIDIA [NVI] on GPUs. Morton code has

a corresponding relationship with the space. Figure 4.1 shows a 2-D sketch map of this

construction. Sorting the representative points in increasing order of their Morton codes

will lay out these points in order along a Morton curve (blue arrow in Figure 4.1). Thus,

it will also order the corresponding primitives in a spatially coherent way.

Figure 4.1: The scene is split by the first four bits of Morton code in 2-D space. The red

(blue) bits are retrieved from the representative point value of x-axis (y-axis).

4.1.3 Array of split list construction

The two triangles have different Morton codes when these two triangles are in the

different child space. After sorting theMorton codes, we successively extract two adjacent

Morton code in the sorted list and compare them from the highest-bit. Then, we build an

array named split list to save the position ℓ of the first different bit into the array. For

example, there are two Morton codes, 000111 and 001110 for two different triangles. The

first different bit of twoMorton codes is the 3rd bit, so ℓ = 3. The data in split list represent

the level in the BVH tree where the two triangles are separated.
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4.1.4 List pairs construction using split list

We expand the split list array into list pairs S(i, ℓ) as shown below:

S(i, ℓ) = [(i, ℓ), (i, ℓ+ 1), ..., (i, 3k)], (4.1)

where the first term of (i, ℓ) is the index of the triangle i and the second term is the levels

of the splits between the primitives. If we perform this computation for each data item in

thesplit list and concatenate all such lists, we get a list of all the splits in the tree sorted

by the index of the triangles in the linear Morton order. Once we have this list, we sort it

again by level (i.e., the second term of each pair). This tells us how to split the triangle

list into various nodes on the BVH construction.

4.1.5 BVH tree construction

Figure 4.2: We assume the Morton codes of triangles A, B, C, and D which have been

known. The left hand side shows the calculating process, and right hand side is the result

of BVH tree.

According to the sorted list pairs, we put all the triangles into a tree structure. Fig-

ure 4.2 is an example. We assume that the split list computed for the four triangles is 2, 1,

and 2, then, the list pairs will be (A,2), (B,1), (B,2), and (C,2). After we sorted the list pairs

by the second term, the BVH construction will be set up. The triangles will be partitioned
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into two sets AB and CD and we put them in the level 1 nodes in the BVH tree based on

the first list pairs (B,1). Furthermore, the triangles are split in four different nodes in level

2 via the next three data of sorted list pairs (A,2), (B,2), and (C,2). Therefore, we finished

the BVH construction for the meshes of the ice model using GPUs.

4.2 Find Isosurface for Metaballs

We separate the ice particles and water particles, and use different ways to test inter-

section for them. Here we introduce the method used for testing the intersection for water

particles. The method is based on the method proposed by Kanamori et al. [KSN08], and

they use a metaball to represent a water particle.

To render the shape of the metaballs smoothly, the isosurface of these metaballs can

be found using ray tracing with the special principles of judgment. Each metaball has

a density field, and a set of nearby metaballs represents a smooth surface by the way of

combining their density fields. In the following sections, we will introduce the method to

find the isosurface for the metaballs.

4.2.1 Field function of metaballs

Figure 4.3: A sketch of the field function fi.

We use the density field function fi to represent the metaball i based on the distance

r from the central of metaball Pi to the point x, as shown in Figure 4.3. The fi has a finite

28



supportRi, andRi represents the effective radius of metaball i. Thus, fi(r) = 0 if r ≥ Ri.

For N metaballs, the shape of the isosurface is defined by the point x ∈ R3 in below:

f(x) =
N−1∑
i=0

qifi(∥x− Pi∥)− T = 0, (4.2)

where T is a threshold, and {qi} are the density coefficients. The normal vector at x can

be derived from −∇f(x).

The Nishita and Nakamae's algorithm [NN94] converts the function fi into the Bézier

curve form, and uses Bézier clipping to solve equation with quadratic and degree-six poly-

nomial. Here we use the degree-six polynomial, and it has seven control points. The

equation of Bézier curve is shown as below:

fi(si) =
6∑

k=0

dikB
6
k(si), (4.3)

where si ∈ [0, 1] is an intersected interval,B represents the Bernstein polynomial,Bn
k (u) =(

n
k

)
uk(1 − u)n−k, and (

k

6
, dik)(k = 0, 1, ..., 6) is the coordinates of the control points of

Bézier curve. When the Bézier curve represents one metaball, the control point is set as

following:

d0 = d1 = d5 = d6 = 0, d2 = d4 =
16

27
a2i , d3 =

(8ai + 5)a2i
45

, (4.4)

where ai is the length of the intersected interval
D

R2
i

, and D is the discriminate from the

formula of ray-metaball intersection test.

4.2.2 Framework for rendering metaballs

The isosurface of these metaballs will be found using a special ray tracing algorithm.

Figure 4.4 shows the sketch map for rendering metaballs. B0 andB1 are two nearby meta-

balls, andR0 is a incident ray intersecting the surface of these two metaballs at {t0, ..., t3}.

We detect the ray-isosurface intersection point from the first interval [t0, t1] to the last in-

terval [t2, t3] using Bézier clipping. This process stops when an intersection is found or

no intersection is found.
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Figure 4.4: A sketch for rendering metaballs.

In each interval, the Bézier curves of the influential spheres are summed into one

curve. For instance in the Figure 4.4, the interval [t1, t2] is effected by the B0 and B1 at

the same time, so the Bézier curve f01 in the interval [t1, t2] is constructed by combining

two curves f0 and f1 which represents B0 and B1 respectively. It is simple to combine

multiple Bézier curves, since all we need to do is add each control points dik belonging to

each influential spheres; i.e.:

d01k = d0k + d1k, (k = 0, ..., 6) (4.5)

4.2.3 Bézier clipping

Figure 4.5: A Bézier curve with five control points. (a) is the Bézier curve before clipping,

and (b) is the curve after clipping.

We use Bézier clipping method [NN94] to iteratively compute the root fi(si)−T = 0,
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as shown in Figure 4.5. The Bézier curve is always inside the convex hull formed by its

control points dik. The two intersection points between convex hull and horizontal line

s = T is smin and smax. Therefore, we find [smin, smax] iteratively and finally we can

converge to the root.

In each new interval, we want to obtain new control points for new curve, as shown

in Figure 4.5(b). The de Casteljau's Algorithm is utilized here. Also, we use the Jarvis

March algorithm to obtain convex hull for curve. These two algorithms will be illustrated

in the following section

4.2.4 The de Casteljau's algorithm

The de Casteljau's algorithm is used to obtain new control points for the new curve.

If we have the original control points dk(k = 0, ..., n) and the new interval [smin, smax],

we can use this algorithm to get the new control points d′k(k = 0, ..., n).

The process of the de Casteljau's Algorithm as below:

1. For any nth order Bézier curve, this algorithm starts with the point set {pk = dk},

which contains exactly n+ 1 elements.

2. It then replaces this set with an interpolated set {p′0 = point between p0 and p1 at

distance t, p′1 = point between p1 and p2 at distance t, ..., p′n−1 = point between

pn−1 and pn at distance t}, where t is the position we want to find on the original

interval. This set will be 1 element shorter than pk.

3. Step 2 is repeated until there is only one point left, and that point will lie on the

original curve, at the same t value.

In this process, the new control points are found at interval [0, t] or [t, 1]. An example

is shown on Figure 4.6, assuming point set pk(k = 3).

For the new interval [smin, smax], we run this algorithm two times. In the first time,

we set the smin as t, and find the new control points at interval [t, 1]. Therefore, we get a

new interval [smin, 1]. In the second time of computation, we set the smax as t, and we find
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Figure 4.6: Finding control points for new curve at interval [0, t] or [t, 1].

the new control points at [0, t]. These new control points are the solution d′k at interval

[smin, smax].

4.2.5 Jarvis march algorithm

The property of Bézier curve is that we can use a convex hull to cover the curve, and

the convex hull is made by control points. Therefore, we use Jarvis March algorithm to

find the convex hull for the curve. Jarvis March algorithm is a simple method that forms

edges, and checks that every point is on the same side. The following is the process of

algorithm:

1. We assume a virtual first point pv to act as the initial reference.

2. We connect pv and p0 to a line L0, where p0 is the first point of point set P . p0 is

regarded as a judgment point pfront.

3. We find the biggest angle for L0 and Li, where Li is a line constructed by pfront and

the point pi from the set P . The point pi will be pushed into hull setH if Li has the

biggest angle. Then, Li becomes L0, and pi turns into pfront.

4. Step 3 is repeated until pfront points to h0, where h0 is the first element in hull set

H , and then we find the necessary points of the convex hull which are in the hull

set H .

Here is an example with six points, shown in Figure 4.7.
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Figure 4.7: Example of Jarvis March algorithm. The blue line is L0, black lines are the

necessary lines, gray lines and red line areLi, and red line is the line with the biggest angle

calculated with counterclockwise.

4.2.6 Algorithm

We illustrate the process for rendering N metaballs. We render the scene with many

rays, and the algorithm is processed for each ray, as shown in Figure 4.8.

In the beginning, we shoot a ray from the view target and perform intersection tests

with all the metaballs. The metaball which is intersected have even number of intersection

points. We sort the intersection points of all intersectedmetaballs and construct k intervals.

For each interval i, we collect influential metaballs in a set and calculate the control points

using de Casteljau's algorithm for these metaballs. To combine multiple Bézier curves,

we add each control points dik belonging to the set of influential metaball and construct a

new curve. If all the control points are smaller or bigger than threshold T , then there is no

intersection between the convex hull and the horizontal line s = T , so we go to the interval

i+1. Otherwise, we will do the Bézier clipping and find the new interval [smin, smax] until

the interval size is small enough (i.e. smaller than ε, where ε is a very small number). The
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Figure 4.8: Flow chart of metaballs rendering.

vector scalar t for ray direction is calculated by t = ti + (ti+1 − ti) ∗ smin. Therefore,

we can obtain the exact intersect position Ip between ray and metaballs by utilizing the

following equation:

Ip = Vp + tD, (4.6)

where Vp is the position of view target, and D is the direction vector of the ray.

4.3 GPU-based Ray Tracing With Meshes and Metaballs

To improve the realism, we combine meshes and metaballs in the same scene, and im-

plement special ray tracing for these two parts at the same time. We use OpenCL [Khr09]

to operate GPU-based parallel computing ability. The kernel function utilized on GPUs

allows multiple threads computing simultaneously. Here we set a thread as a ray, and it is

in charge of calculating a color of a pixel on the screen.

OpenCL doesn't support calling the same function in a kernel recursively, so we pro-

pose an iterative ray tracing method and use a stack to save newly generated reflection ray.

We use a stack to save the reflection ray separated from the incident ray. The intensity of

ray is reduced, and the ray terminates if its intensity is smaller than the threshold. After
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terminating the ray, another ray will be popped from the stack and the intersection will be

calculated for it.

The color I of pixel including three parts: color of incident ray Ic, color of reflection

ray Is, and color of refraction ray It. The relation of these three parts as shown in below:

I = α ∗ Ic + (1− α) ∗ It + Is, α ∈ [0, 1], (4.7)

where α is the transparency of the intersected object. When α is closer to 0, the object is

more transparent.

Figure 4.9: Sketch of ray tracing.

Figure 4.9 is an illustration of ray tracing. The blue area is a transparent object, and

the orange bar is the solid object. The different thicknesses of the red arrow represents

different intensity of the ray. The computation of the ray is terminated when the intensity

of the ray is smaller than the default intensity threshold.

Furthermore, the flow chart of ray tracing algorithm is shown in Figure 4.10. At

first, we compute the direction D of incident ray from the view target. We try to find

the intersection between the ray and objects, where objects may be meshes or metaballs.

In order to find the intersection, we use the ray-metaball intersection to find the nearest

intersection point Hmt, and we test intersection between ray and BVH construction of

meshes to find another intersection point Hmesh. We compare the intersection Hmt with
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Figure 4.10: Flow chart of ray tracing.

Hmesh and find out the one which is closer to the view target. We have to compute the

ray-isosurface intersection test if Hmt is closer. It is worth noting that when we compute

the ray-isosurface intersection using the method illustrated in Section 4.2, the algorithm

needs to be interrupted once the Hmesh is closer than the absolute position of metaball

interval. This mechanism avoids wrong results from occurring as shown in Figure 4.11.

We compute the normal vector n and color Ic for the intersection point, and then we

use the following equation to obtain reflection ray Rs:

Rs = D − 2 ∗ (D · n) ∗ n. (4.8)

The ray Rs will be pushed into stack. If the intersected object is transparent, we

calculate the refraction angle ϕ using the Snell's refraction law:

C sin θ = Ct sinϕ, (4.9)

where C is the refractive index of incident medium, Ct is the the refractive index of re-

fractive medium, and θ is the angle between n andD. We assume the incident medium is

air and the refractive medium is water (or ice). We can use the angle ϕ to obtain refraction

ray Rt. Thus, we replace the incident ray D to refraction ray Rt and enter next iteration.
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Figure 4.11: The special case occurs when the intersectionHmt is closer to the view target,

but the intersection of isosurface is farer than Hmesh.

The ray would be terminated if the intensity of the ray is smaller than the default inten-

sity threshold. In this situation, we pop one ray from the stack and enter the next iteration

until there is no element in the stack. Finally, we accumulate all the colors computed by

the branch rays into the final color of the pixel.
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Chapter 5

Experiments and Discussions

In this section, we show the experimental results from our ice melting method and ray

tracing method. We implemented the ice melting simulation and ray tracing using GPUs

with OpenCL compute capability 1.1. The experiments were performed on an Intel(R)

Core(TM) i7-2600 CPU@ 3.40GHz 3.40GHz with 16.0GB RAM, and NVIDIA GeForce

GTX 670. Our development environment was Microsoft Windows 7 Home Premium, and

Microsoft Visual Studio 2008. The Nvidia GPU Computing SDK version was 4.20.

We used four benchmarks in our experiments, and we will introduce them in next

subsection. These four benchmarks are separately used in different experiments. Below

we simply illustrate our experiments:

1. We compared the execution time of ice melting for the same model with different

resolutions of voxelization. We want to know the impact of the execution time for

different resolutions of voxelization on our system.

2. We compared time used formarching cubes construction and ray tracing between the

methods proposed in [IUD10] and ours. The realism are also compared. Iwasaki

et al. [IUD10] employed marching cubes to construct both ice model and water

droplet, and we separated these two parts and used metaballs to represent the water

particles. We are interested in the performance and result of these two methods.

3. We continued to compare the realism between the ice melting methods proposed in
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[IUD10] and ours. The method proposed in [IUD10] transforms ice particle to water

particle when the particle absorbs enough energy. Then, water droplet appears in

place. Our method transfers virtual water volume from high to low via ice particles,

and generates water particle when the amount of virtual water volume is too large.

4. We compared the rendering calculation timing between the methods with and with-

out using BVH construction for metaballs. The paper [KSN08] is good for rendering

opaque objects using depth peeling. However, the method suffers bad performance

when the metaballs are transparent. We used LBVH to build a hierarchy construc-

tion, which speeds up the execution time of ray-metaball intersection test.

5. We compared the rendering results between different heat sources acting on the ice.

We have two types of heat source: Rectangle and Sphere. Our icemelting simulation

method employs two types of heat source. The different shape of heat sources will

radiate energy to different directions. We are interested in the rendering results for

different heat sources.

5.1 Benchmarks

In our experiments, we perform four benchmarks: Cube, Sphere, Bunny and Dragon.

Figure 5.1, 5.2, 5.3, and 5.4 show a series of snapshots for these four benchmarks.

Table 5.1 shows the model complexities, and the number of the initial ice particles that

belongs to the model.

Figure 5.1: A series of snapshots for Cube.
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Figure 5.2: A series of snapshots for Sphere.

Figure 5.3: A series of snapshots for Bunny.

Figure 5.4: A series of snapshots for Dragon.
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Benchmarks # Tri. # Vert. # Ice Particles # Grids of MC
Cube 8 12 13248 32*32*32
Sphere 960 482 7399 32*32*32
Bunny 69668 34837 22795 64*64*64
Dragon 200000 50000 53351 64*64*64

Table 5.1: Model complexities and number of ice particles. The columns of table from
left to right are number of triangles for input benchmark, number of vertices for input
benchmark, number of ice particles, and number of grids of marching cubes (MC).

We converted a closed polygonal model to a voxel model using model voxelization.

However, model voxelization fails if the model is unclosed. Nevertheless, we can use the

method proposed in [NT03] to voxelize unclosed models.

The experimental results of ice melting simulation for these four benchmarks are

shown in Table 5.2, including average execution time, number of generated water par-

ticles, and number of triangles constructed by marching cubes. Each benchmark was ex-

ecuted for 1000 frames.

# Water # MC Heat Phase Virtual Water Motion of MC
Sum

Particles Tri. Transfer Transition Volume Transfer Particles Construction
Cube 3348.5 9190.6 12.24 1.01 0.57 23.16 29.54 66.52
Sphere 3795.6 6770.7 6.43 0.98 0.38 15.99 21.94 45.72
Bunny 6211.6 25777.0 33.25 1.40 1.15 54.62 124.54 214.96
Dragon 17390.1 35161 144.58 3.87 4.14 263.81 268.86 685.26

Table 5.2: The experimental results of ice melting simulation. The first two columns are
average number of water particles and number of triangles constructed bymarching cubes.
The right part is the average execution time for each step. (msec)

Water Particle Virtual Water Creation of Gradually Reduce
Sum

Decomposing Volume Computing Water Particles Virtual Water Volume
Cube 82.0 311.59 34.96 139.89 568.44
Sphere 97.72 179.65 22.12 76.86 376.35
Bunny 131.60 636.22 68.49 311.23 1147.54
Dragon 598.91 2531.07 251.34 762.68 4144.0

Table 5.3: Breakdown of virtual water volume transfer. (usec)

The step of the virtual water volume transfer includes four subparts, water particle

decomposing, virtual water volume computing, creation of water particles, and gradually
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Compute Pressure Compute Force Compute Position Sum
Cube 0.36 0.03 22.77 23.16
Sphere 0.37 0.03 15.59 15.99
Bunny 2.12 0.04 52.46 54.66
Dragon 11.46 0.06 252.29 263.81

Table 5.4: Breakdown of motion of particles. (msec)

reducing virtual water volume, as shown in Table 5.3. These four parts were implemented

on CPUs. The breakdowns of motion of particles are shown in Table 5.4. In our ice

melting simulation, all the steps were implemented on GPUs except for the virtual water

volume transfer and marching cubes construction.

Figure 5.5: Execution time of each step of ice melting simulation relates to the number of

water particles. The benchmark used here is Cube.

In Table 5.2, we can see that there are two main time-consuming parts in our ice melt-

ing method. Those are motion of particles computation and marching cubes construction.

The execution time used for computing the motion of water particles is proportional to

the number of water particles. In the other words, the more water particles we have, the

more time it consume, as shown in Figure 5.5. In Figure 5.5, the water particles gradually

increase with time step, and we observe that only the execution time of motion of particles

increases when the number of water particles increases.
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Our method constructs the marching cubes on CPU. If we split the finer grids for

marching cubes, we need more time on constructing marching cubes and getting finer

polygonal model. We can utilize the GPU-based method proposed in [SEL11] and spend

less time on marching cubes construction.

Performance of rendering procedure is shown in Table 5.5. Ray tracing method is

used and the resolution is 720 ∗ 720. Our ray tracer uses reflection ray, refraction ray,

and shadow ray. It tests for ray-triangle intersection and ray-metaball intersection. There

are three parts, BVH construction for triangles, BVH construction for metaballs, and ray

tracing. We compared the Table 5.5 and the left part of Table 5.2. Ray tracing consumes

more time if the number of water particles and triangles are larger.

BVH Construction BVH Construction
Ray Tracing Sum

for Triangles for Metaballs
Cube 87.72 75.83 258.52 422.07
Sphere 95.75 70.43 593.44 759.62
Bunny 84.60 53.62 642.01 780.23
Dragon 109.59 79.33 1086.67 1275.59

Table 5.5: Execution time of rendering. (msec)

5.2 Experiment 1

In experiment 1, we compared the ice melting execution time for the samemodel with

different level of voxelization. We split the scene into the following number of voxels:

16 ∗ 16 ∗ 16, 32 ∗ 32 ∗ 32, and 64 ∗ 64 ∗ 64. We voxelized the polygonal model into voxel

model in each level. In this experiment, we used the benchmark Sphere, and the initial

ice particles in each level of voxelization were 1089, 7399, and 54057. We calculated

the execution time of ice melting simulation (excluding the marching cubes construction).

The experimental result is shown in Figure 5.6.

In the Figure 5.6, we can clearly see that the level of voxelization is the biggest factor

affecting performance. The experiment with 64 ∗ 64 ∗ 64 voxels needs more execution

time than others, even though the GPU parallel computing has been used.
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Figure 5.6: Execution time of ice melting simulation with different level of voxelization.

The benchmark used here is Sphere.

5.3 Experiment 2

Our ice melting method is based on Iwasaki et al. [IUDN10]. They support two

ways to render melting objects. One of the rendering methods uses marching cubes to

construct both ice model and water particles. However, it loses realism when the particles

are smaller than the grid of the marching cubes, or too close to the ice model. We separated

the ice model and the water particles and use metaballs to represent the water particles.

We implemented the method proposed in [IUDN10]. Table 5.6 compared the timing of

marching cubes construction and timing of ray tracing between the method proposed in

[IUDN10] and ours. The benchmark we used for this comparison is Bunny.

Without Metaball With Metaballs
# Metaballs (Water Particles) 0 6211.6

# MC Tri. 31718.3 25777.0
MC Construction (msec) 152.06 124.54

BVH Construction
100.15 84.60

for Triangles (msec)
BVH Construction

0.0 53.62
for Metaballs (msec)
Ray Tracing (msec) 268.37 642.01

Table 5.6: Model complexity and timing comparisons (in msec) of marching cubes con-
struction and rendering with and without metaballs. The model we use is Bunny.
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TheTable 5.6 shows that ourmethod (withmetaballs) spends less time on constructing
marching cubes, but our ray tracingmethod spend a lot of time on ray-metaball intersection
test. The performance of our method is worse than the method without using metaballs.
However, our method maintains integral water droplet, while their method cannot. We
use Figure 5.7 and Figure 5.8 to explain.

Figure 5.7: This is a snapshot of the Bunny ear. In the same frame, the left hand side is
the method without using metaballs, and the right hand side is our method. The red and
yellow circles are different parts between two pictures.

Figure 5.8: This is also a snapshot of the Bunny ear. The red and yellow circles are
different parts between two pictures.

We observe the result figure (Figure 5.7 and Figure 5.8) and find some differences
between our method and the method without using metaball. Some water particles in their
method disappears because the field value of the field scalar is smaller than the threshold
in that space (red circles). Furthermore, the shape of water droplet in our result is smooth,
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but in their method, the surface of water particle is angular (yellow circles). Their method
can be improved by using finer grids of marching cubes, but it will severely affect the
performance.

5.4 Experiment 3

In the experiment 3, we compare the result with the method proposed in [IUDN10].
Their method converts an ice particle into a water particle when the particle absorbed
enough energy. The water particle replaces the original ice particle in the same place. Our
method transfers the water volume from high to low via the ice particles, and generates
water particles when the amount of water volume is too large.

In the real world, we observe that the ice on the floor melts and shrinks smoothly, as
shown in Figure 5.9. We wouldn't see a water droplet appears directly on the surface of
the ice cube. On the contrary, water will emerge on the floor around the ice cube. We
compared this phenomenon between their method and ours, as shown in Figure 5.10.

Figure 5.9: The snapshots of real melting ice cube. www.youtube.com/ watch?
v=WgjksZoznuA

In the Figure 5.10, the top three pictures are a series of snapshots of melting ice cube
using their method, and below is our results. We can see that their method directly creates
water particles on the surface of ice cube. Our method transfers water volume via the ice
particles and creates water particles on the floor.

5.5 Experiment 4

The method proposed by Kanamori et al. [KSN08] is good for rendering opaque
object using depth peeling. This method can find the order of intersection between meta-
balls and a ray in a short time. However, it suffers bad performance when the metaballs
are transparent. In order to test the ray-metaball intersection efficiently, we use LBVH
to build a hierarchy construction and speed up the execution time. The method of LBVH
construction for metaballs is similar to the method that we introduced in Section 4.1. We
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Figure 5.10: The top three pictures are the ice melting results proposed in [IUDN10], and
the bottom three pictures are our results.

calculated the axis-aligned bounding box (AABB) for each metaball and we use the spher-
ical center of metaball as its representative point. Then, we can construct Morton code for
all metaballs. We compared the ray tracing performance between the method using and
not using BVH construction for metaballs.

BVH Construction BVH Construction
Ray Tracing Sum

for Triangles for Metaballs
Without BVH for

109.59 0.0 5206.74 5316.33
Metaballs

With BVH for
109.59 2322.65 1071.78 3504.02

Metaballs on CPU
With LBVH for

109.59 79.33 1086.67 1275.59
Metaballs on GPUs

Table 5.7: Execution time of our ray tracing method with CPU-based BVH construction,
with GPU-based BVH construction, and without BVH construction for metaballs. The
model we use is Dragon. (msec)

In the Table 5.7, we observe that when the BVH construction for the metaballs is
not used, we need more time on ray tracing procedure. We created BVH construction on
CPU to improve the performance for ray tracing, but CPU-based BVH construction will
still spend more time. Finally, we decided to use the LBVH construction to construct the
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BVH for metaballs on GPUs. Compared with others, the timing of ray tracing for our
method is 4.8x faster than the method without BVH for metaballs, and the timing of BVH
construction is about 29.3x faster than the CPU-based BVH construction.

5.6 Experiment 5

We employed two types of geometry as heat sources in the ice melting simulation:
rectangle and sphere. The different types of heat source will radiate energy in different
ways. The rectangle will uniformly emit the thermal photons along the normal direction
of the rectangle. The photons in the sphere uniformly arrangement on the surface of the
sphere and emit along the direction which is perpendicular to the surface.

We are interested in the rendering results for different heat sources. We show the
results in Figure 5.11.

Figure 5.11: The top three pictures are the rendering results for the heat source Sphere,
and the below three pictures are the rendering results for the heat source Rectengle.

5.7 More Examples

Here we show three additional results. The first result is a bunny model on the table,
the second one is five ice cubes, and the third one is icicles in the cave, as shown in
Figure 5.12, 5.13, and 5.14.
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Figure 5.12: A bunny on the table.

Figure 5.13: Multiple ice cubes.

Figure 5.14: Icicles in the cave.
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Chapter 6

Conclusion and Future Works

6.1 Conclusion

In this thesis, we introduce our novel method for ice melting simulation with render-
ing. Our method includes three main contributions as shown below:

1. We give an attribute for each ice particle named virtual water volume. Virtual water
volume will be transferred between ice particles. We use this method to simulate
water flowing on the surface of ice model.

2. We use a newmethod to calculate the potential field and achieve smoothly shrinking
ice model. The latent heat of ice particles and virtual water volume are taken into
account for computing the potential field.

3. A ray tracing method is used to render meshes and metaballs in the same scene.
We propose a special principles of judgment to find intersections between rays and
objects (i.e., meshes or metaballs).

Our ice melting method is based on the thermal energy transfer between particles, and
smoothed particle hydrodynamics (SPH) is used on fluid simulation. The ice particles are
decided by voxelizing the input polygonal model. Heat transfer occurs between particles,
from surrounding air to ice particles, and from the heat source to particles. The ice particles
are removed if they absorb enough heat.

We use virtual water volume transfer to simulate the flowing water on the surface of
ice model. Virtual water volume of an ice particle is increased by increasing the latent heat
of the ice particle. The water particle is generated when the amount of water volume in
an ice particle is too large. The motion of water particles is based on SPH. Water particles
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are absorbed by ice particles and transfer to virtual water volume if the water particles is
located on the top of ice particles.

An improvement of computing the potential field for the marching cubes is proposed.
The shape of the ice model will be affected by the latent heat and virtual water volume
through the field function. Therefore, the shape of ice model will shrink smoothly.

In the rendering procedure, the ice model and water particles are separated and we
use a mixed method to render them in the same scene. We use linear bounding volume
hierarchy (LBVH) to create hierarchy constructions for the ice model and metaballs re-
spectively. Then, we use the ray tracing method with the special principles of judgment
to find the intersection for the rays.

The experimental results show that our algorithm of icemelting simulation can achieve
more realistic animation. The previous method [IUDN10] will directly transform the ice
particle into water particle if the ice particle absorbs enough energy. However, their result
is not realistic. Water should flow on the surface. Ourmethod can handle this phenomenon
by transferring virtual water volume between ice particles. The execution performance of
our rendering procedure is acceptable, and our result is more realistic than the other meth-
ods.

6.2 Future Work

In the real world, the environment forces should affect the motion of the ice model.
For example, part of icicle is separated and falls down to the floor because of gravity,
or ice cubes float in the water. In our system, we skip these forces mainly because the
motion of an ice model will change the result of marching cubes. The shape of the ice
model deforms violently when the ice model moves fast or rotates between two frames.
We want to handle this situation in the future.

Water particles moving in the scene may pierce the surface of the ice model (i.e.
there are overlapping portions between water particles and the ice model). ice model
is a polygonal model which is made by marching cubes method. We don't calculate the
collision detection for the water particles and ice model. Instead, we calculate the pressure
defined in SPHmethod between the ice particles and water particles, so the water particles
maintain appropriate distance to the ice model. However, piercing between ice and water
particles happens when the force of water particles are too large. We will add the collision
detection and response in our system.

Our method uses the latent heat to control the marching cubes. The ice model will
shrink smoothly. However, the problem occurs in the thin place, for example, the Bunny
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ear. Themeshes of these places shrink too fast and disappear before the ice particles absorb
enough heat. Therefore, the water particle will unexpectedly appear in the air, as shown in
Figure 6.1. We need to handle this situation by giving a better adjustment for field value.

Figure 6.1: The sketch map of problem in meshes shrinking.

Finally, some ice characteristic in our simulation are not handled, such as bubbles or
cracks in the ice model. In the rendering part, we haven't considered complex lighting,
such as focus, and defocus. In the future, we will find some approaches to implement
these characteristics in our simulation.
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