
國 立 交 通 大 學

資訊科學與工程研究所

博士論文

一套適用於無線車輛通訊網路研究的網路與交

通模擬器

A Network and Traffic Simulator for Wireless

Vehicular Communication Network Research

研 究 生 : 周智良

指導教授 : 王協源 教授

中華民國九十八年七月

一套適用於無線車輛通訊網路研究的網路與交

通模擬器

A Network and Traffic Simulator for Wireless

Vehicular Communication Network Research

 研 究 生 : 周智良 Student : Chih-Liang Chou

指導教授 : 王協源 Advisor : Shie-Yuan Wang

國 立 交 通 大 學

資訊科學與工程研究所

博士論文

A Dissertation

Submitted to Department of Computer Science
College of Computer Science

National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Doctor of Philosophy

in

Computer Science

July 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年七月

一套適用於無線車輛通訊網路研究的網路與交通模擬器

學生：周智良 指導教授：王協源教授

國立交通大學資訊工程學系（研究所）博士班

摘 要

當智慧型運輸系統的概念對全世界展示出其改善交通運輸品質與效率的潛

力後，工業界與學術界對於可應用於智慧型運輸系統的技術一直都抱持著高度的

興趣。直到現今，智慧型運輸系統已經發展成為一個非常熱門的研究領域，也已

經有許多在日常生活中的實際應用，例如常見的車上廣播電視、車上衛星導航、

車上電子自動收費系統等等，這些應用不僅為智慧型運輸系統的成功做了見證，

相信在未來日子裡，更多相關領域的研究也將陸續地投入去發展更新穎與便利的

應用。

智慧型運輸系統的目標，是利用將資訊與通訊科技(例如各式各樣的無線網

路技術)加到基礎運輸建設與車輛上，以達到改善車輛與行人安全、增加運輸效

率、提供車上娛樂等目的。舉例來說，透過車輛間互相交換自己的地理位置、移

動方向與移動速度的訊息來達到碰撞的預警，透過參考及時路況的車輛導航系統

來降低行車時間與燃料消耗，透過電子式自動收費系統來增加行車的流暢性，透

過數位電視廣播提供給車上乘客各種的視聽娛樂，以及車上的網際網路連線服務

等等都是這一類型的應用。

可以肯定的，任何應用在實際部署以提供服務之前，一定得經過某些程度的

測試來證實其可行性。而對於測試上述類型的應用，在實際的道路環境中做測試

通常是為了獲得可信的測試結果所必須的。然而，這樣的測試有時會需求大量的

車輛與人力，有時會需要能穩定控制的車輛駕駛路徑等等，這些特性可能會需要

昂貴的花費，或是使測試人員在測試的過程中處於有潛在危險的環境裡，更甚

者，由於非測試人員所駕駛的其他車輛並不會配合測試而做出特定的移動方式，

某些要求特定車輛相對移動方式的測試在實際的道路環境中是很難準確控制

的。有鑑於此，為了消除或減輕以上所提到在測試中所可能遭遇的困難，利用模

擬工具便成為一種可以取代或是輔助實地測試的一種選擇。

在此論文中，我們將介紹一套適用於無線車輛通訊網路研究的網路與交通模

擬器。此模擬器整合了網路通訊協定的模擬能力與車輛移動行為的模擬能力。前

者包括 TCP/IP、UDP/IP、IEEE 802.16e、IEEE 802.11p 等等適用於車輛網路的

通訊協定，後者包括車輛於道路網路上的移動行為、車輛對於紅綠燈號誌的反

應、車輛的跟車行為與車輛的變更車道行為等等。關於此模擬器的設計、實作、

驗證與效能分析，都將呈現於此論文中。

關鍵字：網路模擬器、交通模擬器、智慧型運輸系統。

 i

A Network and Traffic Simulator for Wireless Vehicular
Communication Network Research

Student : Chih-Liang Chou Advisor : Shie-Yuan Wang

Department of Computer Science
National Chiao Tung University

ABSTRACT

Since the idea of Intelligent Transportation Systems (ITS) has shown the world
its great potential to improve the quality and efficiency of transportation, intelligent
transportation technologies have gained the attention from the industry and the
academia. Nowadays, the research field of ITS is very popular and it’s believed that
the importance of ITS will keep growing up in the future.

The goal of ITS is to apply information and communications technologies to
transportation infrastructures and vehicles for improving vehicle/pedestrian safety,
increasing transport efficiency, and offering in-vehicle entertainment, such as collision
warning, driving guidance, electronic toll collection, digital video broadcasting,
Internet access, and so on. The practical usages of these applications in our daily lives
have shown us their usefulness and also given us the confidence on the viability of
this kind of applications that will be applied in the future.

Certainly, any application must undergo some tests before it is deployed for
service. For a vehicular application, conducting field trials in real vehicular
environments is usually necessary. However, these trials are sometimes costly,
hard-to-control (unrepeatable), dangerous, and even infeasible when many vehicles
and people are required to involve in the trials. In this case, using simulation tools
before conducting field trials or even to replace field trials is a feasible alternative to
alleviate or eliminate the above problems.

This dissertation presents a network and traffic simulator that is useful for
wireless vehicular communication network research. This simulator integrates the
simulation capabilities of network communication protocols (e.g., TCP/IP, UDP/IP,
IEEE 802.16e, IEEE 802.11p, etc.) and vehicular movement behaviors (e.g., moving
on road networks, obeying traffic light signals, car following, lane changing, etc.).
The design, implementation, validation, and performance of this simulator are
presented in this dissertation.

Keywords: network simulator, traffic simulator, intelligent transportation
systems (ITS).

 ii

Acknowledgments

I would like to thank my advisor, Prof. Shie-Yuan Wang, for his guidance and
concern for me during my graduate life. I would also like to thank my dissertation
committee members: Prof. Yi-Bing Lin, Prof. Yu-Chee Tseng, Prof. Jang-Ping Sheu,
Prof. Yau-Hwang Kuo, and Prof. Chu-Sing Yang. They gave me many valuable
comments on my Ph.D. thesis and suggestions about writing system implementation
papers.

Also, I want to give my thanks to all my lab-mates. Their care and assistance
gave me a lot of courage and happiness during my stay at NSL lab. In particular, I
want to thank Chih-Che Lin, from whom I learned a lot of knowledge and received a
lot of help. Besides, I want to thank all my good friends who kept encouraging me
during my graduate life.

Finally, I want to dedicate my Ph.D. dissertation to my family. Without their

support, I could not obtain my Ph.D. degree. I am so lucky and so grateful to have
such a good family. I want to give my best wishes and appreciation to all of them.

July 31, 2009

 iii

Contents

Abstract (in Chinese) i

Abstract (in English) ii

Acknowledgments iii

Contents iv

List of Figures vi

List of Tables viii

1 Introduction 1

2 Related Work 5

3 Architecture of NCTUns 11

3.1 Introduction to NCTUns . 11

3.1.1 Major Components . 12

3.1.2 Execution Procedure . 17

3.2 Kernel Re-entering Simulation Methodology 19

3.2.1 A Real-world Host-to-host Connection 20

3.2.2 A Simulated Host-to-host Connection 22

3.2.3 A Simulated Mobile-host-to-mobile-host Connection 25

3.2.4 A Simulated Host-to-switch-to-host Connection 27

3.2.5 A Simulated Host-to-hub-to-host Connection 28

iv

3.2.6 A Simulated Host-to-router-to-host Connection 29

3.3 Routing Scheme . 31

3.4 IP Address Translation . 34

3.5 Discrete-event Simulation Engine . 39

3.5.1 Virtual Time Synchronization 39

3.5.2 Protocol Module Event and Timer 41

3.5.3 Routine Function Event and Timer 43

3.5.4 Process Timer Event . 44

3.5.5 TCP Socket Timer Event . 47

3.5.6 Tunnel Packet Event . 49

3.6 Port Number Translation . 50

4 NCTUns Extension for Vehicular Network 53

4.1 Graphical User Interface Extension 54

4.1.1 Road Network Construction 55

4.1.2 Vehicle Deployment . 58

4.1.3 Car Profile Setting . 58

4.1.4 Network Protocol Setting . 59

4.2 Simulation Server Extension . 59

4.3 Car Agent . 61

4.4 Signal Agent . 67

5 Validation of Vehicular Mobility Control 69

5.1 Reaction to Traffic Light Signal . 70

5.2 Car Following . 72

6 Performance Evaluation 76

6.1 Number of Road Blocks . 78

6.2 Number of Vehicles . 79

7 Future Work 81

v

8 Conclusion 87

vi

List of Figures

2.1 The conceptual architecture of a federated traffic/network simulator . 7

2.2 Three different approaches to constructing an integrated traffic/network

simulator . 9

3.1 The eight components of NCTUns . 13

3.2 The distributed architecture of NCTUns 15

3.3 The execution procedure of NCTUns 17

3.4 A host-to-host network in the real world 21

3.5 An Ethernet host-to-host network in simulation 23

3.6 An IEEE 802.11 mobile-host-to-mobile-host network in simulation . . 26

3.7 An Ethernet host-to-switch-to-host network in simulation 28

3.8 An Ethernet host-to-hub-to-host network in simulation 30

3.9 An Ethernet host-to-router-to-host network in simulation 31

3.10 An example of the routing scheme used in NCTUns 33

3.11 An example of IP address translation 35

3.12 The execution procedures of the protocol module event and timer . . 41

3.13 The execution procedures of the routine function event and timer . . 43

3.14 The execution procedure of the process timer event 45

3.15 The execution procedure of the TCP socket timer event 47

3.16 The execution procedure of the tunnel packet event 49

4.1 The extended architecture of NCTUns 54

4.2 A snapshot of the GUI . 55

4.3 The facility of importing a real-world map 56

vii

4.4 An example of road network representation 57

4.5 The communication between the car agent and the simulation server . 64

4.6 Two phases to simulate a driver’s viewpoint 67

5.1 The scenario of mobility control test on the reaction to traffic light

signal . 71

5.2 The changes of the tested vehicle’s velocity over time 72

5.3 The scenario of mobility control test on the car following behavior

(part 1) . 73

5.4 The scenario of mobility control test on the car following behavior

(part 2) . 74

5.5 The changes of the tested vehicles’ velocities over time 75

6.1 The topology of the grid road network used for performance evaluation 77

7.1 The module-based vehicular mobility control 84

viii

List of Tables

2.1 Microscopic mobility and other features of traffic/network simulators 6

6.1 Car profile settings and distribution 77

6.2 Elapsed time and physical memory usage in each case with different

number of road blocks . 79

6.3 Elapsed time and physical memory usage in each case with different

number of vehicles . 80

ix

Chapter 1

Introduction

Vehicles is definitely one of the greatest inventions impacting the human world.

Undoubtedly, the transportation contributes a lot on the modernization of human

life. Vehicles help shorten traveling time and thus bring a lot of convenience to

people’s daily lives. For example, people can work in an urban area and live in a

suburban area and commute between them every day. Also, people can take just

a few hours to travel to vacation resorts located several hundreds of miles away

from their home. Moreover, because people can meet with their friends or relatives

more easily by vehicles, the emotion sharing among people becomes more frequent

and that results in more harmonious human world. From the above examples, we

can see how vehicles play an important role in most people’s lives. In other words,

nowadays vehicles has become a necessary for most people.

Obviously, people’s needs on vehicles lead to growing vehicular industry. In the

past couple of decades, many efforts have been continually put into the vehicular

industry to create more value on vehicular business. The vehicular manufacturers

have designed more robust vehicular structures for passenger security, built lighter

materials for less fuel consumption, built electricity-power engines for eco-friendly

purposes, used electronic driving control assistance systems for vehicular motion

stability, installed navigation systems on vehicles for route guidance, and so forth.

Some of the above vehicle-related research and manufacturing efforts can be con-

1

nected to Intelligent Transportation Systems (ITS).

The goal of ITS is to apply information and communications technologies to

transportation infrastructures and vehicles. For example, providing instant emer-

gency traffic situations to improve driver/passenger security, installing electronic

driving control assistance systems in vehicles to increase the vehicular motion sta-

bility, using electronic navigation systems for route guidance to reduce traveling

time and fuel consumption, delivering video and audio programs to vehicles to im-

prove passengers’ traveling experience, and providing ubiquitous Internet access for

passengers while traveling on vehicles are just a small part of ITS applications. The

usage of these applications in our daily lives has shown us their usefulness and also

given us the confidence for those under-developing applications.

Nowadays, the field of ITS is very popular. Many kinds of technologies are

currently used or under development to support ITS applications. One of them is

wireless communications. Wireless communications technologies provide the solu-

tions to exchange information among roadside base stations and vehicles moving

on the road. For examples, the IEEE 802.11p [1] and IEEE 1609 draft standards

[2, 3, 4, 5] are instances of wireless communications technologies. They have been

proposed as a networking technology for vehicular environments and under devel-

opment for providing services in the future. Besides, the IEEE 802.16e [6] is also an

alternative to provide wireless communications in vehicular environments.

It is certain that any ITS application must be thoroughly tested and evaluated

before being deployed on the roads. This means that many experiments under differ-

ent parameter settings, configurations, scenarios, and conditions must be performed

to verify the feasibility and effectiveness of an application and the used networking

technology in the real-life environment. According to the results obtained from ex-

periments, the designs of the application and the used networking technology might

need to be revised many times before acceptable performances can be achieved.

A field trial of wireless vehicular communications sometimes involves a large

number of vehicles and people (drivers and computer operators) for generating con-

vincing results. However, conducting such field trials is very costly because many

2

vehicles need to be rented (or purchased), many communication equipments need

to be purchased, and many experimenters need to be employed for the field trials.

Sometimes, during a field trial with a specifically-designed high-speed scenario, the

experimenters may even face potential dangers such as collisions with vehicles or

pedestrians. Besides, it is very difficult to accurately control and repeat a field trial

on the roads, which is bad for debugging the found problems of a new protocol or

application. In order to eliminate or alleviate the above problems, a feasible solution

is to use software simulation to perform preliminary tests and performance evalu-

ations before conducting field trials. Comparing to conducting field trials, using

software simulations is usually cheaper, safer, and easier to control. Besides, based

on the simulation results, a set of field trials can be planed effectively to focus on

crucial problems or system parameters. This definitely saves a lot of time and of

course a lot of cost spent on the field trials.

For studying wireless vehicular communication networks, a software simulator

must be able to simulate both communication/network protocols and microscopic

vehicular movements. The two requirements are not new and such capabilities are

already provided by existing network simulators or traffic simulators, respectively.

Regarding network simulators, they are usually used to test the functions and eval-

uate the performances of network protocols and applications under various network

conditions. One can use them to test how his/her protocols (e.g., routing proto-

cols, medium access control protocols, or transport protocols) and applications (e.g.,

HTTP, FTP, or VoIP) would perform under various network conditions. Regard-

ing traffic simulators, they can be roughly categorized into two kinds: macroscopic

and microscopic. A macroscopic traffic simulator ignores each vehicle’s mobility

detail but provides macroscopic view of traffic flows on the roads. Instead, a mi-

croscopic traffic simulator deals with each vehicle’s mobility detail on the roads,

such as acceleration/deceleration, car following, lane changing, and so on. A traffic

simulator is usually used in the research areas of transportation engineering, such

as transportation planning and traffic engineering.

In general, a network simulator is dedicated only to the studies of network proto-

3

cols and applications, while a traffic simulator only to the studies of transportation

engineering. However, in order to study advanced ITS applications, a simulation

platform must be able to simulate both network and traffic simultaneously. For ex-

ample, a navigation system may try to collect the immediate road conditions through

some wireless medium and guide a driver through a better route for saving traveling

time and fuel consumption. To simulate this application in the simulation platform,

the moving path of a vehicle may need to be changed after the driver receiving a

message from the wireless vehicular communication network. To achieve this, the

simulation platform must tightly integrate both network and traffic simulations.

In this dissertation, we present an integrated simulation platform, called NC-

TUns, that is useful for wireless vehicular communication network research. NC-

TUns 1.0 [7, 8] was originally developed as a network simulator with unique network

simulation capabilities. Later on, NCTUns 4.0 incorporates traffic simulation (e.g.,

road network construction and microscopic vehicle mobility models) with its existing

network simulation. Therefore, the current version of NCTUns [9] has the simula-

tion capabilities of network communication protocols (e.g., TCP/IP, UDP/IP, IEEE

802.16e, IEEE 802.11p, etc.) and vehicular mobility behaviors (e.g., moving on road

networks, obeying traffic light signals, car following, lane changing, etc.). It is a use-

ful simulation platform for wireless vehicular communication network research.

The rest of this dissertation is organized as follows. In Chapter 2, we survey

related work that combines the capabilities from both a network simulator and a

traffic simulator. In Chapter 3, we present the architecture of NCTUns, including

its features, components, design and implementation issues to support the function-

alities of a network simulator. Based on Chapter 3, we then present the extended

architecture of NCTUns to support the traffic simulation in Chapter 4. In Chapter 5,

we validate the mobility control of vehicles on NCTUns with mathematical models

based on Newton’s laws of motion. In Chapter 6, the scalability performances of

NCTUns are evaluated. In Chapter 7, we present future work that we think can be

pursued further. Finally, the conclusion is presented in Chpater 8.

4

Chapter 2

Related Work

As stated in Chapter 1, a simulator suitable for conducting wireless vehicular com-

munication networks research should have the capabilities supported by both a traffic

simulator and a network simulator. An intuitive method to construct such a sim-

ulator is to write a middleware to combine an existing network simulator with an

existing traffic simulator to provide the required capabilities. Such a method is called

the “federated approach” in this dissertation. This approach has the advantage that

one need not spend time and effort on developing both a new network simulator and

a new traffic simulator. However, because the chosen two simulators may have dif-

ferent design architectures, in such a case it is usually difficult or even impossible to

combine them with an efficient interaction between them. Another method, called

the “integrated approach,” tries to add network simulation functions into an exist-

ing traffic simulator, or add microscopic vehicle movement simulation functions into

an existing network simulator, or develop a new simulator from scratch with all of

these capabilities. Using this approach, except the last choice, one need not develop

both a network simulator and a traffic simulator from scratch. It saves time and

effort by taking advantage of the existing products. In addition, the program code

of the traffic and network simulation subsystems are tightly integrated as a single

program. The interaction between them is usually more efficient.

Regarding the federated approach, several existing network simulators (e.g., [10],

5

Table 2.1: Microscopic mobility and other features of traffic/network simulators

Traffic and Microscopic Mobility Other Features

Network Approach Car Lane Radio Visualization

Simulator Following Changing Obstacle Tool

CORSIM and federated yes yes no yes

QualNet [19]

VISSIM and federated yes yes no yes

ns2 [20]

CARISMA and federated yes no yes yes

ns2 [21]

SUMO and federated yes no no yes

ns2 (TraNS) [22]

NCTUns integrated yes yes yes yes

SWANS [23] integrated yes yes no no

AutoMesh [24] integrated yes no yes yes

MoVES [25] integrated yes no no yes

VANET [26] integrated yes yes no yes

[11], [12], and [13]) and traffic simulators (e.g., [14], [15], [16], [17], and [18]) are

available alternatives from which one can choose to combine. Some of them are

commercial products while some of them are free and/or open source software. In

Table 2.1, we list four existing federated traffic/network simulator combinations:

CORSIM/QualNet [19], VISSIM/ns2 [20], CARISMA/ns2 [21], and SUMO/ns2

(TraNS) [22]. Among the listed network and traffic simulators, only SUMO and

ns2 are free open source software. This means that only the SUMO/ns2 (TraNS)

combination is totally open source and allows researchers to freely modify for their

research.

The conceptual architecture of a federated traffic/network simulator is shown in

Figure 2.1. This approach uses a middleware to interconnect a traffic simulator and

6

Road Networks Communication Models

Network Protocols

Network Simulator

Mobility Models

Middleware

Traffic Simulator

Figure 2.1: The conceptual architecture of a federated traffic/network simulator

a network simulator. The middleware provides bidirectional links, usually realized

by TCP connections, between the two simulators. Because the traffic simulator is

responsible for simulating the road network and vehicle mobility, the latest position

of every vehicle is sent from the traffic simulator to the network simulator during

simulation. The position update is performed periodically or by the request from

the network simulator. In the network simulator, the vehicular position changing

affects the calculation of wireless communication models. Based on the calculated

result, the network simulator determines whether a network message sent from a

vehicle will be successfully received at another vehicle or not. Then, the message

transmission/reception result affects the operations of network protocols. This is

basically what a network simulator does. In the network simulator, if a vehicle

receives a message and this message makes it decide to change its driving behavior

(e.g., to change the current route to avoid congested or dangerous area or to stop

immediately to avoid a forthcoming collision, etc.), the network simulator sends a

request to the traffic simulator asking for such a change. Usually, a vehicular agent

is run within the network simulator to receive the message, analyze the information

contained in the message, and issue such a request on behalf of the virtual driver

driving in a particular vehicle.

The architectural advantage of the federated approach is that in theory it can

combine any traffic simulator with any network simulator. However, in practice it

is difficult to do so (if not totally impossible). Two independent simulators may

have different designs, implementations, and definitions. For example, the used

coordinate systems and the representations of continuous vehicular movement may

7

be different. A transformation mechanism for accommodating these differences must

exist in the middleware at the cost of performance degradation during simulation.

Besides, a commercial software normally does not release its source code but only

exports some pre-defined application program interfaces (API) for external software

programs to use. Since the development of new ITS applications advances so quickly,

the pre-defined API’s may not meet the demands of new ITS applications.

Regarding the integrated approach, Table 2.1 lists five integrated traffic/network

simulators: NCTUns, SWANS [23], AutoMesh [24], MoVES [25], and VANET [26].

This approach works only when the used simulator is open source. Three different

methods are possible for constructing a simulator using the integrated approach and

they are shown in Figure 2.2. In Figure 2.2a, communication models and network

protocols are added into an existing traffic simulator. Because a plenty of commu-

nication models and network protocols exist in the real life and they can be very

complicated (e.g., IEEE 802.11p [1], IEEE 802.16e [6], etc.), this method usually

takes a huge amount of time and effort. Therefore, our survey found no integrated

simulator adopting this method. In contrast, in Figure 2.2b, an existing network

simulator is extended to include the simulations of road networks and vehicle mo-

bility models. This method is more feasible and incurs less cost because a network

simulator already has the capability to simulate the mobile node movement (e.g., the

commonly used random waypoint mobility model). Based on this capability, it just

needs to support road network simulation and apply vehicle mobility models on the

mobile node movement. Relatively, this task is easier to accomplish than simulat-

ing various complicated communication models and network protocols. Therefore,

NCTUns, SWANS, and AutoMesh adopt this method to take advantage of their

existing network simulation capabilities. Yet another method is to develop all re-

quired components from scratch to construct a new simulator, which is depicted in

Figure 2.2c. MoVES and VANET adopt this method. Conceivably, this method will

require a very huge amount of time and effort to develop a complete simulator from

scratch. It is also the most time-consuming approach to developing an integrated

traffic/network simulator.

8

Network Protocols

Mobility Models
Road Networks

Communication Models

Existing Traffic Simulator

(a) Adding communication

models and network protocols

into a traffic simulator

Mobility Models
Road Networks

Existing Network Simulator

Communication Models
Network Protocols

(b) Adding road networks and

mobility models into a net-

work simulator

Mobility

Network
Protocols

Models Models
Communication

Road
Networks

Newly−Constructed Simulator

(c) Developing all required

components from scratch

Figure 2.2: Three different approaches to constructing an integrated traffic/network

simulator

Table 2.1 also compares the microscopic mobility and other important features of

each simulator. These features include car following, lane changing, radio obstacles,

and the visualization tool. The car-following capability is supported by all simulators

listed in Table 2.1. To support this, a road network topology is necessary for vehicles

to move on it. Besides, a vehicle’s moving speed is restricted by the vehicle (if any)

moving in front of it. With this capability, the simulated vehicular moving paths

are more realistic than those generated by the random waypoint mobility model.

Regarding the convincingness of simulation results, the random waypoint mobility

model commonly used before is unsuitable when running an ITS-related simulation

[27]. Thus, the car-following capability is very fundamental for a network/traffic

simulator.

To have the lane-changing capability, a platform must support multi-lane roads

and lane-changing driving logic in the vehicle mobility model. Table 2.1 shows that

some platforms do not have this capability. Lacking this capability will reduce the

applications of vehicle mobility simulation. For example, without this capability, if a

vehicle breaks down on a multi-lane road, the vehicles behind it can only stop because

no lane-changing move can be taken. However, in the real life, they can change lanes

to move around this broken vehicle. In addition, lacking the lane-changing capability

means that no overtaking will occur during simulation. Therefore, the topology of

9

the vehicular ad hoc network (VANET) formed on the roads will not change much

during simulation. Since this does not reflect the situations in the real life, the

simulation results of network protocol studies on such a simplified and unrealistic

VANET may be misleading.

As for radio obstacles, they are capable of totally blocking the transmission of

wireless signal or reducing the power of wireless signal. In the real world, vehi-

cles are usually moving on roads surrounded by buildings. The buildings are radio

obstacles that influence the wireless signal transmission. When one wants to con-

struct a vehicular network on a simulation platform where more realistic wireless

signal transmission among vehicles can be supported, the radio obstacles are needed.

Thus, for a network simulator, supporting radio obstacles is an important capabil-

ity. Table 2.1 shows that only NCTUns, CARISMA/ns2, and AutoMesh have this

capability.

The last capability compared is the support of a visualization tool. It is a

graphical user interface (GUI) program displaying the road networks and vehicular

movement during simulation or after a simulation is finished. This tool provides

visual observations of a simulated network. Moreover, some visualization tools also

provide the capabilities of interacting with the simulated network during simulation,

such as dynamically changing some system parameters of the simulated network or

dynamically controlling vehicular mobility. A visualization tool is very useful in

specifying, controlling, and observing the simulated network. Table 2.1 shows that

every platform has a visualization tool except SWANS.

10

Chapter 3

Architecture of NCTUns

As stated in Chapter 1, NCTUns was originally developed as a network simulator

and then extended with traffic simulation capabilities. In this chapter, we present

the original architecture of NCTUns, including its features, components, design and

implementation issues. The extended architecture of NCTUns to support the traffic

simulation is left to Chapter 4.

3.1 Introduction to NCTUns

Network simulators implemented in software are useful tools for researchers to de-

velop, test, and diagnose network protocols. Simulation is economical because it

can carry out experiments without the actual hardware. Also, simulation is flexible

because it can study the performances of a system under various conditions. More-

over, simulation results are easier to analyze than experimental results because they

are repeatable.

Developing a useful network simulator requires much time and efforts. A net-

work simulator needs to simulate the hardware characteristics of networking devices

(e.g., hub or switch), the protocol stacks employed in these devices (e.g., the learn-

ing bridge protocol used in a switch), and the network traffic flows (e.g., TCP/IP

or UDP/IP connections). It also needs to provide utilities for configuring network

topologies, specifying network parameters, monitoring traffic flows, gathering statis-

11

tics about a simulated network, and so forth.

To save developing time and efforts, some traditional network simulators only

simulate real-life network protocols with limited details. For example, OPNET [12]

uses a simplified finite state machine model to model complex TCP protocol process-

ing. As another example, ns2 [10] simulates no dynamic receiver advertised window

on TCP connections. The simplified simulation design may lead to inaccurate sim-

ulation results. In addition, these traditional simulators usually do not support the

standard API’s that are supported by operating systems (e.g., the UNIX POSIX

socket API). Thus, existing and developing real-life application programs cannot

run directly on these simulators. Instead, they must be rewritten to use the internal

API provided by these simulators (if any). It is inconvenient for users to use these

simulators.

To avoid the inaccurate results and inconvenient application-developing environ-

ments, the authors in [28, 29] proposed a kernel re-entering simulation methodology

and used it to develop Harvard network simulator [30]. Based on the simulation

methodology, the NCTUns network simulator [7, 8, 9] was developed as the succes-

sor of Harvard network simulator. Using the kernel re-entering simulation method-

ology, NCTUns directly uses the real-life TCP/IP and UDP/IP protocol stacks to

generate more realistic simulation results. Besides, real-life application programs

can run directly on NCTUns because NCTUns supports the standard API provided

by the Linux Fedora operating systems. Moreover, NCTUns improves the simula-

tion capabilities that Harvard network simulator does not support, such as various

media access control protocols and wireless communication/channel models.

3.1.1 Major Components

NCTUns uses a distributed architecture to support the remote simulation and the

construction of a simulation service center. Functionally, it can be divided into

eight separate components. In Figure 3.1, each component is depicted and classified

according to where it is run in the operating system – the user space or the kernel

12

Generators
Traffic
Network Simulation

Engine
Protocol
Modules

Graphical
User

Interface
Dispatcher

Daemons
or

Agents

User Space

Modifications

Coordinator

Kernel Space
Kernal

Figure 3.1: The eight components of NCTUns

space. Each component’s functionalities are described below.

• Graphical User Interface (GUI)

The GUI is a user-space program. It provides the utilities to edit a network

topology, configure the protocol modules used inside a network node, specify

mobile nodes’ moving paths, plot performance curves, display packet transfer

animations, etc. Instead of doing lots of editing work on lots of configuration

files, users can easily complete the setting of a simulated network by the user-

friendly utilities. Based on the setting, the GUI automatically generates the

required configuration files. This not only saves lots of time but also avoids

typos that usually occur when a user has to edit all of the configuration files.

During simulation, users can change/query some system parameters through

the GUI, such as some network interface’s maximum/current output queue

length. When a simulation is finished, the simulation results can be displayed

by some utilities provided by the GUI. For example, the GUI can record each

packet’s transmission/reception into a binary-format log file during simulation.

When the simulation is done, the GUI can display the animation of packet

transmission/reception according to the log file, or it can translate the binary-

format file into an ascii-format file so that a user can check the log using a text

13

editor. Another example is that the changing of a network interface’s output

queue length over time can be drawn on a two-dimension graph. Besides, the

graph can be captured into a file for further use.

• Simulation Engine

The simulation engine is a user-space program. It functions like a small op-

erating system. Through a set of defined API’s, it provides useful and basic

simulation services to protocol modules. Such services include virtual clock

maintenance, timer management, event scheduling, etc. The simulation engine

needs to be compiled with various protocol modules to form the “simulation

server.” When executed to service a job, the simulation server takes a config-

uration file suite as its input, runs the simulation, and generates log files and

statistics as its output. Because the simulation server uses the kernel’s tunnel

interfaces that can not be shared with other processes during simulation, no

more than one simulation server can run concurrently on a single machine.

• Protocol Modules

A protocol module is like a layer of a protocol stack. It performs a specific

protocol or function. For example, the address resolution protocol (ARP) or a

first-in-first-out (FIFO) queuing mechanism is implemented as a protocol mod-

ule. A protocol module is not an independent user-space program. Instead, It

needs to be compiled with the simulation engine to form the simulation server.

Usually, inside the simulation server, multiple protocol modules are linked into

a chain to function as a protocol stack.

• Dispatcher

The dispatcher is a user-space program responsible for simulation job manage-

ment. It should be executed and remain alive all the time to manage multiple

simulation machines on each of which a simulation server is run. The dis-

patcher is the key role to support the NCTUns distributed architecture. Like

that shown in Figure 3.2, the dispatcher can operate between a large number

14

Dispatcher

Graphical
User

Interface

Graphical
User

Interface

Graphical
User

Interface

Simulation
Machine

Simulation
Machine

Simulation
Machine

Simulation Service Center

Figure 3.2: The distributed architecture of NCTUns

of GUI users and a large number of simulation machines. It behaves like the

manager of a simulation service center. When a GUI user submits a simula-

tion job to the dispatcher, the dispatcher will select an available simulation

machine to service this job. If all simulation machines are busy on servicing

at this time, the submitted job can be queued in the dispatcher waiting for

a simulation machine to become available. Of course, in the case that only

one GUI user exists and one simulation server is required, all the NCTUns

components can run on a single machine.

• Coordinator

The coordinator is a user-space program. It operates like the agent of the

simulation server and deals with the coordination among the GUI program,

the dispatcher, and the simulation server. On every simulation machine, a

coordinator program needs to be executed and remain alive. Its main task is

to let the dispatcher know whether the simulation machine is currently busy

running a simulation or not. When executed, it immediately registers itself

with the dispatcher to join the dispatcher’s simulation service center. Later on,

when its status (idle or busy) changes, it will notify the dispatcher of its new

status. This enables the dispatcher to always choose an available simulation

15

machine from its simulation service center to service a job. When the coor-

dinator receives a job, it forks (executes) a simulation server to simulate the

specified network and protocols. When the simulation server is running, the

coordinator communicates with the dispatcher and the GUI program on behalf

of the simulation server. For example, periodically the simulation server sends

the current virtual time of the simulated network to the coordinator. The

coordinator then forwards this information to the GUI program. This enables

the GUI user to know the progress of the simulation.

• Daemons or Agents

A daemon or an agent runs at the user space to provide some specific service.

For example, the routing information protocol (RIP) routing daemons, as well

as the open shortest path first interior gateway protocol (OSPF) routing dae-

mons, exchange routing messages and set up system routing table during sim-

ulation. Besides, the home agents and foreign agents are executed to provide

the mobile IP service.

• Traffic Generators

A traffic generator runs at the user space to generate TCP or UDP network

packets into the simulated network. Unlike a daemon or an agent, a traffic

generator does not provide a specific service but just generates background

network traffic. For one pair of traffic generators provided by NCTUns, named

stg and rtg, they can be configured to produce network packets based on a

specified packet transmission pattern. Moreover, they can generate packets

following a real-life packet log to produce more realistic background traffic.

• Kernel Modifications

The last component is the modifications that need to be made to the kernel

so that a simulation server can correctly run on it. For example, during a

simulation, the timers of TCP connections used in the simulated network need

16

Dispatcher
Generators

Traffic
Network

Graphical
User

Interface
Coordinator Simulation

Engine
Protocol
Modules

Daemons
or

Agents

Simulation Server

5
2

1

4
6

User Space

Kernel Space

73

Modifications
Kernal

8

9

10 10

11

12

13

14

Figure 3.3: The execution procedure of NCTUns

to be triggered by the virtual time rather than by the real time. The kernel

modifications will be elaborated later in this chapter.

3.1.2 Execution Procedure

The above-mentioned eight major components comprise the main NCTUns frame-

work. They work together to complete network simulations. Here, we present the

execution procedure among all of them to explain how they work with each other

during simulation. Figure 3.3 shows the procedure step by step and each step is

stated below.

1. First of all, a dispatcher should be ready (executed) for accepting the regis-

tration from a coordinator or the simulation job request from a GUI.

2. A coordinator is executed as the agent of the simulation server. Note that so

far the simulation server has not been forked by the coordinator.

3. The coordinator builds a TCP connection to the dispatcher and registers its

existence through the connection. Now, the dispatcher has the information

17

about the registered coordinator and treats it as an available agent that can

provide the simulation server for service.

4. A user executes the GUI program to draw a network topology, configure net-

work parameters, and let the GUI generate all the required configuration files.

Finally, the user triggers a sending out of a simulation jog request.

5. The GUI asks the dispatcher for an available coordinator and waits for the

response from it. If a coordinator is available at this time, the response is

returned immediately and the status of that coordinator is set to busy by

the dispatcher. Otherwise, the GUI has to wait until any busy coordinator

becomes available again. If no coordinator has registered to the dispatcher,

the response indicating this situation is returned immediately.

6. After obtaining the information of an available coordinator (e.g., the IP ad-

dress and listen port number used by the coordinator’s TCP passive socket),

the GUI builds a TCP connection to that coordinator and sends all the con-

figuration files to it to start the simulation.

7. The coordinator places the configuration files into a dynamically allocated

directory and forks the simulation server, which includes the simulation engine

and some required protocol modules.

8. The simulation engine reads in those configuration files to allocate and ini-

tialize the required object for each protocol module, to construct the protocol

module stack for each network node, to generate events that will be triggered

during simulation to execute daemons, agents, or traffic generators, to set up

the required system routing entries, to set up the required tunnel interfaces,

and to complete other initialization procedures.

9. The simulation engine resets the states of the NCTUns kernel data structures.

For example, the simulated virtual time is reset to zero.

18

10. If any daemon, agent, or traffic generator has to be run at the beginning of a

simulation, it is forked (executed) by the simulation engine now. Of course,

a daemon, an agent, or a traffic generator can also be executed at any time

during simulation.

11. When the simulation starts, daemons (if any), agents (if any), traffic generators

(if any), the simulation engine, the protocol modules, and the NCTUns kernel

parts work together to conduct the network simulation. The daemons or agents

provide network services. The traffic generators generate background traffics.

The kernel provides the operations of the real-life TCP/IP and UDP/IP pro-

tocols. The simulation engine and protocol modules provide the operations of

various data link layer and physical layer protocols.

12. When the simulation is finished, the simulation engine informs the coordinator,

kills all of the daemons (if any), agents (if any), or traffic generators (if any),

and finally terminates itself.

13. The coordinator sends back all the log files and statistics files collected during

simulation to the GUI.

14. Finally, the coordinator informs the dispatcher that it is available again. The

dispatcher then set the coordinator’s status to idle.

The current version of NCTUns can only run on the operating systems of Linux

Fedora series. Because the kernel modification is required to let NCTUns’ architec-

ture work, the kernel source codes must be accessible, modifiable, and able to be

re-compiled. Thus, the qualified Linux Fedora series are chosen.

3.2 Kernel Re-entering Simulation Methodology

The kernel re-entering simulation methodology is the key design that allows NC-

TUns using the real-life TCP/IP and UDP/IP protocol stacks and allows real-life

application programs running on NCTUns. In this methodology, the tunnel interface

19

is the key facility. Before explaining how this methodology is applied on NCTUns,

we first introduce how a packet is transmitted over a one-hop network connection

between two machines in the real world. Based on it, we then show how the tunnel

interface is used to realize the simulation of the same one-hop network connection

on a single machine.

3.2.1 A Real-world Host-to-host Connection

In Figure 3.4a, two real host computers are connected by a network line that could

be any kind. A Linux Fedora operating system are run on each of them to provide

networking services through the standard POSIX socket interface. We assume that

Host 1 is the sender of a network packet and Host 2 is the receiver of that packet.

Between being sent and being received, the packet goes through several steps that

are depicted in Figure 3.4b and described as follows.

1. The application program run on Host 1 sends out a data segment through

the socket. First, the data segment is copied from the user space to the

kernel space. Then it reaches the TCP/UDP layer (which is defined as the

transportation layer in the OSI reference model [31]).

2. The data segment is encapsulated with a TCP/UDP header and becomes a

TCP/UDP packet. It then is passed to the IP layer (which is defined as the

network layer in the OSI reference model).

3. The TCP/UDP packet will be encapsulated again with an IP header. In

addition, a MAC header could be added into this IP packet. The format of

the MAC header depends on which kind of media access control protocol is

used at the next step. Then this packet is put into a network device driver’s

output queue to wait for being fetched by the driver’s associated network

interface card, which is a hardware device.

4. The network interface card copies the queued IP packet from the kernel space

to its memory space. Then it sends the packet out on the medium, which is

20

Host 1 Host 2

Sender Receiver

(a) Network topology

TCP/UDP

IP

Device
Driver

TCP/UDP

IP

Device
Driver

PHY

MAC

PHY

MAC

Host 2Host 1

User Space

Kernel Space

Hardware

(1)

(2)

(3)

(4) (6)

(7)

(8)

(9)
Socket Socket

Application Application

ProgramProgram

(5)

(b) Network packet transmission path

Figure 3.4: A host-to-host network in the real world

a network line in this case. The sending operation is controlled by the media

access control (usually called MAC layer and defined as the data link layer in

the OSI reference model) module, that is usually made as a firmware within a

network interface card.

5. After going through the processes of encoding and modulation in the PHY

layer (which is defined as the physical layer in the OSI reference model), the

packet stored in digital data format is transformed into a series of analog sig-

nals. Finally, the signals are emitted by the radio frequency module within the

21

network interface card. When the signals reach the receiving radio frequency

module, the process of transforming analog signals into digital data format is

conducted to obtain the original IP packet.

6. The interface card copies the packet from its memory space to its associated

network device driver’s input queue and informs the kernel about this incoming

packet by triggering a software interrupt.

7. The kernel fetches the packet and puts it to the IP layer. The MAC header

and IP header are stripped off here and the resulting TCP/UDP packet is then

sent up to the TCP/UDP layer.

8. After stripping the TCP/UDP header, the kernel puts the data segment in

the corresponding socket’s receive buffer and informs the receiving application

program to fetch the data segment.

3.2.2 A Simulated Host-to-host Connection

In Figure 3.4, one sees that the real-life TCP/IP or UDP/IP protocol stack is jointed

with the real hardware network interface card by the network device driver. Usually,

a single machine can support only a few number of network interface cards. This

could fail a network simulator to simulate hundreds or thousands of hosts on a single

machine and to use the real-life TCP/IP or UDP/IP protocol. NCTUns uses the

tunnel interface to solve this problem.

The tunnel interface is the key facility in the kernel re-entering methodology. A

tunnel interface is a pseudo network interface and supported by most Linux operat-

ing systems. It operates like a network device driver but no real hardware network

interface card attaches to it. Figure 3.5 shows how NCTUns simulates the net-

work packet transmission in the network depicted in Figure 3.4a by using tunnel

interfaces.

The network topology depicted in Figure 3.5a is the same as that depicted in

Figure 3.4a, except that we assume that the network connection is an Ethernet link.

22

Host 1 Host 2

Sender Receiver

Ethernet Link

(a) Network topology

Interface

ARP

FIFO

MAC8023

TCPDUMP

Phy

Interface

ARP

FIFO

MAC8023

TCPDUMP

Phy

Tunnel 1 Tunnel 2

Host 1 Host 2

User Space

Simulation Server

TCP/UDP

IP

Kernel Space

(1)

(3)

(2)

Socket

Host 1’s
Application

Program

(4)

(5)

(6)

(9)

(8)

(7)

Socket

Host 2’s
Application

Program

(b) Network packet transmission path

Figure 3.5: An Ethernet host-to-host network in simulation

Note that, in Figure 3.5b, the simulation server, the Host 1’s application program,

and the Host 2’s application program are all running on a single machine where the

simulation is conducted. The application program can be a daemon, an agent, or a

traffic generator. The network packet transmission steps are depicted in Figure 3.5b

and described as follows.

1. The application program recognized as a Host 1’s application programs sends

out a data segment through the socket. The data segment is copied from the

user space to the kernel space. Then it reaches the TCP/UDP layer.

23

2. The data segment is encapsulated with a TCP/UDP header and becomes a

TCP/UDP packet. It then is passed to the IP layer.

3. The TCP/UDP packet will be encapsulated again with an IP header. Because

the exit interface is a tunnel interface, no MAC header is added into the

IP packet by the kernel. Then, instead of being put into a network device

driver’s output queue, the packet is put into the output queue of Tunnel 1,

which is a tunnel interface. The simulation server sets this tunnel interface to

be associated with Host 1 before the simulation starts. In order to let a tunnel

interface imitate a real Ethernet interface, we modify the tunnel interface to

add an Ethernet header into the IP packet before the packet is put into the

queue. The field of destination MAC address in the header is set to the next

hop’s IP address instead of the next hop’s MAC address. This is because the

next hop’s MAC address is unavailable here.

4. Later on, the simulation server reads the queued IP packet from Tunnel 1 to

the Interface module that is associated with Tunnel 1. Within the simulation

server, the ARP module performs the ARP protocol to find out the next hop’s

MAC address according to the next hop’s IP address. It then fills all the fields

of the Ethernet header. The FIFO module functions as an interface output

queue. In this module, the queue length is synchronized with the associated

tunnel interface’s queue length so that in effect only one output queue exists

for an interface. The MAC8023 module performs the IEEE 802.3 MAC pro-

tocol (usually known as CSMA/CD). The TCPDUMP module supports the

tcpdump program provided by Linux operating systems.Finally, the Phy mod-

ule simulates the transmission delay and the propagation delay of the packet

and sends the packet to the receiving Phy module.

5. The sending Phy module and receiving Phy module are bound together by a

wired link. The sent packet from the sending module will reach the receiving

module after the time period of propagation delay that is specified by users.

The received packet travels up the protocol modules to the Interface module

24

associated with Tunnel 2, which is the tunnel interface associated with Host

2.

6. The Interface module writes the packet to Tunnel 2’s input queue and informs

the kernel about this incoming packet by triggering a software interrupt. Note

that the Ethernet header is not copied back to the kernel space.

7. The kernel fetches the packet and puts it to the IP layer. The IP header is

stripped off here and the resulting TCP/UDP packet is then sent up to the

TCP/UDP layer.

8. After stripping the TCP/UDP header, the kernel puts the data segment in

the corresponding socket’s receive buffer and informs the application program

recognized as a Host 2’ application programs to fetch the data segment.

During the simulation described above, the transmitted packet enters and exits

the same kernel twice on a single machine. This is why this methodology is named

“kernel re-entering simulation methodology.” As stated before, using this methodol-

ogy, NCTUns uses the real-life TCP/IP and UDP/IP protocol stacks and supports

real-life application programs to run on itself.

3.2.3 A Simulated Mobile-host-to-mobile-host Connection

Next, we show a simulated network containing two mobile hosts each of which is

equipped with an IEEE 802.11b wireless interface. The network topology is shown in

Figure 3.6a and the packet transmission path is depicted in Figure 3.6b. Comparing

Figure 3.6b with Figure 3.5b, one can see that the only difference is the protocol

module stack within the simulation server.

Regarding the protocol stack of a mobile host, the GOD module is the default

routing daemon module for an IEEE 802.11b wireless interface. This module does

not perform any routing protocol during simulation. Instead, it sets the routing en-

tries according to a schedule that is provided by the GUI. When a user manipulates

the GUI to set each mobile node’s moving path before starting the simulation, the

25

Host 2

IEEE 802.11
Wireless Link

Host 1

Sender Receiver

(a) Network topology

Tunnel 2

Socket

Host 2’s
Application

Program

MNode

FIFO

ARP

GOD

Interface

ARP

FIFO

MNode

GOD

Interface

User Space

TCP/UDP

IP

Tunnel 1

Socket

Host 1’s
Application

Program

Simulation Server

MAC80211

WTCPDUMP

Host 1

MAC80211

WTCPDUMP

Host 2

Kernel Space

Wphy

CM

Wphy

CM

(b) Network packet transmission path

Figure 3.6: An IEEE 802.11 mobile-host-to-mobile-host network in simulation

GUI calculates each mobile node’s routing entries according to the relative move-

ments among mobile nodes. The resulting routing entries are written into a file

by the GUI. Later on, when the simulation starts, the simulation server reads in

these routing entries and schedules events to be triggered during simulation. When

one of these events is triggered, the corresponding GOD module’s routing table is

updated. The GOD module represents an optimum routing path search result and

is usually used to compare with other routing protocol implementations. In addi-

tion to the GOD module, NCTUns also provides AODV, ADV, DSDV, and DSR

26

modules. Note that all of these routing protocols are implemented in the form of

protocol module. Of course, they can be implemented as a user space daemon, like

the RIP and OSPF daemons mentioned before.

Besides, the MNode and MAC80211 modules perform the IEEE 802.11b MAC

protocols (usually known as CSMA/CA). The WTCPDUMP module (W stands

for wireless) supports the tcpdump program provided by Linux operating systems.

Regarding the Wphy module, it is like the Phy module but it does not have the

one-to-one connection relationship with another Wphy module. Because the wire-

less signals are media with broadcast nature, the Wphy module has the one-to-many

connection relationship with other Wphy modules, and so do other counterpart mod-

ules used in different types of wireless networks. After the Wphy module determines

those other Wphy modules to which a duplicated packet should be sent, an outgo-

ing packet is duplicated based on the number of target Wphy modules. Next, each

duplicate is sent to the CM module. In the CM module, several channel models can

be selected, each of which is associated with different wireless signal transmission

technologies and environments. The degradation of wireless signal power is calcu-

lated in the CM module based on the related physical layer parameters, such as the

antenna gain patterns used in the sender mobile host and the receiver mobile host.

3.2.4 A Simulated Host-to-switch-to-host Connection

Next, we insert a layer-2 Ethernet switch into the connection between two hosts,

as that shown in Figure 3.7a. Comparing Figure 3.7b with Figure 3.5b, one can

see that the difference is the switch’s protocol module stacks within the simulation

server. In this example network, only two ports of the switch are used. Thus,

only two protocol module stacks, each of which is for one port, are created by the

simulation server. Because the switch is a layer-2 device, the Phy module (layer 1)

and the MAC8023 module (layer 2) are put into the protocol stack. The Switch

module determines which port an incoming packet should be sent to according to

the destination MAC address recorded in that packet’s Ethernet header. Besides,

27

Sender ReceiverEthernet
Switch

Ethernet LinkEthernet Link

Host 1 Host 2

(a) Network topology

Interface

ARP

FIFO

MAC8023

TCPDUMP

Phy

FIFO

MAC8023

Phy

FIFO

MAC8023

Phy

Switch

Interface

ARP

FIFO

MAC8023

TCPDUMP

Phy

Host 2Host 1

Simulation Server

Tunnel 2

TCP/UDP

IP

Kernel Space

User Space

Socket

Tunnel 1

Host 1’s
Application

Program

Socket

Host 2’s
Application

Program

(b) Network packet transmission path

Figure 3.7: An Ethernet host-to-switch-to-host network in simulation

instead of implementing additional output queue functions in the Switch module,

we use the existing FIFO module. Thus, the FIFO module functions as each switch

port’s output queue here.

3.2.5 A Simulated Host-to-hub-to-host Connection

Next, we replace the layer-2 Ethernet switch with a layer-1 Ethernet hub on the

connection between two hosts. The network topology is shown in Figure 3.8a. Com-

paring Figure 3.8b with Figure 3.7b, one can see that the difference is that each of

the hub’s ports does not have the MAC8023 module (layer 2). This difference deter-

28

mines the different simulation method on packet forwarding. Because an Ethernet

switch is a layer-2 device, it simulates a store-and-forward way between a packet

entering it from one port and leaving it from another port. A packet experiences

the transmission delay when it travels through the switch. However, because an

Ethernet hub is a layer-1 device, it simulates a pass-through way. That means a

packet experiences no delay between entering a Ethernet hub and leaving it.

During simulation, the log of the packet transmission/reception from one device

to another device is usually achieved by the layer-2 MAC modules located in the

sending device and receiving device respectively. In the case of a switch device,

its MAC modules deal with the log. However, in the case of a hub device, the

Hub module has to do the log. For example, when a packet enters the hub, the

Hub module has to trace the packet’s source MAC module and destination MAC

module. Besides, it has to keep monitoring the packet’s reception status (success

or failure) in the destination MAC module. When the packet’s reception status is

known, the Hub module has to do two logs. For the real source MAC module, the

Hub module functions as its corresponding destination MAC module to complete

the first log. For the real destination MAC module, the Hub module functions as

its corresponding source MAC module to complete the second log. Lacking of the

Hub module’s log capability does not affect the simulation correctness but just loses

some simulation detail for debugging (if needed) and for displaying the animation

of packet transmission/reception.

3.2.6 A Simulated Host-to-router-to-host Connection

In this case, we add a layer-3 Ethernet router into the connection between two hosts,

as that shown in Figure 3.9a. Because the Ethernet router is a layer-3 device, it

performs the routing functions that is provided in the kernel space. In Figure 3.9b,

one can see that the router device has two protocol stacks each of which is exactly

the same as a host’s protocol stack. Besides, the Interface module belonging to

the router’s first interface is associated with Tunnel 3 in the kernel space, while the

29

Sender ReceiverEthernet

Ethernet LinkEthernet Link

Host 1 Host 2

Hub

(a) Network topology

Tunnel 2

Interface

ARP

FIFO

MAC8023

TCPDUMP

Phy

Interface

ARP

FIFO

MAC8023

TCPDUMP

Phy

Host 2

Phy Phy

Hub

Host 1
Simulation Server

TCP/UDP

IP

Kernel Space

User Space

Socket

Tunnel 1

Host 1’s
Application

Program

Socket

Host 2’s
Application

Program

(b) Network packet transmission path

Figure 3.8: An Ethernet host-to-hub-to-host network in simulation

Interface module belonging to the router’s second interface is associated with Tunnel

4 in the kernel space.

Regarding the simulation of packet transmission in this network, a packet has

to travel a host-to-router connection first, that is equivalent to a host-to-host con-

nection except that the router is not the destination of the packet. When it reaches

the Interface module of the router’s first interface, it is written to Tunnel 3 in the

kernel space. Then, because the packet’s destination IP address indicates that it

has not yet reached the destination interface, it is forwarded to the Tunnel 4 by the

kernel’s forwarding function. Later on, the simulation server reads the packet from

30

Sender ReceiverEthernet
Router

Ethernet LinkEthernet Link

Host 1 Host 2

(a) Network topology

Interface

ARP

FIFO

MAC8023

TCPDUMP

Phy

Interface

ARP

FIFO

MAC8023

TCPDUMP

Phy

Interface

ARP

FIFO

MAC8023

TCPDUMP

Phy

Interface

ARP

FIFO

MAC8023

TCPDUMP

Phy

Host 2

User Space

Socket

Tunnel 1

Host 1’s
Application

Program

Socket

Host 2’s
Application

Program

TCP/UDP

IP

Tunnel 3 Tunnel 4 Tunnel 2

Host 1 Interface 1 Interface 2
Router Router

Simulation Server

Kernel Space

(b) Network packet transmission path

Figure 3.9: An Ethernet host-to-router-to-host network in simulation

Tunnel 4 to the Interface module of the router’s second interface. Then the packet

continues traveling a router-to-host connection and reaches its destination host.

3.3 Routing Scheme

In the architecture of NCTUns, the real-life IP protocol stack in the kernel space

is involved. The routing/forwarding functions in the kernel is directly used without

modification. In other words, the real-life routing scheme has to be followed so that

the kernel’s routing/forwarding functions can work correctly to forward IP packets.

31

However, a routing entry conflict problem occurs when setting the routing entries

for a simulated network using the original routing scheme. Next, we explain the

problem and the solution to it.

Figure 3.10a shows the example network topology. Two class C subnets are

jointed by a Ethernet router. One’s subnet ID is 1.0.1.0/24 (referred as subnet 1

later) and the other’s is 1.0.2.0/24 (referred as subnet 2 later). Host 1 is placed

under subnet 1 and its associated tunnel interface is tun1. The IP address assigned

to tun1 is 1.0.1.1. Host 2 is placed under subnet 2 and its associated tunnel interface

is tun2. The IP address assigned to tun2 is 1.0.2.1. Regarding the router, it has two

interfaces in this example network. One is attached to subnet 1 and its associated

tunnel interface is tun3. The IP address assigned to tun3 is 1.0.1.2. The other

interface is attached to subnet 2 and its associated tunnel interface is tun4. The IP

address assigned to tun4 is 1.0.2.2.

Based on the original routing scheme, the required routing entries for Host 1,

Host 2, and the router are listed in Figure 3.10b. Regarding the entries for Host 1,

if the outgoing packet’s destination IP address is 1.0.1.2, it is sent out through tun1

directly because the destination is located at the same subnet as Host 1 is located.

If the outgoing packet’s destination IP address is 1.0.2.1 or 1.0.2.2, it is sent to the

gateway interface with the IP address 1.0.1.2 because the destination is located at

different subnet. The routing entries for Host 2 and the router are set using the

same rules to set Host 1’s routing entries.

The individual set of routing entries of each device seems to work well to route

packets in this network. However, because NCTUns runs on a single machine with

a single kernel, only one kernel routing table exists to store the routing entries. If all

of the routing entries listed in Figure 3.10b are added into the only routing table, a

conflict situation occurs. That is, for any destination IP address, two routing entries

with different gateway IP address and different output interface need to be set. This

conflict situation fails the routing function in the simulated network.

When inspecting each pair of conflicted routing entries, one can see that each

entry belongs to different network device. In other words, losing the information of

32

1.0.1.1 1.0.1.2 1.0.2.2 1.0.2.1

Host 1 Router Host 2

tun1 tun3 tun4 tnn2

(a) Network topology

1.0.1.2 0.0.0.0 tun1

1.0.2.1 1.0.1.2 tun1

1.0.2.2 1.0.1.2 tun1

Dst Gw If

For Host 1 For Router For Host 2

1.0.1.1 0.0.0.0 tun3

1.0.2.1 0.0.0.0 tun4

Dst Gw If

1.0.2.2 0.0.0.0 tun2

1.0.1.1 1.0.2.2 tun2

1.0.1.2 1.0.2.2 tun2

Dst Gw If

(b) Routing entries with conflicts

For Host 1 For Router For Host 2

1.2.1.1 0.0.0.0 tun3

2.2.1.1 0.0.0.0

Dst Gw If

2.1.2.2 0.0.0.0 tun2

2.1.1.1 2.1.2.2 tun2

2.1.1.2 2.1.2.2 tun2

Dst Gw If

1.1.1.2 0.0.0.0 tun1

1.1.2.1 1.1.1.2 tun1

1.1.2.2 1.1.1.2 tun1

Dst Gw If

1.2.2.1

2.2.2.1

0.0.0.0

0.0.0.0

tun4

tun3

tun4

(c) Routing entries without any conflict

Figure 3.10: An example of the routing scheme used in NCTUns

the source device that sending packets leads to the conflict. Thus, the NCTUns’

solution is to add the IP address of the tunnel interface from which a packet is sent

out into the destination IP address in corresponding routing entries.

Figure 3.10c shows the modified routing entries for each devices in the simulated

network. Those underscores indicate the modified portion in destination and gate-

way IP addresses. Regarding the entries for Host 1, the first two octets of each IP

address is replaced by the last two octets of Host 1’s output tunnel interface’s IP

address. That is 1.1. Regarding the entries for Host 2, the same change is applied

based on the last two octets of its output tunnel interface’s IP address. That is

2.1. For the router, because it has two tunnel interfaces, each tunnel interface’s IP

address is used to change the IP address in each routing entry. Thus, the number

33

of routing entries for the router is doubled after the modification. Now, no con-

flict exists when storing all the routing entries into a single routing table. The new

representation of IP address is called the “source-destination-pair” format. That is

because the new IP address contains both the part of source interface’s IP address

and the part of destination interface’s IP address.

When the source-destination-pair IP format is used, only the third and fourth

octets of a tunnel interface’s IP address are used to identify that tunnel interface.

In other words, the first and second octets of a tunnel interface’s IP address are

useless. By default, NCTUns sets the first octet to 1 (0x01 in hex) and the second

octet to 0 (0x00 in hex). Thus, all IP addresses assigned to tunnel interfaces begin

with 1.0. Besides, because the third octet of IP address is used to denote the subnet

ID and the fourth octet is used to denote the host ID, NCTUns can support up to

255 subnets and up to 255 IP addresses within each subnet.

3.4 IP Address Translation

When source-destination-pair IP addresses are used, those user space application

programs have to use this IP format to indicate the destination IP address of a sent

packet. For example, in Figure 3.10a, if an application program running on Host

1 wants to send a packet to another application program running on Host 2, the

packet’s destination IP address should be set as 1.1.2.1 by the sending application

program. Reversely, the destination IP address should be set as 2.1.1.1.

Because the source-destination-pair IP format is unnatural to users who are fa-

miliar with the original definition of IP address format, NCTUns provides a solution,

called IP address translation, to alleviate users’ inconvenience. For those users who

want to develop a user space routing daemon, the knowing of the source-destination-

pair IP format is necessary because the routing daemon needs to manipulate the

kernel’s routing table. However, for those who want to develop/use a user space

traffic generator or protocol module within the simulation server, they can be un-

aware of the source-destination-pair IP format and still conduct simulations using

34

Interface

ARP

FIFO

MAC8023

TCPDUMP

Phy

Interface

ARP

FIFO

MAC8023

TCPDUMP

Phy

Interface

ARP

FIFO

MAC8023

TCPDUMP

Phy

Interface

ARP

FIFO

MAC8023

TCPDUMP

Phy

Host 2

1.1.2.2 1.1.1.2 tun1

1.1.1.2 0.0.0.0 tun1

1.1.2.1 1.1.1.2 tun1

Dst Gw If

srcIP: 1.0.1.1
dstIP: 1.0.2.1

srcIP: 1.0.1.1
dstIP: 1.0.2.1

srcIP: 1.0.1.1
dstIP: 1.0.2.1

srcIP: 1.0.1.1
dstIP: 1.0.2.1

srcIP: 1.0.1.1
dstIP: 1.0.2.1

dstIP: 1.0.2.1
srcIP: 1.2.1.1

srcIP: 1.0.1.1
dstIP: 1.0.2.1

Socket

Host 1’s
Application

Program

Socket

Host 2’s
Application

Program

Host 1 Interface 1 Interface 2
Router Router

IP

srcIP: 1.0.1.1
dstIP: 1.1.2.1

srcIP: 1.0.1.1
dstIP: 1.0.2.1

No

srcIP: 2.2.1.1
dstIP: 1.0.2.2

Yes

tunIP: 1.0.2.2tun4 tunIP: 1.0.2.1tun2

Yes

No

srcIP: 2.1.1.1
dstIP: 2.1.2.1

srcIP: 2.1.1.1
dstIP: 1.0.2.1

tunIP: 1.0.1.2tun3

Yes

No

srcIP: 1.2.1.1
dstIP: 1.2.2.1

srcIP: 1.2.1.1
dstIP: 1.0.1.2

srcIP: 1.0.1.1
dstIP: 1.0.2.1

No

srcIP: 1.1.1.1
dstIP: 1.0.1.1

Yes

tunIP: 1.0.1.1

srcIP: 1.0.1.1
dstIP: 1.0.2.1

Simulation Server

TCP/UDP

(1)

(2)

(3)

(4)

(7)

(8)

(9)(5)

(10)

(11)

(12)

(13)

(14)

(6)
(14)(15)

(16)srcIP: 2.1.1.1
dstIP: 1.0.2.1

(17)

(18)

(19)

(6)

dstIP ==
tunIP ?

dstIP == dstIP == dstIP ==
tunIP ? tunIP ? tunIP ?

tun1

Kernel Space

User Space

(20)

1.2.1.1 0.0.0.0 tun3

2.2.1.1 0.0.0.0

Dst Gw If

1.2.2.1

2.2.2.1

0.0.0.0

0.0.0.0

tun4

tun3

tun4

Figure 3.11: An example of IP address translation

the original IP address format.

An example of IP address translation is demonstrated in Figure 3.11. The net-

work topology, IP assignment, and tunnel interface assignment are the same as those

used in Figure 3.10a. Thus, the routing entries used in this example network are

also the same as those listed in Figure 3.10c. In Figure 3.11, a packet is sent from

the application program belonging to Host 1 to the application program belonging

to Host 2. The packet’s traveling path is traced to show how the IP address transla-

tion is applied to the source and destination IP addresses of the packet’s IP header.

Each step of the trace is described below.

1. When the data segment is sent out by the Host 1’ application program through

35

the socket, the source and destination IP addresses are recorded in some related

socket data structures. In this example, the source IP address is 1.0.1.1 and

the destination IP address is 1.0.2.1.

2. When the data segment is copied from the user space to the kernel space, it is

stored in a sk buff data structure as well as the output interface information

and destination information. Here, the first two octets of the destination IP

address are replaced with the last two octets of the source IP address. Note

that the source IP address is still the output interface’s IP address. The

underscore indicates the changed portion of the destination IP address.

3. Referring to the destination IP address, the kernel finds out the output inter-

face by searching the routing table. Then the packet is sent to tun1.

4. Once the packet arrives at tun1 from the IP layer, the first two octets of the

source and the destination IP addresses are changed to 1.0. Then it undergoes

a condition check.

5. If the destination IP address is equal to tun1’s IP address, then the packet has

reached its destination and should be looped back to the upper layer. If this is

the case, the first two octets of the source IP address are replaced with the last

two octets of tun1’s IP address. Thus, the source IP address should be 1.1.1.1

and destination IP address should be 1.0.1.1. However, in this example, this

is not the case.

6. Because the destination IP address is unequal to tun1’s IP address, the packet

is sent to the simulation server for going through the data link layer and

physical layer simulations. Note that when the simulation server gets the

packet, the source IP address is 1.0.1.1 and the destination IP address is 1.0.2.1.

7. The source and destination IP addresses keep unchanged when the packet stays

in the simulation server. Thus, when the packet is copied from the simulation

36

server to another tunnel interface tun3. The source IP address is still 1.0.1.1

and the destination IP address is still 1.0.2.1

8. Once the packet arrives at tun3 from the simulation server, the first two octets

of the source IP address are replaced with the last two octets of tun3’s IP

address. Here the destination IP address keeps unchanged. Thus, the source

IP address is 1.2.1.1 and the destination IP address is 1.0.2.1. Then the packet

undergoes a condition check.

9. If the destination IP address is equal to tun3’s IP address, then the packet has

reached its destination. If this is the case, then both the source and destination

IP addresses are unchanged and the packet is sent to upper layer. In this case,

the source IP address should be 1.2.1.1 and the destination IP address should

be 1.0.1.2. Of course, this is not the case in this example.

10. Because the destination IP address is unequal to tun3’s IP address, the first

two octets of the destination IP address are replaced with the last two octets

of tun3’s IP address. Now, the source IP address is 1.2.1.1 and the destination

IP address is 1.2.2.1. Then the packet is sent to IP layer for being forwarded.

11. Referring to the destination IP address, that is 1.2.2.1, the kernel finds out

the output interface by searching the routing table. Then the packet is sent

to tun4.

12. Once the packet arrives at tun4 from the IP layer, the first two octets of the

source and the destination IP addresses are changed to 1.0. Then it undergoes

a condition check.

13. If the destination IP address is equal to tun4’s IP address, then the packet

has reached its destination and should be looped back to the upper layer. If

this is the case, the first two octets of the source IP address are replaced with

the last two octets of tun4’s IP address. Thus, the source IP address should

37

be 2.2.1.1 and destination IP address should be 1.0.2.2. Obviously, this is not

the case in this example.

14. Because the destination IP address is unequal to tun4’s IP address, the packet

is sent to the simulation server for going through the data link layer and

physical layer simulations. Note that when the simulation server gets the

packet, the source IP address is 1.0.1.1 and the destination IP address is 1.0.2.1.

15. Again, the source and destination IP addresses keep unchanged when the

packet stays in the simulation server. Thus, when the packet is copied from

the simulation server to another tunnel interface tun2. The source IP address

is still 1.0.1.1 and the destination IP address is still 1.0.2.1

16. Once the packet arrives at tun2 from the simulation server, the first two octets

of the source IP address are replaced with the last two octets of tun2’s IP

address. Here the destination IP address also keeps unchanged. Thus, the

source IP address is 2.1.1.1 and the destination IP address is 1.0.2.1. Then

the packet undergoes a condition check.

17. If the destination IP address is unequal to tun2’s IP address, the first two

octets of the destination IP address should be replaced with the last two octets

of tun2’s IP address. Thus, the source IP address should be 2.1.1.1 and the

destination IP address should be 2.1.2.1. Then the packet should be sent to

IP layer for being forwarded. However, this is not the case in this example.

18. Because the destination IP address is equal to tun2’s IP address, the packet

has reached its destination. Both the source and destination IP addresses are

unchanged and the packet is sent to upper layer. In this case, the source IP

address is 2.1.1.1 and the destination IP address is 1.0.2.1. Note that unlike

the destination address, the source IP address keeps in the source-destination-

pair format. This is because some kernel protocol implementations need this

information to send back responding packets. For example, an ICMP echo

reply should be sent back when the kernel receives an ICMP echo request

38

(network layer). Yet another example is that a TCP acknowledge has to be

sent when the kernel receives a TCP data segment (transportation layer).

19. When the data segment, stored in a sk buff data structure, is put into the

socket receive buffer by the kernel, the first two octets of the source IP address

are changed to 1.0. Thus, the source IP address is 1.0.1.1 and the destination

IP address is 1.0.2.1 here.

20. When the Host 2’s application program refers to the IP address information

from some related socket data structures, it gets that the source IP address is

1.0.1.1 and the destination IP address is 1.0.2.1.

Note that in Figure 3.11, when any user space program wants to access the

IP address information, it just uses the format of 1.0.*.* instead of the source-

destination-pair format. This is how the IP address translation provides the original

view of IP address format to those who need not manipulate the IP routing functions.

3.5 Discrete-event Simulation Engine

NCTUns is an event-driven simulator. In Figure 3.3, the daemons, the agents, the

traffic generators, the simulation server, and the kernel modifications are separated

components in NCTUns’ architecture. When a simulation is running, the virtual

time synchronization has to be achieved among them. Besides, the events or timers

generated by these separated components need to be scheduled in order based on

each event’s or timer’s triggered time. In NCTUns, the main component taking care

of these jobs is the simulation engine. Next, we present how the simulation engine

deals with the virtual time synchronization and the event/timer scheduling on the

NCTUns platform.

3.5.1 Virtual Time Synchronization

The simulation engine has to advance the virtual time during simulation and pass

the virtual time into the kernel. This is required for some reasons that affect the

39

accuracy of simulation results. First, the timers of TCP connections used in the

simulated network need to be triggered based on the virtual time rather than the

real time. Second, for those application programs run in the simulated network,

the timer-related system calls issued by them must be serviced based on the virtual

time rather than the real time. For example, if a ping program is executed to send

out an ICMP echo request packet every one second, the sleep() system call issued

by the ping program must be triggered based on the virtual time. Third, the in-

kernel packet logging mechanism (i.e., the Berkeley packet filter scheme used by the

tcpdump program) needs to use timestamps based on the virtual time to log packets

transferred in a simulated network. Moreover, the NCTUns kernel events need to

use timestamps based on the virtual time to let the simulation engine know their

trigger time.

The simulation engine can pass the current virtual time into the kernel by pe-

riodically calling a customized system call or calling the customized system call

whenever the virtual time changes. If the former way is used, the virtual time gran-

ularity in the kernel depends on the simulation engine’s update period. Infrequent

update may lead to inaccurate simulation results. For instance, the in-kernel packet

logging mechanism needs a microsecond-resolution clock to generate timestamps. If

the simulation engine’s update period is longer than 1 microsecond, the timestamps

in the log is inaccurate. If the latter way is used, the very frequent update of the

virtual time causes very high system call overhead that slows down the simulation

speed. To solve this problem, we use a memory-mapping technique to allow the

simulation engine accessing a 64-bits integer data structure whose memory address

space is located in the kernel space. In other words, only one integer data structure

is used to store the current virtual time during simulation and it can be accessed

simultaneously by the simulation engine and the kernel. With this technique, the

virtual time obtained in the kernel is always the same as that obtained in the simu-

lation engine during simulation. Besides, during simulation no system call is needed

to continually update the virtual time in the kernel space.

40

Module Pointer,
Callout Function Pointer)

Timer (Timestamp,

Event Heap

Module Pointer,
Callout Function Pointer,

Event (Timestamp,

Data)

Protocol Module Stacks

Scheduler

(1)

(2)

(3)

(4)

(3)

(Simulation Engine + Protocol Modules)

Timer List

Simulation Server

Figure 3.12: The execution procedures of the protocol module event and timer

3.5.2 Protocol Module Event and Timer

The protocol module event and timer are generated by protocol modules. When an

event or a timer is triggered, a function belonging to some protocol module is called

by the scheduler located in the simulation engine. Figure 3.12 shows the generation

and the execution of this kind of event or timer. Each step is described below.

1. A protocol module event is generated from some function within a protocol

module. Usually, it is used to deliver some sort of data (e.g., a network packet)

to another function within the same protocol module or to some function

belonging to another protocol module. For example, one can use this event to

purposely hold a network packet for a period of time within a protocol module.

The effect is like that the packet experiences a period of delay somewhere

on its journey in the network. Another example is to simulate a packet’s

transmission on the medium. In this case, the packet leaves from one physical

41

layer protocol module first, experiences the propagation delay on the medium,

and finally reaches another physical layer protocol module. When generating a

protocol module event, the protocol module has to specify the timestamp when

the event should be triggered, the module pointer pointing to itself or another

protocol module, the function pointer pointing to the callout function, and the

data to be delivered. The event is then inserted into a heap data structure

called event heap. The event with smallest timestamp is always placed on the

root of the event heap. During simulation, the simulation engine continually

retrieves the event at the root to execute.

2. A protocol module timer is also generated from a protocol module. Unlike

the protocol module event, a timer is usually used to call a routine function

periodically or just call a function after a period of time from when the timer is

started. Thus, no delivery data is carried by the timer. Actually, the protocol

module timer is implemented based on the protocol module event by setting

a timer object as the delivery data within the protocol module event. Thus, a

protocol module timer only has the information of the timestamp, the module

pointer, and the callout function pointer. The timer is inserted into the timer

list, within which timers are sorted according to their timestamps, instead

of the event heap. This is because a timer may be suspended, resumed, or

canceled during simulation. Supporting these operations to the event heap

increases a lot of time and space complexity and even breaks the original

operation principle of a heap data structure. Thus, the timer list is used to

deal with the timer operations.

3. During simulation, the simulation engine’s scheduler keeps checking the event

at the heap root and the timer at the list head. The one with the smallest

timestamp is retrieved to execute. Besides, the scheduler advances the virtual

time based on that timestamp. Thus, the virtual time advancing may not be

continuous. This is the working principle of discrete-event simulation engine.

4. According to the module pointer and the callout function pointer, the scheduler

42

Functions
Routing

Event Heap

Callout Function Pointer,
Data)

Event (Timestamp,

Initialization
Functions

Scheduler

(4)

Simulation Engine

Timer (Timestamp,
Callout Function Pointer)(1) (2)

(3)

(3)

Timer List

Figure 3.13: The execution procedures of the routine function event and timer

invokes the corresponding function within the specified module. Besides, the

event which carries a network packet or a timer object is delivered as an input

argument to the corresponding function.

3.5.3 Routine Function Event and Timer

The routine function event and timer are generated by the initialization functions

within the simulation engine. When this kind of event or timer is triggered, some

corresponding routine function is called by the scheduler. Figure 3.13 shows the

generation and the execution of this kind of event or timer. Each step is described

below.

1. A routine function event is generated during the initialization procedure at

the beginning of a simulation. It is usually used to execute a routine function

within which some specified command is executed during simulation, such as

forking an application program by invoking the execv() system call. Within a

routing function event, the triggered timestamp, the callout function pointer,

and the data in which the specified command is recorded are carried. As well

43

as the protocol module event, the routing function event is inserted into the

event heap.

2. A routine function timer is also generated during the initialization procedure

at the beginning of a simulation. It is used to execute some routing functions

during simulation, such as displaying the progress of the virtual time, sending

the virtual time to the GUI, checking the run-time command from the GUI,

and so on. Within a routing function timer, only the triggered timestamp and

the callout function pointer are carried. As well as the protocol module timer,

the routing function timer is inserted into the timer list.

3. The retrieve of this kind of event or timer is the same as that of the protocol

module event or timer except that the callout function belongs to the sim-

ulation engine, not a protocol module. Besides, the scheduler advances the

virtual time based on the triggered timestamp of the event or timer.

4. According to the callout function pointer, the scheduler invokes the corre-

sponding function to execute some routine function.

3.5.4 Process Timer Event

As stated before, for application programs run in the simulated network, their timer-

related system calls must be serviced based on the virtual time. This requirement

is achieved by the process timer events. Figure 3.14 shows the generation and the

execution of this kind of event. Each step is described below.

1. In Linux, each running user space process has a corresponding data structure

in the kernel space, called task struct. The task struct is the identification of a

user space process in the kernel space and is used in many kernel work, such as

process scheduling and kernel resource allocation. In NCTUns’ implementa-

tion, some additional information are added into the task struct, one of which

is the identification number of a simulated node/device (e.g., host, router,

hub, switch, etc.). During simulation, when a user space application program

44

Event Heap

Callout Function Pointer)

Timer (Timestamp,
struct task_struct,

Function
Callout

sleep() and alarm()
system calls, such as
calls timer−related

Kernel’s schedule
timeout functions

Simulation Engine

Event (Timestamp)

User Space

Kernel SpaceEvent Tunnel

Kernel’s

Scheduler

system callstask_struct {}
struct

Application Program

(1) (2)

(3)

(4)

(5)

(6) (7)

(8)

(9)

(10)

(11)

Timer List

Figure 3.14: The execution procedure of the process timer event

is forked to run on a node by the simulation engine, the simulation engine calls

a cutomized system call to fill the forked program’s corresponding task struct

with that node’s identification number. Each simulated node’s identification

number is greater than zero. Thus, in the kernel space, a task struct with a

non-zero node identification number represents a NCTUns process that must

be executed based on the virtual time.

2. When a user space application program calls a timer-related system call, such

as sleep() and alarm(), the corresponding kernel function is invoked to service

the call.

3. In general, the timer-related kernel function calls some kernel’s schedule time-

out function to insert a timer into the kernel’s original timer list that operates

based on the real time. However, a timer list based on the virtual time is

required by NCTUns. Thus, an additional timer list is created in the kernel

space for those timers created by those NCTUns processes. In other words,

45

if a process’ task struct has a non-zero node identification number, all of the

kernel timers originated from the process are inserted into the timer list that

operates based on the virtual time.

4. A process timer carries the triggered timestamp based on the virtual time, the

task struct representing the calling process, and the function pointer pointing

to the callout kernel function, such as process timeout() and hrtimer wakeup().

5. When a process timer is inserted into the timer list, a corresponding process

timer event is created and inserted into the event tunnel’s output queue. The

event tunnel is a tunnel interface that is dedicated to deliver the kernel events

to the simulation engine. The timer’s triggered timestamp is carried by the

process timer event so that the simulation engine can know when to trigger

the timer.

6. Later on, the scheduler in the simulation engine checks the event tunnel’s queue

length (using memory-mapping technique) to see if any kernel event needs to

be read from the event tunnel to the simulation engine. The scheduler does

this check immediately after the virtual time is advanced, a packet is written

into some tunnel interface from some interface module, a process timer event is

triggered, or a TCP socket timer event is triggered. These timings are chosen

because the above occurrences may cause consequent kernel events.

7. The process timer event retrieved from the event tunnel is inserted into the

event heap and sorted by the triggered timestamp.

8. When the process timer event’s triggered time is reached, it is retrieved by the

scheduler. The scheduler also advances the virtual time based on the triggered

timestamp of the event.

9. The scheduler calls a customized system call to the kernel. This system call

makes the kernel to trigger those timers whose timestamps are equal to the

current virtual time.

46

Event Heap

Function
Callout

struct sock {}

Application
Program Simulation Engine

Event (Timestamp)

User Space

Kernel SpaceEvent Tunnel

TCP Socket

Callout Function Pointer)

Timer (Timestamp,
struct sock,

TCP−related functions

Scheduler

set socket timers

(1)

(2)

(3)

(4) (5)

(6)

(7)

(8)

Timer List

Figure 3.15: The execution procedure of the TCP socket timer event

10. The kernel invokes the function pointed by each timer’s callout function pointer.

11. Within the callout function, a sleeping process represented by the task struct

is waked up, or a signal is sent to the process represented by the task struct.

3.5.5 TCP Socket Timer Event

As mentioned before, the timers of TCP connections used in the simulated network

need to be triggered based on the virtual time. This requirement is achieved by the

TCP socket timer events. Figure 3.15 shows the generation and the execution of

this kind of event. Each step is described below.

1. Within a user space application program, each opened socket has a corre-

sponding data structure in the kernel space, called sock. The sock is the

identification of a user space socket in the kernel space and is used in many

network protocol work, such as specifying which network protocol is applied

on the socket and providing socket send buffer and receive buffer to store

47

outgoing and incoming data segments. In NCTUns’ implementation, some

additional information are added into the sock, one of which is the identifi-

cation number of a simulated node/device. During simulation, when a user

space application program opens a socket, the kernel fills the node identifica-

tion number in the socket’s corresponding sock according to the application

program’s corresponding task struct. Thus, in the kernel space, a sock with

a non-zero node identification number represents a NCTUns socket that must

be operated based on the virtual time.

2. In the kernel space, when some TCP-related functions set socket timers, these

socket timers are inserted to the NCTUns timer list if the corresponding socket

is a NCTUns socket. A socket timer carries the triggered timestamp based on

the virtual time, the sock representing the corresponding socket, and the func-

tion pointer pointing to the callout kernel function, such as tcp write timer(),

tcp delack timer(), and tcp keepalive timer().

3. When a TCP socket timer is inserted into the timer list, a corresponding TCP

socket timer event is created and inserted into the event tunnel’s output queue.

The timer’s triggered timestamp is carried by the TCP socket timer event so

that the simulation engine can know when to trigger the timer.

4. Later on, the scheduler in the simulation engine checks the event tunnel’s

queue length to see if any kernel event needs to be read from the event tunnel

to the simulation engine.

5. The TCP socket timer event retrieved from the event tunnel is inserted into

the event heap and sorted by the triggered timestamp.

6. When the TCP socket timer event’s triggered time is reached, it is retrieved

by the scheduler. The scheduler also advances the virtual time based on the

triggered timestamp of the event.

7. The scheduler calls a customized system call to the kernel. This system call

48

(Simulation Engin +
Protocol Modules)

Kernel Space
User Space

IP packet

Protocol Module Stacks

Event (Tunnel ID)

Event Tunnel

Interface1 −− tun1
Interface2 −− tun2

InterfaceK −− tunK

Interface2Interface1 InterfaceK

tun1 tun2 tunK

Scheduler

Event Heap

(tun1) (tun2) (tunK)

(1)

(2)

(4)

(5)(6)

(7) (8)(3)

Simulation Server

Mapping Table

Figure 3.16: The execution procedure of the tunnel packet event

makes the kernel to trigger those timers whose timestamps are equal to the

current virtual time.

8. The kernel invokes the function pointed by each timer’s callout function pointer.

Usually, in the case that a TCP socket timer expires, more TCP control packets

(keep-alive timer), acknowledgment packets (delay-ack timer), or data packets

(retransmission timer) are sent out by the kernel. These packets then cause

more tunnel packet events to be inserted into the event tunnel.

3.5.6 Tunnel Packet Event

A tunnel packet event indicates exactly which tunnel interface has packet to be read

by the simulation engine. Figure 3.16 shows the generation and the execution of

this kind of event. Each step is described below.

49

1. Based on the kernel re-entering simulation methodology, an outgoing IP packet

is sent to a tunnel interface.

2. Once an IP packet enters a tunnel interface, a tunnel packet event is created

and inserted into the event tunnel’s output queue. The identification number

of that tunnel interface is carried by the event so that the simulation engine

can know which tunnel interface generates the event.

3. Later on, the scheduler in the simulation engine checks the event tunnel’s

queue length to see if any kernel event needs to be read from the event tunnel

to the simulation engine.

4. The scheduler sets the current virtual time to the tunnel packet event’s times-

tamp and inserts it into the event heap.

5. After the scheduler inserts all other kernel events into the event heap. The

inserted tunnel packet event is retrieved immediately (no virtual time progress)

by the scheduler.

6. According to the tunnel identification number carried by the event, the sched-

uler searching a mapping table to find out the Interface module associated

with the tunnel interface.

7. The scheduler calls the tunnel-reading function belonging to the found Inter-

face module.

8. The queued IP packet is read from the tunnel interface to the associated

interface module.

3.6 Port Number Translation

On a single machine, when multiple application programs try to bind their sockets

to the same port number simultaneously, only the one who executes the bind()

system call first will succeed and the others will fail. This is normal because one

50

port number can only be used by one socket at any time on a single machine.

However, this characteristic may fail some simulation scenarios. For example, when

several Web servers want to bind to the port number 80, which is assigned by

the Internet Assigned Numbers Authority (IANA) for providing web services, this

simulation scenario can not be performed successfully. One solution to this problem

is to let each Web server bind to different port number. Although it does not

affect the simulation result, it makes a simulated network unnatural to the users.

Thus, NCTUns provides another solution, called port number translation, to allow

multiple application programs binding to the same port number. The idea of the

port number translation is to translate the original port number used by a NCTUns

socket to an unused port number in the kernel.

To achieve this goal, the kernel maintains a bitmap to record which port number

has been used and which has not. During a simulation, suppose that an application

program (say A) running on node i wants to bind to port number j, the kernel will

find an unused port number (say k) and instead let application program A bind

to port number k. The kernel then creates an association (node identification = i,

original port number = j, remapped port number = k) and inserts it into a hash

table.

With this arrangement, if an application program (say B) wants to send packets

to application program A, application program B can use the port number originally

used by application program A (i.e., j) as the destination port number. The port

number translation process occurs at the destination node(s), not at the source node.

When application program B sends a packet to application program A, before the

packet reaches the destination node, the destination port number carried in the

packet remains j, not k. Only after the packet reaches the destination node is its

destination port number translated to k. Finding k is achieved by searching the

hash table using the key pair (i, j), where j is readily available from the packet

header. As for the value of i (the destination node’s identification number), the

kernel can obtain this information from the sock data structure that is mentioned

in Section 3.5.5.

51

Translating the port number at the destination node(s), not at the source node,

has two advantages. The first advantage is that it supports broadcast transfers on a

subnet. If the translation is performed at the source node, only unicast transfers can

be supported. Broadcasting a packet on a subnet to multiple application programs

that bind to the same port but run on different nodes (e.g., routing daemons) will

be impossible. The second advantage is that the tcpdump program can filter and

capture packets based on the original port number instead of the translated one in a

simulated network. This offers the users a natural way to use the tcpdump program

in the simulated network.

52

Chapter 4

NCTUns Extension for Vehicular

Network

In this chapter, we present the NCTUns extension for support the vehicular network

simulation [32, 33, 34]. Two major directions are focused on the extension. The first

one is the vehicular movement simulation. In the previous versions of NCTUns, a

mobile node’s moving path is generated automatically by the random waypoint

mobility model or drawn manually by a user. No road network is provided for

mobile nodes to move on it. Besides, no acceleration and deceleration is applied

to a mobile node’s movement. All of these need to be improved to support more

realistic vehicular movement simulation. The other direction is to develop more

wireless communication protocols for providing vehicular communication services,

such as the IEEE 802.11p [1] and IEEE 1609 draft standards [2, 3, 4, 5].

In Figure 4.1, the extended architecture of NCTUns is depicted. From it, one

can see that, based on the original architecture of NCTUns, several extensions are

made to some NCTUns components to support the wireless vehicular communication

network simulation. The extensions include the GUI extension, the simulation server

extension, the car agent program, and the signal agent program. The functionalities

and the design and implementation issues of these extensions are presented below.

53

Agent Logic

Signal State
Changing

Protocol Module
Stack
− MAC
− PHY

Kernel
Protocol Stack
− TCP/UDP
− IP

Simulation Engine + Protocol Module Stack + Kernel Protocol Stack

Road Network

File

Specification
Obstacle

File

File

(GUI)

Position
Initial

File

Protocol Stack
and

Parameter
File

Road Network Construction

Network Protocol Setting

Vehicle Deployment

Car Profile Setting
and

Car Profile File

Car Profile
Mapping File

Traffic Signal
Information

File
Specification

Application
Execution

Graphical User Interface

Car Agent

Agent Logic

Car Agent

Road Network
DatabaseMobility Models

Microscopic

Sending/Receiving
Network Packets

Network Packet
Socket−interface

API
Socket−interface

Signal
Information

Socket−interface
API

Car/Signal
Information

API

− Moving Direction

Car Information
Database
− Speed
− Acceleration

− Position

Virtual−time TCP/UDP Real−time TCP

Server
Command

Signal Agent

Signal Agent

Signal Information
Database
− Status
− Position

Figure 4.1: The extended architecture of NCTUns

4.1 Graphical User Interface Extension

In terms of the wireless vehicular communication network simulation, the GUI pro-

vides four major functions to help users easily generate the configuration files re-

quired by a simulation case. These files will be read by other components, that will

be explained later, at the beginning of a simulation. In addition to the four major

functions, the GUI can also play the animations of packet transmission/reception

and vehicle movement, either during simulation or after simulation. This visual dis-

play of simulation results helps a user check the correctness of their network protocol

54

Figure 4.2: A snapshot of the GUI

designs and vehicle movement behavior.

4.1.1 Road Network Construction

The GUI provides many convenient facilities for users to construct their desired

road network in a user-friendly environment. For instance, road deployment can

be accomplished through a few operations of mouse clicking and drawing instead of

editing a complex road network specification script file. The GUI supports several

types of roads, including single-lane roads, multi-lane roads, crossroads, T-shape/L-

shape roads, and lane-merging roads. A snapshot of the GUI with different type of

roads is shown in Figure 4.2. Currently, the GUI constructs a T-shape/L-shape road

from a crossroad by closing unused entrances. Four traffic lights are automatically

placed at the four corners of a crossroad when a user puts a crossroad on the GUI.

A road network can be drawn manually by users or generated automatically by

55

Figure 4.3: The facility of importing a real-world map

the GUI based on a shapefile [35], which is a digital vector storage format for storing

geometric location and associated attribute information. The GUI can import a

real-world map stored in a shapefile to construct a road network, like that shown

in Figure 4.3. This capability can save much time required to manually construct

a large-scale road network. Besides, because using real-world maps provides more

realistic vehicular moving environments during simulation, the simulation results

are more convincing.

After a user finishes his/her desired road network, the GUI automatically exports

the corresponding road network information into four configuration files. The first

one is the traffic signal information file. This file contains the information of each

traffic signal deployed in the road network, including the type of each traffic signal

(e.g., a traffic light or a speed-limit sign), the coordinate of each traffic signal, the

facing direction of each traffic signal, and some type-specific data. For example, the

56

4
3

1
2

7
8

6
5

Figure 4.4: An example of road network representation

type-specific data of a traffic light include the initial state (e.g., green, yellow, or

red) and the group identification number, which is assigned to the four traffic lights

around a crossroad.

The second configuration file is the road network specification file. This file

contains the information of each road block, including the coordinates of the four

corners of a road block, the moving direction for vehicles to follow on a road block,

which road blocks are chained to form a lane, which lanes are joined side by side to

form a multi-lane road. Take the road network shown in Figure 4.4 as an example.

In this square road network, road block 1, 3, 5, and 7 are chained to form a lane

while road block 2, 4, 6, and 8 are chained to form another lane with reverse moving

direction. These two lanes are joined side by side to form a square road.

The third configuration file is the application execution file. This file contains

the information about when and on which node (e.g., a vehicle or a traffic light

controller) to launch a specific application program. For example, for the set of

four traffic lights around a crossroad, the GUI automatically arranges a signal agent

application program to be run up on a traffic light controller to control the state

changing of these traffic lights during simulation. The application’s execution time

and its corresponding traffic light controller node’s identification number are ex-

ported by the GUI into the application execution file.

The fourth configuration file is the obstacle specification file. In the GUI, the

view/radio obstacle is supported. An obstacle is a rectangular object that can block

a vehicle driver’s view, and/or totally block wireless signal or just reduce the power

57

of the wireless signal passing through the obstacle. The information of each obstacle,

including the coordinates of its two diagonal corners, the ability of blocking view,

the ability of blocking wireless signal or reducing wireless signal power, and the user-

specified value of signal power attenuation (if this ability is enabled), are exported

by the GUI into the obstacle specification file.

4.1.2 Vehicle Deployment

After a user constructs his/her desired road network, he/she can put a vehicle at

any place on the road network as the initial position of that vehicle. In case a user

does not care about the initial position of each vehicle, the GUI also provides a

facility for him/her to automatically deploy a specified number of vehicles on the

road network at a specified average distance between two neighboring vehicles on

the same lane. Through this facility, a user can also select which kind(s) of wireless

radio(s) should be equipped with a vehicle. Currently, the provided choices include

the IEEE 802.11b ad hoc mode radio, the IEEE 802.11b infrastructure mode radio,

the IEEE 802.16e radio, the IEEE 802.11p radio, the GPRS radio, and the DVB-

RCST satellite radio. The GUI exports the initial positions of all vehicles into the

initial position file.

During simulation, a car agent application program is responsible for control-

ling its associated vehicle’s movement. A car agent dynamically makes its moving

decisions based on the vehicle’s surrounding traffic and road conditions. When a

vehicle is deployed on a road network, the GUI automatically arranges a car agent

to be run up on the vehicle to control its movement. Each car agent’s execution

time and its corresponding vehicle node’s identification number are exported into

the application execution file by the GUI.

4.1.3 Car Profile Setting

A car profile defines the vehicular moving characteristics, including a vehicle’s max-

imum speed, maximum acceleration, and maximum deceleration. Currently, five

58

different car profiles are supported and each of them is recorded in a separate car

profile file. The GUI provides a facility for a user to edit each car profile and assign

the percentage of vehicles that will use a particular car profile during simulation.

According to the assignment, the GUI automatically maps each vehicle to a specific

car profile to match the percentage distribution. Finally, before a simulation starts,

this mapping information is exported into the car profile mapping file. At the be-

ginning of a simulation, a car agent first gets its assigned car profile by referring to

the car profile mapping file. Then it opens the corresponding car profile file to read

in the vehicular moving characteristic parameters.

4.1.4 Network Protocol Setting

When we presented the function of vehicle deployment before, we mentioned that

several types of wireless radios can be selected to be equipped on a vehicle. NCTUns

realizes the simulation of different kinds of wireless radios by simulating different

network protocol stacks. In other words, a vehicle equipped with a wireless radio is

associated with that radio’s corresponding protocol stack. Each layer of a protocol

stack is implemented as a protocol module in NCTUns. Thus, a protocol stack can

be viewed as a series of protocol modules linked together. A useful facility is provided

to help users easily select/replace protocol modules, such as mobile ad hoc routing

protocol modules or buffer/queue management modules. In addition, the value

of each parameter associated with each protocol module can be modified by users

through this facility. The information about the used protocol stacks and module

parameter values is exported by the GUI into the protocol stack and parameter file.

4.2 Simulation Server Extension

Before a simulation starts, all required configuration files are exported by the GUI

for the simulation engine to read. At the beginning of the simulation, the simulation

engine reads in the traffic signal information file, the initial position file, the protocol

59

stack and parameter file, the obstacle specification file, and the application execution

file. In addition, the simulation engine also needs to read in other configuration files.

However, because they are not directly related to the settings for a wireless vehicular

network simulation, they are not explained in this chapter.

The traffic signal information file is read by the simulation engine to build the

signal information database. The attributes of each traffic signal are recorded in

this database for car agents and signal agents to access during simulation. The

initial position file is read by the simulation engine for setting each vehicle’s initial

position. During simulation, the latest positions of all vehicles are maintained in

the car information database. The protocol stack and parameter file is read by

the simulation engine for constructing each vehicle’s network protocol stack(s) by

linking a series of protocol modules and for initializing the parameters associated

with each protocol module. In addition, the simulation engine reads the obstacle

specification file to set up radio obstacles, which can block or reduce wireless signal

power during simulation.

When the simulation engine reads the application execution file, it creates the

application-executing events and inserts them into the event heap. These events are

routine function events mentioned in Section 3.5.3. When an application-executing

event is triggered, the simulation engine forks a car agent process or a signal agent

process, depending on which application is specified. Like other applications forked

by the simulation engine, a car agent process or a signal agent process can be forked

at any time during simulation and then be killed at any time before the end of

a simulation. The GUI allows a user to freely specify the start/end time of an

application. When a car agent or a signal agent is created, its corresponding node

identification number is recorded in its corresponding task struct in the kernel space.

The simulation engine calls a customized system call to set the task struct. The node

identification number can be retrieved from the kernel through another customized

system call during simulation. We will present how a car agent process exploits this

system call later.

In the simulation engine, a TCP-based command server is set up to periodically

60

receive the request commands issued from a car agent or a signal agent. The simu-

lation engine schedules a routine function timer to periodically read the command

server’s TCP socket(s) for any incoming request command during simulation. Ac-

cording to the type of a request command, the command server may store/retrieve

data into/from the signal information database or the car information database.

The operations between the command server and the car agent or signal agent will

be described later.

Regarding the network protocol simulation, the network protocol stacks simu-

lated in NCTUns include the direct use of the real-life TCP/UDP/IP protocol stacks

in the Linux kernel and the simulations of MAC and PHY-layer protocols in the

simulation engine. From the bottom-left part in Figure 4.1, one sees that different

car agents exchange messages with each other over real-life TCP or UDP connec-

tions. These TCP/UDP connections are set up by the car agents using the standard

POSIX socket-interface API’s. The procedure of TCP/UDP packet transmission is

described in Section 3.2. Besides, in order to support the wireless vehicular com-

munication, NCTUns provides the 802.11p-related protocol modules for advanced

ITS studies. These protocol modules are implemented based on the IEEE 802.11p

[1] and IEEE 1609 draft standards [2, 3, 4, 5].

4.3 Car Agent

When a car agent is forked by the simulation engine, it reads the road network

specification file to build its own road network database. This database will be

queried by the agent logic during simulation. Instead of accessing a common road

network database built by the simulation engine, each car agent builds its own

road network database even though the content of each car agent’s database is the

same. This design is based on the performance consideration that the road network

information query is very frequent and needs a fast response from the database.

Thus, we trade the memory space for the simulation speed. In addition, the car

agent reads the obstacle specification file to construct visual obstacles. The obstacle

61

information is also stored in the road network database. Moreover, the car agent

also reads the car profile mapping file to know which car profile is assigned to it and

then reads the corresponding car profile file. As stated before, different car profiles

define different moving characteristics with respect to maximum speed, maximum

acceleration, and maximum deceleration. The difference and change on vehicular

moving speed result in the changing of the vehicular ad hoc network topology during

simulation. The topology changing affects the operations of network communication

protocols and the performance of application programs. Generally speaking, the

dynamics of topology is one of the considerable parameters when studying ad hoc

network issues. A user can change this parameter by modifying the five car profiles

and changing the car profile mapping ratio.

A car agent is an independent process that communicates with the command

server located within the simulation engine through its car/signal information socket-

interface API’s, which are TCP-based. Besides, a car agent exchanges messages with

other car agents through its network packet socket-interface API’s, which are TCP-

or UDP-based. The operations of packet exchange and the content carried in each

packet are defined by a user to satisfy the requirements of an ITS application. NC-

TUns provides users with the flexibility to add or modify any operation in a car

agent.

In Section 3.5.5, we mentioned that a socket opened by a NCTUns process is

a NCTUns socket that operates based on the virtual time. That means, by de-

fault, both the car/signal information socket and the network packet socket operate

based on the virtual time within a car agent. However, the former must operate

based on the real time. This is because when a car agent starts a request-reply

communication with the simulation engine through the TCP-based car/signal in-

formation socket, the virtual time maintained in the simulation engine is frozen to

avoid unexpected virtual time advance. Until the car agent finishes its request-reply

communication and signals the simulation engine about the finish, the simulation

engine continues advancing the virtual time. During the request-reply communica-

tion, if the car/signal information socket is based on the virtual time, all the TCP

62

timers malfunction because no timer expiration can be expected. In other words, a

dead lock situation may occur when the request-reply communication relies on the

virtual time advancing to finish and the virtual time advancing depends on the com-

pletion of the request-reply communication. In order to support the real time socket

within a car agent, NCTUns provides a customized system call. When a car agent

opens a socket, it calls the system call to clear (set to zero) the node identification

number in the socket’s corresponding sock data structure in the kernel space. After

that, the kernel does not recognize the socket as a NCTUns socket and the socket

starts operating based on the real time.

Figure 4.5 shows the communication between the car agent and the simulation

server, including the virtual time based network packet transmission path and the

real time based request-reply communication. The operations over network packet

transmission path are the same as those presented in Section 3.2.3. For example,

if Car Agent 1 (belonging to Mobile Host 1) wants to send a TCP/UDP network

packet to Car Agent 2 (belonging to Mobile Host 2), it first sends out the packet

through its network packet socket. The packet is then sent to Tunnel 1, which is

Mobile Host 1’s associated tunnel interface. After the simulation server moves the

packet from Tunnel 1 to Mobile Host 1’s Interface module, the packet goes through

the MAC- and PHY-layer protocol simulations. Then, the packet is moved from

Mobile Host 2’s Interface module to Tunnel 2, which is Mobile Host 2’s associated

tunnel interface. Finally, Car Agent 2 obtains the packet through its network packet

socket.

Regarding the real time based request-reply communication, it is a normal TCP

connection built between a car agent and the command server located within the

simulation server. Because the car agent and the simulation server are run on a single

machine, the TCP connection between them passes through the loop back interface

provided by most Linux operating systems. The loop back interface’s IP address is

usually 127.0.0.1. When a request packet is sent out by a car agent over the TCP

connection, the kernel recognizes it as a normal TCP packet instead of a NCTUns

TCP packet. Thus, the kernel does not translate this packet’s IP address to the

63

Tunnel 2Tunnel 1

MNode

FIFO

ARP

GOD

Interface

ARP

FIFO

MNode

GOD

Interface

Information
Car/Signal

SocketSocket
Packet
Network

Information
Car/Signal

Socket Socket
Packet
Network

IP

Information
Database

Car

Kernel Space

MAC80211

WTCPDUMP

MAC80211

WTCPDUMP

Mobile Host 2

Wphy

CM

Wphy

CM

Information
Database

Signal

User Space
Virtual Time Based

Network Packet
Transmission Path

Communication

Loopback Interface

Request−reply
Real Time Based

Car Agent 1
(Mobile Host 1)

Car Agent 2
(Mobile Host 2)

Mobile Host 1

Simulation Server

TCP/UDP TCP/UDPTCPTCP TCP TCP

Command
Server

Figure 4.5: The communication between the car agent and the simulation server

source-destination-pair IP format and operates its corresponding TCP operations

based on the real time. Because the packet’s destination IP address is 127.0.0.1,

at the IP layer the kernel routes it to the loop back interface and it is looped back

immediately to the IP layer. When the command server obtains the request packet,

it queries the car or signal information database for requested data and then sends

a reply packet back to the car agent. The kernel treats the reply packet the same

way as the request packet.

A car agent is the mobility controller of its associated vehicle simulated in the

simulation engine. The agent logic in a car agent is the decision maker that deter-

mines when to make an action. After setting up the connection with the command

server located within the simulation engine, the agent logic first retrieves the node

identification number of the associated vehicle through the customized system call

64

that is mentioned in Section 4.2. With the node identification number, the agent

logic informs the command server to activate its associated vehicle in the simulation

engine. This validates that vehicle’s corresponding data within the car informa-

tion database. Next, the agent logic queries for its initial/current position from the

command server. The command server retrieves the queried position from the car

information database and then sends it back to the agent logic. Before moving a

vehicle from its initial position, the agent logic sets the current speed and current

acceleration of the vehicle to zero.

During simulation, the agent logic periodically updates/accesses the car and sig-

nal information databases through the car/signal information socket-interface API’s.

For example, the agent logic may store/retrieve the current moving direction, current

speed, current acceleration, current position of its associated vehicle, or retrieve the

state of a traffic light that is nearest in front of its associated vehicle. The command

server provides not only update/access services but also data-analyzing services. In

the case that an agent logic tries to retrieve the state of a traffic light through the

command server, the command server first retrieves the current position of the ve-

hicle controlled by the agent logic from the car information database and all traffic

lights’ positions from the signal information database. Because the command server

does not have the road network information, the nearest traffic light in front of the

vehicle is obtained by doing some mathematical calculations based on the informa-

tion provided by the agent logic. For example, the agent logic specifies the distance

within which the nearest traffic light ahead of the vehicle should be returned by

the command server. After the command server identifies the nearest traffic light,

it sends the state of the traffic light to the agent logic. With this information, the

agent logic can now control the vehicle to either drive across a crossroad if the traffic

light is green or stop it at a crossroad if the traffic light is red.

Moreover, the agent logic can retrieve the positions of the vehicles that is located

within a specified area to its associated vehicle’s position. Because the command

server does the analysis considering only the vehicular positions, the agent logic

has to analyze the retrieved positions again considering the view obstacles. If the

65

straight line between the associated vehicle’s position and one retrieved vehicle’s

position crosses any obstacle’s rectangular area, then in the agent logic’s viewpoint

the retrieved vehicle should not be seen. For example, in Figure 4.6, the agent logic

on behave of vehicle A’s driver tries to find out the nearest vehicle that is located

within a sector area in front of vehicle A. The agent logic has to specify the the angle

of the sector (say, 60 degrees) and the radius of the sector (say, 50 meters) so that

the command server can search those qualified vehicles and return them to the agent

logic. Like that shown in Figure 4.6a, vehicle B and vehicle C are qualified vehicles.

After the agent logic obtains the returned vehicles’ positions, it checks if any obstacle

locates between its associated vehicle (say, vehicle A) and those returned vehicles.

Like that showed in Figure 4.6b, because the obstacles around the crossroad blocks

the viewpoint from vehicle A, the visual area from vehicle A does not include the

whole sector area but only the gray part within the sector area. As a result, vehicle

B should not be seen by vehicle A and the nearest vehicle in front of vehicle A is

finally determined to be vehicle C instead of vehicle B.

Although the command server can obtained the obstacle information from the

obstacle specification file that is read by the simulation engine, it does not use the

information when dealing with the above-mentioned request. This is because the

request is a general-purpose request. A car agent usually issues the request to obtain

those vehicles located within a specified area. Then, the car agent may combine the

retrieved result with additional information to do advanced analyses, such as finding

the nearest vehicle located on the right or left lane in front of or in the back of itself.

The additional information may be the obstacle positions, the road block positions,

and/or other information. Which kinds of information are required depend on what

operation an agent logic wants to do. Thus, the command server does not do that

for an agent logic but only provides general-purpose functions for an agent logic to

call.

Other request commands are also provided for the agent logic to collect compre-

hensive information to make driving decisions. For example, the agent logic obtains

the direction of a road ahead of the vehicle so that the vehicle can move in the

66

C

B

A

(a) The simulation engine returns a

driver’s viewpoint to the car agent

only considering the relationship of

vehicular position.

Obstacle Obstacle

ObstacleObstacle

A

B

C

(b) The car agent determines a

driver’s viewpoint considering ad-

ditionally the locations of all view

obstacles based on the simulation

engine’s return.

Figure 4.6: Two phases to simulate a driver’s viewpoint

correct direction on the road. Another example is that the agent logic obtains the

information of neighboring lanes so that the vehicle can safely change lanes and/or

overtake other vehicles. Yet another example is that the agent logic obtains the

information of the crossroad ahead of the vehicle so that the vehicle can make a

turn smoothly. On top of the default autopilot intelligence, a user can freely add

more intelligence into the agent logic of a car agent. A user can also replace the

default autopilot intelligence with more advanced autopilot intelligence.

4.4 Signal Agent

The signal agent is responsible for controlling the state of a traffic signal or a set of

traffic signals. Many types of traffic signals can be supported in NCTUns. We take

the traffic light as an example here. The signal agent for controlling a set of traffic

lights is forked by the simulation engine with its group identification number. As

stated before, the four traffic lights surrounding a crossroad are grouped together

by assigning all of them a unique group identification number. A traffic-light signal

67

agent with a given group identification number is responsible for controlling the

state changes of the four traffic lights within the same group. Using the group

identification number as an index, the agent logic of a traffic-light signal agent uses

the signal information socket-interface API’s to retrieve the type-specific data of each

traffic signal, such as the initial state of a traffic light, from the command server.

The command server retrieves the queried data from the signal information database

and sends it back to the agent logic. During simulation, the agent logic periodically

swaps the states of the two pairs of the traffic lights surrounding a crossroad. It uses

the signal information socket-interface API’s to update each traffic light’s state in

the signal information database. Like the car/signal information socket used within

a car agent, the signal information socket used within a signal agent is also TCP-

based and operates based on the real time. The communication between the signal

agent and the command server is the same as the real time based request-reply

communication depicted in Figure 4.5.

68

Chapter 5

Validation of Vehicular Mobility

Control

A car agent is the mobility controller of its associated vehicle simulated in the

simulation engine while a traffic-light signal agent is the status controller of its asso-

ciated traffic light. The agent logic in a car agent communicates with the command

server frequently during simulation to update its information, retrieve other vehi-

cle’s information, or retrieve the signal status of a traffic light. The agent logic in a

traffic-light signal agent communicates with the command server periodically during

simulation to update the signal statuses of a group of traffic lights. The information

delivery delay is one potential factor that may affect the synchronization between

a car/signal agent and the simulation engine. For example, a car agent may not

obtain the latest locations of its neighboring vehicles because those vehicles’ latest

locations are not updated to the car information database in time. This problem

may cause unexpected collisions while the car agent tries to overtake its neighboring

vehicles or keep following its front vehicle. Another example is that the car agent

may fail to stop its associated vehicle before the stop line at a crossroad because the

traffic-light signal agent does not update the signal statues in time.

The results generated by a simulator should be validated with either the results

derived from mathematical models (when the simulated system is simple enough

69

to be modeled) or real-world data (when the simulated system is too complicated

to be modeled) before it can be trusted. In this chapter, we test the car agent’s

mobility control with respect to two fundamental driving behaviors: the reaction

to traffic light signal and the car following. In each test, we employ a vehicular

mobility scenario that is composed of some uniform motions and uniform accelerated

motions. In other words, one can easily verify the vehicular mobility with respect

to the velocity and the displacement by using two fundamental formulas based on

Newton’s laws of motion:






v2 = v1 + a(t2 − t1)

s = v1(t2 − t1) + 1

2
a(t2 − t1)

2

where v1 is a vehicle’s speed at time t1, v2 is the vehicle’s speed at time t2, a is the

vehicle’s acceleration/deceleration, and s is the vehicle’s displacement from t1 to t2.

By the formulas, we first derive the changes of position and velocity over time. Then,

we record the same information during simulation. Finally, we compare these two

results to observe if the theoretical driving behavior is carried out correctly by the

simulation. The scenario and comparison results for each test are described below

respectively.

5.1 Reaction to Traffic Light Signal

In the first test, we want to observe the car agent’s reaction to the traffic light signal.

Figure 5.1 illustrates the vehicular movement scenario adapted in this test. At the

beginning, a vehicle is static and a traffic light stands in front of that vehicle. The

distance between the vehicle and the traffic light is 200 m. Next, the vehicle starts

moving with fixed acceleration of 1 m/s2. When the vehicle reaches its maximum

speed of 10 m/s, it keeps at this speed for a while. Later, once the vehicle sees that

the traffic light signal turns to red and the distance between itself and the traffic

light is equal to 30 m, it starts slowing down with fixed deceleration of 2 m/s2 until

it stops before the stop line that is drawn at where the traffic light stands.

70

200 m

Moving
Start

Reach
Maximum

Speed

See
Red

Signal

30 m

(1 m/s^2) (10 m/s) (2 m/s^2)

Stop

Accelerate Keep Decelerate

Figure 5.1: The scenario of mobility control test on the reaction to traffic light signal

Figure 5.2 shows the changes of the tested vehicle’s velocity over time. The x-axis

represents the elapsed time while the y-axis represents the tested vehicle’s velocity.

When comparing the two curves depicted in this figure, one of which is derived from

the formulas and the other is obtained from the simulation, one can see that the

controlled mobility curve is quite consistent with the theoretical mobility curve. Note

that the simulated maximum speed is a little higher than the theoretical maximum

speed of 10 m/s. This is because by default the car agent process periodically wakes

up to check its surrounding road environment and make a moving decision every 100

ms. The default wake-up interval may cause the deviation if the car agent does not

wake up just at some particular time. This deviation can be alleviated by reducing

the wake-up interval at the cost of slowing down the simulation speed. In the test

case, until the car agent wakes up and finds that its speed is larger than 10 m/s,

it stops accelerating and keeps at the current speed. The tiny deviation also occurs

at the time when the car agent finds that the distance between the traffic light

and itself is less than 30 m and starts slowing down. Except the above-mentioned

tiny deviation, the consistency shown in Figure 5.2 confirms that the car agent can

correctly control its associated vehicle simulated in the simulation engine to react

to seeing a red traffic light signal. In other words, it shows that the signal agent

updates its signal status to the signal information database in time. Also, the car

agent’s position retrieval and signal status retrieval are completed in time.

71

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30

V
el

oc
ity

 (
m

/s
)

Elapsed Time (s)

Theoretical Velocity
Controlled Velocity

Figure 5.2: The changes of the tested vehicle’s velocity over time

5.2 Car Following

In the second test, we want to observe the car agent’s car following behavior. Fig-

ure 5.3 and Figure 5.4 illustrate the vehicular movement scenario adapted in this

test. Each movement change is described as follows.

1. Figure 5.3a: At the beginning, the rear vehicle starts moving from static and

the front vehicle keeps moving at 20 m/s. The initial distance between the

rear vehicle and the front vehicle is 30 m. The rear vehicle’s acceleration is 1

m/s2 and its maximum speed is 30 m/s.

2. Figure 5.3b: After 30 s from the beginning, the rear vehicle reaches its max-

imum speed (say, 30 m/s) and stays at that speed. Currently, the distance

between the two vehicles is 180 m. Because the rear vehicle’s speed is higher

than the front vehicle’s, the rear vehicle will gradually approach the front

vehicle when time goes by.

3. Figure 5.3c: After 45 s from the beginning, the rear vehicle finds that the

72

Moving
Start

Moving
Keep

(1 m/s^2) (20 m/s)

30 m

Accelerate Keep

(a) At the beginning

Reach
Maximum

Speed Moving
Keep

(20 m/s)

180 m

(30 m/s)
Keep Keep

(b) After 30 s from the beginning

Moving
Keep

30 m

(2 m/s^2)
DecelerateSlowing Down

Start

(20 m/s)
Keep

(c) After 45 s from the beginning

Reach Preceding
Car’s Speed (20 m/s)

Keep Moving
Keep

(20 m/s)
Keep

5 m

(d) After 50 s from the beginning

Figure 5.3: The scenario of mobility control test on the car following behavior (part

1)

distance between itself and the front vehicle is 30 m and starts slowing down

to avoid colliding with the front vehicle. Its deceleration is 2 m/s2 and its

desired speed is the front vehicle’s current speed (say, 20 m/s).

4. Figure 5.3d: After 50 s from the beginning, the rear vehicle reaches its desired

speed (say, 20 m/s) and keeps at that speed. Currently, the distance between

the rear vehicle and the front vehicle is 5 m.

5. Figure 5.4a: After 60 s from the beginning, the front vehicle starts speeding

up. Its desired speed is 25 m/s and its acceleration is 1 m/s2. The current

distance between the rear vehicle and the front vehicle is still 5 m. This

73

Accelerating
Start

Moving
Keep

5 m

(20 m/s)
Keep Accelerate

(1 m/s^2)

(a) After 60 s from the beginning

(25 m/s)

Reach
KeepDesired

SpeedMoving
Keep

17.5 m

(20 m/s)
Keep

(b) After 65 s from the beginning

Accelerating
Start

Moving
Keep

(20 m/s)

100 m

(1 m/s^2)
Accelerate Keep

(c) After 81.5 s from the beginning

Reach Preceding
Car’s Speed

(25 m/s)
Keep Moving

Keep

(25 m/s)
Keep

112.5 m

(d) After 86.5 s from the beginning

Figure 5.4: The scenario of mobility control test on the car following behavior (part

2)

speed-up will gradually increase the distance between the two vehicles when

time goes by.

6. Figure 5.4b: After 65 s from the beginning, the front vehicle reaches it desired

speed (say, 25 m/s) and keeps at that speed. Currently, the distance between

the two vehicles is 17.5 m.

7. Figure 5.4c: After 81.5 s from the beginning, the rear vehicle finds that the

distance between itself and the front vehicle is 100 m and starts speeding up.

Its desired speed is the front vehicle’s current speed (say, 25 m/s) and its

acceleration is 1 m/s2.

74

 0 20 40 60 80 100

Elapsed Time (s)

V
el

oc
ity

 (
m

/s
) Front Car

Rear Car

0
5
10
15
20
25
30
0
5
10
15
20
25

Theoretical Front Car Velocity
Controlled Front Car Velocity
Theoretical Rear Car Velocity
Controlled Rear Car Velocity

Figure 5.5: The changes of the tested vehicles’ velocities over time

8. Figure 5.4d: After 86.7 s from the beginning, the rear vehicle reaches its

desired speed (say, 25 m/s) and stays at that speed. Currently, the distance

between the two vehicles is 112.5 m.

Figure 5.5 shows the changes of the front vehicle’s and the rear vehicle’s velocities

over time. The x-axis represents the elapsed time while the y-axis represents the

tested vehicle’s velocity. From this figure, one can first see that the front vehicle’s

theoretical velocity curve and controlled velocity curve are quiet consistent, and

so are the rear vehicle’s. Next, one can see that, for either the front vehicle or

the rear vehicle, the velocity changes are consistent with the vehicular movement

scenario described above. The tiny deviation mentioned in Section 5.1 also exists

here. Except the deviation, the consistency shown in Figure 5.5 shows that the car

agent can correctly control its associated vehicle simulated in the simulation engine

under a car following situation. In other words, the vehicular position update and

retrieval are completed in time during simulation.

75

Chapter 6

Performance Evaluation

In this chapter, we evaluate the simulation performance of NCTUns with respect

to the elapsed time and the physical memory usage of each run-time component,

including the simulation server, the car agent, and the signal agent. Two important

system parameters are investigate: the number of road blocks and the number of

vehicles deployed in a simulated wireless vehicular communication network. The

simulation machine used in the evaluations is a desktop computer equipped with

a P4 2.53 GHz CPU and 1 GB RAM. The total time to be simulated for each

simulation case is set to 500 seconds. Each simulation case is run 10 times to collect

the average results.

The topology of the road network is a 6x6 grid network, as shown in Figure 6.1.

The edge length of each grid is 1 Km. Thus, the simulated field covers an area of 36

Km2. The edge of a grid is a road that is formed by four lanes. Each lane is in turn

formed by a single or multiple road block(s). In the grid road network, a crossroad

is positioned at each intersection.

The car profile settings and distribution shown in Table 6.1 are applied to all

simulation cases. Currently, we use the maximum (allowable) speed of a vehicle

as the desired maximum speed for its driver. The maximum speed settings and

distribution reflect the normal driving speeds (from 40 Km/hr to 80 Km/hr) in a

urban area, where the road network is similar to the used grid topology. The range

76

Road
Block

6 Km

6 Km

1 Km

Road

La
ne

 4

La
ne

 3

La
ne

 2

La
ne

 1

Figure 6.1: The topology of the grid road network used for performance evaluation

Table 6.1: Car profile settings and distribution

Profile Number 1 2 3 4 5

Percentage 10% 35% 35% 15% 5%

Max Speed (m/s) 11 14 17 19 22

Max Acceleration (m/s2) 1.1 1.4 1.7 1.9 2.2

Max Deceleration (m/s2) 3.67 4.67 5.67 6.33 7.33

of the used maximum accelerations reflects the characteristic of a normal vehicle

that can accelerate from 0 Km/hr to its maximum speed in about ten seconds.

Finally, the range of the used maximum decelerations reflects the characteristic of a

normal vehicle that can decelerate from its maximum speed to 0 Km/hr in about

three seconds.

Regarding the network communication scenario, the car agent running on each

vehicle is programmed to broadcast a 1084-byte UDP packet (1056 bytes for the

data payload, 20 bytes for the IP header, and 8 bytes for the UDP header) once per

second to the vehicles located within its wireless transmission range. A simplified

wireless PHY-layer module is used, which uses 250 and 550 meters as the wireless

77

transmission range and interference range, respectively. The used wireless MAC-

layer module is based on the IEEE 802.11b standard. No routing protocol is adopted

because all packet transmissions are based on broadcast.

6.1 Number of Road Blocks

In the first evaluation, in total 200 vehicles are deployed in each of the five simulation

cases. Without changing the topology shown in Figure 6.1, we vary the number of

road blocks on each lane from 1 to 5 in the five cases by purposely using different sizes

of road blocks. Therefore, we deploy 385, 721, 1,057, 1,393, and 1,729 road blocks

in these cases, respectively. The total number of road blocks deployed in a case can

be calculated by the formula: [Number of Crossroad + (Number of Roads ∗

Number of Lanes on each Road ∗ Number of Road Blocks on each Lane)].

Because the size of the area of the road network is kept the same in all cases,

the density of vehicles on the road network is the same in all cases. This keeps

the simulation overhead of broadcasting UDP packets about the same in all cases.

Increasing the number of road blocks will increase the size of the road network

database. This may increase the memory space usage of each car agent as it needs

to store every road block information into its road network database. This may also

increase the number of query in a car agent to searches for the information of a road

block. For example, every time when a vehicle reaches the end of a road block, it

needs to get the information of the new road block ahead of it. Thus, when the

number of road blocks increases, we expect to see increased physical memory usage

for a car agent and increased time for running a simulation (i.e., the elapsed time).

The results shown in Table 6.2 confirm the above conjectures. One sees that the

elapsed time increases slightly as the number of road blocks increases. In addition,

as expected, the physical memory usage of a car agent increases slightly as the num-

ber of road blocks increases. The slight performance change between two adjacent

cases indicates that the number of road block has little impact on the simulation

performance of NCTUns.

78

Table 6.2: Elapsed time and physical memory usage in each case with different

number of road blocks

Simulation Settings

Number of Vehicles 200

Number of Crossroads 49

Number of Roads 84

Number of Lanes on each Road 4

Number of Road Blocks on each Lane 1 2 3 4 5

Total Number of Road Blocks 385 721 1,057 1,393 1,729

Simulation Results

Elapsed Time (min) 17.3 20.1 20.6 21.3 21.9

Physical Memory Usage of

the Simulation Server (MB) 15.22 15.85 15.87 15.85 15.85

Physical Memory Usage of

a Car Agent (MB) 2.14 2.20 2.27 2.34 2.75

Physical Memory Usage of

a Signal Agent (MB) 1.08 1.08 1.08 1.08 1.08

6.2 Number of Vehicles

In the second evaluation, in total 1,729 road blocks are deployed in each of the five

simulation cases. We deploy 250, 350, 450, 550, 650, 750, and 850 vehicles in these

cases, respectively.

Because the total number of road blocks is the same in all cases, a car agent’s

run-time overhead on the road network database, such as the number of queries to

the database and the memory consumption for storing the database, is the same

in all cases. Increasing the number of vehicles will increase the vehicle density on

the road network. Therefore, the simulation server needs to spend more time on

broadcasting and receiving more UDP packets. Also, the simulation server needs

to consume more memory space for storing these UDP packets during simulation.

79

Table 6.3: Elapsed time and physical memory usage in each case with different

number of vehicles

Simulation Settings

Number of Road Blocks 1,729

Number of Vehicles 250 350 450 550 650 750 850

Simulation Results

Elapsed Time (min) 55.8 108.7 173.2 244.6 341.9 456.1 525.3

Ratio of Simulated Time

to Elapsed Time 1:7 1:13 1:21 1:29 1:41 1:55 1:63

Physical Memory Usage of

the Simulation Server (MB) 29 37 46 57 70 85 110

Physical Memory Usage of

a Car Agent (MB) 2.75 2.75 2.75 2.75 2.75 2.75 2.75

Physical Memory Usage of

a Signal Agent (MB) 1.08 1.08 1.08 1.08 1.08 1.08 1.08

Thus, it is expected to see increased time for running the simulation and increased

physical memory usage for the simulation server.

The results shown in Table 6.3 confirm the above conjectures. One sees that the

elapsed time and the physical memory usage of the simulation server increase with

the number of vehicles deployed on the road network. In addition, the case with

850 vehicles requires about 525 minutes to complete the 500-second simulation. The

ratio of simulated time to elapsed time is about 1:63. In other words, in this case,

the advance of the simulated virtual time is 63 times slower than that of the real

time.

80

Chapter 7

Future Work

In order to increase the usability of NCTUns in terms of the support for wireless

vehicular communication network, several improvements are still underway and will

be available in the future releases.

• Traffic Signal

Currently, the only supported traffic signal type is traffic light. Other different

types of traffic signals should also be provided to support more realistic road

network environments, such as the stop sign and speed limit sign. This im-

provement includes not only the GUI functionalities for setting up these traffic

signals in a road network, but also the car agent’s driving logic that has to

react to these newly supported traffic signals.

• Centralized Traffic Light Control

Regarding the current implementation of the signal agent that controls a group

of traffic lights, a signal agent does not cooperate with other signal agents

during simulation. However, in the real life, the centralized traffic light control

is common, especially on those roads with heavy traffic load. The goal of the

centralized traffic light control is to control the signal statuses of a set of traffic

light groups to efficiently direct heavy traffic flows. To support this kind of

control, NCTUns may involve a new communication channel among signal

81

agents or a new type of signal agent that controls a set of traffic light groups

instead of just one group. Besides, more complex control mechanism has to

be provided for users to specify their desired operations on the traffic light

control.

• Road Infrastructure

Currently, only some fundamental road types are supported for users to con-

struct road networks. Although many road network environments can be

constructed by these fundamental roads, other road infrastructures are still

required for more accurate road network representation and reflecting the real-

world environments, such as the circular roads, the left-turn dedicated lane at

intersections, the toll stations on freeways, and so on. These road infrastruc-

tures are required because they affect the vehicular movement during simu-

lation. With more complex road networks being supported, the microscopic

vehicle mobility model also has to be improved to support new road network

environments. For example, when approaching a toll station on a freeway and

finding that there is a long waiting line ahead, some drivers not only slow

down their vehicles but also change to an adjacent lane with a shorter waiting

line. It is clear that a more intelligent microscopic vehicle mobility model is

required to simulate these behaviors.

• Platoon of Vehicle

According to the studies published in [36] and [37], one finding shows that

in VANET a viable multi-hop routing path usually has limited length in hop

count (say, less than ten hops). The result indicates that some VANET appli-

cations are only viable when they are applied on the moving vehicles always

close to each other. A platoon of vehicle fits this requirement. Thus, the sim-

ulation of platoon movement is required. Within a platoon, a vehicle has to

follow its front vehicle (if any) and also wait its rear vehicle (if any). Besides,

all vehicles belonging to the same platoon have to move along the same path.

82

The support of the platoon simulation can provide those platoon applications

a very useful testing environment.

• Network Protocol and Channel Model

As of writing this disseration, the IEEE 802.11p/1609 communication technol-

ogy proposed for wireless access in vehicular environments has been supported

in the NCTUns platform. Besides, the IEEE 802.16e communication standard

proposed for mobile WiMAX environments has also been supported. Based

on the support of vehicular communication protocols, we have conducts some

research and the results have been published [38, 39]. Currently, the IEEE

802.16j standard proposed for multi-hop relay in WiMAX environments is un-

der development, including the implementation of new MAC- and PHY-layer

modules. The requirements for emerging network protocols and wireless chan-

nel models are endless. NCTUns will keep updating its simulation capabilities

with new communication technologies.

• Module-based Vehicular Mobility Control

As that shown in Figure 4.5, a car agent is an independent user space pro-

cess. As the number of vehicles deployed in the road network increases, the

number of car agent processes also increases during simulation. Thus, during

simulation the CPU context switching between the simulation server process

and the car agent processes becomes more frequent. This is one consider-

able overhead with respect to the simulation speed. Besides, the increasing

frequency of database accessing from the car agents to the command server

results in more communication overhead. This considerable overhead includes

the request/reply data copy between the user space and the kernel space and

the TCP protocol operations to deliver the request/reply packets.

In order to eliminate the overhead, a new design to replace the car agent is

proposed, called the module-based vehicular mobility control. The concept of

the new design is to transplant a car agent into a protocol module located in

83

MNode

FIFO

ARP

GOD

Interface

MAC80211

WTCPDUMP

Wphy

CM

Tunnel 1 Tunnel 2

Socket
Packet
Network

Socket
Packet

NetworkMicroscopic
Mobility
Model

Microscopic
Mobility
Model

ARP

FIFO

MNode

GOD

Interface

MAC80211

WTCPDUMP

Wphy

CM

IP

Information
Database

Car
Information

Database

SignalCommand
Server

TCP/UDP

Host 1 Host 2

Simulation Server

Kernel Space

User Space

Vehicular Mobility Vehicular Mobility

Virtual Time Based
Network Packet

Transmission Path

Intra−process
Function Call

Figure 7.1: The module-based vehicular mobility control

the simulation server. In Figure 7.1, one can see that no car agent exists in

this new architecture. Instead, a new type of protocol module, called Vehicular

Mobility module, is placed on the top of each mobile host’s Interface module.

Comparing Figure 7.1 with Figure 4.5, the virtual time based network packet

transmission path is almost the same except that the packet sender/receiver

is now a protocol module instead of a car agent process. In addition, no real

time based request-reply communication is needed. Instead, it is replaced with

the intra-process function call within the simulation server.

Using the module-based design, we can expect significant speed-up on the

84

simulation speed. Besides, this design can be applied on a signal agent. In

this case, a signal agent is transplanted into a protocol module, called Signal

module, located in the simulation server. The module-based signal control

can facilitate the above-mentioned centralized traffic light control because it is

convenient to synchronize a set of traffic light groups when they are all located

within the simulation server process.

Because the simulation server process does not represent any simulated node,

the node identification number in its corresponding kernel-space task struct is

zero. As stated in Section 3.5.5, when a socket is opened within the simulation

server process, the node identification number in the socket’s corresponding

kernel-space sock is also zero. In other words, the kernel does not recognize the

simulation server as a virtual time based NCTUns process. Thus, by default,

any socket opened in the simulation server process is based on the real time.

However, in Figure 7.1, the network packet sockets should be based on the

virtual time. To solve this problem, the simulation server should masquerade

as if it belongs to some simulated node before opening a network packet socket.

For example, in Figure 7.1, before the simulation server opens the network

packet socket in Mobile Host 1’s Vehicular Mobility module, it first calls a

customized system call to set its tasks struct’s node identification number to

Mobile Host 1’s node identification number. The system call is the same as

that mentioned in Section 3.5.4. When the network packet socket is opened,

its corresponding sock’s node identification number is equal to Mobile Host

1’s node identification number. The kernel then treats it as a NCTUns socket

and operates it based on the virtual time. After the socket is opened, the

simulation server has to call the same system call to set its tasks struct’s node

identification number back to zero.

In addition, the protocol module programming is a bit different from the in-

dependent process programming. For example, a process can call a blocking

read() or write() system call to read from or write to an opened socket, but

85

this kind of system call can not be used within a protocol module. This is

because when a blocking system call is called within a protocol module, the

whole simulation server may be blocked on that socket and be put to sleep

by the kernel. The blocked socket may be waiting for some incoming data

that is supposed to be sent from another socket that is also opened in another

protocol module. This results in a dead lock situation. Another example is

that calling the sleep() system call, based on the real time, is useless within a

protocol module. Because when the whole simulation server is put to sleep by

the kernel, no one is responsible to advance the virtual time. Thus, when the

simulation server wakes up, the simulated virtual time is still the same as that

when it was put to sleep. Yet another example is that no infinite loop can be

used within a protocol module. The infinite loop makes the whole simulation

engine get stuck in the module forever.

The above-mentioned forbidden usages of some function calls or programming

syntax can be solved by using some replacement. For example, one can use the

non-blocking system calls to replace the blocking system calls. One can use

the protocol module event or timer, mentioned in Section 3.5.2, to replace the

sleep() system call. In addition, one can also use the protocol module timer to

imitate the infinite loop. Although in some case the imitation of the agent’s

processing procedure can not be exactly the same as that of the agent process,

we think these alternative implementations are still acceptable for obtaining

significant simulation speed improvement.

86

Chapter 8

Conclusion

In this dissertation, we present a software simulator, called NCTUns. NCTUns is an

open source tool that integrates communication/network simulation with road/traffic

simulation for wireless vehicular communication network research.

We first introduce the original architecture of NCTUns, which is designed to

support communication protocol simulations. In addition to the NCTUns’ major

components and the execution procedure of these components, several design and

implementation issues are illustrated, including the kernel re-entering simulation

methodology, the specific routing scheme, the IP address translation, the discrete-

event simulation engine, and the port number translation.

Based on the original architecture, we then present the extended architecture

of NCTUns, which is developed to further support vehicular network simulations.

The design and implementation issues on these extensions are illustrated, including

the GUI extension, the simulation server extension, the car agent, and the signal

agent. Besides, we also explain the utilities provided to facilitate the operations of

conducting simulations, such as road network construction, vehicle deployment, car

profile setting, and network protocol setting.

Next, we test the vehicular mobility control with respect to the reaction to traffic

light signal and the car following behavior. Our tests show that the simulated vehic-

ular moving behavior is consistent with that derived from the theoretical formulas.

87

This confirms that the information update between a car agent and the simulation

engine or between a signal agent and the simulation engine are completed in time.

Finally, we evaluate the simulation speed and the physical memory usage under

different simulation scales. Our evaluations shows that the increase of the number of

deployed roads does not affects the simulation speed significantly, while the increase

of the number of deployed vehicles does. The simulation results show that in the

case with 850 vehicles, the advance of the simulated virtual time is 63 times slower

than the advance of the real time.

Since NCTUns was first released in 2002, we have continually updated its capabil-

ities to support new communication protocols and more user-friendly GUI facilities.

Besides, we have kept maintaining the NCTUns forum [41] to interact with NCTUns

users, such as answering the questions about the usage of NCTUns, inspecting the

reported bugs and fixing them if they do exist, etc. As of May 25, 2009, according

to the download user database, more than 14,603 people from 132 countries have

registered at the NCTUns Web site [9] and downloaded it to use. Some of these

users also have published their research results on international journal or conference

papers [40]. The above achievement shows that NCTUns has become a reliable and

useful research tool for many researchers around the world.

Regarding the support of the vehicular network simulation, we have expanded

the usability of NCTUns to the wide-ranging ITS research fields. After the capa-

bilities of the vehicular network simulation were released, several users have con-

tacted us asking the usage and functionalities of the NCTUns vehicular network

simulation. The users’ requirements and feedback give us stronger motivation and

practical developing directions to keep improving NCTUns. We believe that in the

future NCTUns will be more and more useful for users to conduct wireless vehicular

communication network research.

88

Bibliography

[1] “IEEE 802.11p/D3.0: Draft Standard for Information Technology - Telecommu-

nications and information exchange between systems - Local and metropolitan

are networks - Specific requirements - Part 11, Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) specifications,” IEEE Standards

Activities Department, July 2007.

[2] “IEEE 1609.1 Trial - Use Standard for Wireless Accesses in Vehicular Envi-

ronments (WAVE) - Resource Manager,” IEEE Vehicular Technology Society,

October 2006.

[3] “IEEE 1609.2 Trial - Use Standard for Wireless Accesses in Vehicular Envi-

ronments (WAVE) - Security Services for Applications and Management Mes-

sages,” IEEE Vehicular Technology Society, October 2006.

[4] “IEEE 1609.3 Trial - Use Standard for Wireless Accesses in Vehicular Envi-

ronments (WAVE) - Networking Services” IEEE Vehicular Technology Society,

October 2006.

[5] “IEEE 1609.4 Trial - Use Standard for Wireless Accesses in Vehicular Envi-

ronments (WAVE) - Multi-channel Operation,” IEEE Vehicular Technology

Society, October 2006.

[6] “IEEE 802.16e-2005 - Part 16: Air Interface for Fixed and Mobile Broadband

Wireless Access Systems - Amendment 2: Physical and Medium Access Control

Layers for Combined Fixed and Mobile Operation in Licensed Bands,” IEEE

Standard for Local and metropolitan area networks, February 2006.

89

[7] S.Y. Wang, C.L. Chou, C.H. Huang, C.C. Hwang, Z.M. Yang, C.C. Chiou,

and C.C. Lin, “The Design and Implementation of the NCTUns 1.0 Network

Simulator,” Computer Networks, Vol. 42, Issue 2, June 2003, pp. 175-197.

[8] S.Y. Wang, C.L. Chou, C.C. Lin, “The Design and Implementation of the NC-

TUns Network Simulation Engine,” Simulation Modelling Practice and Theory,

15 (2007) 57-81.

[9] NCTUns Network Simulator and Emulator, available for download at http:

//NSL.csie.nctu.edu.tw/nctuns.html.

[10] The Network Simulator - ns-2, available at http://www.isi.edu/nsnam/ns.

[11] The QualNet software, available at http://www.scalable-networks.com/.

[12] The OPNET modeler, available at http://www.opnet.com/.

[13] R. Barr, “Java in Simulation Time / Scalable Wireless Ad hoc Network Simu-

lator,” available at http://jist.ece.cornell.edu.

[14] The ptv simulation - VISSIM, whose reference link is http://www.english.

ptv.de/cgi-bin/traffic/traf_vissim.pl.

[15] The TransModeler traffic simulator, whose reference link is http://www.

caliper.com/transmodeler/.

[16] The SUMO traffic simulation package, available at http://sumo.

sourceforge.net/index.shtml.

[17] A real-time freeway traffic simulator - FreeSim, available at http://www.

freewaysimulator.com.

[18] A microscopic traffic simulation model - CORSIM, whose reference link is http:

//www-mctrans.ce.ufl.edu/featured/TSIS/Version5/corsim.htm.

90

[19] H. Wu, J. Lee, M. Hunter, R. M. Fujimoto, R. L. Guensler, and J. Ko, “Simu-

lated Vehicle-to-Vehicle Message Propagation Efficiency on Atlanta’s I-75 Cor-

ridor,” in Transportation Research Board Conference Proceedings, Washington

D.C., 2005.

[20] Multiple Simulator Interlinking Environment (MSIE) for C2CC in VANETs,

available at http://www.cn.uni-duesseldorf.de/projects/MSIE.

[21] C. Schroth, F. Dotzer, T. Kosch, B. Ostermaier, and M. Strassberger, “Sim-

ulating the traffic effects of vehicle-to-vehicle messaging systems,” in Proc. of

the 5th International Conference on ITS Telecommunications, Brest, France,

2005.

[22] The TraNS (Traffic and Network Simulation Environment), available at http:

//wiki.epfl.ch/trans.

[23] B. Khorashadi, A. Chen, D. Ghosal, C.N. Chuah, and M. Zhang, “Impact of

Transmission Power on the Performance of UDP in Vehicular Ad Hoc Net-

works,” ICC 2007. IEEE International Conference on Communications.

[24] R. Vuyyuru and K. Oguchi, “Vehicle-to-Vehicle Ad Hoc Communication Pro-

tocol Evaluation using Simulation Framework,” in Proc. of the 4th IEEE/IFIP

Wireless On demand Networks and Services, pp. 100-106, Austria 2007.

[25] L. Bononi, M. Di Felice, M. Bertini, E. Croci, “Parallel and Distributed Sim-

ulation of Wireless Vehicular Ad Hoc Networks,” in proc. of the ACM/IEEE

International Symposium on Modeling, Analysis and Simulation of Wireless

and Mobile Systems (MSWiM), Torresmolinos, Spain, 2006.

[26] C. Gorgorin, V. Gradinescu, R. Diaconescu, V. Cristea, L. Ifode, “An Integrated

Vehicular and Network Simulator for Vehicular Ad-Hoc Networks,” in Proc. of

the European Simulation and Modelling Conference (ESM), Bonn, Germany,

May 2006.

91

[27] Jungkeun Yoon, Mingyan Liu, and Brian Noble, “Random Waypoint Consid-

ered Harmful,” IEEE INFOCOM 2003, March 2003.

[28] S.Y. Wang, H.T. Kung, “A simple methodology for constructing extensible and

high-fidelity TCP/IP network simulators, IEEE INFOCOM’99,” March 21-25,

New York, USA, 1999.

[29] S.Y. Wang, H.T. Kung, “A New Methodology for Easily Constructing Exten-

sible and High-Fidelity TCP/IP Network Simulators,” Computer Networks 40

(2) (2002) 257-278.

[30] Harvard TCP/IP network simulator 1.0, available at http://www.eecs.

harvard.edu/networking/simulator.html.

[31] Hubert Zimmermann, “OSI Reference Model - The ISO Model of Architecture

for Open Systems Interconnection,” IEEE Transactions on Communications,

Vol. 28, No. 4, April 1980, pp. 425 - 432.

[32] S.Y. Wang, C.L. Chou, Y.H. Chiu, Y.S. Tseng, M.S. Hsu, Y.W. Cheng, W.L.

Liu, and T.W. Ho, “NCTUns 4.0: An Integrated Simulation Platform for Ve-

hicular Traffic, Communication, and Network Researches,” 1st IEEE WiVec

2007 (International Symposium on Wireless Vehicular Communications, colo-

cated with VTC 2007 Fall), September 30 - October 1, 2007, Baltimore, MD,

USA.

[33] S.Y. Wang and C.L. Chou, “NCTUns Simulator for Wireless Vehicular Ad

Hoc Network Research,” a chapter of the “Ad Hoc Networks: New Research”

book, 2008, (ISBN: 978-1-60456-895-0, published by Nova Science Publishers)

[34] S.Y. Wang and C.L. Chou, “NCTUns Tool for Wireless Vehicular Communi-

cation Networks Research,” Simulation Modelling Practice and Theory,” (ac-

cepted and to appear) [SCI]

[35] “ESRI Shapefile Technical Description,” An ESRI white paper, July 1998.

92

[36] S.Y. Wang, C.L. Chou, “On the characteristics of Information Dissemination

Paths in Vehicular Ad Hoc Networks on the Move,” International Journal of

Computer Systems Science and Engineering, Vol. 23, No. 5, 2008 (SCI)

[37] S.Y. Wang, C.L. Chou, and C.C. Lin, “On the Characteristics of Routing

Paths and the Performance of Routing Protocols in Vehicle-Formed Mobile

Ad Hoc Networks on Highways,” Wiley Wireless Communications and Mobile

Computing (accepted and to appear, already published online on March 24,

2009) (SCI)

[38] S.Y. Wang, H.L. Chao, K.C. Liu, T.W. He, C.C. Lin and C.L. Chou, “Eval-

uating and Improving the TCP/UDP Performances of IEEE 802.11(p)/1609

Networks,” IEEE ISCC 2008 (IEEE Symposium on Computers and Communi-

cations 2008), July 6-9, 2008, Marrakech, Morocco.

[39] S.Y. Wang, C.L. Chou, K.C. Liu, T.W. Ho, W.J. Hung, C.F. Huang, M.S.

Hsu, H.Y. Chen, and C.C. Lin, “Improving the Channel Utilization of IEEE

802.11p/1609 Networks,” IEEE WCNC 2009 (Wireless Communications and

Networking Conference), April 5-8, 2009, Budapest, Hungary.

[40] The collection of the NCTUns-based papers is available at http://nsl.csie.

nctu.edu.tw/NCTUnsReferences/.

[41] The NCTUns forum is located at http://nsl10.csie.nctu.edu.tw/phpBB/.

93

