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摘 要       

在高複雜度下，不同的布林函數難度與偽亂數性是等價的。然而，

在 NP 複雜度下，它們之間的關係是很不清楚的。在本論文之前半部，

我們建立 mild-hardness，average-case hardness 與偽亂數性在 NP 之下的

等價性，並且說明上述概念與 worst-case hardness 之分野。我們主要有

下列的結果：1、任何強黑箱式地從 worst-case hardness 加強至

average-case hardness 不可能在 NP 下實踐。2、任何強黑箱式地從

worst-case hardness加強至 average-case hardness需要多量額外之消息元

(advice bits)。3、如能在 NP 複雜度下，以弱黑箱式達成從 worst-case 
hardness 加強至 average-case hardness 之難度加強法，其意含一 NP 問

題類之 average-case hardness。4、改進 Healy 等人之 NP 問題類之難度

加強法之結果。在本論文之第二部份，我們探討難核構造之問題。我

們主要有三項結果：1、任何強式黑箱式難核構造法均需要大量之詢問

元(query bits)。2、任何弱式黑箱式難核構造法均需多量之消息元(advice 
bits)。3、弱式黑箱式難核構造法不可能在 AC^0[p]下達成。 
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Abstract

It is well-known that hardness and pseudorandomness are equivalent in high

complexity class such as exponential time [NW94]. However, the relationship

between various degrees of hardness and pseudorandomness is not clear in NP.

In the first part of thesis, we widen the gap between worse-case hardness and

average-case hardness while establishing the equivalence between average-

case hardness and pseudorandomness in NP.

By using the method developed in [IL90] and [NW94], one can build

the equivalence between average-case hardness and pseudorandomness within

NP. On the other hand, the interplay between worse-case hardness and

average-case hardness is closely related to the so-called hardness amplification

which is the task of transforming a hard function f : {0, 1}n → {0, 1}, with

which any small circuit disagrees on δ fraction of the input, into a harder

function f ′, with which any small circuit disagrees on ε fraction of the input

where ε > δ. To separate worse-case hardness and average-case hardness

in NP, we study the complexity of hardness amplification procedures. Our

results include the following.

• No strongly black-box hardness amplification from hardness (1− δ)/2

to (1 − δk)/2 can be realized in ATIME(O(1), ko(1)). As a result, for

k = nω(1), such hardness amplification cannot be carried out in NP.

Therefore, such hardness amplification in general requires a high com-

plexity.

• We show that even without any restriction on the complexity of the

amplification procedure, such a strongly black-box hardness amplifica-
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tion must be inherently non-uniform in the following sense. To guar-

antee the hardness of the resulting function f ′, even against uniform

machines, one has to start with a function f which is hard against

non-uniform algorithms with Ω(k log(1/δ)) bits of advice.

• From worst-case hardness to average-case hardness, we consider a weaker

class of hardness amplifications called weakly black-box hardness am-

plification. First, we show that if an amplification procedure in NP can

amplify hardness beyond a polynomial factor, then it must embed in

itself a hard function computable in NP. As a result, it is impossible

to have such a hardness amplification with hardness measured against

NP/poly.

• We consider the task of transforming non-negligible hardness to average-

case hardness for the complexity class NP. We show that if there is a

balanced function in NP such that any circuit of size s(n) = 2Ω(n) fails

to compute it on a 1/poly(n) fraction of inputs, then there is a func-

tion in NP such that any circuit of size s′(n) fails to compute it on a

1/2−1/s′(n) fraction of inputs, with s′(n) = 2Ω(n2/3). This improves the

result of Healy et al. (STOC’04), which only achieves s′(n) = 2Ω(n1/2)

for the case with s(n) = 2Ω(n).

In the second part of this thesis, we study a fundamental result of Impagli-

azzo (FOCS’95) known as the hard-core set lemma. Consider any function

f : {0, 1}n → {0, 1} which is “mildly-hard”, in the sense that any circuit of

size s must disagree with f on some δ fraction of inputs. Then the hard-core

lemma says that f must have a hard-core set H of density δ on which it is

“extremely hard”, in the sense that any circuit of size s′ = O(s/( 1
ε2 log( 1

εδ
)))

must disagree with f on at least (1− ε)/2 fraction of inputs from H.

There are three issues of the lemma which we would like to address: the

loss of circuit size, the need of non-uniformity, and its inapplicability to a low

complexity class. We introduce two models of hard-core set constructions,
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a strongly black-box one and a weakly black-box one, and show that those

issues are unavoidable in such models.

• We show that in any strongly black-box construction, one can only

prove the hardness of a hard-core set for smaller circuits of size at most

s′ = O(s/( 1
ε2 log 1

δ
)).

• We show that any weakly black-box construction must be inherently

non-uniform — to have a hard-core set for a class G of functions, we

need to start from the assumption that f is hard against a non-uniform

complexity class with Ω(1
ε
log |G|) bits of advice.

• We show that weakly black-box constructions in general cannot be

realized in a low-level complexity class such as AC0[p] — the assumption

that f is hard for AC0[p] is not sufficient to guarantee the existence of

a hard-core set.
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Chapter 1

Introduction

1.1 Background

Understanding the power of randomness in computation is one of the

central topics in theoretical computer science. A major open question is the

BPP versus P question, asking whether or not all randomized polynomial-

time algorithms can be converted into deterministic polynomial-time ones. A

standard approach to derandomizing BPP relies on constructing the so-called

pseudorandom generators (PRG), which stretch a short random seed into a

long pseudorandom string that looks random to circuits of polynomial size.

So far, all known constructions of PRG are based on unproven assumptions of

the nature that certain functions are hard to compute. The idea of converting

hardness into pseudorandomness first appeared in the work of Blum and

Micali [BM82] and Yao [Yao82]. This was made more explicit by Nisan and

Wigderson [NW94], who showed how to construct a PRG based on a Boolean

function which is hard in an average-case sense. To get a stronger result,

one would like to relax the hardness assumption, and a series of research

[NW94, BFNW93, Im95] then worked on how to transform a function into a

harder one. Finally, Impagliazzo and Wigderson [IW97] were able to convert

a function in E that is hard in worst case into one that is hard in average

case, both against circuits of exponential size. As a result, they obtained

17



18 CHAPTER 1. INTRODUCTION

BPP = P under the assumption that some function in E cannot be computed

by a circuit of sub-exponential size. Simpler proofs and better trade-offs have

been obtained since then [STV01, ISW00, SU01, Uma03].

1.2 Hardness Amplification

Note that hardness amplification is the major step in derandomizing BPP in

the research discussed above, as the step from an average-case hard function

to a PRG is relatively simple and has low complexity. We say that a Boolean

function f is β–hard (or has hardness β) against circuits of size s if any such

circuit attempting to compute f must make errors on at least β fraction

of the input. The error bound β is the main parameter characterizing the

hardness; the size bound s also reflects the hardness, but it plays a lesser role

in our study. Formally, the task of hardness amplification is to transform a

function f : {0, 1}n → {0, 1} which is β–hard against circuits of size s(n)

into a function f ′ : {0, 1}m → {0, 1} which is β′–hard against circuits of size

s′(m), with β < β′ and s′(m) close to (usually slightly smaller than) s(n).

Normally, one would like to have m as close to n as possible, preferably with

m = poly(n), so that one could have s′(m) close to s(m); otherwise, one

would only be able to have the hardness of f ′ against much smaller circuits.

Furthermore, one would like f ′ to stay in the same complexity class of f , so

that one could establish the relation among hardness assumptions within the

same complexity class.

In this thesis, we will consider the following issues from those works on

hardness amplification.

The complexity of the amplification procedure: All previous amplifi-

cation procedures going from worst-case hardness (β = 2−n) to average-case

hardness (β′ = 1/2−2−Ω(m)) need exponential time [BFNW93, IW97, STV01]

(or slightly better, in linear space [KM02] or ⊕ATIME(O(1), n) [Vio04]). As

a result, such a hardness amplification is only known for functions in high
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complexity classes. Then a natural question is: can it be done for func-

tions in lower complexity classes? For example, given a function in NP

which is worst-case hard, can we transform it into another function in NP

which is average-case hard? Only for some range of hardness (e.g. start-

ing from mild hardness, with β = 1/poly(n)) is this known to be possible

[Yao82, NW94, IW97, OD02, HVV04].

Non-uniformity of hardness amplification: Hardness amplification typ-

ically involves non-uniformity in the sense that hardness is usually measured

against non-uniform circuits. In fact, one usually needs to start from a func-

tion which is hard against non-uniform circuits, even if one only wants to

produce a function which is hard against uniform Turing machines. This

is why most results on hardness amplification are based on non-uniform as-

sumptions.

1.3 Hard-core set construction

One fundamental notion in complexity theory is the hardness of a function.

Informally speaking, a function f is hard if any circuit of small size must fail

to compute it correctly on some inputs. More precisely, we can characterize

the hardness by parameters δ and s, and say that f is δ-hard (or has hardness

δ) for size s if any circuit of size s must fail to compute f correctly on at

least δ fraction of inputs. One may wonder if the hardness of a function

basically comes from a subset of density about δ. So the question is: given

any δ-hard function for size s, is there always a subset of inputs of density

about δ on which f is extremely hard for circuits of size about s? A seminal

result of Impagliazzo [Im95] answers this affirmatively. He showed that any

δ-hard function for size s indeed has a subset H of the inputs with density

δ on which f has hardness (1− ε)/2 for circuits of size s′ = O(s/( 1
ε2 log 1

δε
)).

Such a set H is called an ε-hard-core set for size s′.

In addition to answering a very basic question in complexity theory, the
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hard-core set lemma has found applications in learning theory [KS03] and

cryptography [Hol05], and has become an important tool in the study of

pseudo-randomness. It can be used to provide an alternative proof of Yao’s

celebrated XOR Lemma [Im95], or to construct pseudo-random generator

directly from a mildly-hard function, bypassing the XOR lemma [STV01].

Recently, it has become a key ingredient in the study of hardness ampli-

fication for functions in NP [OD02, Tre03, HVV04, Tre05]. In spite of its

importance, there are some issues of the hard-core lemma which are still not

well understood and have become the bottlenecks in some applications. This

calls for a more thorough study of the lemma. In this thesis, we consider the

following issues concerning hard-core set constructions.

Loss of circuit size: Note that in Impagliazzo’s result, the hardness on

the hard-core set, although increased, is actually measured against circuits

of a smaller size s′, as opposed to the initial size s. This loss of circuit size

was later reduced by Klivans and Servedio [KS03] who showed the existence

an ε-hard-core set of density δ/2 for size s′ = O(s/( 1
ε2 log 1

δ
)). Then a natural

question is: can the size s′ be further improved to, say, Ω(s)?

Non-uniformity of hard-core set construction: Note that even when

one only wants to have a hard-core set which is hard for uniform algorithms,

one still needs to start from a function which is hard for non-uniform circuits,

or algorithms supplied with advices. In fact, this becomes the bottleneck in

Trevisan’s work of uniform hardness amplification for functions in NP [Tre03,

Tre05], in which he showed how to amplify hardness from 1 − 1/poly(n) to

(1 − ε)/2 against BPP algorithms, with ε = 1/ logc n for a small constant

c < 1. What prevents him from reaching a larger hardness, say with ε =

1/n, is the large number (proportional to 1/ε2) of advice bits needed by

the hard-core set lemma. On the other hand, it is known that hardness

amplification for functions in a higher complexity class, such as EXP, only

requires O(log(1/ε)) bits of advice [STV01]. So a natural question is: can

the number of advice bits needed in the hard-core set lemma be reduced?
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The complexity of decoding algorithm of hard-core set construc-

tion: The last issue is that the lemma currently does not apply to a low-level

complexity class such as AC0[p]. That is, one needs to start from the assump-

tion that f is hard for a complexity class which is high enough to include

the majority function. Thus, an interesting question is: for any function f

which is δ-hard for AC0[p], does it always have an ε-hard-core set for AC0[p]?

All these three issues seem inherent in Impagliazzo’s proof and they look

difficult to resolve. One may wonder that perhaps they are indeed impossible

to avoid. However, proving such negative results appears to require proving

circuit lower bounds, which seems to be far beyond our reach. Therefore,

we would like to identify general and reasonable models for the hard-core set

lemma in which such negative results can actually be proven.

1.4 Black-Box Models

Black-Box Hardness Amplification. In light of the discussion above,

one would hope to show that some hardness amplification or hard-core set

construction are indeed impossible. However, it is not clear what this means,

especially given the possibility (in which many people believe) that average-

case hard functions may indeed exist.

One important type of hardness amplification is called strongly black-box

hardness amplification. First, the initial function f is only given as a black-

box to construct the new function f ′. That is, there is an oracle Turing

machine Amp such that f ′ = Ampf , so f ′ only uses f as an oracle and

does not depend on the internal structure of f . Second, the hardness of the

new function f ′ is proved in a black-box way. That is, there is an oracle

Turing machine Dec, such that if some algorithm A computes f ′ correctly

on β′ fraction of the input, then Dec using A as an oracle can compute f

correctly on β fraction of the input. Again, Dec only uses A as an oracle and

does not depend on the internal structure of A. We call Amp the encoding

procedure and Dec the decoding procedure. In fact, almost all previous
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constructions of hardness amplification are done in a black-box way, so it is

nice to establish impossibility results for such type of hardness amplification.

One relaxation is the so-called weakly black-box hardness amplification,

in which the hardness proof is no longer required to be done in a strongly

black-box way (dropping the requirement of having a decoding procedure).

Precisely, its hardness proof is only to show the following statement: if there

is an efficient adversary A computing f̄ correctly on at least (1−ε̄)-fraction of

inputs, then there exists an efficient adversary B which computes the initial

function f on at least (1 − ε) fraction of inputs. Note that the analysis is

arbitrary and hence is not necessarily restricted in a black-box way. In this

sense, this weakly model is a natural relaxation of strongly black-box model.

The difference between strongly and weakly black-box models is remarkable

especially when an average-case hard function indeed exists. A hardness

proof of the weakly black-box model may just to show that the resulting

function f̄ is close to that average-case hard one. Hence this sufficiently

fulfills the statement of hardness proof. However, this proof approach is not

allowed for the strongly black-box model. Again, as we will see, the weakly

black-box hardness amplification also has its limitation when it is unable to

embed any average-case (or mildly) hard function in itself.

Black-Box Hard-Core Set Constructions. The hard-core set lemma,

when stated in the contrapositive way, basically says that given any function

f with no hard-core set for small circuits (on any such subset H, there is a

small circuit CH with a good correlation with f), one can find a small circuit

C which is close to f . A closer look at Impagliazzo’s proof of hard-core set

lemma shows that the circuit C is simply the weighted majority on a small

subset of those circuits CH ’s. In fact, one can replace the class of small

circuits CH ’s by any class G of functions, and Impagliazzo’s proof shows that

given any f with no hard-core set for functions in G, one can construct a

function C close to f by taking a weighted majority on a small subset of

functions in G. We call this type of argument a hard-core set construction,
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and note that C only uses those functions in G as an oracle (or a black box).

This motivates us to define our first model of hard-core set constructions

as follows. We say that a (non-uniform) oracle algorithm Dec(·) with a

decision function D : {0, 1}q → {0, 1} realizes a strongly black-box (δ, ε, k)-

construction (of hard-core set) if the following holds. First, Dec will be given

a family G = {g1, · · · , gk} of functions as oracle together with a multi-set

I = {i1, . . . , iq} as advice, and for any input x, it will query the functions

gi1 , · · · , giq , all at x, and then output D(gi1(x), · · · , giq(x)). Moreover, it

satisfies the property that for any G and for any f which has no ε-hard-core

set of density Ω(δ) for G, there exists a multi-set I of size q such that the

function DecG,I is δ-close to f (DecG,I(x) 6= f(x) for at most δ fraction of

x). We call q the query complexity of Dec, and observe that it relates to the

loss of circuit size in the hard-core set lemma, with s′ = O(s/q). Note that

the known hard-core set constructions [Im95, KS03] are in fact done in such

a strongly black-box way.

Our second model of hard-core set constructions generalizes the first one

by removing the constraint on how the algorithm Dec works; the algorithm

Dec and its advice now are allowed to be of arbitrary form. We say that

a (non-uniform) oracle algorithm Dec(·) realizes a weakly black-box (δ, ε, k)-

construction (of hard-core set) if the following holds. For any family G of

k functions and for any function f which has no ε-hard-core set of density

Ω(δ) for G, there exists an advice string α such that DecG,α is δ-close to f .

1.5 Our results and Organization of this the-

sis

Chapter 2 - Strongly Black-Box Hardness Amplification. We show

that hardness amplification from hardness (1 − δ)/2 to hardness (1 − δk)/2

cannot be carried out in some black-box way by a circuit of depth d and

size 2o(k1/d) or by a nondeterministic circuit of size o(k/ log k) (and arbitrary

depth). In particular, for k = 2Ω(n), such hardness amplification cannot be
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done by a strongly black-box model in ATIME(O(1), 2o(n)). Therefore, hard-

ness amplification in general requires a high complexity. Furthermore, we

show that even without any restriction on the complexity of the amplifica-

tion procedure, such a strongly black-box hardness amplification must be

inherently non-uniform in the following sense. Given as an oracle any algo-

rithm which agrees with f ′ on (1− δk)/2 fraction of the input, we still need

an additional advice of length Ω(k log(1/δ)) in order to compute f correctly

on (1−δ)/2 fraction of the input. Therefore, to guarantee the hardness, even

against uniform machines, of the function f ′, one has to start with a function

f which is hard against non-uniform circuits. Finally, we derive similar lower

bounds for any strongly black-box construction of pseudorandom generators

from hard functions.

Chapter 3 - Weakly Black-Box Hardness Amplification. From worst-

case hardness to average-case hardness, we consider a class of hardness ampli-

fications called weakly black-box hardness amplification, in which the initial

hard function is only used as a black box to construct the harder function.

First, we show that if an amplification procedure in TIME(t) can amplify

hardness beyond an O(t) factor, then it must embed in itself a hard function

computable in TIME(t). As a result, it is impossible to have such a hardness

amplification with hardness measured against TIME(t). Next, we show that,

for any k ∈ N, if an amplification procedure in ΣkP can amplify hardness

beyond a polynomial factor, then one can obtain from it a hard function in

ΣkP. A similar impossibility result can also be derived.

Chapter 4 - Hardness Amplification within NP. We study the prob-

lem of hardness amplification in NP. We prove that if there is a balanced

function in NP such that any circuit of size s(n) = 2Ω(n) fails to compute it on

a 1/poly(n) fraction of inputs, then there is a function in NP such that any

circuit of size s′(n) fails to compute it on a 1/2− 1/s′(n) fraction of inputs,

with s′(n) = 2Ω(n2/3). This improves the result of Healy et al. (STOC’04),

which only achieves s′(n) = 2Ω(n1/2) for the case with s(n) = 2Ω(n).
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Chapter 5 - Pseudorandomness and Hardness in NP. To build the

equivalence between pseudorandomness and average-case hardness, we show

how to transform a pseudorandom generator into a mildly hard function

computable in NP. We give a strongly black-box construction, with both the

transformation procedure and the hardness proof done in a black-box way.

This improves a previous result of Nisan and Wigderson, which can only ob-

tain a worst-case hard function from a pseudorandom generator [NW94].

Therefore, we now know that the transformations among mild hardness,

average-case hardness, and pseudorandomness all can be done in the com-

plexity class NP.

Chapter 6 - Hard-core Set Construction. We study a fundamental

result of Impagliazzo (FOCS’95) known as the hard-core set lemma. Consider

any function f : {0, 1}n → {0, 1} which is “mildly-hard”, in the sense that

any circuit of size s must disagree with f on some δ fraction of inputs. Then

the hard-core lemma says that f must have a hard-core set H of density δ

on which it is “extremely hard”, in the sense that any circuit of size s′ =

O(s/( 1
ε2 log( 1

εδ
))) must disagree with f on at least (1−ε)/2 fraction of inputs

from H.

There are three issues of the lemma which we would like to address: the

loss of circuit size, the need of non-uniformity, and its inapplicability to a low

complexity class. We introduce two models of hard-core set constructions,

a strongly black-box one and a weakly black-box one, and show that those

issues are unavoidable in such models.

First, we show that in any strongly black-box construction, one can only

prove the hardness of a hard-core set for smaller circuits of size at most

s′ = O(s/( 1
ε2 log 1

δ
)). Next, we show that any weakly black-box construction

must be inherently non-uniform — to have a hard-core set for a class G of

functions, we need to start from the assumption that f is hard against a

non-uniform complexity class with Ω(1
ε
log |G|) bits of advice. Finally, we

show that weakly black-box constructions in general cannot be realized in a
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low-level complexity class such as AC0[p] — the assumption that f is hard

for AC0[p] is not sufficient to guarantee the existence of a hard-core set.

1.6 Notations and Useful Facts

For any n ∈ N, let [n] denote the set {1, 2, . . . , n} and let Un denote the

uniform distribution over the set {0, 1}n. When we sample from a finite set,

the default distribution is the uniform one. For a string z, let zi denote the

i’th bit of z. All the logarithms in this thesis will have base two. Define

the binary entropy function H(x) = −x log x − (1 − x) log (1− x). For a

finite set S, we also use S to denote the uniform distribution over S. For

q ∈ N, we identify the set {0, 1}q with [2q]. For a set R, we also use R to

denote its membership function. We will sometimes view a Boolean function

f : {0, 1}n → {0, 1} as a 2n-bit string (its truth table) and vice versa. For

two strings u, v ∈ {0, 1}n, let 4(u, v) denote their relative Hamming distance
1
n
|{i ∈ [n] : ui 6= vi}|.

We need some standard complexity classes. Let ATIME(d, t) denote the

class of functions computed by alternating Turing machines in time t with at

most d alternations, and let ATIME(t) denote ATIME(t, t). Let PH denote the

polynomial-time hierarchy, which is ATIME(O(1), poly(n)). Let NTIME(t)

denote the class of functions computed by nondeterministic Turing machines

in time t. The circuits we consider here consist of AND/OR/NOT gates,

allowing unbounded fan-in for AND/OR gates. The size of a circuit is the

number of non-input gates it has and the depth of circuit is the number of

gates on the longest path from an input bit to the output gate. We call such

circuits AC circuits.

Definition 1 Let AC(d, s) (SIZE(s), resp.) denote the class of functions

computed by AC circuits of depth d and size s (of size s, resp.).

Note that the standard complexity class AC0 corresponds to our class

AC(O(1), poly(n)). We also introduce the nondeterministic version of AC
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circuits. An NAC circuit C has two parts of inputs: the real input x and

the witness input y. The Boolean function f computed by such a circuit

C is defined as f(x) = 1 if and only if there exists a witness y such that

C(x, y) = 1.

Definition 2 Let NAC(s) be the class of functions computed by NAC circuits

of size s.

A function with more than one output bits is said to be computed by

some type of circuits (e.g. AC(d, s) or NAC(s)) if each output bit can be

computed by one such circuit. More definitions and details of complexity

classes can be found in standard textbooks, such as [Pap94]. As usual in

complexity theory, when we talk about a function f : {0, 1}n → {0, 1}m,

we actually mean a sequence of functions (f : {0, 1}n → {0, 1}m(n))n∈N, and

when we make a statement about f , we usually mean that it holds for any

sufficiently large n ∈ N.

We say that a function G : {0, 1}` → {0, 1}m is explicitly computable

if given x ∈ {0, 1}` and i ∈ [m], the i’th bit of G(x) can be computed

in time poly(`, log m). A function f : {0, 1}n → {0, 1} is called balanced

if Pr [f(Un) = 1] = 1/2. For a function f : {0, 1}n → {0, 1}, let f⊗k :

{0, 1}kn → {0, 1}k be the function defined by

f⊗k(x1, . . . , xk) = (f(x1), . . . , f(xk)),

for x1, . . . , xk ∈ {0, 1}n.

1.6.1 Tail Bounds of Binomial Distribution

We will frequently use the following simple lower bound on the tail probability

of binomial distribution, a proof of which is given in the following.

Fact 1 Let Z1, · · · , Zt be i.i.d. binary random variables, with E[Zi] = µ for

every i ∈ [t]. Suppose ε < 1
5

and t = Ω( 1
ε2 ). Then we have the following: (1)

if µ ≤ 1+2ε
2

, then Pr[
∑

i∈[t] Zi ≤ 1−ε
2

t] ≥ 2−O(ε2t), and (2) if µ ≥ 1−2ε
2

, then

Pr[
∑

i∈[t] Zi ≥ 1+ε
2

t] ≥ 2−O(ε2t).
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Proof. First, consider the case that µ ≤ 1+2ε
2

. Note that the probability gets

smaller if µ gets larger, becasue
∑t

i=1 Zi becomes more unlikely to have a

small value when the probability of Zi = 1 becomes higher. Thus, it suffices

to show the lower bound for the case of µ = 1+2ε
2

. Then,

Pr

[
t∑

i=1

Zi ≤
1− ε

2
t

]
=

∑
0≤j≤ 1−ε

2
t

(
t

j

)
·
(

1 + 2ε

2

)j(
1− 2ε

2

)t−j

≥
∑

1−2ε
2

t≤j≤ 1−ε
2

t

(
t

j

)
·
(

1 + 2ε

2

)j(
1− 2ε

2

)t−j

≥ εt

2
·
(

t
1−2ε

2
t

)
·
(

1 + 2ε

2

) 1−2ε
2

t(
1− 2ε

2

) 1+2ε
2

t

.

Using the inequality that
(

t
αt

)
≥ 1

O(
√

t)
( 1

α
)αt( 1

1−α
)(1−α)t from Stirling’s formula,

the above becomes

εt

O(
√

t)

(
2

1− 2ε

) 1−2ε
2

t(
2

1 + 2ε

) 1+2ε
2

t(
1 + 2ε

2

) 1−2ε
2

t(
1− 2ε

2

) 1+2ε
2

t

,

which is at least

Ω(ε
√

t)

(
1− 2ε

1 + 2ε

)2εt

= Ω(ε
√

t)

(
1− 4ε

1 + 2ε

)2εt

≥ Ω(ε
√

t)2−O(ε2t) ≥ 2−O(ε2t),

where the first inequality uses the fact that 1− x ≥ 2−cx for some constant c

when x(= 4ε
1+2ε

) ≤ 4
5
, and the last inequality follows from the condition that

t = Ω( 1
ε2 ).

The second case with µ ≥ 1−2ε
2

follows immediately from the first case

by symmetry. More precisely, define new random variables Y1, . . . , Yt, with

Yi = 1 − Zi for i ∈ [t], and then we can get the desired bound by applying

the bound of the first case to these new variables. 2



Chapter 2

Strongly Black-Box Hardness

Amplification

2.1 Introduction

For δ ∈ (0, 1) and k, n ∈ N, we study the task of transforming a hard func-

tion f : {0, 1}n → {0, 1}, with which any small circuit disagrees on (1− δ)/2

fraction of the input, into a harder function f ′, with which any small circuit

disagrees on (1 − δk)/2 fraction of the input. In this chapter, we show that

this process cannot be realized in parallel black-box way (defined later) by

a circuit of depth d and size 2o(k1/d) or by a nondeterministic circuit of size

o(k/ log k) (and arbitrary depth). Therefore, such hardness amplification in

general requires a high complexity. Furthermore, we show that even with-

out any restriction on the complexity of the amplification procedure, such a

strongly black-box hardness amplification must be inherently non-uniform in

the following sense. To guarantee the hardness of the resulting function f ′,

even against uniform machines, one has to start with a function f which is

hard against non-uniform algorithms with Ω(k log(1/δ)) bits of advice. Fi-

nally, we derive similar lower bounds for any strongly black-box construction

of a pseudorandom generator (PRG) from a hard function. To prove our

results, we link the task of hardness amplifications and PRG constructions,

29
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respectively, to some type of error-reduction codes, and then we establish

lower bounds for such codes, which we hope could find interest in both cod-

ing theory and complexity theory.

2.1.1 Previous Lower Bound Results

Viola [Vio04] gave the first lower bound on the complexity required for

strongly black-box hardness amplification. He showed that to transform

a worst-case hard function f into a mildly hard function f ′, both against

circuits of size 2o(n), the encoding function Amp cannot be realized in the

complexity class ATIME(O(1), 2o(n)). This rules out the possibility of doing

such hardness amplification in PH, which explains why previous procedures

all require a high computational complexity. He also showed a similar lower

bound for strongly black-box construction of PRG from a worst-case hard

function.

Trevisan and Vadhan [TV02] observed that a strongly black-box hardness

amplification from worst-case hardness corresponds to an error-correcting

code with some list-decoding property. Then results from coding theory

can be used to show that for such amplification from worst-case hardness

to hardness (1 − ε)/2, the decoding function Dec must need Ω(log(1/ε))

bits of advice in order to compute f . This explains why almost all previous

hardness amplification results were done in a non-uniform setting, except

[IW98, TV02] which did not work in a black-box way.

There were also impossibility results on weaker types of hardness ampli-

fication, from worst-case hardness to average-case hardness. Bogdanov and

Trevisan [BT03] considered hardness amplification for functions in NP in

which the black-box requirement on the encoding function is dropped. They

showed that the decoding function cannot be computed non-adaptively in

polynomial time unless PH collapses. Viola, in another recent paper [Vio05],

considered hardness amplification in which the black-box requirement on the

decoding function is dropped. He showed that if the encoding function can

be computed in PH, then there exists an average-case hard function in PH
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unconditionally. We will not consider such weaker types of hardness amplifi-

cation in this chapter, and throughout this chapter when we refer to hardness

amplification, we always mean the strongly black-box one.

2.1.2 Our Results

Previous lower bound results only address hardness in a specific range. How-

ever, whether or not one can amplify hardness beyond this range is also a

natural and interesting question. For example, it is known that a strongly

black-box hardness amplification from hardness 1/poly(n) to average-case

hardness can be realized in polynomial time [Yao82, GNW95, Im95, IW97].

Can such a hardness amplification be realized in a lower complexity class,

such as AC0? Can it start from hardness below 1/poly(n) and still be real-

ized in polynomial time? Can it be done in a uniform way (with a uniform

decoding function)? In general, how does the quality of a hardness amplifi-

cation (the amount of hardness increased) determine its inherent complexity

or non-uniformity? All these questions will be addressed in this chapter. We

generalize previous results [Vio04, TV02] and consider hardness amplification

in a much broader spectrum: from hardness (1− δ)/2 to hardness (1− δk)/2,

for general δ ∈ (0, 1) and k ∈ N.

Following [Vio05], we consider a more restricted model called parallel

black-box hardness amplification, in which oracle queries by the encoding

function are done in a non-adaptive way. More precisely, we say that a

circuit class CKT realizes a parallel black-box hardness amplification if its

encoding function Amp can be implemented in the following way. Given

any input x, it first generates a circuit Tx ∈ CKT together with t query

inputs qx,1, · · · , qx,t, then queries f at those t inputs, and finally computes

Tx(f(qx,1), · · · , f(qx,t)) as its output. Note that here Tx and qx,1, · · · , qx,t

only depend on x but not f . Although this is a more restricted model,

almost all previous constructions of hardness amplification can be done in

this way, so it would be nice to know its limitation. Furthermore, through

a standard simulation [FSS84, Has86], negative results in this model can in
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fact be translated to those in the strongly black-box model.

Our first result addresses both the complexity issue and the non-uniformity

issue in the same framework, showing how complexity constraints on the en-

coding function result in the inherent non-uniformity of the decoding func-

tion. Formally, we prove that if such a parallel black-box hardness amplifi-

cation, from hardness (1− δ)/2 to hardness (1− δk)/2, is realized by circuits

of depth d and size 2o(k1/d), then the decoding function Dec must need an

advice of length 2Ω(n). Translating this to the general model, we obtain the

same advice lower bound when such a (general) strongly black-box hardness

amplification is realized in ATIME(O(1), ko(1)). This implies that no such

hardness amplification is possible if the hardness is measured against circuits

of size 2o(n).

Our lower bound is almost tight as the well known XOR lemma [Yao82,

GNW95] gives a way to realize a parallel black-box hardness amplification by

circuits of depth O(d) and size 2O(k1/d), with Dec using an advice of length

poly(n/δk). Note that Viola’s result in [Vio04] is a special case of ours, be-

cause he only addressed explicitly the specific case with (1 − δ)/2 = 2−n

and (1 − δk)/2 = 1/poly(n) (or equivalently, δ = 1 − 2−n+1 and k = 2Ω(n)).

Although it seems that his technique can be extended to show lower bounds

when (1− δ)/2 is small enough, but beyond that, say with (1− δ)/2 = Ω(1),

it fails to give a meaningful bound. We can in fact cover this case: our result

implies that AC0 circuits cannot realize a parallel black-box hardness amplifi-

cation, say, from hardness 1/3 to hardness (1−2−Ω(n))/2. On the other hand,

our result when restricted to worst-case to average-case hardness amplifica-

tion is incomparable to those of [BT03] and [Vio05].1 Finally, two interesting

facts follow from our result. First, it is impossible to produce in a strongly

black-box way a function which is (1 − δk)/2–hard against a uniform low

1In [BT03], the complexity lower bound is given on the decoding function instead, under

the unproven (though widely believed) assumption that PH does not collapse. In [Vio05],

a more general type of hardness amplification than ours is considered, but the possibility

of such hardness amplification is not ruled out as we do; instead, it was shown that if the

encoding function can be computed in PH, a hard function in PH exists unconditionally.
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complexity class, say DTIME(O(1)), even if we start from a function which

is (1 − δ)/2–hard against a uniform but arbitrarily high complexity class

equipped with an advice of length 2o(n), say DTIME(22n
)/2o(n). On the other

hand, it is easy to show that hard functions against DTIME(O(1)) do exist.2

This demonstrates one severe weakness of strongly black-box hardness am-

plifications. Second, when amplifying hardness from (1− δ)/2 to (1− δk)/2,

the complexity of such amplification is determined mainly by the parameter

k; a larger value of k results in a higher complexity requirement, for typical

values of δ. Thus, to determine the complexity needed for a hardness am-

plification process, one should express the initial and final hardness in the

forms of (1− δ)/2 and (1− δk)/2 respectively. This point was not clear from

previous works.

Note that our first result becomes meaningless for d = Ω(log k) as the

circuit size becomes 2o(k1/d) = O(1). Our second result takes care of this:

we show that if a parallel black-box hardness amplification, from hardness

(1 − δ)/2 to hardness (1 − δk)/2, is realized by nondeterministic circuits of

size o(k/ log k), even with arbitrary depth, then the decoding function Dec

must need an advice of length 2Ω(n). For example, to amplify hardness from

Ω(1) to (1− 2−Ω(n))/2, our second result implies that it can not be realized

by nondeterministic circuits of size o(n/ log n) in a parallel black-box way.

Our third result shows that even without any complexity constraint on

the encoding or decoding function, amplification between certain range of

hardness is still inherently non-uniform. For the special case of amplifying

hardness beyond 1/4, the need of non-uniformity can be shown using the

Plotkin bound [Plo60] from coding theory. We consider hardness amplifi-

cation in a general range and obtain a quantitative bound on the amount

of non-uniformity. More precisely, we show that to amplify hardness from

(1 − δ)/2 to (1 − ε)/2, the decoding function Dec must need an advice of

2For example, the parity function is (1/2− 2−Ω(n))–hard against DTIME(O(1)). How-

ever, according to our result, its hardness cannot be shown in such a strongly black-box

way.
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Ω(log(δ2/ε)) bits. Thus, when ε = δk, an advice of length Ω(k log(1/δ)) is

necessary, and when ε ≤ cδ2 for some constant c, such hardness amplification

must be inherently non-uniform. Our result generalizes that of Trevisan and

Vadhan [TV02].

Finally, we derive similar lower bounds on strongly black-box construc-

tions of PRG from hard functions.

2.1.3 Our Techniques

Our results are obtained via a connection between strongly black-box hard-

ness amplifications and some type of “error-reduction” codes, which general-

izes the connection given by Trevisan and Vadhan [TV02] and Viola [Vio04].

A similar observation was also made by Trevisan [Tre03]. Formally, a strongly

black-box amplification from hardness (1−δ)/2 to hardness (1−ε)/2 induces

a code with the following list-decoding property. Given a corrupted codeword

with a fraction of less than (1 − ε)/2 errors, we can always find a small list

of candidate messages such that one of them is close to the original message,

with their relative Hamming distance less than (1− δ)/2. Therefore, we can

focus our attention on such codes, as results on such codes immediately give

results on corresponding hardness amplifications.

Our first two results are based on the following idea. A code with such

a list-decoding property can only have a small number of codewords close to

any codeword, so a random perturbation on an input message is unlikely to

result in a close codeword. On the other hand, if such a code is computed

by an algorithm which is insensitive to noise on the input, then a random

perturbation on an input message is likely to result in a close codeword, and

we reach a contradiction. Circuits of small size, or circuits of small depth

and moderate size can be shown to be insensitive to noise on their input.

Thus, they cannot be used to compute such a code and the corresponding

hardness amplification. This basically follows Viola’s idea in [Vio04], but

since we consider hardness amplification in a much broader spectrum, a more

involved analysis is required. For example, since Viola only considered the
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case with a small hardness, he only had to deal with noise of a small rate.

With such a small noise rate, the output value will only be affected with a

small probability, and small loss in his analysis does not matter too much.

However, if a large hardness is considered, a high noise rate is needed, then

the loss in his analysis will become intolerable, and his bound will become

meaningless (see Remark 4 in Section 2.2.3 for details). To overcome this

problem, we drive another upper bound on noise sensitivity, which works for

any noise rate and thus can be used for hardness in a general range.

For the non-uniformity of hardness amplification, we show that given a

corrupted codeword with a high fraction (1 − ε)/2 (for a small ε) of errors,

one may need a long list of candidate messages in order to have one of

them within a small relative distance (1− δ)/2 (for a large δ) to the original

message. To show this, we would like to find a set of messages such that

some ball of relative radius (1 − ε)/2 in the codeword space contains many

of their corresponding codewords, but any ball of relative radius (1− δ)/2 in

the message space contains only a small number of messages from that set.

We choose these messages randomly and show that they have some chance

of satisfying the condition above when (1 − ε)/2 is larger than (1 − δ)/2 to

some extent.

Finally, to prove lower bounds for strongly black-box constructions of

PRG from hard functions, we discover that there is also a connection between

the error-reduction codes we just considered and such PRG constructions.

This new connection may have interest of its own. Then the results we

obtain for such codes immediately yield results for such PRG constructions.

2.1.4 Organization of this chapter

First, some preliminaries are given in Section 2.2. Then in Section 2.3 and

Section 2.4, we prove the impossibility results of hardness amplification by

constant-depth circuits and non-deterministic circuits respectively. In Sec-

tion 2.5, we show that hardness amplification in general is inherently non-

uniform. Finally, we show the impossibility results for strongly black-box
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PRG constructions from hard functions in Section 2.6.

2.2 Preliminaries

2.2.1 Strongly Black-Box Hardness Amplification and

Pseudorandom Generators

Informally speaking, a function is hard if any algorithm without enough

complexity must make some mistakes. Formally, we define the hardness of a

function as follows.

Definition 3 We say that a function f : {0, 1}n → {0, 1} has hardness β

against circuits of size s if for any circuit C : {0, 1}n → {0, 1} of size s,

Pr
x∈Un

[f(x) 6= C(x)] ≥ β.

Note that we use the error bound β to characterize the hardness of a

function, and we pay less (sometimes no) attention to the size bound s. For

hardness amplification, we want to transform a function f : {0, 1}n → {0, 1}
with a smaller hardness β into a function f ′ : {0, 1}m → {0, 1} with a larger

hardness β′. We will focus on a special type of hardness amplification called

strongly black-box hardness amplification, defined next, which consists of

two oracle procedures Amp and Dec. We allow Dec to be a non-uniform

oracle Turing machine, and we write DecA,ν to denote Dec taking an oracle

A and an advice string ν.

Definition 4 A strongly black-box (n, β, β′, `) hardness amplification con-

sists of an oracle procedure Amp(·) : {0, 1}m → {0, 1} (called encoding func-

tion) and a non-uniform oracle Turing machine Dec(·) : {0, 1}n → {0, 1}
(called decoding function) with the following property. For any f : {0, 1}n →
{0, 1}, if a function A : {0, 1}m → {0, 1} satisfies

Pr
z∈Um

[A(z) 6= Ampf (z)] < β′,
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then there exists an advice string ν = ν(f, A) ∈ {0, 1}` such that

Pr
x∈Un

[DecA,ν(x) 6= f(x)] < β.

For a complexity class C, we say that the strongly black-box hardness ampli-

fication can be realized in C if for any oracle f , the procedure Ampf can be

computed in Cf .

Here, the transformation of the initial function f into a harder function

is done in a black-box way, as the harder function Ampf only uses f as an

oracle. Moreover, the hardness of the new function Ampf is also guaranteed

in a black-box way. Namely, any algorithm A breaking the hardness condition

of Ampf can be used as an oracle for a machine Dec to break the hardness

condition of f . Note that neither of the hardness refers to circuit size, and no

constraint is placed on the complexity of the procedure Dec. This freedom

makes our impossibility results stronger. The parameter ` characterizes the

amount of non-uniformity associated with this process. When ` ≥ 1, we say

the hardness amplification is non-uniform.

Remark 1 One can also use the notion of “advantage” to characterize the

hardness of a Boolean function. We say that any circuit of size s has advan-

tage at most δ for computing f if for any such a circuit C, Prx [f(x) = C(x)]−
Prx [f(x) 6= C(x)] ≤ δ. Clearly, the advantage δ is related to the hardness

β in the form β = 1−δ
2

. We will focus on the task of amplifying hardness

from 1−δ
2

to 1−δk

2
, or equivalently, reducing the advantage from δ to δk. We

choose to present our results in terms of hardness instead of advantage for

the following two reasons. First, when talking about hardness amplification,

it seems more natural and less confusing to use hardness instead of advan-

tage. Secondly, as we will see, there is some nice connection between hard-

ness amplifications and error-correcting codes, in which hardness of functions

corresponds naturally to distance in codes. However, the drawback of using

hardness instead of advantage is that our notation sometimes looks more

cumbersome.
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Similarly, we can define the notion of strongly black-box construction of

pseudo-random generators from hard functions.

Definition 5 A strongly black-box (n, β, ε, `) PRG construction consists of

an oracle procedure G(·) : {0, 1}m → {0, 1}r (called encoding function) and a

non-uniform oracle Turing machine Dec(·) : {0, 1}n → {0, 1} (called decod-

ing function) with the following property. For any f : {0, 1}n → {0, 1}, if a

function D : {0, 1}r → {0, 1} satisfies∣∣∣∣ Pr
u∈Um

[D(Gf (u)) = 1]− Pr
w∈Ur

[D(w) = 1]

∣∣∣∣ > ε,

then there exists an advice string ν = ν(f, D) ∈ {0, 1}` such that

Pr
x∈Un

[DecD,ν(x) 6= f(x)] < β.

For a complexity class C, we say that the strongly black-box PRG construction

can be realized in C if for any oracle f , the procedure Gf can be computed in

Cf .

Remark 2 When talking about a strongly black-box hardness amplification

or PRG construction, we usually mean a sequence of them, parameterized by

the parameter n ∈ N. Other parameters such as m, β, β′, `, r, ε, k are in fact

allowed to be functions of n.

In this general model of strongly black-box hardness amplification or PRG

construction, we do not put any restriction on how the oracle f is queried

by the encoding function (Amp or G). On the other hand, we will also

consider the following more restricted model, first introduced in [Vio05], in

which the oracle f can only be queried in a non-adaptive way. We call

such model a parallel black-box hardness amplification or PRG construction.

More precisely, we define the following.

Definition 6 Let CKT be a class of circuits, such as AC(d, s) or NAC(s).

We say that CKT realizes a parallel black-box hardness amplification, if we
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have a black-box hardness amplification in which the encoding function Amp(·)

can be implemented in the following way. Given any oracle f : {0, 1}n →
{0, 1} and any input x ∈ {0, 1}m, it first generates a circuit Tx ∈ CKT
together with t query inputs qx,1, · · · , qx,t ∈ {0, 1}n, then queries f at those

t inputs, and finally outputs Tx(f(qx,1), · · · , f(qx,t)). The case of parallel

black-box PRG construction is defined similarly.

Note that Tx and qx,1, · · · , qx,t are produced before the oracle f is actually

queried, so they depend on x but not on the oracle f . This restriction makes

it easier to obtain negative (or lower bound) results in such a parallel model.

Nevertheless, the following lemma provides a way to translate such results

to those in the general strongly black-box model.

Lemma 1 If a strongly black-box (n, β, β′, `) hardness amplification (PRG

construction, resp.) can be realized in ATIME(d, t), then a parallel black-box

(n, β, β′, `) hardness amplification (PRG construction, resp.) can be realized

in AC(d + O(1), 2O(t)).

Proof. Consider any strongly black-box hardness amplification (the case

of PRG construction is similar) with the encoding function Amp such that

for any oracle f , Ampf belongs to ATIMEf (d, t). It is known from [FSS84,

Has86] that by adding a constant number of alternations, one can transform

Amp into another procedure Amp′ which only queries f once in each branch

of its computation. Then by a standard simulation of alternating Turing

machines by circuits [FSS84, Has86], we know that for any input x, the value

of Amp′f (x) can be computed by a circuit in AC(d + O(1), 2O(t)) with the

answers to the corresponding oracle queries given as part of the input. Note

that the circuit and the oracle queries depend only on the input x but not the

oracle f . Thus we have a parallel black-box hardness amplification realized

in AC(d + O(1), 2O(t)). 2
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2.2.2 Codes and Correspondence to Hardness Ampli-

fication

We measure the distance between two strings by their relative Hamming

distance.

Definition 7 For u, v ∈ {0, 1}M , define their distance 4(u, v) as their rela-

tive Hamming distance, namely 4(u, v) = 1
M
|{i ∈ [M ] : ui 6= vi}|.

According to this distance, we define open balls of radius β in the space

{0, 1}N .

Definition 8 For any N ∈ N, β ∈ (0, 1), and x ∈ {0, 1}N , let Ballx(β, N) =

{x′ ∈ {0, 1}N : 4(x, x′) < β}, which is the open ball in {0, 1}N of radius β

centered at x. Let Ball(β, N) denote the set consisting of all such balls.

The following simple fact gives an upper bound on the size of such a

Hamming ball.

Fact 2 The size of any ball in Ball(β, N) is at most 2H(β)N .

We borrow the notion of list-decodable codes, but we extend it in a way

that leads to some natural correspondence with strongly black-box hardness

amplifications.

Definition 9 We call C : {0, 1}N → {0, 1}M a (β, β′, L)-list code if for any

z ∈ {0, 1}M , there are L balls from Ball(β, N) such that if a codeword C(x)

is contained in Ballz(β
′, M), then x is contained in one of those L balls.

A (β, β′, L)-list code is related to a standard list-decodable code in the

way that each ball in Ball(β′, M) contains at most L · 2H(β)N codewords.

Next, we show how such a code arises naturally from a strongly black-box

hardness amplification. Let N = 2n and M = 2m. Given any oracle algorithm

Amp(·) : {0, 1}m → {0, 1}, let us define the corresponding code C : {0, 1}N →
{0, 1}M as C(f) = Ampf . That is, seeing any function f : {0, 1}n → {0, 1}
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as a vector in {0, 1}N , C(f) produces as output the function Ampf , which

is seen as a vector in {0, 1}M . The following is a simple generalization of an

observation by Viola [Vio04].

Lemma 2 Let Amp(·) : {0, 1}m → {0, 1} be the encoding function of a

strongly black-box (n, β, β′, `) hardness amplification. Then C : {0, 1}N →
{0, 1}M , defined as C(f) = Ampf , is a (β, β′, 2`)-list code.

Proof. Let Amp be the encoding function of a strongly black-box (n, β, β′, `)

hardness amplification, and let Dec be the corresponding decoding func-

tion which is an oracle Turing machine with an `-bit advice. Consider any

A ∈ {0, 1}M , seen as A : {0, 1}m → {0, 1}. For any codeword C(f) with

4(A, C(f)) = Prz[A(z) 6= Ampf (z)] < β′, by Definition 4, there exists an

ν ∈ {0, 1}` such that 4(DecA,ν , f) = Prx[DecA,ν(x) 6= f(x)] < β. That

is, if C(f) is in BallA(β′, M), then f is contained in one of the 2` balls of

radius β centered at DecA,ν for ν ∈ {0, 1}`. Therefore, C is a (β, β′, 2`)-list

code. 2

Remark 3 Note that if a circuit class CKT can realize a parallel hardness

amplification, then every output bit of the corresponding code C can be com-

puted by a circuit in CKT . This is because for any input f ∈ {0, 1}N , the

x-th output bit of C(f) equals Ampf (x) = Tx(f(qx,1), · · · , f(qx,t)), which is

computed by some circuit Tx ∈ CKT on some t bits of f .

In Section 2.6, we will show that there also exists a natural correspondence

between strongly black-box PRG constructions and such list-decodable codes.

2.2.3 Noise Sensitivity

Following [OD02, Vio04], we will apply Fourier analysis on Boolean func-

tions. For any g : {0, 1}N → {0, 1} and for any J ⊆ [N ], let ĝ(J) =

Ey

[
(−1)g(y) ·

∏
i∈J(−1)yi

]
. Here is a well-known fact.

Fact 3 For any g : {0, 1}N → {0, 1},
∑

J⊆[N ] ĝ(J)2 = 1.
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It is known that for AC circuits of small depths, the main contribution to

the above sum comes from the low-order terms.

Lemma 3 [LMN93] For any g : {0, 1}N → {0, 1} ∈ AC(d, s) and for any

t ∈ [N ],
∑

|J |>t ĝ(J)2 ≤ s · 2−Ω(t1/d).

This can be used to show that AC circuits of small depth are insensitive to

noise on their input. We will need the following more precise relation between

the noise sensitivity of a Boolean function and its Fourier coefficients.

Lemma 4 Suppose x is sampled from the uniform distribution over {0, 1}N

and x̃ is obtained by flipping each bit of x independently with probability 1−α
2

.

Then for any g : {0, 1}N → {0, 1} and for any t ∈ [N ], Prx,x̃[g(x) 6= g(x̃)] ≤
1
2
(1− αt(1−

∑
|J |>t ĝ(J)2)).

Proof. We know from [OD02] (Proposition 9) that Prx,x̃[g(x) 6= g(x̃)] =
1
2
(1−

∑
J⊆[N ] α

|J |ĝ(J)2). Note that∑
J⊆[N ]

α|J |ĝ(J)2 ≥
∑
|J |≤t

α|J |ĝ(J)2 ≥ αt
∑
|J |≤t

ĝ(J)2.

Then the lemma follows from Fact 3. 2

Combing Lemma 3 and Lemma 4, we immediately have the following.

Corollary 1 Suppose x and x̃ are sampled as in Lemma 4. Then for any

g : {0, 1}N → {0, 1} ∈ AC(d, s) and for any t ∈ [N ], Prx,x̃[g(x) 6= g(x̃)] ≤
1
2
(1− αt(1− s · 2−Ω(t1/d))).

Remark 4 In [Vio04], Viola derived a weaker bound Prx,x̃[g(x) 6= g(x̃)] ≤
O(β logd s), with β = 1−α

2
, which becomes vacuous when β is not small

enough. This prevents him from having a meaningful bound when the hard-

ness is not small enough. The main loss in his derivation comes from his use

of the inequality 1
2
(1 −

∑
J⊆[N ] α

|J |ĝ(J)2) ≤ 1
2
(1 −

∑
J⊆[N ](1 − α)|J |ĝ(J)2).

Our Lemma 4 uses a different inequality to avoid this problem.
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2.3 Impossibility of Amplification by Small-

Depth Circuits

In this section, we will show that any parallel black-box (n, 1−δ
2

, 1−δk

2
, `) hard-

ness amplification realized in AC(d, s) with small d and s must be highly

non-uniform. More precisely, we will prove the following.

Theorem 1 There exist constants c0, c1, c2, c3 such that for any δ ∈ (0, 1)

and any d, k ∈ N with 2−c0n ≤ δ < 1 and 2−2c1n ≤ δk ≤ 1− 2−c2k1/d
, any par-

allel black-box (n, 1−δ
2

, 1−δk

2
, `) hardness amplification realized in AC(d, 2c3k1/d

)

must have ` = 2Ω(n).

Before giving the proof, let us take a closer look at the theorem itself

and discuss some of its consequences. First, note that the conditions on the

ranges of δ and δk are natural in the following sense. When δ ≤ 2−Ω(n), the

initial function is already hard enough, so hardness amplification is usually

not needed. When δk ≥ 1− 2−Ω(k1/d), the resulting function only has a very

small hardness, which is rarely what hardness amplification is used to achieve.

Also, as discussed in the introduction, hardness amplifications normally have

m close to n (preferably with m = poly(n)), therefore δk, which is at least

2−m, would be much larger than 2−2Ω(n)
.

Although Theorem 1 is on the more restricted parallel model, it in fact

implies the following result on the general model of hardness amplification,

according to Lemma 1.

Corollary 2 Under the same condition in Theorem 1, no strongly black-box

(n, 1−δ
2

, 1−δk

2
, 2o(n)) hardness amplification can be realized in ATIME(O(1), ko(1)).

Note that Viola’s result [Vio04] is a special case of ours, with initial

hardness 1−δ
2

= 2−n (amplifying from worst-case hardness). A closer look at

his technique shows that it in fact can be extended to cases with small initial

hardness. For example, with 1−δ
2

= n−ω(1), his technique can be modified

to show the impossibility in PH to amplify the hardness to 1−δk

2
with k =



44CHAPTER 2. STRONGLY BLACK-BOX HARDNESS AMPLIFICATION

nω(1), which also follows from our corollary above. However, as discussed in

Remark 4, when the initial hardness grows beyond a certain point, say to
1−δ
2

= Ω(1), his technique fails to give a meaningful bound. Moreover, our

lower bound almost matches the upper bound given by the well-known XOR

lemma [Yao82, GNW95], while the technique in [Vio04] does not yield such

a bound.

Theorem 2 For any δ ∈ (0, 1) and any k, d ∈ N, a parallel black-box

(n, 1−δ
2

, 1−δk

2
, `) hardness amplification can be realized in AC(O(d), 2O(k1/d))

for ` = poly( n
δk ).

Proof. The encoding function is Ampf : ({0, 1}n)t → {0, 1}, with t = O(k),

defined as

Ampf (x1, . . . , xt) = f(x1)⊕ · · · ⊕ f(xt).

It is known that the parity of t bits can be computed by an AC(d+1, 2O(t1/d))

circuit (c.f. [Has86]), and note that this circuit and those t query inputs do

not depend on the oracle f . Furthermore, using Levin’s proof for the XOR

lemma given in [GNW95], one can construct a decoding function which uses

an advice of length ` ≤ poly( n
δk ). Thus, we have the lemma. 2

Now we proceed to prove Theorem 1.

Proof.(of Theorem 1) Consider any parallel black-box (n, 1−δ
2

, 1−δk

2
, `) hard-

ness amplification realized in AC(d, s), with s = 2c3k1/d
for a small enough

positive constant c3. Let N = 2n and M = 2m. Recall from Lemma 2 that

such a hardness amplification induces a (1−δ
2

, 1−δk

2
, 2`)-list code C : {0, 1}N →

{0, 1}M . Then from Remark 3, it suffices to show that any such a code C

computed by an AC(d, s) circuit must have ` = 2Ω(n).

The basic idea behind the proof is the following. Suppose C has only a

small number of codewords close to any codeword. Then a random pertur-

bation on an input message is unlikely to result in a close codeword. On the

other hand, if C is computed by an AC(d, s) circuit with small d and s, which

is insensitive to noise on the input, then a random perturbation on an input

message is likely to result in a close codeword, and we reach a contradiction.
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Now we give the details. Let x be sampled from the uniform distribution

over {0, 1}N and let x̃ be the random variable obtained by flipping each bit

of x independently with some probability 1−α
2

. We set α = δ1.1 so that 1−α
2

is only slightly larger than 1−δ
2

.3 We call any two codewords close if their

(relative) distance is less than 1−δk

2
. The next lemma gives a lower bound on

the probability that C(x̃) is close to C(x), which relies on the fact that such

an AC circuit is insensitive to noise on the input.

Lemma 5 There exist constants c2, c3, c4 such that for any δ ∈ (0, 1) and

any k, d ∈ N with δk ≤ 1− 2−c2k1/d
, if C ∈ AC(d, 2c3k1/d

), then

Pr
x,x̃

[C(x) is close to C(x̃)] ≥ δc4k.

Proof. Suppose C ∈ AC(d, 2c3k1/d
) for a small enough constant c3. Suppose

δk ≤ 1 − 2−c2k1/d
for some constant c2 such that δ0.5k ≤ 1 − 2−c3k1/d

. Then

using Corollary 1 with t = k/3, we have that for each i ∈ [M ],

Pr
x,x̃

[C(x)i 6= C(x̃)i] ≤ 1

2

(
1− αt

(
1− 2c3k1/d · 2−Ω(t1/d)

))
≤ 1

2

(
1− δ0.4k

(
1− 2−c3k1/d

))
≤ 1

2

(
1− δ0.9k

)
.

Therefore, Ex,x̃[4(C(x), C(x̃))] ≤ 1
2
(1− δ0.9k), which implies that

Pr
x,x̃

[C(x) is not close to C(x̃)] ≤ 1− δ0.9k

1− δk

by Markov inequality. Thus

Pr
x,x̃

[C(x) is close to C(x̃)] ≥ 1− 1− δ0.9k

1− δk
≥ δ0.9k − δk

1− δk
≥ δ0.9k − δk ≥ δc4k,

for some constant c4. 2

Next, we give an upper bound on the probability that C(x̃) is close to

C(x), which relies on the fact that each codeword is only close to a small

number of other codewords. This requires a more careful analysis than that

in [Vio04], in order to get the tighter bound we need.

3We do not attempt to optimize parameters here, and in fact it suffices to set α =

δ(1− o(1)).
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Lemma 6 For any (1−δ
2

, 1−δk

2
, 2`)-list code C, Prx,x̃[C(x) is close to C(x̃)] ≤

2` · 2−Ω(δ2N).

Proof. Consider any fixed x ∈ {0, 1}N . Since C is a (1−δ
2

, 1−δk

2
, 2`)-list code,

there are at most 2`+H( 1−δ
2

)N different y’s such that C(y) is close to C(x).

The lemma would follow easily if each such y had a very small probability

to occur. However, this may not be the case in general. We will show that

although some y’s may occur with higher probability, there are not too many

of them, so their overall contribution is still tolerable.

For any y ∈ {0, 1}N , Prx̃ [x̃ = y] =
(

1−α
2

)4(x,y)N (
1+α

2

)(1−4(x,y))N
, which

decreases as 4(x, y) increases. Let β = α0.91 = δ1.001.4 Call y ∈ {0, 1}N good

for x if 4(x, y) ≥ 1−β
2

and call y bad for x otherwise. Note that for any y

which is good for x,

Pr
x̃

[x̃ = y] ≤
(

1− α

2

) 1−β
2

N (
1 + α

2

) 1+β
2

N

= 2( 1−β
2

log 1−α
2

+ 1+β
2

log 1+α
2 )N

≤ 2−H( 1−β
2 )N .

On the other hand, x̃ is only bad for x with a small probability. This is

because x̃ is obtained by flipping each bit of x independently with probability
1−α

2
, so Ex̃ [4(x, x̃)] = 1−α

2
, and by Chernoff bound,

Pr
x̃

[x̃ is bad for x] = Pr
x̃

[
4(x, x̃) <

1− β

2

]
≤ 2−Ω(β2N).

Thus, Prx̃ [C(x̃) is close to C(x)] is at most

Pr
x̃

[C(x̃) is close to C(x) ∧ x̃ is good for x] + Pr
x̃

[x̃ is bad for x]

≤ 2`+H( 1−δ
2 )N · 2−H( 1−β

2 )N + 2−Ω(β2N)

= 2` · 2H( 1−δ
2 )N−H( 1−β

2 )N + 2−Ω(β2N)

≤ 2` · 2−Ω(δ2N) + 2−Ω(β2N)

≤ 2` · 2−Ω(δ2N).

4Again, we make no attempt on optimizing the parameter here. In fact it suffices to

set β = α(1 + o(1)) while still maintaining β = δ(1− o(1)).
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Since this holds for every x, the lemma follows. 2

Suppose 2−c0n ≤ δ < 1 and 2−2c1n ≤ δk ≤ 1 − 2−c2k1/d
for suitable

constants c0, c1, c2. Then from Lemma 5 and Lemma 6, we get

δc4k ≤ Pr
x,x̃

[C(x) is close to C(x̃)] ≤ 2` · 2−Ω(δ2N),

which implies that

2` ≥ δc4k · 2Ω(δ2N) ≥ 22Ω(n)

.

Thus, we have the following.

Lemma 7 There exist constant c0, c1, c2, c3 such that for any δ ∈ (0, 1)

and any d, k ∈ N with 2−c0n ≤ δ < 1 and 2−2c1n ≤ δk ≤ 1 − 2−c2k1/d
,

if C : {0, 1}2n → {0, 1}M is a (1−δ
2

, 1−δk

2
, 2`)-list code computable by an

AC(d, 2c3k1/d
) circuit, then 2` = 22Ω(n)

.

Combining this lemma with Lemma 2, we obtain Theorem 1. 2

2.4 Impossibility of Amplification by Nonde-

terministic Circuits

Note that the result in the previous section becomes meaningless for d =

Ω(log k), as it only rules out circuits in AC(d, s) with s = 2O(k1/d) = O(1). In

this section, we show that even without any restriction on the circuit depth,

a meaningful lower bound on the circuit size can still be derived. Formally,

we have the following theorem.

Theorem 3 There exist constants c0, c1, c2, c3 such that for any δ ∈ (0, 1)

and any k ∈ N with 2−c0n ≤ δ < 1 and 2−2c1n ≤ δk ≤ 1 − k−c2, any parallel

black-box (n, 1−δ
2

, 1−δk

2
, `) hardness amplification realized in NAC( k

c3 log k
) must

have ` = 2Ω(n).

From Lemma 1, this implies the following impossibility result on general

black-box hardness amplification.
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Corollary 3 Under the same condition as in Theorem 3, it is impossible to

realize black-box (n, 1−δ
2

, 1−δk

2
, 2o(n)) hardness amplification in ATIME(c log k),

for some constant c > 0.

Now we prove the theorem.

Proof.(of Theorem 3) The basic proof idea is similar to that for Theorem 1.

The only difference is to replace Lemma 5 by an analogous one for NAC

circuits. Here we use the method of random restriction. A restriction on a set

of variables V = {xi : i ∈ [N ]} is a mapping ρ : V → {0, 1, ?}, which either

fixes the value of a variable xi with ρ(xi) ∈ {0, 1} or leaves xi free with ρ(xi) =

?. For p ∈ (0, 1), let Rp denote the distribution on such restrictions such that

each variable xi is mapped independently with Prρ∈Rp [ρ(xi) = ?] = p and

Prρ∈Rp [ρ(xi) = 0] = Prρ∈Rp [ρ(xi) = 1] = (1− p)/2. For a Boolean function g

and a restriction ρ, let gρ denote the function obtained from g by applying

the restriction ρ to its variables. That is, gρ(x1, . . . , xN) = g(y1, . . . , yN) with

yi = xi if ρ(xi) = ? and yi = ρ(xi) otherwise.

Define the degree of a function g as deg(g) = maxJ{|J | : ĝ(J) 6= 0}. It

is not hard to verify that a constant function has degree 0 and a function

depending on only t input bits has degree at most t. We need the following

lemma which bounds the contribution of higher-order Fourier coefficients.

Lemma 8 [LMN93] Let p ∈ (0, 1) and t ∈ N with pt > 8. Then for any

Boolean function g,
∑

|J |>t ĝ(J)2 ≤ 2 · Prρ∈Rp [deg(gρ) ≥ pt/2].

The following is the key lemma in this section, which gives a concrete

bound on the sum above for NAC circuits.

Lemma 9 For any g : {0, 1}N → {0, 1} ∈ NAC(s),
∑

|J |>t ĝ(J)2 ≤ s ·
2−Ω(t/s), when 9 ≤ t ≤ N .

Proof. Suppose g is computed by an NAC circuit of size s, which divides

its input into the real input part and the witness part. Let B be the set of

gates which receive some real input variables directly. Consider applying a

random restriction ρ ∈ Rp on the real input variables. We say a gate in B is
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killed if it is an AND gate and receives a real input variable which is fixed

to 0 by ρ, or if it is an OR gate and receives a real input variable which is

fixed to 1 by ρ. For a gate A ∈ B, let #(A) denote the number of real input

variables it receives. For a restriction ρ, let #(Aρ) denote the the number

of remaining real input variables it receives if A is not killed by ρ, and let

#(Aρ) = 0 otherwise. Set p to be any constant in (0, 1) so that pt > 8. Then

Pr
ρ∈Rp

[deg(gρ) ≥ pt/2] ≤ Pr
ρ∈Rp

[∃A ∈ B : #(Aρ) ≥ pt/(2s)]

≤ s ·max
A∈B

Pr
ρ∈Rp

[#(Aρ) ≥ pt/(2s)] .

Any A ∈ B with #(A) < pt/(2s) clearly has Prρ∈Rp [#(Aρ) ≥ pt/(2s)] =

0. On the other hand, any A ∈ B with #(A) ≥ pt/(2s) is likely to be

killed, so that Prρ∈Rp [#(Aρ) ≥ pt/(2s)] ≤ Prρ∈Rp [A is not killed by ρ] ≤
(1− (1− p)/2)pt/(2s) = 2−Ω(t/s). From Lemma 8, we have

∑
|J |>t ĝ(J)2 ≤

2s · 2−Ω(t/s) = s · 2−Ω(t/s). 2

Then analogously to Lemma 5 (in the previous section), we have the

following.

Lemma 10 There exist constants c2, c3, c4 such that for any δ ∈ (0, 1) and

any k ∈ N with δk ≤ 1− k−c2, if C ∈ NAC( k
c3 log k

), then

Pr
x,x̃

[C(x) is close to C(x̃)] ≥ δc4k.

Proof. Suppose C : {0, 1}N → {0, 1}M ∈ NAC( k
c3 log k

), for some large

enough constant c3. Using Lemma 4 and Lemma 9 with t = k/3, we have

that for each i ∈ [M ],

Pr
x,x̃

[C(x)i 6= C(x̃)i] ≤ 1

2

(
1− αt

(
1− k

c3 log k
· 2−Ω(c3 log k)

))
≤ 1

2

(
1− δ0.4k

(
1− k−Ω(1)

))
≤ 1

2

(
1− δ0.9k

)
,

when δk ≤ 1− k−c2 for some suitable constant c2. Then the rest is the same

as that for Lemma 5, and we can have Prx,x̃[C(x) is close to C(x̃)] ≥ δc4k for

some constant c4. 2
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Suppose 2−c0n ≤ δ < 1 and 2−2c1n ≤ δk ≤ 1− k−c2 , for suitable constants

c0, c1, c2. By combining Lemma 10 with Lemma 6, we get 2` ≥ δc4k ·2Ω(δ2N) ≥
22Ω(n)

, which gives the following.

Lemma 11 There exist constant c0, c1, c2, c3 such that for any δ ∈ (0, 1)

and any k ∈ N with 2−c0n ≤ δ < 1 and 2−2c1n ≤ δk ≤ 1 − k−c2, if C :

{0, 1}2n → {0, 1}M is a (1−δ
2

, 1−δk

2
, 2`)-list code computable by NAC( k

c3 log k
),

then 2` = 22Ω(n)
.

Combining this with Lemma 2, we obtain Theorem 3. 2

2.5 Inherent Non-uniformity of Hardness Am-

plification

In the previous two sections, we have proven that any strongly black-box

hardness amplification must be very non-uniform when the computational

complexity of the amplification procedure Amp is bounded in certain ways.

In this section, we prove that even without any such complexity bound, there

still exists some inherent non-uniformity.

First, we state the following simple result which seems to be a folklore.

For completeness we include its proof.

Theorem 4 For some constant c and for any γ ∈ (0, 1), no oracle algo-

rithm Amp(·) : {0, 1}m → {0, 1} can realize a strongly black-box (n, 1−γ
4

, 1
4
, 0)

hardness amplification with cγ2n/2 > m + 1.

Proof. From Lemma 2, this reduces to the following coding-theoretical

question: for which values of α and β do we have a (α, β, 1)-list code?

We call C : {0, 1}N → {0, 1}M an [N, M, α] code if the (relative Ham-

ming) distance of any two codewords is at least α. We need the following

good code, which can be constructed using, say, the concatenation of Reed-

Solomon code with Hadamard code.



2.5. INHERENT NON-UNIFORMITY OF HARDNESS AMPLIFICATION51

Fact 4 [N, O((N
γ
)2), 1−γ

2
] codes exist for any γ ∈ (0, 1).

This says that unique decoding is possible if the fraction of error is slightly

smaller than 1
4
. On the other hand, according to the following Plotkin bound,

unique decoding is basically impossible if the fraction of error grows beyond
1
4
.

Fact 5 (Plotkin Bound [Plo60]) An [N, M, α] code with α ≥ 1
2

must have

N ≤ log(2M).

Combining these two facts, we have the following.

Lemma 12 For some constant c and for any γ ∈ (0, 1), any (1−γ
4

, 1
4
, L)-list

code C : {0, 1}N → {0, 1}M with cγ
√

N > log(2M) must have L ≥ 2.

Proof. From Fact 4, there exists a [K,N, 1−γ
2

] code C ′ with K ≥ cγ
√

N

for some constant c. Suppose that C is a (1−γ
4

, 1
4
, L)-list code with cγ

√
N >

log(2M). If L = 1, then C ◦ C ′ : {0, 1}K → {0, 1}M is a [K, M, 1
2
] code with

K > log(2M), which is impossible according to Fact 5. 2

Then from Lemma 2, we obtain Theorem 4. 2

As discussed in the introduction, hardness amplifications normally have

m = poly(n). Thus, the theorem basically says that amplifying hardness be-

yond 1
4

must introduce non-uniformity in general. However, the theorem does

not provide a quantitative bound on the non-uniformity. This is addressed

by our next theorem.

Theorem 5 Suppose ε < 1
c

for some suitable constant c, and suppose 2n =

ω( 1
δ2 log 1

ε
). Then any strongly black-box (n, 1−δ

2
, 1−ε

2
, `) hardness amplifica-

tion must have ` = Ω(log δ2

ε
).

Thus, any such hardness amplification, even without any complexity con-

straint, must be inherently non-uniform, with ` ≥ 1 when ε ≤ c′δ2 for some

constant c′, or with ` = Ω(k log 1
δ
) when ε = δk. Note that our lower bound

generalizes that of Trevisan and Vadhan [TV02]: they only considered the
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case with δ = 1− 2−n+1 (or equivalently 1−δ
2

= 2−n) and obtained the lower

bound ` = Ω(log 1
ε
), while we consider general δ and obtain the lower bound

` = Ω(log δ2

ε
).

Now we proceed to the proof of Theorem 5.

Proof.(of Theorem 5) Consider an arbitrary code C : {0, 1}N → {0, 1}M . We

would like to show that for some constant c, one can find a string z ∈ {0, 1}M

and a set S ⊆ {0, 1}N such that the following two conditions hold:

• For every x ∈ S, C(x) is contained in the ball Ballz(
1−ε/c

2
, M).

• S needs Ω( δ2

ε
) balls in Ball(1−δ

2
, N) to cover with.

For this, we first choose x1, . . . , xt uniformly and independently from

{0, 1}N to form the set R, for some t = Θ( 1
ε2 ). Call the set R δ-good if

|R| = t (i.e. xi 6= xj for any i 6= j) and any ball in Ball(1−δ
2

, N) contains

O( 1
δ2 ) elements of R. Later, we will derive the set S from a δ-good R.

Lemma 13 When N = ω( 1
δ2 log 1

ε
), R is δ-good with probability 1− 2−Ω(N).

Proof. First, the probability that xi = xj for some i 6= j is at most
(

t
2

)
·2−N ≤

22 log t−N . Next, the probability that some ball in Ball(1−δ
2

, N) contains r

elements of R is at most 2N ·
(

t
r

)
· 2(H( 1−δ

2
)−1)Nr ≤ 2N+r log t−Ω(δ2)rN . For some

r = O( 1
δ2 ), both probabilities above are 2−Ω(N) when N = ω( 1

δ2 log t). This

proves the lemma. 2

We want to choose a string z ∈ {0, 1}M such that the ball Ballz(
1−ε
2

, M)

contains a lot of codewords coming from a δ-good R. We will fix some of z’s

bits first.

Definition 10 For each y ∈ [M ], let by be the bit such that

Pr
x∈{0,1}N

[C(x)y 6= by] ≤
1

2
.

Call R (δ, ε)-good for y if R is δ-good and Prx∈R [C(x)y 6= by] ≤ 1−ε
2

.

Lemma 14 Suppose N = ω( 1
δ2 log 1

ε
). Then for any y ∈ [M ], R is (δ, ε)-good

for y with probability Ω(1).
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Proof. From Lemma 13, R is not δ-good with probability 2−Ω(N). Now fix

any y ∈ [M ]. Let Ii, for i ∈ [t], be the indicator random variable such that

Ii = 1 if C(xi)y 6= by and Ii = 0 otherwise. Then, by letting T (R) = 1 if and

only if Prx∈R [C(x)y 6= by] ≤ 1−ε
2

,

Pr
R

[T (R) = 1] = Pr
x1,...,xt

[
1

t

∣∣{i ∈ [t] : C(xi)y 6= by}
∣∣ ≤ 1− ε

2

]

= Pr
x1,...,xt

1

t

∑
i∈[t]

Ii ≤
1− ε

2

 .

Note that I1, . . . , It form a sequence of i.i.d., with E [Ii] ≤ 1
2

for each i. Let

J1, . . . , Jt be the sequence of i.i.d. binary random variables with E [Ji] = 1
2

for each i. Then,

Pr

1

t

∑
i∈[t]

Ii ≤
1− ε

2

 ≥ Pr

1

t

∑
i∈[t]

Ji ≤
1− ε

2

 .

Therefore, by Fact 1, we have

Pr
R

[T (R) = 1] ≥ Pr

1

t

∑
i∈[t]

Ji ≤
1− ε

2

 = Ω(1),

as t = Θ( 1
ε2 ). Then R is (δ, ε)-good for y with probability at least Ω(1) −

2−Ω(N) = Ω(1). 2

An averaging argument immediately gives the following.

Corollary 4 Suppose N = ω( 1
δ2 log 1

ε
). Then there exist a set R ⊆ {0, 1}N

with |R| = Ω( 1
ε2 ) and a set A ⊆ [M ] with |A| = Ω(M) such that for any

y ∈ A, R is (δ, ε)-good for y.

Let us fix the sets R and A guaranteed by the corollary above. Next, we

want to show that many x’s from R satisfy the property that the codeword

C(x) has enough agreement with the vector b (with each bit by defined in

Definition 10) on those dimensions in A.

Lemma 15 There exists R′ ⊆ R with |R′| = Ω(1
ε
) such that for any x ∈ R′,

Pry∈A [C(x)y 6= by] < 1−ε/2
2

.
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Proof. For any y ∈ A, R is (δ, ε)-good for y, so

E
x∈R

[
Pr
y∈A

[C(x)y 6= by]

]
= E

y∈A

[
Pr
x∈R

[C(x)y 6= by]

]
≤ 1− ε

2
.

Let P (x) = 1 if and only if Pry∈A [C(x)y 6= by] ≥ 1−ε/2
2

. By Markov’s inequal-

ity,

Pr
x∈R

[P (x) = 1] ≤
1−ε
2

1−ε/2
2

≤ 1− ε

2
.

Thus, there exists R′ ⊆ R of size ε
2
|R| = Ω(1

ε
) such that for any x ∈ R′,

Pry∈A [C(x)y 6= by] < 1−ε/2
2

. 2

We let the vector z inherit from the vector b those bits indexed by A, and

it remains to set the values for the remaining bits. It is easy to show that

there exist v ∈ {0, 1}M (in fact, v can be chosen from {0M , 1M}) and S ⊆ R′

with |S| ≥ 1
2
|R′| such that for any x ∈ S, Pry/∈A [C(x)y 6= vy] ≤ 1

2
. So we just

define z ∈ {0, 1}M as zy = by if y ∈ A and zy = vy otherwise. Then, for any

x ∈ S,

4(C(x), z)

= Pr
y∈[M ]

[y ∈ A] · Pr
y∈A

[C(x)y 6= by] + Pr
y∈[M ]

[y /∈ A] · Pr
y/∈A

[C(x)y 6= vy]

<
|A|
M

· 1− ε/2

2
+

M − |A|
M

· 1

2

=
1

2

(
1− |A|(ε/2)

M

)
≤ 1− ε/c

2
,

for some constant c.

Furthermore, as S ⊆ R and R is δ-good, any ball in Ball(1−δ
2

, N) con-

tains O( 1
δ2 ) elements of S, and hence S must need |S|

O(1/δ2)
= Ω( δ2

ε
) such

balls to cover with. This shows that any (1−δ
2

, 1−ε/c
2

, 2`)-list code must have

2` = Ω( δ2

ε
). Replacing the parameter ε/c by ε, we have the following.

Lemma 16 Suppose ε < 1
c

for some suitable constant c, and suppose N =

ω( 1
δ2 log 1

ε
). Then any (1−δ

2
, 1−ε

2
, 2`)-list code must have 2` = Ω( δ2

ε
).
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This, combined with Lemma 2, proves the theorem. 2

Remark 5 Recently Guruswami and Vadhan [GV05] use a more involved

argument to proved that any (2−n, 1−ε
2

, 2`)-list code must have L = Ω( 1
ε2 ).

Their proof can be extended to show that any (1−δ
2

, 1−ε
2

, 2`)-list code must have

2` = Ω( δ2

ε2 ). Therefore any such strongly black-box hardness amplification with

δ ≥ c0ε, for some constant c0, must be inherently non-uniform.

2.6 Impossibility Results on PRG Construc-

tions

In this section, we prove lower bound (impossibility) results for strongly

black-box PRG constructions from hard functions. For this, we establish a

connection between strongly black-box PRG constructions and codes. Then

using those lower bound results for codes in previous sections, we obtain

lower bound results for strongly black-box PRG constructions.

Consider any strongly black-box PRG construction with an encoding

function G(·) : {0, 1}m → {0, 1}r. We call the ratio r
m

as the stretch fac-

tor of the PRG construction. Let N = 2n and M = r2m, and define the

corresponding code C : {0, 1}N → {0, 1}M as C(f) = Gf . That is, seeing

any function f : {0, 1}n → {0, 1} as a vector in {0, 1}N , C(f) produces as

output the function Gf , which is seen as a vector in ({0, 1}r)2m
= {0, 1}M

(the concatenation of Gf (u)’s over u ∈ {0, 1}m). Analogously to Lemma 2,

we have the following connection between PRG constructions and codes.

Lemma 17 Suppose G(·) : {0, 1}m → {0, 1}r is the encoding function of a

strongly black-box (n, β, ε
2
, `) PRG construction with a stretch factor r

m
=

ω( 1
ε2 ). Then C : {0, 1}N → {0, 1}M , defined as C(f) = Gf , is a (β, 1−ε

2
, 2`)-

list code.

Proof. Suppose G is the encoding function of a strongly black-box (n, β, ε
2
, `)

PRG construction, and Dec is the decoding function, which is an oracle
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Turing machine with an `-bit advice. Consider any string A ∈ {0, 1}M ,

which can be seen as a function A : {0, 1}m → {0, 1}r. We want to show that

not many codewords are close to A. For this, we show that there exists a

distinguisher DA such that if any C(f) is close to A, then DA can distinguish

Gf from random.

Define the distinguisher DA : {0, 1}r → {0, 1} as

DA(w) = 1 if and only if ∃u ∈ {0, 1}m : 4(w,A(u)) ≤ 1− ε/4

2
.

Suppose r = ω(m
ε2 ), and assume without loss of generality that 2−ω(m) ≤ ε

4
.5

Then,

Pr
w∈Ur

[DA(w) = 1] ≤
∑

u∈{0,1}m

Pr
w∈Ur

[
4(w, A(u)) ≤ 1− ε/4

2

]
≤ 2m · 2−Ω(ε2r)

≤ 2−ω(m)

≤ ε

4
.

Consider any codeword C(f) with 4(A, C(f)) < 1−ε
2

. Now as

E
u∈Um

[4(A(u),Gf (u))] = 4(A, C(f)),

by Markov inequality we have

Pr
u∈Um

[4(A(u),Gf (u)) >
1− ε/4

2
] <

1− ε

1− ε/4
≤ 1− 3ε

4
.

Thus,

Pr
u∈Um

[
DA(Gf (u)) = 1

]
≥ Pr

u∈Um

[
4(Gf (u), A(u)) ≤ 1− ε/4

2

]
>

3ε

4
.

Therefore, we have∣∣∣∣ Pr
u∈Um

[
DA(Gf (u)) = 1

]
− Pr

w∈Ur

[DA(w) = 1]

∣∣∣∣ >
3ε

4
− ε

4
=

ε

2
.

5For a PRG G : {0, 1}m → {0, 1}r, one can only expect ε ≥ 2−m − 2−r, because this

can be achieved by a simple distinguisher T defined as T (z) = 1 if and only if z = G(0r).

Since G is a PRG, r ≥ m + 1, ε ≥ 2−m − 2−(m+1) = 2−(m+1) and we have 2−ω(m) ≤ ε
4 .
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From Definition 19, this implies that there exists an ν ∈ {0, 1}` such that

4(DecDA,ν , f) = Prx[DecDA,ν(x) 6= f(x)] < β.

We have shown that if C(f) is in BallA(1−ε
2

, M), then f is contained

in one of the 2` balls of radius β centered at DecDA,ν for ν ∈ {0, 1}`. This

implies that C is a (β, 1−ε
2

, 2`)-list code. 2

With the help of this lemma, lower bound results on codes in previous

sections now immediately yield results on strongly black-box constructions

of PRG.

First, observe that if the PRG construction has a parallel realization in a

circuit class, then every output bit of C can be computed by a circuit in the

class. Then by combining Lemma 17 with Lemma 7, we have the following

theorem on parallel black-box PRG constructions realized by small-depth AC

circuits.

Theorem 6 There exist constants c0, c1, c2, c3 such that for any δ ∈ (0, 1)

and any d, k ∈ N with 2−c0n ≤ δ < 1 and 2−2c1n ≤ δk ≤ 1 − 2−c2k1/d
, any

parallel black-box (n, 1−δ
2

, δk

2
, `) realized in AC(d, 2c3k1/d

) with a stretch factor

ω( 1
δ2k ) must have ` = 2Ω(n).

Next, by combining Lemma 17 with Lemma 11, we immediate have the

following theorem on parallel black-box PRG constructions realized by NAC

circuits.

Theorem 7 There exist constants c0, c1, c2, c3 such that for any δ ∈ (0, 1)

and any k ∈ N with 2−c0n ≤ δ < 1 and 2−2c1n ≤ δk ≤ 1 − k−c2, any

parallel black-box (n, 1−δ
2

, δk

2
, `) PRG construction realized in NAC( k

c3 log k
) with

a stretch factor ω( 1
δ2k ) must have ` = 2Ω(n).

Similar to those in Sections 2.3 & 2.4, the two theorems above on the par-

allel model immediate imply impossibility results on general strongly black-

box PRG constructions, via Lemma 1.

Finally, by combining Lemma 17 with Lemma 16, we have the following

theorem on the inherent non-uniformity of strongly black-box PRG construc-

tions.
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Theorem 8 Suppose ε < 1
c

for some suitable constant c, and suppose 2n =

ω( 1
δ2 log 1

ε
). Then any strongly black-box (n, 1−δ

2
, ε, `) PRG construction with

a stretch factor ω( 1
ε2 ) must have ` = Ω(log δ2

ε
).



Chapter 3

Weakly Black-Box Hardness

Amplification

3.1 Introduction

In this chapter, we study the problem of transforming a hard function into a

harder one via a procedure called weakly black-box hardness amplification,

in which the initial hard function is only used as a black box to construct the

harder function. First, we show that if a weakly black-box hardness ampli-

fication procedure in TIME(t) can amplify hardness beyond an O(t) factor,

then it must embed in itself a hard function computable in TIME(t). As a

result, it is impossible to have such a hardness amplification with hardness

measured against TIME(t). Next, we show that, for any k ∈ N, if a weakly

black-box hardness amplification procedure in ΣkP can amplify hardness be-

yond a polynomial factor, then one can obtain from it a hard function in

ΣkP. A similar impossibility result can also be derived.

3.1.1 Previous Results

For the case of strongly black-box hardness amplification, Viola [Vio04]

proved that no amplification procedures from worst-case hardness to mild

hardness is computable in PH. Lu et al. [LTW05] proved a more general

59
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result, showing the impossibility of amplifying hardness from (1 − δ)/2 to

(1 − δk)/2 in PH for any super-polynomial k . Furthermore, they showed

that such a hardness amplification must be highly non-uniform in nature, in

the sense that one must start from a function f which is hard against a very

non-uniform complexity class even if one only wants to obtain a function

f̄ which is hard against a uniform complexity class [LTW05] (presented in

Chapter 2).

Since the strongly black-box approach has its limitation, one may look

for a weaker type of hardness amplification. Bogdanov and Trevisan [BT03]

showed that even if one drops the constraint on the encoding procedure, one

still cannot amplify from worst-case hardness to mild hardness for functions

in NP unless PH collapses, when the decoding procedure is required to be

computable non-adaptively in P.

The other possibility is to consider weakly black-box hardness amplifica-

tion, in which the constraint on the decoding procedure is dropped, while

the encoding procedure is still required to be done in a black-box way. Viola

[Vio05] proved that if a weakly black-box procedure amplifying from worst-

case hardness to mild hardness can be realized in PH, then one can obtain

from it a mildly hard function computable in PH. Although this can be seen

as a negative result, it does not rule out the possibility of such a weakly

black-box hardness amplification. In fact, it appears difficult to establish

impossibility results for such a hardness amplification. This is because if

an average-case hard function indeed exists, an amplification procedure may

simply ignore the initial hard function and compute the average-case hard

function from scratch. This raises the question: can one prove any meaning-

ful impossibility result for weakly black-box hardness amplification?

3.1.2 Our Results

We derive two negative results for weakly black-box hardness amplification.

First, we prove that if a weakly black-box hardness amplification realized in

TIME(t) can amplify hardness by an ω(t) factor, from o(ε/t) to ε, then it
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must embed in it a function computable in TIME(t) with hardness about ε.

Note that a function in TIME(t) cannot be hard against a class containing

TIME(t). Therefore, we obtain an unconditional impossibility result: it is

impossible to use a procedure in TIME(t) to transform a function which is

o(ε/t)-hard against the class C = SIZE(2n/3) into a function which is ε-hard

against a class C̄ ⊇ TIME(t). This rules out the possibility of using a low-

complexity procedure to do such a hardness amplification for high-complexity

functions.1 Note that when t = 2o(n), this gives an impossibility result for

amplifying from worst-case hardness to mild hardness in sub-exponential

time. We also extend this impossibility result to the case with C being any

uniform complexity class equipped with an advice of length at most 2n/3.

This says that such a weakly hardness amplification, just as in the strongly

black-box case [LTW05], must also be highly non-uniform in nature: it is

impossible to have such a weakly hardness amplification if one start from

an initial function which is hard against any complexity class with only 2n/3

bits of non-uniformity (even of arbitrarily high uniform complexity). Second,

we prove that if a weakly black-box hardness amplification realized in NP

(ΣkP, respectively) can amplify hardness beyond a polynomial factor, from

ε2/nω(1) to ε, then one can obtain from it a function computable in NP (ΣkP,

respectively) with hardness about ε. This improves the result in [Vio05], as

the hard function obtained there seems to need at least the complexity of

Σk+1P, one level higher than ours in PH. Again, this enables us to derive an

unconditional impossibility result: it is impossible to use a procedure in NP

(ΣkP, respectively) for such a hardness amplification, if the new function’s

hardness is measured against a class containing NP/poly (ΣkP, respectively),

1It is possible to use a low complexity (oracle) procedure to amplify hardness within

certain range for functions in high complexity classes. For example, the derandomized

XOR lemma [IW97] (the XOR lemma [Yao82, NW94], respectively) allows us to use a

polynomial-time (oracle) procedure to amplify from mild hardness to average-case hardness

(hardness close to average-case hardness, respectively) for functions in high complexity

classes, such as E. Our result says that this becomes impossible if one wants to amplify

hardness beyond certain factor.
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when the initial function is hard against a uniform complexity class equipped

an advice of length 2n/3. Note that this excludes the possibility of having

such a hardness amplification from worst-case hardness to mild hardness for

functions in NP. Following our result, we widen the gap between worst-case

and mild hardness within NP.

3.1.3 Organization of this chapter

First, some preliminaries are given in Section 3.2. Then in Section 3.3 and in

Section 3.4, we show the results of weakly black-box hardness amplification

sub-exponential time and ΣkP respectively.

3.2 Preliminaries

First, we generalize the hardness from the circuit model to arbitrary ones.

Definition 11 We say that a function f : {0, 1}n → {0, 1} is (ε, C)-hard,

for a complexity class C, if for any C ∈ C, Prx∈Un [C(x) 6= f(x)] > ε. We

will call f ε-hard when the complexity class C is clear.

The parameter ε in the definition above is allowed to be a function of n,

so a better notation should be ε(n), but for simplicity we drop the parameter

n. In previous works, people usually consider hardness against circuits, i.e.,

with C = SIZE(s) for some s. Since we will consider hardness against other

complexity classes, we introduce this slightly more general definition. Next,

we define the notions of weakly black-box hardness amplification [RTV04].

Definition 12 Let C and C̄ be complexity classes. We say that an oracle

algorithm Amp(·) : {0, 1}n̄ → {0, 1} realizes a weakly black-box (n, ε, ε̄, C, C̄)

hardness amplification, if given any (ε, C)-hard function f : {0, 1}n → {0, 1},
the function Ampf : {0, 1}n̄ → {0, 1} is (ε̄, C̄)-hard.

Here, the reduction from the initial function f to the harder function is done

in a black-box way, as the harder function Ampf only uses f as an oracle.
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One can also define the notions of strongly black-box hardness amplification.

For their definitions, we refer the readers to Chapter 2 in this thesis.

3.3 Impossibility of Hardness Amplificationin

in TIME(t)

In this section, we show that if a weakly black-box hardness amplification

realized in TIME(t), can amplify hardness beyond an O(t) factor, then it

must basically embed a hard function in it.

Theorem 9 Suppose a weakly black-box (n, ε, ε̄, C, C̄) hardness amplification

can be realized in TIME(t) with 2−n/2 ≤ ε ≤ o(ε̄/t), C = SIZE(2n/3), and

C̄ being any complexity class. Then one can obtain from it an (ε̄/2, C̄)-hard

function Ā : {0, 1}poly(n) → {0, 1} computable in TIME(t).

Using t = 2o(n), this implies that if such a hardness amplification from

worst-case hardness to mild hardness can be realized in sub-exponential time

(or sub-linear space), then it must basically embed a mildly hard function in

it. Furthermore, since a function in TIME(t) cannot be hard against TIME(t),

we have the following unconditional impossibility result on weakly black-box

hardness amplification.

Corollary 5 It is impossible to realize a weakly black-box (n, ε, ε̄, C, C̄) hard-

ness amplification in TIME(t), with 2−n/2 ≤ ε ≤ o(ε̄/t), C = SIZE(2n/3), and

C̄ ⊇ TIME(t).

Now we prove Theorem 9.

Proof.(of Theorem 9) Assume that such a weakly hardness amplification

can be realized by Amp ∈ TIME(t). We will show that the function Amp
~0

is (ε̄/2, C̄)-hard, where ~0 is the constant zero function which always outputs

zero for every input. The idea is to choose a certain kind of random function

f such that f is likely to be hard and Amp is unlikely to tell it apart from
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the function ~0. A natural candidate is the following, which is obtained by

adding random noise of certain rate to the function ~0. 2

Definition 13 Let Fδ denote the distribution of functions f : {0, 1}n →
{0, 1} such that for any x ∈ {0, 1}n, f(x) = 0 with probability 1 − δ, and

f(x) is given a random bit with probability δ.

Let δ = 4ε. It remains to show that such a random function can do the

work.

Lemma 18 Prf∈Fδ [Ampf is (ε̄, C̄)-hard] ≥ 1− 2−Ω(n).

Proof. Consider any D ∈ C = SIZE(2n/3). Note that for any x ∈ {0, 1}n,

Prf [D(x) 6= f(x)] ≥ δ/2 = 2ε. Define T (f) = 1 if and only if

Pr
x

[D(x) 6= f(x)] < ε.

Let T̃ (f) = Prx [D(x) 6= f(x)]. So we have Ef [T̃ (f)] ≥ 2ε and Prf [T (f) = 1]

≤ 2−Ω(ε2n) by a Chernoff bound. Now it is clear that

Pr
f

[f is not (ε, C)-hard]

= Pr
f

[
∃D ∈ SIZE(2n/3) : T (f) = 1

]
≤ 2O(2n/3·n/3) · 2−Ω(ε2n)

≤ 2−Ω(n).

As a result, Prf [Ampf is not (ε̄, C̄)-hard]≤ Prf [f is not (ε, C)-hard]≤ 2−Ω(n).

2

Lemma 19 Prf∈Fδ [4(Ampf ,Amp
~0) ≤ ε̄/2] ≥ 1− o(1).

Proof. For any input x̄, Ampf (x̄) 6= Amp
~0(x̄) only when Ampf (x̄) ever

makes an oracle query x to f with f(x) 6= 0. Amp runs in time t and

2A similar idea also appeared in [LTW05a] for the problem of amplifying hardness of

one-way permutations.
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can make at most t queries to the oracle, so for every x̄, Prf [Ampf (x̄) 6=
Amp

~0(x̄)] ≤ t · δ = o(ε̄). Define Bad(f) = 1 if and only if Prx̄[Ampf (x̄) 6=
Amp

~0(x̄)] ≥ ε̄/2. Then Prf,x̄[Ampf (x̄) 6= Amp
~0(x̄)] = o(ε̄), and by Markov’s

inequality, Prf [Bad(f) = 1] = o(1). 2

From the two lemmas above, there exists a function f such that Ampf

is (ε̄, C̄)-hard and 4(Ampf ,Amp
~0) ≤ ε̄/2. This implies that the function

Amp
~0 is (ε̄/2, C̄)-hard. Since Amp

~0 is clearly computable in TIME(t), we

have Theorem 9. 2

In fact, we can have essentially the same impossibility result even if we

replace the class SIZE(2n/3) by any uniform complexity class B equipped with

an advice of length 2n/3, denoted as B/2n/3. This means that such a weakly

black-box hardness amplification must be highly non-uniform.

Theorem 10 It is impossible to realize a weakly black-box (n, ε, ε̄, C, C̄) hard-

ness amplification in TIME(t), with 2−n/2 ≤ ε ≤ o(ε̄/(t ·n2)), C = B/2n/3 for

any uniform complexity class B, and C̄ ⊇ TIME(t).

Proof. The proof can be slightly modified from that for Theorem 9. We

will use the following lemma, known as the Borel-Cantelli Lemma (see e.g.

[Bil95]).

Lemma 20 Let E1, E2, . . . be a sequence of probability events on the same

probability space. Suppose that
∑∞

n=1 Pr [En] < ∞. Then Pr [∧∞k=1 ∨n≥k En] =

0.

The proof is largely based on that for Theorem 9, but here we need to treat

things in a more careful way. As now we often need to talk about a sequence

of functions, one on each input length, we change the notation slightly by

adding a subscript n to a function of input length n. That is, now we write

fn : {0, 1}n → {0, 1}, and write f for the sequence of functions (fn)n∈N.

Similarly, we write Fδ
n for the distribution of functions fn : {0, 1}n → {0, 1}

in the proof of Theorem 9, and write Fδ for the sequence of distributions

(Fδ
n)n∈N.
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Lemma 21 With measure one over f ∈ Fδ, Ampf is (ε̄, C̄)-hard.

Proof. Consider any Turing machine M in the uniform complexity class B.

Consider any input length n and let En denote the event that there exists

an advice ν ∈ {0, 1}2n/3
such that Prx∈Un [M ν

n(x) 6= fn(x)] < ε. Then as in

Lemma 18, one can show that Prfn∈Fδ
n
[En] ≤ 2O(2n/3·n/3) · 2−Ω(ε2n) < 1/n2.

Since
∑∞

n=1 1/n2 < ∞, the Borel-Cantelli Lemma implies that En happens

for infinitely many n with measure zero over f ∈ Fδ. Since there are only a

countable many Turing machines M ’s, we conclude that f is not (ε, C)-hard

with measure zero over f ∈ Fδ. As Ampf is not (ε̄, C̄)-hard only when f is

not (ε, C)-hard, we have the lemma. 2

Lemma 22 With measure one over f ∈ Fδ, 4(Ampfn ,Amp
~0n) ≥ ε̄/2 for

only finitely many n.

Proof. As in the proof of Lemma 19, now with ε ≤ o(ε̄/(t · n2)), one

can show that for any n, Prfn,x̄[Ampfn(x̄) 6= Amp
~0n(x̄)] = o(ε̄/n2), and

Prfn [4(Ampfn ,Amp
~0n) ≥ ε̄/2] < 1/n2. Since

∑∞
n=1 1/n2 < ∞, the lemma

immediately follows from the Borel-Cantelli Lemma. 2

Then as in Theorem 9, the two lemmas above imply that the function

Amp
~0 is (ε̄/2, C̄)-hard. Since Amp

~0 is computable in TIME(t), it cannot be

hard against any C̄ ⊇ TIME(t), and we have Theorem 10. 2

3.4 Impossibility Results in ΣkP

In this subsection, we consider weakly black-box hardness amplification re-

alized in ΣkP (or PH). We will show that if it can amplify hardness beyond

a certain factor, then it must basically embed a hard function in it.

Theorem 11 Suppose a weakly black-box (n, ε, ε̄, C, C̄) hardness amplifica-

tion can be realized in NP (ΣkP, respectively), with 2−n/2 ≤ ε ≤ ε̄2/nω(1),

C = SIZE(2n/3), and C̄ satisfying C̄/poly = C̄. Then one can obtain from it

an (ε̄/3, C̄)-hard function Ā : {0, 1}poly(n) → {0, 1} computable in NP (ΣkP,

respectively).
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Since a function in NP (ΣkP, resp.) cannot be hard against NP/poly

(ΣkP/poly, resp.), we have the following unconditional impossibility result

on weakly black-box hardness amplification.

Corollary 6 It is impossible to realize a weakly black-box (n, ε, ε̄, C, C̄) hard-

ness amplification in NP (ΣkP, resp.), with 2−n/2 ≤ ε ≤ ε̄2/nω(1), C =

SIZE(2n/3), and any C̄ ⊇ NP/poly (ΣkP/poly, resp.) satisfying C̄/poly = C̄.

We will need the notion of random restriction [FSS84, Has86]. A re-

striction ρ on N variables is an element of {0, 1, ?}N , or seen as a function

ρ : [N ] → {0, 1, ?}. A variable is fixed by ρ if it receives a value in {0, 1} while

a variable remains free if it receives the symbol ?. For a string y ∈ {0, 1}N

and a restriction ρ ∈ {0, 1, ?}N , let y�ρ ∈ {0, 1}N be the restriction of y

with respect to ρ: for i ∈ [N ], the i’th bit of y�ρ is yi if ρi = ? and is ρi if

ρi ∈ {0, 1}.
Suppose there exists such a weakly black-box hardness amplification,

with Amp realized in NP (ΣkP, resp.). Then Amp can be computed by

an AC(c, 2nc
) circuit, for some constant c, with the truth table of the oracle

function given as part of the input (c.f. [FSS84]). We will show how to derive

a hard function from it.

The idea, which basically follows that of Viola’s [Vio05], is the following.

We know that a random function f is likely to be hard, and so is the function

Ampf , but we do not know which f gives a hard function. One attempt is to

include f as part of the input in the new function, but the description of f

is too long. The idea is that by choosing a suitable random restriction ρ̄, the

function f�ρ̄ is still likely to be hard, and so is the function Ampf�ρ̄ . On the

other hand, a random restriction is likely to kill off the effect of a random

function f on Ampf�ρ̄ , so it becomes possible to replace the random function

by a pseudo-random one f̄ , which has a short description. Therefore, if we

have a random restriction which has a short description and satisfies the

properties above, we can define the new function which includes ρ̄ and f̄ as

part of the input and computes the function Ampf̄�ρ̄ . The existence of such
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a random restriction is guaranteed by the following lemma of Viola’s [Vio05].

For our purpose here, we state it in a slightly more general form.

Lemma 23 [Vio05] For any n ∈ N, any constant c, and any ε, ε̄ ∈ (0, 1)

such that 2−n ≤ ε ≤ ε̄2/nω(1), there is a distribution R̄ on restrictions ρ̄ :

{0, 1}n → {0, 1, ?} such that the following holds.

• Every ρ̄ ∈ R̄ can be described by poly(n) bits, and given such a descrip-

tion and x ∈ {0, 1}n, one can compute ρ̄(x) in time poly(n).

• Prρ̄∈R̄[|{x : ρ̄(x) = ?}| < 3ε2n] = o(ε̄).

• For any C : {0, 1}2n → {0, 1} ∈ AC(c, 2nc
), Prρ̄∈R̄;y,y′∈U2n [C(y�ρ̄) 6=

C(y′�ρ̄)] = o(ε̄2).

Let F denote the set of all functions f : {0, 1}n → {0, 1}. It remains

to show that the random restriction given in Lemma 23 can accomplish the

task we discussed above. First, by using the second item of Lemma 23, we

show that the function Ampf�ρ̄ is hard with high probability over ρ̄ ∈ R̄ and

f ∈ F.

Lemma 24 Prρ̄∈R̄,f∈F[Ampf�ρ̄ is not (ε̄, C̄)-hard] = o(ε̄).

Proof. Call a restriction ρ̄ ∈ R̄ good if |{x : ρ̄(x) = ?}| ≥ 3ε2n. Con-

sider any good ρ̄ and any D ∈ C = SIZE(2n/3). Note that for any x such

that ρ̄(x) = ?, Prf [D(x) 6= f�ρ̄(x)] = 1/2. Define Bad(f) = 1 if and only

if Prx [D(x) 6= f�ρ̄(x)] < ε and define B̃(f) = Prx [D(x) 6= f�ρ̄(x)]. Thus,

Ef [B̃(f)] ≥ 3ε/2, and Prf [Bad(f) = 1] ≤ 2−Ω(ε2n), by a Chernoff bound. As

a result, for any good ρ̄, Prf [f�ρ̄ is not (ε, C)-hard] is

Pr
f

[
∃D ∈ SIZE(2n/3) : Bad(f) = 1

]
≤ 2O(2n/3·n/3) · 2−Ω(ε2n) = o(ε̄).

From Lemma 23, Prρ̄∈R̄[ρ̄ is not good] = o(ε̄), and by definition, Ampf�ρ̄ is

(ε̄, C̄)-hard whenever f�ρ̄ is (ε, C)-hard. Therefore,

Pr
ρ̄,f

[Ampf�ρ̄ is not (ε̄, C̄)-hard]

≤ Pr
ρ̄

[ρ̄ is not good] + Pr
ρ̄,f

[f�ρ̄ is not (ε, C)-hard | ρ̄ is good]

= o(ε̄). 2
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From this lemma, we know that the function Ampf�ρ̄ is hard for most

ρ̄ ∈ R̄ and f ∈ F, but we do not know which ρ̄ and f give a hard function.

While ρ̄ has a short description, f does not, so we cannot just include both

ρ̄ and f as part of the input. Viola’s approach in [Vio05] is to remove the

dependence of f altogether, by considering the function A′ which on input

(x̄, ρ̄) outputs the majority value of Ampf�ρ̄(x̄) over f ∈ F. The hardness of

A′ is guaranteed by the third item in Lemma 23, because for most ρ̄ and for

most f , the function Ampf�ρ̄ is hard and A′(ρ̄, ·) is close to it. However, to

compute such a majority value over f ∈ F costs one additional level in the

polynomial hierarchy in [Vio05], and with Amp ∈ NP (ΣkP, respectively),

Viola needs at least Σ2P (or Σk+1P) to compute the function A′. Our idea is

to replace the random function by a pseudorandom one.

Definition 14 Let Nis : {0, 1}r1 → {0, 1}2n
be Nisan’s o(ε̄2)-PRG for AC(c+

2, 2nc+2), with r1 = poly(n) [Nis91]. Let F̄ be the class of functions f̄z1 :

{0, 1}n → {0, 1}, with z1 ∈ {0, 1}r1, defined as f̄z1(x) = Nis(z1)x, the x’th

bit in Nis(z1).

There seems to be an obstacle in front of us. Unlike a random function,

such a pseudo-random f̄ is not hard at all. Then how do we guarantee

the hardness of the function Ampf̄�ρ̄? We resolve this by showing that the

function Ampf̄�ρ̄ is likely to be close to a hard function Ampf�ρ̄ . For this, we

first show the following.

Lemma 25 For any x̄ ∈ {0, 1}n̄, Prρ̄∈R̄,f∈F,f̄∈F̄ [Ampf�ρ̄(x̄) 6= Ampf̄�ρ̄(x̄)] =

o(ε̄2).

Proof. Let N = 2n. Fix any x̄ ∈ {0, 1}n̄, and let C : {0, 1}N → {0, 1} be

the function which takes a function g : {0, 1}n → {0, 1}, seen as g ∈ {0, 1}N ,

as the input and outputs the value Ampg(x̄). Clearly, C ∈ AC(c, 2nc
). Now

for ρ̄ ∈ R̄, let C̄ρ̄ : {0, 1}N × {0, 1}N → {0, 1} be the function such that

C̄ρ̄(f, f ′) = 1 if and only if C(f�ρ̄) 6= C(f ′�ρ̄), which is computable by an
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AC(c + 2, 2nc+2) circuit. Since Nis is an o(ε̄2)-PRG for such circuits,∣∣∣∣ Pr
ρ̄,f,f̄

[
C̄ρ̄(f, f̄) = 1

]
− Pr

ρ̄,f,f ′

[
C̄ρ̄(f, f ′) = 1

]∣∣∣∣
≤ E

ρ̄,f

[∣∣∣∣Pr
z1

[
C̄ρ̄(f,Nis(z1)) = 1

]
− Pr

f ′

[
C̄ρ̄(f, f ′) = 1

]∣∣∣∣] = o(ε̄2).

From Lemma 23, Prρ̄,f,f ′
[
C̄ρ̄(f, f ′) = 1

]
= o(ε̄2), and we have

Pr
ρ̄,f,f̄

[
C̄ρ̄(f, f̄) = 1

]
≤ Pr

ρ̄,f,f ′

[
C̄ρ̄(f, f ′) = 1

]
+ o(ε̄2) = o(ε̄2).

2

From this, one can show that the function Ampf̄�ρ̄ is hard for most ρ̄ ∈ R̄

and f̄ ∈ F̄ .

Lemma 26 Prρ̄∈R̄,f̄∈F̄ [Ampf̄�ρ̄ is not (ε̄/2, C̄)-hard] = o(ε̄).

Proof. From Lemma 24, we know that Prρ̄,f [Ampf�ρ̄ is not (ε̄, C̄)-hard] =

o(ε̄). From Lemma 25, we know that Prρ̄,f,f̄ ,x̄[Ampf�ρ̄(x̄) 6= Ampf̄�ρ̄(x̄)] =

o(ε̄2), and by Markov’s inequality, we have that Prρ̄,f,f̄ [4(Ampf�ρ̄ ,Ampf̄�ρ̄) >

ε̄/2] = o(ε̄). Note that Ampf̄�ρ̄ is (ε̄/2, C̄)-hard when Ampf�ρ̄ is (ε̄, C̄)-hard

and 4(Ampf�ρ̄ ,Ampf̄�ρ̄) ≤ ε̄/2. So, Prρ̄,f̄ [Ampf̄�ρ̄ is not (ε̄/2, C̄)-hard] is at

most Prρ̄,f

[
Ampf�ρ̄ is not (ε̄, C̄)-hard

]
+ Prρ̄,f,f̄

[
4(Ampf�ρ̄ ,Ampf̄�ρ̄) > ε̄/2

]
= o(ε̄). 2

From the lemma above, we know that Ampf̄�ρ̄ is hard for most ρ̄ and f̄ .

We do not know which ρ̄ and f̄ give a hard function, but since they have short

description, we can include them as part of the input. Define the function

Ā : {0, 1}n̄× R̄×F̄ → {0, 1} as Ā(x̄, ρ̄, f̄) = Ampf̄�ρ̄(x̄). Note that the input

length of Ā is at most poly(n) as ρ̄ and f̄ can be described by poly(n) bits.

Lemma 27 The function Ā is (ε̄/3, C̄)-hard.

Proof. Consider any D̄ : {0, 1}n̄ × R̄ × F̄ → {0, 1} ∈ C̄. Note that for

any ρ̄ ∈ R̄ and f̄ ∈ F̄ such that Ampf̄�ρ̄ is (ε̄/2, C̄)-hard, Prx̄[D̄(x̄, ρ̄, f̄) =
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Ā(x̄, ρ̄, f̄)] = Prx̄[D̄(x̄, ρ̄, f̄) = Ampf̄�ρ̄(x̄)] < 1− ε̄/2. Therefore,

Pr
x̄,ρ̄,f̄

[
D̄(x̄, ρ̄, f̄) = Ā(x̄, ρ̄, f̄)

]
< Pr

ρ̄,f̄

[
Ampf̄�ρ̄ is not (ε̄/2, C̄)-hard

]
+ 1− ε̄/2

≤ 1− ε̄/3.

2

Now we prove Theorem 11.

Proof.(of Theorem 11) By Lemma 27, Ā is (ε̄/3, C̄)-hard. Note that given

f̄ ∈ F̄ , ρ̄ ∈ R̄, and any x ∈ {0, 1}n, one can compute f̄�ρ̄(x) in time poly(n).

Therefore, the function Ā belongs to NP, the same class as Amp. 2

Similar to Theorem 10, we have the following.

Theorem 12 It is impossible to realize a weakly black-box (n, ε, ε̄, C, C̄) hard-

ness amplification in NP (ΣkP, resp.) with 2−n/2 ≤ ε ≤ ε̄2/nω(1), C = B/2n/3

for any uniform complexity class B, and any C̄ ⊇ NP/poly (ΣkP/poly, resp.)

satisfying C̄/poly = C̄.

Proof. Similar to how we modify the proof of Theorem 9 to prove Theo-

rem 10, we can also modify the proof of Theorem 11 to prove Theorem 12.

Again, we will use the the Borel-Cantelli Lemma. We will also change the

notation slightly by adding a subscript n to a function of input length n.

That is, now we write f̄n ∈ F̄n and ρ̄n ∈ R̄n for functions and restrictions

on inputs of length n, respectively, and we write f̄ , ρ̄, F̄ , R̄ for the sequences

(fn)n∈N, (ρ̄n)n∈N, (F̄n)n∈N, (R̄n)n∈N, respectively. Then it is easy to check that

one can modify the proof in Theorem 11 to show the following lemma.

Lemma 28 With measure one over ρ̄ ∈ R̄ and f̄ ∈ F̄ , Ampf̄�ρ̄ is (ε̄/2, C̄)-

hard.

Unlike in Theorem 11, we now cannot show show that the function Ā is

hard. Instead, from the lemma above, we know that for any large enough

n, there exists ρ̄n ∈ R̄n and f̄n ∈ F̄n such that the function Ā(ρ̄n, f̄n, ·) =
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Ampf̄n�ρ̄n (·) is hard. We can see such ρ̄n’s and f̄n’s as advice strings, which

are of length poly(n), and as a result we have a hard function which is

computable in NP/poly (ΣkP/poly, resp.). Since such a function cannot be

hard against any C̄ ⊇ NP/poly (ΣkP/poly, resp.), we have Theorem 12. 2



Chapter 4

Hardness Amplification in NP

4.1 Introduction

In this chapter, we focus on the task of transforming mild hardness to

average-case hardness for the complexity class NP. One attempt is to use

Yao’s XOR lemma [Yao82, GNW95], which transforms a given function

f : {0, 1}n → {0, 1} into a function f ′ : ({0, 1}n)k → {0, 1} defined by

f ′(x1, · · · , xk) = f(x1) ⊕ · · · ⊕ f(xk). However, we do not know if this

works here, since we do not know if NP is closed under the XOR operation.

O’Donnell [OD02] gave the first result along this line, showing how to con-

vert any balanced function f ∈ NP which is mildly hard for polynomial-size

circuits into another f ′ ∈ NP which is (1/2− 1/n1/2−α)-hard for polynomial-

size circuits, for any constant α > 0. He considered transformations of

the form: f ′(x1, . . . , xk) = C(f(x1), . . . , f(xk)), where C is a polynomial-

time computable monotone function. Then he used the “tribes” function

and the “recursive majority” function, and took their composition as the

function C. Recently, Healy et al. [HVV04] were able to amplify hardness

beyond 1/2 − 1/poly(n), showing how to convert any balanced function in

NP which is mildly hard for circuits of size s(n) into one in NP which is

(1/2 − 1/s′(n))-hard for circuits of size s′(n), with s′(n) = s(n1/2)Ω(1). In

particular, s′(n) = nω(1) when s(n) = nω(1), s′(n) = 2nΩ(1)
when s(n) = 2nΩ(1)

,
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and s′(n) = 2Ω(n1/2) when s(n) = 2Ω(n). A key source of their improvement

came from derandomizing O’Donnell’s proof (the other source being the use

of nondeterminism in computing the new function). They observed that the

function C used by O’Donnell can be computed by a small-size read-once

branching program and thus can be fooled by the pseudorandom generator

of Nisan [Nis92]. Unfortunately, this generator becomes the bottleneck of

their approach when s(n) = 2Ω(n), which prevents them from achieving the

goal of having s′(n) = 2Ω(n).

In this chapter, we make a further progress towards this goal, at the high

end of the spectrum:

Theorem 13 Suppose there is a balanced function in NP which is mildly

hard for circuits of size s(n) = 2Ω(n). Then there is a function in NP which

is (1/2− 1/s′(n))-hard for circuits of size s′(n), with s′(n) = 2Ω(n2/3).

Our improvement comes from a closer look into the structure of the function

C used by Healy et al., which enables us to construct a better pseudorandom

generator to fool C. More precisely, we observe that the function C, which is

the composition of the tribes function (a DNF) with the recursive majority

function, can be seen as some kind of combinatorial rectangle, though the

range in each dimension is large. This suggests that we fool each dimension

by a separate copy of Nisan’s generator and provide their seeds using the

output of Lu’s pseudorandom generator for rectangles [Lu02]. Our generator

then is the composition of these two generators.

4.1.1 Organization of this chapter

First, some preliminaries are given in Section 4.2. Then in Section 4.3, we

give the proof of our main theorem in this chapter.
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4.2 Preliminaries

First of all, we recall the definition of a hard function. For 0 ≤ δ ≤ 1/2

and s(n) ≤ 2O(n), we say that a function f : {0, 1}n → {0, 1} is δ-hard

for size s(n) if every circuit of size s(n) fails to compute f on at least a δ

fraction of inputs. As shown by Impagliazzo [Im95], one can basically see

a δ-hard function as a δ-random function defined below, as they cannot be

distinguished by circuits of size slightly smaller than s(n).

Definition 15 A probabilistic function g : {0, 1}n → {0, 1} is called δ-

random if it is balanced and there is a subset H ⊂ {0, 1}n with |H| = 2δ2n

such that g(x) is an independent random bit for x ∈ H and g(x) is deter-

ministic for x /∈ H.

Note that any probabilistic function g can also be seen as a deterministic

function with respect to a random string y, and we will use gy to denote this

deterministic function.

4.2.1 Hardness Amplification

Given a hard function f , one would like to transform it into a harder function

f ′. One typical way is to apply a function C : {0, 1}k → {0, 1} to the

function f⊗k to get the function f ′ = C ◦ f⊗k : {0, 1}nk → {0, 1}, defined

as (C ◦ f⊗k)(x1, . . . , xk) = C(f(x1), . . . , f(xk)). For hardness amplification

within NP, to ensure that C ◦ f⊗k ∈ NP whenever f ∈ NP, O’Donnell

[OD02] choose C to be a polynomial-time computable monotone function.

In particular, he considered the functions Tribes and Rmaj, defined as

follows.

Definition 16 Define the function Tribest : {0, 1}t → {0, 1} as

Tribest(x1, · · · , xt) = (x1∧· · ·∧xb)∨(xb+1∧· · ·∧x2b)∨· · ·∨(xdt/beb−b+1∧· · ·∧xt),

where b is the largest integer such that (1− 2−b)
t/b ≥ 1/2. Note that this

makes b = O(log t). Also, let Maj be the majority function, and define the
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function Rmajr : {0, 1}3r → {0, 1} recursively as

Rmaj1(x1, x2, x3) = Maj(x1, x2, x3)

and

Rmajr(x1, · · · , x3r)

= Rmajr−1 (Maj(x1, x2, x3), · · · ,Maj(x3r−2, x3r−1, x3r)) .

Given any δ ≥ 1/poly(n), to amplify from a δ-hard function f : {0, 1}n →
{0, 1}, O’Donnell used the composition

Ampδ
k = Tribest ◦Rmaj⊗t

r

as the function for C, with k = t3r, t ∈ N, and r = O(log(1/δ)). He showed

that the resulting function f ′ = C ◦ f⊗k : {0, 1}n′ → {0, 1} has hardness

1/2 − 1/kc for some constant c. Note that the new function f ′ now has an

input length n′ = kn, so its hardness when expressed in terms of the input

length n′ is only 1/2 − 1/poly(n′). That is, even if a super-polynomial k is

used, the resulting hardness does not go beyond 1/2− 1/poly(n′).

To overcome this bottleneck, Healy et al. [HVV04] showed that one can

take a super-polynomial k while keeping the input size of f ′ small (polynomial

in n) if the k inputs to f⊗k are generated in some pseudorandom way, in the

following sense.1 To simplify our presentation, we state things in a slightly

different way from [HVV04].

Definition 17 [HVV04] For a probabilistic function h : {0, 1}n → {0, 1},
define its expected collision probability as ExpCP [h] = Ex[2 · Pry,y′ [hy(x) =

hy′(x)]− 1].

Definition 18 We say that a generator G : {0, 1}` → ({0, 1}n)k ε-fools the

δ-ExpCP of a function C : {0, 1}k → {0, 1} if for any δ-random function

g : {0, 1}n → {0, 1},∣∣ExpCP
[
(C ◦ g⊗k)

]
−ExpCP

[
(C ◦ g⊗k) ◦G

]∣∣ ≤ ε.

1Another issue when using a super-polynomial k is that the function Ampδ
k is no

longer computable in time poly(n). As shown in [HVV04], this can be handled using

non-determinism.
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Given such a generator G for C = Ampδ
k, the amplified function f ′ is

defined as f ′ = C ◦f⊗k ◦G. The seed length of the generator G now becomes

the input length of the new function f ′. The following lemma states that the

task of hardness amplification can be reduced to that of constructing such a

generator.

Lemma 29 [HVV04] Suppose for any δ ≥ 1/poly(n) and any k = t3r ≤
2O(n), with t ∈ N and r = O(log(1/δ)), there exists an explicitly computable

generator G : {0, 1}`(n) → ({0, 1}n)k which 2−Ω(n)-fools the δ-ExpCP of the

function Ampδ
k. Then for any δ ≥ 1/poly(n) and any s(n) ≥ 2Ω(n), if there

exists a balanced function in NP which is δ-hard for size s(n), one can convert

it into a function in NP which is (1/2−1/s′(n))-hard for size s′(n), for some

s′(n) ≥ 2Ω(`−1(n)).

Remark 6 Lemma 29 does not appear explicitly in [HVV04] but can be de-

rived from arguments therein. In fact, Healy et al. [HVV04] used two kinds

of generators: one for preserving indistinguishability and one for fooling the

δ-ExpCP of the function Ampδ
k. In the case with s(n) ≥ 2Ω(n), the bottle-

neck lies on that for Ampδ
k. They observed that the function Ampδ

k can be

computed by a read-once branching program of small size, and they showed

that a pseudorandom generator fooling such branching programs (see Defi-

nition 19 and 20) can fool the δ-ExpCP of the function Ampδ
k. Therefore,

they reduced the task of hardness amplification to that of finding a pseudoran-

dom generator to fool such branching programs. (See for example Theorem

6.2 in the journal version of [HVV04].) However, using currently available

generators for branching programs, they were only able to obtain a generator

of seed length Ω(n2) for fooling the δ-ExpCP of Ampδ
k. Instead of fooling

branching programs, we will show that it suffices to fool a simpler class of

tests: combinatorial rectangles, for which a better generator can indeed be

found.
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4.2.2 PRGs for Branching Programs and Rectangles

Our generator will be based on pseudorandom generators that fool read-once

branching programs and combinatorial rectangles, respectively.

Definition 19 A function G : {0, 1}` → {0, 1}t is called an ε-PRG for a

class of functions from {0, 1}t to {0, 1} if for any T in this class,∣∣∣Pr [T (Ut)]− Pr [T (G(U`))]
∣∣∣ ≤ ε.

Definition 20 A read-once branching program of size s with block-length n

is a finite state machine of s states, with each edge labelled by a subset of

{0, 1}n. The computation proceeds as follows. The input is read sequentially

in one pass, one block of n bits at a time. When the machine reads a block

β ∈ {0, 1}n, it goes from the current state to the state reached by the edge

labelled with β. Let BP(s, n) denote the class of functions computed by such

read-once branching programs.

Definition 21 For m, d ∈ N, let R(m, d) denote the collection of rectangles

R = R1 × · · · ×Rd ⊆ [m]d, with Ri ⊆ [m] for all i ∈ [d].

To fool these two classes of functions, we will use the PRGs of Nisan

[Nis92] and Lu [Lu02], respectively.

Lemma 30 [Nis92] For any n ∈ N and any s ≤ 2n, there exists an ex-

plicitly computable 2−Ω(n)-PRG GN : {0, 1}` → {0, 1}sn for BP(s, n) with

` = O(n log s).

Lemma 31 [Lu02] For any m, d ∈ N and any ε ∈ (0, 1), there exists an

explicitly computable ε-PRG GL : {0, 1}` → [m]d for R(m, d) with ` =

O(log m + log d + log3/2(1/ε)).
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4.3 Proof of Main Theorem

Now we prove Theorem 13. Consider any δ ≥ 1/poly(n) and any k = t3r ≤
2O(n), with t ∈ N and r = O(log(1/δ)). Given Lemma 29, our task is to

construct a generator with a short seed which fools the δ-ExpCP of the

function Ampδ
k. Let Ord denote the OR function on d bits and let Andb

denote the AND function on b bits. Consider an arbitrary δ-random function

g : {0, 1}n → {0, 1}, and let A : {0, 1}kn → {0, 1} be the function

A = Ampδ
k ◦ g⊗k = Ord ◦

(
Andb ◦Rmaj⊗b

r ◦ g⊗b3r)⊗d
,

where k = db3r = 2O(n), b = poly(n), d = 2O(n), and r = O(log(1/δ)) =

O(log n). Note that A is a probabilistic function (because of g), and let

Ay denote the function A taking the random string y. Observe that each

A−1
y (0) can be seen as a rectangle in R(2b3rn, d). As we will see, to fool the δ-

ExpCP of Ampδ
k, it suffices to have a good PRG for rectangles in R(2b3rn, d).

However, the range in each dimension of such rectangles is too large for us

to apply Lemma 31 effectively. To resolve this, we use d copies of Nisan’s

PRGs to fool the d functions in the d dimensions respectively, with the d

seeds coming from the output of Lu’s PRG. Formally, we use the following

two generators, with ε = 2−Ω(n):

• Let GN : {0, 1}q → {0, 1}b3rn be Nisan’s (ε/d)-PRG for BP(nc, n),

for some large enough constant c. From Lemma 30, one can have

q = O(n log n).

• Let GL : {0, 1}` → {0, 1}dq be Lu’s ε-PRG for R(2q, d). From Lemma 31,

one can have ` = O(n log n) + O(n3/2) = O(n3/2).

Then define our generator G : {0, 1}` → {0, 1}db3rn as

G(u) =
(
G⊗d

N ◦GL

)
(u) = G⊗d

N (GL(u)).

It is easy to see that G is explicitly computable since both GN and GL are.

To show that G is a good generator, we shall bound the value |ExpCP [A]−
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ExpCP [A ◦G] |. Let Cy,y′ be the function defined as Cy,y′(x) = 1 if Ay(x) 6=
Ay′(x) and Cy,y′(x) = 0 otherwise. Then

|ExpCP [A]−ExpCP [A ◦G] |

= 2

∣∣∣∣E
x

[
Pr
y,y′

[Cy,y′(x) = 0]

]
− E

u

[
Pr
y,y′

[Cy,y′(G(u)) = 0]

]∣∣∣∣
≤ 2 E

y,y′

[∣∣∣Pr
x

[Cy,y′(x) = 0]− Pr
u

[Cy,y′(G(u)) = 0]
∣∣∣] .

It remains to show that for any y and y′, G fools the function Cy,y′ . However,

neither C−1
y,y′(0) nor C−1

y,y′(1) appears to be a rectangle, so some twist is needed.

In fact, C−1
y,y′(1) is the symmetric difference of the two rectangles Ry =

A−1
y (0) and Ry′ = A−1

y′ (0) in R(2b3rn, d), denoted as Ry 	Ry′ . That is,

C−1
y,y′(1) = Ry 	Ry′ = (Ry \Ry′) ∪ (Ry′ \Ry).

Then Prx[x ∈ Ry 	 Ry′ ] = Prx[x ∈ Ry] + Prx[x ∈ Ry′ ]− 2 Prx[x ∈ Ry ∩ Ry′ ]

and similarly for Pru[G(u) ∈ Ry 	Ry′ ]. Thus∣∣∣Pr
x

[Cy,y′(x) = 1]− Pr
u

[Cy,y′(G(u)) = 1]
∣∣∣

=
∣∣∣Pr

x

[
x ∈ Ry 	Ry′

]
− Pr

u

[
G(u) ∈ Ry 	Ry′

]∣∣∣
≤

∣∣∣Pr
x

[x ∈ Ry]− Pr
u

[G(u) ∈ Ry]
∣∣∣ +

∣∣∣Pr
x

[
x ∈ Ry′

]
− Pr

u

[
G(u) ∈ Ry′

]∣∣∣ +

2
∣∣∣Pr

x

[
x ∈ Ry ∩Ry′

]
− Pr

u

[
G(u) ∈ Ry ∩Ry′

]∣∣∣ .

Note that Ry, Ry′ , and Ry∩Ry′ are all rectangles in R(2b3rn, d). Furthermore,

they all satisfy the property that the membership function of the set in each

dimension can be computed in BP(nc, n) for some constant c, according to

[HVV04].2 Therefore, it remains to show the following.

2Recall that A = Ampδ
k ◦ g⊗k = Ord ◦ (Andb ◦ Rmaj⊗b

r ◦ g⊗b3r

)⊗d. From [HVV04],

the function Andb ◦ Rmaj⊗b
r is in BP(poly(n), 1), and the probabilistic function Andb ◦

Rmaj⊗b
r ◦g⊗b3r

can be computed by a probabilistic BP(poly(n), n). Thus by fixing the ran-

dom string of A to any string y, the set Ry = A−1
y (0) seen as a rectangle in R(2b3rn, d) has

the property that each of its d dimensions has its membership function in BP(poly(n), n).

Next, we argue that for any y and y′, each dimension of the rectangle Ry ∩Ry′
also has its
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Lemma 32 For any R = R1×· · ·×Rd ∈ R(2b3rn, d) such that Ri ∈ BP(nc, n)

for any i ∈ [d], |Prx [x ∈ R]− Pru [G(u) ∈ R] | ≤ 2ε.

Proof. Observe that |Prx [x ∈ R]− Pru [G(u) ∈ R] | is at most∣∣∣Pr
x

[x ∈ R]− Pr
v

[
G⊗d

N (v) ∈ R
]∣∣∣+∣∣∣Pr

v

[
G⊗d

N (v) ∈ R
]
− Pr

u

[
G⊗d

N (GL(u)) ∈ R
]∣∣∣ ,

(4.1)

where v is sampled from Udq with dq = O(d · n log n). It remains to bound

the two terms above.

First, note that GN is an (ε/d)-PRG for BP(nc, n) and can fool each Ri.

Using a standard hybrid argument (see e.g. [Gol01]), one can show that G⊗d
N

is an (d ·ε/d)-PRG for such a rectangle R. Thus, the first term in (4.1) above

is at most ε.

To bound the second term, consider the rectangle R′ = {v : G⊗d
N (v) ∈

R} ∈ R(2q, d) with q = O(n log n). That is, R′ = R′
1 × · · · × R′

d, with

R′
i = G−1

N (Ri) ⊆ {0, 1}q for i ∈ [d]. Since GL is an ε-PRG for R(2q, d), we

have |Prv [v ∈ R′] − Pru [GL(u) ∈ R′] | ≤ ε. Thus, the second term in (4.1)

above is also at most ε. Therefore we have the lemma. 2

Combining the lemma and the discussion above, we have

|ExpCP [A]−ExpCP [A ◦G] | ≤ 2(2ε + 2ε + 4ε) = 16ε = 2−Ω(n).

That is, our generator G, which uses a seed of length `(n) = O(n3/2), is able

to 2−Ω(n)-fool the δ-ExpCP of the function Ampδ
k. Then by Lemma 29, we

have our main theorem.

membership function in BP(poly(n), n). To see this, first observe that the i’th dimension

of Ry ∩Ry′
is exactly Ry

i ∩Ry′

i , where Ry
i and Ry′

i are the i’th dimension of Ry and Ry′
,

respectively. Suppose Ry
i and Ry′

i are recognized by read-once branching programs B and

B′ with state spaces S and S′, respectively. Then the set Ry
i ∩ Ry′

i is recognized by the

read-once branching program B′′ with state space S × S′, which goes from state (s, s′) to

state (t, t′) when reading an input block x if and only if B goes from s to t and B′ goes

from s′ to t′, respectively, when reading x. The initial state of B′′ is the state (s0, s
′
0)

where s0 and s′0 are the initial states of B and B′, respectively, while the accepting states

of B′′ are exactly those states (t, t′) where t and t′ are the accepting states of B and B′,

respectively. Thus, if B and B′ are both in BP(poly(n), n), so is B′′.
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4.3.1 Discussion

Our generator uses a seed of length O(n3/2), and as a result, we can only

amplify hardness to 1/2 − 1/s′(n) against size s′(n) with s′(n) = 2Ω(n2/3).

The main bottleneck is the generator for rectangles. However, to achieve the

goal of having s′(n) = 2Ω(n) using our approach, we need to improve both the

generator for branching programs and the generator for rectangles. Without

improving Nisan’s PRG, even if we could have an optimal ε-PRG for R(m, d),

with seed length Θ(log m + log d + log(1/ε)), the resulting generator would

still need a seed of length Θ(n log n)+O(n) = Ω(n log n) (see the definition of

the generator G and the calculation of its seed length in the previous page),

and we would only be able to achieve s′(n) = 2Ω(n/ log n).



Chapter 5

Hardness and

Pseudorandomness in NP

5.1 Introduction

In this chapter, we study the problem of transforming a pseudorandom gen-

erator into a hard function and the problem of transforming a hard function

into a harder one. It is known that in a high complexity class such as ex-

ponential time, one can convert from worst-case hardness to average-case

hardness, from average-case hardness to pseudorandomness, and from pseu-

dorandomness back to worst-case hardness. However, in lower complexity

classes, such as NP, some of the relationships remains unclear. We establish

the equivalence between pseudorandomness and average-case hardness, and

widen the gap between worst-case hardness and average-case hardness within

NP.

By the result of Impagliazzo and Levin ([IL90] in FOCS’ 90), one can

build the equivalence between pseudorandomness and average-case hardness

within NP. For completeness of this thesis, we give a proof which shows how

to transform a pseudorandom generator into a mildly hard function com-

putable in NP. We give a strongly black-box construction, with both the

transformation procedure and the hardness proof done in a black-box way.

83
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This improves a previous result of Nisan and Wigderson, which can only ob-

tain a worst-case hard function from a pseudorandom generator [NW94].

Therefore, we now know that the transformations among mild hardness,

average-case hardness, and pseudorandomness all can be done in the com-

plexity class NP.

5.1.1 Previous Results

The reduction from average-case hardness to pseudorandomness within NP is

done in [NW94]. However, from pseudorandomness to average-case hardness,

the method in [NW94] can only transform a PRG back to a worst-case hard

function [NW94] within NP. Since the hardness amplification from worse-case

hardness to average-case hardness is believed to be impossible (see Chapter 2

and Chapter 3), it is not clear how to obtain the reduction from PRG to

average-case hardness within NP. One can use the method developed in

[IL90] to achieve this reduction.

Figure 5.1.1 summaries these known relationships between various hard-

ness assumptions and pseudorandomness. Note that the above transforma-

tion can be done in a black-box way, in which the decoding procedure is

realized in P while the encoding procedure needs the complexity of NP. This

raises the following two questions. First, can the complexity of the encod-

ing procedure be reduced? Next, since the transformation from worst-case

hardness to average-case hardness seems to require high complexity, can we

transform a PRG directly into an average-case hard function, using a low-

complexity procedure, say in NP (or even in P)?

5.1.2 Our Results

In this chapter, we provides a strongly black-box constructions of average-

case hard functions from PRGs although it also can be done via method

developed in [IL90]. As a result, we build the equivalence between PRG and

average-case hardness within NP as shown in Figure 5.1.1. Combining with
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Figure 5.1: The relationship among PRG and various hardness assumptions

within NP. Arrows indicate black-box transformations. BB and WBB

trans. indicate black-box and weakly black-box transformations respec-

tively. Note that the slash symbol means ”the transformation cannot be

done in NP”.

results in the previous chapter, we are able to look closer the relationship

between pseudorandomness and hardness within NP.

Our main result gives strongly black-box constructions of average-case

hard functions from PRGs. The first construction has the encoding pro-

cedure realized in NP and the decoding procedure realized in P/poly (or

randomized polynomial time). This improves the result of [NW94] which,

using an encoding procedure in NP as well, obtains only a worst-case hard

function. A natural question then is: can we further reduce the complexity

of the encoding procedure, or can we prove a complexity lower bound? We

give a partial answer to this by providing another strongly black-box con-

struction with the encoding procedure realized in P but at the expense of

increasing the complexity of the decoding procedure to NP, which rules out

the possibility of proving a complexity lower bound for the encoding proce-

dure without restricting the complexity of the decoding procedure. This still

leaves open the question of whether or not one can have both the encoding
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and decoding procedures realized in P. Our positive results also imply some

impossibility results. By combining with the impossibility results of strongly

black-box hardness amplification in [Vio04, LTW05] and the previous im-

possibility results of weakly black-box hardness amplification in Chapter 3,

respectively, we can obtain corresponding impossibility results of strongly

and weakly black-box PRG constructions from hard functions.

5.1.3 Organization of this Chapter

First, some preliminaries are given in Section 5.2. Then in Section 5.3, we

give strongly black-box constructions of hard function from PRG.

5.2 Preliminaries

We say that a distribution is close to random if no distinguisher can tell it

apart from the uniform distribution.

Definition 22 We say that a distribution Z over {0, 1}n is δ-random if for

any D : {0, 1}n → {0, 1}, |Prz∈Z [D(x) = 1]− Pru∈Un [D(u) = 1]| ≤ δ.

We say that a distribution is pseudorandom if it is not random but a

distinguisher with a bounded complexity cannot tell it apart from the random

one. This is captured by the notion of pseudo-random generators, which are

functions that stretch a short random seed to a long random-looking string.

Definition 23 We say that a function G : {0, 1}n → {0, 1}m is a (δ, C)-

PRG, for a complexity class C, if for any test T : {0, 1}m → {0, 1} ∈ C,
|Pru∈Un [T (G(u)) = 1] − Prw∈Um [T (w) = 1]| < δ. We will call g a δ-PRG

when the complexity class C is clear or irrelevant in the context.

We will need the following notion of (strongly) black-box construction of

hard functions from PRGs.
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Definition 24 We say that an oracle algorithm Enc : {0, 1}n̄ → {0, 1}
realizes a (strongly) black-box construction of an ε-hard function from any

δ-PRG G : {0, 1}n → {0, 1}m if there exists a non-uniform oracle Turing

machine Dec that satisfies the following. For any G : {0, 1}n → {0, 1}m

and any A : {0, 1}n̄ → {0, 1}, there exists an advice string ν = ν(G, A) ∈
{0, 1}`, for some ` ∈ N, such that if Prx̄∈Un̄ [A(x̄) 6= Encf (x̄)] < ε, then

|Prx∈Un [DecA,ν(G(x)) = 1]− Prz∈Um [DecA,ν(z) = 1]| > δ.

Note that we do not include complexity classes in this definition. In fact,

this definition implies the definition of constructing an (ε, C̄)-hard function

from a (δ,AC̄)-PRG, where A is the complexity class of Dec.

5.2.1 Universal Hash Functions

We need the notion of universal hash functions and their efficient construc-

tions.

Lemma 33 [CW79] For any n, m ∈ N with n ≥ m, there is a family Hn
m of

hash functions h : {0, 1}n → {0, 1}m satisfying the following two properties.

• Each h ∈ Hn
m can be described by O(log n) bits, and given such a de-

scription and any x ∈ {0, 1}n, one can compute h(x) in poly(n) time.

• Prh∈Hn
m
[h(Un) 6= Um] = 2−Ω(n).

• For any distinct x, y ∈ {0, 1}n, Prh∈Hn
m
[h(x) = h(y)] = 2−m.

Universal hash functions are known to be good extractors, in the sense

that they can extract almost perfect randomness from a slightly random

source. We need the following, which is known as the leftover hash lemma.

Lemma 34 [IZ89, HILL99] Let H = Hn
m. Then for any X ⊆ {0, 1}n with

|X| ≥ 2k, the distribution of (h(x), h), with (x, h) sampled from X × H, is

2−(k−m)/2-random.
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A simple corollary is the following, which says that a random h ∈ H is

likely to be a good extractor. We omit the proof since it can be easily derived

using a Markov inequality.

Corollary 7 Let H = Hn
m. Then for any X ⊆ {0, 1}n with |X| ≥ 2k,

Pr
h∈H

[h(X) is not δ-random] ≤ 2−(k−m)/2/δ.

5.3 Hardness from Pseudorandomness

In this section, we consider constructions of hard functions from pseudoran-

dom generators. Our first result shows that one can construct a mildly-hard

function from a PRG.

Theorem 14 There exists a black-box construction of Ω(1/n4)-hard function

from 1/(3n)-PRG such that the encoding procedure can be realized in NP while

the decoding procedure can be realized in P/poly.

Note that one can transform a mildly hard function into an average-case

hard one by a polynomial-time procedure [IW97]. Therefore, one can have a

black-box construction of average-case hard function from PRG realized in

NP. Furthermore, we can combine Theorem 14 with the impossibility results

of black-box hardness amplification in [Vio04, LTW05] to obtain correspond-

ing impossibility results for black-box PRG construction from hard function.

We can also combine Theorem 14 with our results for weakly black-box hard-

ness amplification to obtain corresponding results for weakly black-box PRG

construction from hard function.

One unsatisfying aspect of Theorem 14 is that the encoding procedure

needs the complexity of NP. A natural question is whether or not its com-

plexity can be reduced. Theorem 15 shows that this is in fact possible, but

at the expense of increasing the complexity of the decoding procedure to NP.

Theorem 15 There exists a black-box construction of (1 − δ)/2-hard func-

tion from a δ/2-PRG G : {0, 1}n → {0, 1}m, with m = ω(n/δ2), such that
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encoding procedure can be realized in P while the decoding procedure can be

realized in NP.

Proof. Suppose G : {0, 1}n → {0, 1}m, with m = ω(n/δ2), is an δ/2-PRG.

Define the hard function f : {0, 1}n × [m] → {0, 1} by f(x, i) = G(x)i. We

will show that f is (1− δ)/2-hard.

Suppose there is a function A : {0, 1}n × [m] → {0, 1} such that

Pr
u,i

[f(u, i) 6= A(u, i)] <
1− δ

2
.

We define the distinguisher DA : {0, 1}m → {0, 1} by

DA(w) = 1 if and only if ∃u ∈ {0, 1}n : Pr
i

[wi 6= A(u, i)] ≤ 1− δ/4

2
.

We will show that DA is an δ/2-distinguisher for G.

Define I(w) = 1 if and only if Pri [wi 6= A(u, i)] ≤ 1−δ/4
2

.

First, we bound the probability Prw[DA(w) = 1], which is at most∑
u

Pr
w

[I(w) = 1] ≤ 2n · 2−Ω(δ2m) ≤ 2−ω(n) ≤ δ

4
.

Next, we bound the probability Pru[D
A(G(u)) = 1]. Since

Pr
x,i

[f(x, i) 6= A(x, i)] < (1− δ)/2,

Markov’s inequality gives Pru[I(G(u)) = 0] < 1−δ
1−δ/4

≤ 1− 3δ
4
. Thus,

Pr
u

[
DA(G(u)) = 1

]
= Pr

u
[I(G(u)) = 1] >

3δ

4
.

Therefore Pru[D
A(G(u)) = 1] − Prw[DA(w) = 1] > δ

2
, which contradicts to

the assumption that G is a δ/2-PRG.

Note that the distinguisher DA is computable in NPA. Therefore, we have

a black-box proof for the hardness of f , in which the decoding procedure can

be realized in NP. Finally, note that the function f can be easily computed

in polynomial time given G as an oracle, so the encoding procedure can be

realized in P. This proves Theorem 15. 2
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Now we proceed to prove Theorem 14.

Proof. Suppose G : {0, 1}n → {0, 1}m, with n < m, is a 1/(3n)-PRG. This

means that it is hard to tell the image of G from a random string. Therefore,

Nisan and Wigderson [NW94] considered the function fG : {0, 1}m → {0, 1}
defined by fG(y) = 1 if and only if y ∈ image(G). This function is clearly

worst-case hard, because otherwise it can serve as a distinguisher for G.

However, there are two issues which prevent us from proving a large hardness

for such a function in general. First, image(G) may only be a relatively

small subset of {0, 1}m; in this case, one can approximate fG well simply

by outputting 0 for every input. The second issue is that G may be highly

non-injective so that elements of image(G) may have large pre-image sizes;

in this case, different elements of {0, 1}m may carry very different weights

from G, so even if one can approximate fG well, one may be still unable to

distinguish G well enough. In fact, when G is injective and m = n + 1, with

both issues gone, one can indeed show that fG has constant hardness. Then

a natural question is: can we transform any PRG G into another PRG which

has a relatively large image and is almost injective?

To handle the first issue, we would like to choose a hash function h to map

the space {0, 1}m down to a smaller one, the smaller the better, without two

elements of image(G) being hashed to the same value. To handle the second

issue, we would like to add to the output more information g(x) extracted

from the seed x, the more the better, without compromising the security.

For both purposes, we would like to know the pre-image size of G(x) for any

given seed x. We define

ix =
⌊
log |G−1(G(x))|

⌋
.

For a seed x, if we know the value ix, then we would like to choose the hash

function h with output length about n − ix and the function g with output

length about ix. We will use the well-known construction of universal hash

functions, given in Lemma 33 in the Appendix 5.2.1. Let Hn
m denote such

a family of hash functions h : {0, 1}n → {0, 1}m. Formally, we consider the

following family of generators.
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Definition 25 Given δ ∈ (0, 1), let r = log(4n). For i ∈ [n], mi = n−i+2r,

`i = i − r, h ∈ Hm
mi

, and g ∈ Hn
`i
, define the function Gi

h,g : {0, 1}n →
{0, 1}mi × {0, 1}`i by

Gi
h,g(x) = (h(G(x)), g(x)) .

The problem is that G in general may not be regular, i.e. the values of

ix may not be the same for every x, and the value of ix may not be easy to

compute given x. Instead, we will show that for some specific value of i, for

most h and g, determining the image of Gi
h,g is already a hard function. Let

f i
h,g be the function such that

f i
h,g(y, z) = 1 if and only if (y, z) ∈ image(Gi∗

h,g).

For i ∈ [n], define the set Bi = {G(x) : x ∈ {0, 1}n ∧ ix = i}. Clearly,

these sets B1, . . . , Bn form a partition of image(G). Note that for any i ∈
[n], |Bi| ≤ 2n−i, since each y ∈ Bi has |G−1(y)| ≥ 2i. Furthermore, since

Prx[G(x) ∈ ∪i∈[n]Bi] = 1, there must exist some i∗ ∈ [n] such that Prx[G(x) ∈
Bi∗ ] ≥ 1/n and i∗ ≥ 2r. From now on, we will focus on this i∗. Let B = Bi∗ ,

H = Hm
mi∗

, and K = Hn
`i∗

.

Call (h, g) ∈ H × K good if both h and g are good by satisfying the

following:

• h(Um) is perfectly random, i.e., h(Um) = Umi∗ .

• Prx[G(x) ∈ L | G(x) ∈ B] ≤ 1/8, for L = {w ∈ B : ∃w′ ∈ B with w′ 6=
w and h(w) = h(w′)}.

• For any y ∈ B, the distribution of g(x), over x ∈ G−1(y), is 1/8-random.

The following shows that a random (h, g) is likely to be good.

Lemma 35 Prh∈H,g∈K[(h, g) is not good] = o(1).

Proof. Recall that H = Hm
mi∗

and K = Hn
`i∗

. First, from Lemma 33, we

have

Pr
h∈H

[h(Um) 6= Umi∗ ] = 2−Ω(m).
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Next, for any x, Prh∈H[G(x) ∈ L | G(x) ∈ B] = Prh∈H[∃w ∈ B \ {G(x)} :

h(G(x)) = h(w)], which by the definition of H is at most

|B| · 2−mi∗ ≤ 2n−i∗ · 2−(n−i∗+2r) = 2−2r.

Thus, Eh∈H[Prx∈Un [G(x) ∈ L | G(x) ∈ B]] = Prx∈Un,h∈H[G(x) ∈ L | G(x) ∈
B] ≤ 2−2r. Define B(h) = 1 if and only if Prx∈Un [G(x) ∈ L | G(x) ∈ B] >

1/8. Then by Markov’s inequality, we have

Pr
h∈H

[B(h) = 1] < 2−2r+3.

Finally, consider any y ∈ B, and note that |G−1(y)| ≥ 2i∗ . Let X denote

the uniform distribution over G−1(y). Then from Corollary 7,

Pr
g∈K

[g(X) is not 1/8-random] ≤ 2−(i∗−`i∗ )/2/(1/8) ≤ 2−r/2+3.

Therefor, Prh∈H,g∈K[(h, g) is not good] ≤ 2−Ω(m) + 2−2r+3 + 2−r/2+3 = o(1).

2

Next, we show that a good (h, g) gives a hard function. Fix a good

(h, g), and let f = f i∗

h,g. Suppose that there exists a function C such that

Pry,z [C(y, z) 6= f(y, z)] = o(1/n3). For any z, define the distinguisher Dz :

{0, 1}m → {0, 1} for G by Dz(w) = 1 if and only if C(h(w), z) = 1. Then we

have the following two claims.

Claim 1 Prw,z[Dz(w) = 1] ≤ 1/(3n).

Proof. Recall that Prw,z [Dz(w) = 1] = Prw,z [C(h(w), z) = 1]. The idea is to

show that this probability is close to Pry,z [f(y, z) = 1] = Pry,z [(y, z) ∈ image(f)],

which is small because image(f) is relatively small.

First, since h is good, the distribution of h(w) is perfectly random, which

implies that

Pr
w,z

[C(h(w), z) = 1] = Pr
y,z

[C(y, z) = 1] .

Next, by the assumption that C approximates f well, we have

Pr
y,z

[C(y, z) = 1] ≤ Pr
y,z

[f(y, z) = 1] + Pr
y,z

[C(y, z) 6= f(y, z)]

≤ Pr
y,z

[f(y, z) = 1] + o(1/n3).
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Finally, since image(G), of size 2n, is a small subset of {0, 1}n+r, we have

Pr
y,z

[f(y, z) = 1] = Pr
y,z

[(y, z) ∈ image(f)] = 2n/2n+r = 2−r = 1/(4n).

As a result, we have Prw,z [Dz(w) = 1] ≤ 1/(4n) + o(1/n3) ≤ 1/(3n). 2

Claim 2 Prx,z[Dz(G(x)) = 1] ≥ 2/(3n).

Proof. Recall that Prx,z [Dz(G(x)) = 1] = Prx,z [C(h(G(x)), z) = 1], which

is at least

Pr
x

[G(x) ∈ B] · Pr
x,z

[C(h(G(x)), z) = 1 | G(x) ∈ B] , (5.1)

where B = Bi∗ . The first factor above is at least 1/n, by the choice of i∗.

For the second factor, we will show that it is close to Prx[f(h(G(x)), g(x)) =

1 | G(x) ∈ B], which is 1 by definition.

Define T (x, z) = 1 if and only if C(h(G(x)), z) 6= f(h(G(x)), z). Note

that the second factor is at least

Pr
x,z

[f(h(G(x)), z) = 1 | G(x) ∈ B]− Pr
x,z

[T (x, z) = 1 | G(x) ∈ B] . (5.2)

It remains to show that the first term is large while the second term is small.

Since g is good, the distribution of g(x) is 1/8-random, which implies that

the first term in (5.2) is at least

Pr
x,z

[f(h(G(x)), g(x)) = 1 | G(x) ∈ B]− 1/8 = 7/8.

Next, we show that the second term in (5.2) is not far from

Pr
y,z

[C(y, z) 6= f(y, z)] ,

which is small. Observe that the difference in these two probabilities is that

the first argument of C (and f) comes from two different distributions: one

is h(G(x)) for a random x ∈ G−1(B) and the other is a random y from Umi∗ .

It suffices to show that for most y ∈ image(h◦G), the probability assigned to

y by the first distribution, which is Prx [h(G(x)) = y | G(x) ∈ B], is within a

small factor of that by the second distribution, which is 2−mi .
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Recall that L is the set of w ∈ image(G) which has a different w′ ∈ B

with h(w) = h(w′). Note that the second term in (5.2) is at most

Pr
x

[G(x) ∈ L | G(x) ∈ B] + Pr
x,z

[T (x, z) = 1 ∧G(x) /∈ L | G(x) ∈ B] . (5.3)

Since h is good, the first term in (5.3) is at most 1/8. It remains to bound

the second term in (5.3). Consider any y 6∈ G(L), which has at most one

w ∈ B such that h(w) = y. As any w ∈ B has at most 2i∗+1 different x’s

such that G(x) = w, Prx [h(G(x)) = y | G(x) ∈ B] is

Prx [h(G(x)) = y ∧G(x) ∈ B]

Prx [G(x) ∈ B]
≤ 2i∗+1−n

(1/n)
= 2n · 2−mi∗+2r = 32n3 · 2−mi∗ .

Thus, the second term in (5.3) is at most 32n3·Pry,z [C(y, z) 6= f(y, z)] = o(1).

Combining the bounds for (5.1), (5.2), and (5.3), we conclude that

Pr
x,z

[Dz(G(x)) = 1] ≥ (1/n)(7/8− 1/8− o(1)) ≥ 2/(3n).

2

From the two claims above, we have Ez[Prx[Dz(G(x)) = 1]−Prw[Dz(w) =

1]] ≥ 1/(3n), which implies that for some z, Dz can distinguish G with

advantage at least 1/(3n). Note that z can be seen as an advice, and Dz uses

C in a black-box way. That is, we have given a black-box proof that f i∗

h,g is

Ω(1/n3)-hard, for any good (h, g), when G is a 1/(3n)-PRG.

The remaining problem is that we do not know what i∗ is and which

(h, g) is good. Our solution is, as in Section ??, to include i, h, g in the

input. Therefore, define our hard function f̂ by f̂(y, i, h, g) = f i
h,g(y). That

is,

f̂(y, i, h, g) = 1 if and only if y ∈ image(Gi
h,g).

Next, we prove the hardness of f̂ . Suppose there exists a function C such

that

Pr
y,i,h,g

[
C(y, i, h, g) 6= f̂(y, i, h, g)

]
= o(1/n4).

Then Pry,h,g[C(y, i∗, h, g) 6= f̂(y, i∗, h, g)] = o(1/n3), and

Pr
y,h,g

[
C(y, i∗, h, g) 6= f i∗

h,g(y) | (h, g) is good
]

= o(1/n3)/ Pr
h,g

[(h, g) is good]

= o(1/n3).
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This implies that for some good (h, g), the function f i∗

h,g is not Ω(1/n3)-hard,

which then implies that G is not a 1/(3n)-PRG. Again, we can see i∗ together

with a good (h, g) as the advice string. Therefore, we have shown a black-box

proof that f̂ is Ω(1/n4)-hard when G is a 1/(3n)-PRG.

Finally, note that f̂ can be computed in NP with G given as an oracle,

so we have proved Theorem 14. 2



96 CHAPTER 5. HARDNESS AND PSEUDORANDOMNESS IN NP



Chapter 6

Hardcore Set Constructions

6.1 Introduction

In this chapter, we study a fundamental result of Impagliazzo (FOCS’95)

known as the hard-core set lemma. Consider any function f : {0, 1}n →
{0, 1} which is “mildly-hard”, in the sense that any circuit of size s must

disagree with f on some δ fraction of inputs. Then the hard-core lemma

says that f must have a hard-core set H of density δ on which it is “ex-

tremely hard”, in the sense that any circuit of size s′ = O(s/( 1
ε2 log( 1

εδ
)))

must disagree with f on at least (1− ε)/2 fraction of inputs from H.

There are three issues of the lemma which we would like to address: the

loss of circuit size, the need of non-uniformity, and its inapplicability to a low

complexity class. We introduce two models of hard-core set constructions,

a strongly black-box one and a weakly black-box one, and show that those

issues are unavoidable in such models.

First, we show that in any strongly black-box construction, one can only

prove the hardness of a hard-core set for smaller circuits of size at most

s′ = O(s/( 1
ε2 log 1

δ
)). Next, we show that any weakly black-box construction

must be inherently non-uniform — to have a hard-core set for a class G of

functions, we need to start from the assumption that f is hard against a

non-uniform complexity class with Ω(1
ε
log |G|) bits of advice. Finally, we

97
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show that weakly black-box constructions in general cannot be realized in a

low-level complexity class such as AC0[p] — the assumption that f is hard

for AC0[p] is not sufficient to guarantee the existence of a hard-core set.

6.1.1 Our Results

We have three results, which give negative answers to the three questions we

raised before, with respect to our models of black-box constructions. Note

that our lower bounds for our second model (weakly black-box one) also hold

for our first model as the first model is a special case of the first one.

Our first result shows that any strongly black-box (δ, ε, k)-construction

must require a query complexity of q = Ω( 1
ε2 log 1

δ
). Our lower bound explains

why it is very difficult to have a smaller loss of circuit size in the hard-core

set lemma; in fact, any strongly black-box construction must suffer a loss of

such a large factor q. Note that our lower bound is tight as its is matched (up

to a constant factor) by the upper bound from the construction of Klivans

and Servedio [KS03].

Our second result shows that any weakly black-box (δ, ε, k)-construction

must require an advice of length Ω(1
ε
log k). This explains why it is difficult to

have a uniform version of the hard-core set lemma; in fact, any weakly black-

box construction is inherently non-uniform. Moreover, one cannot hope to

improve Trevisan’s uniform hardness amplification results [Tre03, Tre05] by

reducing the number of advice bits needed in the hard-core set construction,

unless one can come up with a non-black-box approach. Note that from the

query upper bound of [KS03], one can immediately have an advice upper

bound of O( 1
ε2 (log 1

δ
) log k), which has a gap from our lower bound. It is not

clear which bound can be further improved, but our feeling is that this upper

bound may likely be improved.

Our third result shows that no weakly black-box (δ, ε, k)-construction can

be realized in a low-level complexity complexity class such as AC0[p] for a

prime p, when δ ≥ 1/20 and ε ≤ 1/n. More precisely, we show that the

function realizing such a black-box construction can be used to approximate
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the majority function, but on the other hand, the majority function cannot

be approximated by an AC0[p] circuit. Therefore one cannot have a hard-core

set lemma for AC0[p], unless one can prove it in a non-black-box way.

6.1.2 Bounds from Hardness Amplification

There is no previous result working directly on the lower bounds of hard-core

set constructions. However, one can obtain such bounds from lower bounds

for the task of hardness amplification [Vio06, LTW05]. This is because the

hard-core set lemma can be used for hardness amplification, as shown in

[Im95], and a closer inspection shows that a black-box construction of hard-

core set in fact yields hardness amplification in a similar black-box model.

In particular, one can have the following. First, using a recent result of

Viola [Vio06], we can derive a lower bound of min( 1
10ε

, n
5 log n

) on the query

complexity of any strongly black-box construction of hard-core set. Note

that this bound is always smaller than our bound. Second, we can use the

result in [LTW05] to derive an advice lower bound of Ω(log (1−δ)2

ε
) for any

weakly black-box construction of hard-core set. Note that this bound is

exponentially worse than ours. Finally, we can use another result of Viola

[Vio06] to show that for weakly black-box construction of hard-core set, if

the function Dec satisfies the additional condition that it only needs a short

(logarithmic in the circuit size of Dec) advice, then it cannot belong to

AC0[p]. Note that this additional condition is not required in our result and

our proof is much simpler.1

6.1.3 Our Techniques

To have our query lower bound, we show that if a strongly black-box con-

struction does not make enough number of queries, then there exist a family

1On the other hand, under this additional condition, Viola achieved something stronger:

such Dec can be used as oracle gates by an AC0 circuit to compute the majority function

exactly (instead of approximately). We can also achieve this, but we omit it here as our

proof is similar to Viola’s.
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G = {g1, . . . , gk} of functions and a function f violating the guarantee of the

construction. We prove the existence of G and f by a probabilistic argument.

We choose f randomly and then choose g1, . . . , gk independently as k noisy

versions of f , with each gi(x) being f(x) added by a noise of rate (1− 2ε)/2.

We can show that f is unlikely to have an ε-hard-core set for G, because it is

very unlikely to have a subset on which every gi has a large deviation from f ,

when k is large enough. On the other hand, we can show that if the function

Dec does not make enough number of queries to functions in G, there is a

good chance that it is not close to f . This implies the existence of G and f

for which Dec fails to work. Thus, we conclude that the query complexity

must be high.

To have our advice lower bound, we show the existence of a family

G = {g1, . . . , gk} of functions such that one can find a large collection Γ

of functions with the property that every function in Γ has no hard-core set

but no two functions in Γ are close. The candidates for Γ are functions GI ,

with I = {i1, . . . , it}, defined as GI(x) = Maj(gi1(x), . . . , git(x)), where Maj

denotes the majority function. We will let t = b1/εc, so that every GI has

a good correlation with some gi for i ∈ I, which implies that GI has no ε-

hard-core set for G. On the other hand, for any GI and GJ with small I ∩J ,

they are likely to be far away because for any input x,
∑

i∈I∩J gi(x) is likely

to be small, so there is a good chance that the values of GI(x) and GJ(x) are

dominated by
∑

i∈I\J gi(x) and
∑

j∈J\I gj(x), respectively, and hence there is

a good chance that GI(x) 6= GJ(x). This implies that with high probability,

each GI is far away from many other GJ ’s, and by the well-known Turán’s

theorem, there must be many GI ’s which are far away from each other, and

they form the set Γ. This gives an advice lower bound of log |Γ|.

To show that a weakly black-box construction can be used to approximate

the majority function, we again use the observation that for any G, the

function GI , with |I| = t ≤ 1/ε, has no ε-hard-core set for G. When t ≤ n,

we can define the functions gi, for 1 ≤ i ≤ t, as gi(x) = xi (the i-th bit of

x). Then for some advice α, DecG,α(x) = GI(x) = Maj(x1, . . . , xt) for at



6.2. PRELIMINARIES 101

least δ fraction of x, and by an average argument there must exist some fixed

x̄t+1, . . . , x̄n such that DecG,α(x1, . . . , xt, x̄t+1, . . . , x̄n) = Maj(x1, . . . , xt) for

at least δ fraction of x1, . . . , xt. By hard-wiring α and x̄t+1, . . . , x̄n into the

circuit for Dec, we get a circuit which is δ-close to the majority function on

t bits.

6.1.4 Organization of this chapter

First, in Section 6.2 we give some preliminaries and define our two models

for black-box constructions of hard-core set. In Section 6.3, we prove a

query lower bound for such a strongly black-box construction. Then we

show a lower bound on the advice length needed in such a weakly black-box

construction in Section 6.4. Finally, in Section 6.5 we show that no such

weakly black-box construction can be realized in AC0[p].

6.2 Preliminaries

Let Fn denote the set of all Boolean functions f : {0, 1}n → {0, 1}. Let

AC0[p](s) denote the class of Boolean functions computed by constant-depth

circuits of size s equipped with modp gates (which output 0 exactly when

the input bits sum to 0 modulo p), and let AC0[p] = AC0[p](poly(n)). Given

a multi-set (or simply a set) S, we let |S| denote the number of elements in

it, counting multiplicity. Given a set G = {g1, · · · , gk} ⊆ Fn, together with

a multi-set I = {i1, · · · , iq} ⊆ [k] of indices, let gI denote the function such

that gI(x) = (gi1(x), · · · , giq(x)) for x ∈ {0, 1}n. We say that two functions

f and g in Fn are δ-close if Prx∈Un [f(x) 6= g(x)] ≤ δ.

We will also need the following result, known as Turán’s Theorem, which

can be found in standard textbooks (e.g. [AS00]).

Fact 6 (Turán’s Theorem) Given a graph G = (V, E), let dv denote the

degree of a vertex v and α(G) the size of the maximum independent set.

Then α(G) ≥
∑

v∈V
1

dv+1
.
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6.2.1 Hardness and Hard-Core Set Lemma

We recall that a function is hard if no small circuit is close to it. Formally,

we say that a function f ∈ Fn is δ-hard (or has hardness δ) for size s, if

for any C ∈ SIZE(s), Prx∈Un [C(x) 6= f(x)] > δ. Impagliazzo introduced the

following notion of hard-core set of a hard function.

Definition 26 [Im95] We say that a function f ∈ Fn has an ε-hard-core set

H ⊆ {0, 1}n for size s, if for any C ∈ SIZE(s), Prx∈H [C(x) 6= f(x)] > 1−ε
2

.

Now we can state Impagliazzo’s hard-core set lemma [Im95], which is the

focus of this chapter.

Lemma 36 [Im95] Any function f ∈ Fn which is δ-hard for size s must have

an ε-hard-core set H for size s′, with |H| ≥ δ2n and s′ = O(s/( 1
ε2 log 1

δε
)).

Note that in this lemma, the hardness on the set H is measured against

a smaller circuit size s′, as compared to the original circuit size s. This was

later improved by Klivans and Servedio [KS03] to s′ = O(s/( 1
ε2 log 1

δ
)) but at

the expense of having a slightly smaller hard-core set of size δ2n−1. A closer

look at their proofs shows that they work for the more general setting with

hardness measured against any class of functions instead of just circuits. For

this, let us first formalize the notion that a function has no hard-core set

with respect to a class G ⊆ Fn.

Definition 27 Given a set G = {g1, · · · , gk} ⊆ Fn, we say that a function

f ∈ Fn is (δ, ε,G)-easy if for any H ⊆ {0, 1}n of size δ2n, there is a function

g ∈ G such that Prx∈H [g(x) 6= f(x)] ≤ 1−ε
2

.

Then from [Im95] and its improvement in [KS03], one actually has the

following.

Lemma 37 For some q = O( 1
ε2 log 1

δ
), there exists a function D : {0, 1}q →

{0, 1} ∈ SIZE(poly(q)) such that for some constant c the following holds. For

any G = {g1, · · · , gk} ⊆ Fn, if a function f ∈ Fn is (cδ, ε, G)-easy, then there

is a multi-set I with |I| = q such that Prx [D(gI(x)) 6= f(x)] ≤ δ.
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In [Im95], c = 1 and D is the majority function (and q = O( 1
ε2 log 1

δε
)),

while in [KS03], c = 1/2 and D is the majority of majority functions.

6.2.2 Black-Box Constructions of Hard-Core Set

Now we introduce our two models for black-box construction of hard-core

set. The first one is stronger than the second.

Definition 28 We say that a (non-uniform) oracle algorithm Dec(·) realizes

a strongly black-box (δ, ε, k)-construction (of hard-core set) if for some q ∈ N
it has a decision function D : {0, 1}q → {0, 1} such that for some constant c

the following holds. For any G = {g1, · · · , gk} ⊆ Fn, if a function f ∈ Fn is

(cδ, ε, G)-easy, then there is a multi-set I with |I| = q such that DecG,I(x) =

D(gI(x)) and Prx

[
DecG,I(x) 6= f(x)

]
≤ δ. We call q the query complexity

of Dec.

Note that we do not place any requirement on the computational com-

plexity of Dec, for either computing D or finding I, which will make our

lower bound stronger. In this model, I can be seen as an advice, so the

advice is of the form of a multi-set I = {i1, . . . , iq}, and the algorithm Dec

is restricted to be of the following form: on input x, it queries the func-

tions gi1 , . . . , giq all on the input x, applies the function D on the q answer

bits, and outputs D(gi1(x), . . . , giq(x)). Note that the known hard-core set

constructions are in fact done in our first model [Im95, KS03]

Our second model generalizes the first one by removing the format con-

straint on the algorithm Dec and its advice. That is, the algorithm Dec

and its advice now are allowed to be of arbitrary form, and as in the previous

model, we do not place any requirement on its computational complexity.

Definition 29 We say that a (non-uniform) oracle algorithm Dec(·) real-

izes a weakly black-box (δ, ε, k)-construction (of hard-core set) if for some

constant c the following holds. For any G = {g1, · · · , gk} ⊆ Fn, if a func-

tion f ∈ Fn is (cδ, ε, G)-easy, then there is an advice string α such that

Prx[DecG,α(x) 6= f(x)] ≤ δ.
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We will consider implementing the oracle algorithm Dec by a circuit. In

this case, we will allow the functions g1, . . . , gk to be used as oracle gates for

the circuit.

6.3 Query Complexity in Strongly Black-Box

Construction

In this section, we give a lower bound on the query complexity of any strongly

black-box construction of hard-core set. Formally, we have the following.

Theorem 16 Suppose 2−c1n ≤ ε, δ < c2, and ω( 1
ε2 log 1

δ
) ≤ k ≤ 22c3n

, for

small enough constants c1, c2, c3 > 0. Then any strongly black-box (δ, ε, k)-

construction must have a query complexity of q = Ω( 1
ε2 log 1

δ
).

Our lower bound is optimal since it is matched (up to a constant factor) by

the upper bound from the construction of Klivans and Servedio (Lemma 37).

Note that the assumption k ≥ ω( 1
ε2 log 1

δ
) ≥ 2Ω(n) is reasonable, since in

standard setting of hard-core set lemma G typically consists of circuits of

polynomial (or larger) size, which gives k = |G| ≥ 2poly(n).

The roadmap for the proof is the following. Consider any Dec which

realizes such a strongly black-box construction. We would like to show the

existence of a function f and a family G = {g1, . . . , gk} of functions such that

f is (δ, ε,G)-easy but the algorithm Dec without making enough queries

cannot approximate f well. We will prove their existence by a probabilistic

argument.

Now we proceed to the proof of the theorem. Suppose the parameters

ε, δ, k satisfy the condition stated in the theorem. Suppose we have such a

black-box construction realized by an oracle algorithm Dec with decision

function D. Consider k independent random functions b1, . . . , bk from Fn,

which will serve as noise vectors, such that for any i and x, Pr[bi(x) = 0] =
1+2ε

2
.
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Now let f be a perfectly random function from Fn, so that Pr[f(x) =

1] = 1
2

for any x, and let g1, . . . , gk be k independent noisy versions of f

defined as gi(x) = f(x) ⊕ bi(x), for any i and x. Let B = {b1, . . . , bk} and

G = {g1, . . . , gk}. First, we show that f is likely to be (cδ, ε, G)-easy.

Lemma 38 If k = ω( 1
ε2 log 1

δ
), then Prf,G [f is not (cδ, ε, G)-easy] = o(1).

Proof. Consider any H ⊆ {0, 1}n of size cδ2n. We call f hard on H if

Prx∈H [gi(x) 6= f(x)] > 1−ε
2

for every i. Note that for any i, the random

variables bi(x)’s, for x ∈ H, are i.i.d. with E[bi(x)] = 1−2ε
2

, and bi(x) = 1

exactly when gi(x) 6= f(x). Then the probability that f is hard on H equals

Pr
B

[
∀i ∈ [k] :

∑
x∈H

bi(x) >
1− ε

2
|H|

]
=

∏
i∈[k]

Pr
bi

[∑
x∈H

bi(x) >
1− ε

2
|H|

]

≤
(
2−Ω(ε2δ2n)

)k

,

where the equality is due to the fact that each bi is independent from others

and the inequality uses the Chernoff bound.

Recall that f is not (cδ, ε, G)-easy exactly when f is hard on some H

of size cδ2n. Then by a union bound, we conclude that it happens with

probability at most(
2n

cδ2n

)
· 2−Ω(ε2δ2nk) ≤ 2O(δ2n log 1

δ
) · 2−Ω(ε2δ2nk),

which is o(1) when k = ω( 1
ε2 log 1

δ
). 2

Next, we show that with a small q, Dec is unlikely to approximate f well.

Recall that for a multi-set I = {i1, · · · , iq} ⊆ [k], gI(x) = (gi1(x), . . . , giq(x)).

We say that Dec can δ-approximate f if there is a multi-set I ⊆ [k] with

|I| = q such that D ◦ gI is δ-close to f (i.e., Prx [D(gI(x)) 6= f(x)] ≤ δ).

Lemma 39 If q = o( 1
ε2 log 1

δ
), then Prf,G[Dec can δ-approximate f ] = o(1).

Proof. Consider any multi-set I ⊆ [k] with |I| = q. First we show the

following.
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Claim 3 For any x ∈ {0, 1}n, Prf,G [D(gI(x)) 6= f(x)] ≤ 2δ.

Proof. Let Ĩ denote the set of elements from I, removing multiplicity, and D̃

the function such that D̃(gĨ(x)) = D(gI(x)). For example, for I = {1, 1, 2},
we have Ĩ = {1, 2} and D̃(g1(x), g2(x)) = D(g1(x), g1(x), g2(x)). Then

Pr
f,G

[D(gI(x)) 6= f(x)] = Pr
f,G

[D̃(gĨ(x)) 6= f(x)] =
1

2
p(0) +

1

2
p(1),

where p(c) = Prf,G[D̃(gĨ(x)) = c | f(x) = 1 − c], so it suffices to give a

lower bound for either p(0) or p(1). Let Ĩ = {i1, . . . , iq̃}, where q̃ is clearly at

most q. Assume without loss of generality that |D̃−1(1)| ≥ 2q̃−1, and we will

give a lower bound for p(1) (otherwise, we bound p(0) in a similar way). Let

Z = (Z1, . . . , Zq̃) denote the sequence of random variables (bi1(x), . . . , biq̃(x)),

which are i.i.d. with E[Zi] = 1−2ε
2

. Note that gi(x) = bi(x) when f(x) = 0,

so we have

p(1) = Pr
B

[
D̃(bi1(x), . . . , biq̃(x)) = 1

]
=

∑
y∈D̃−1(1)

Pr[Z = y].

The above is the sum of |D̃−1(1)| ≥ 2q̃−1 values from the 2q̃ values: Pr[Z = y]

for y ∈ {0, 1}q̃, so it is clearly no less than the sum of the 2q̃−1 smallest values

from them. Observe that Pr[Z = y] = (1−2ε
2

)#1(y)(1+2ε
2

)q̃−#1(y), where #1(y)

denotes the number of 1’s in the string y, so Pr[Z = y] ≤ Pr[Z = y′] whenever

#1(y) ≥ #1(y
′). As a result, p(1) is at least

∑
y:#1(y)> 1

2
q̃

Pr[Z = y] = Pr

∑
i∈[q̃]

Zi >
1

2
q̃

 ≥ Pr

∑
i∈[q̃]

Zi >
1− ε

2
q̃

 ≥ 2−O(ε2q̃),

by Fact 1 (2). So when q̃ ≤ q = o( 1
ε2 log 1

δ
), we have Prf,G [D(gI(x)) 6= f(x)] ≥

1
2
p(1) ≥ 2δ. 2

Now for any multi-set I with |I| = q, let Yx, for x ∈ {0, 1}n, denote the

binary random variable such that Yx = 1 if and only if D(gI(x)) 6= f(x).

Clearly, they are i.i.d. random variables, and we know from above that

E[Yx] ≥ 2δ for any x. So by Chernoff bound, Prf,G [D ◦ gI is δ-close to f ] =
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Pr[
∑

x Yx ≤ δ2n] ≤ 2−Ω(δ22n). Then a union bound gives

Pr
f,G

[∃I with |I| = q : D ◦ gI is δ-close to f ] ≤ kq · 2−Ω(δ22n),

which is o(1) as we assume ε, δ ≥ 2−c1n and k ≤ 22c3n
, for small enough

constants c1, c3 > 0. 2

From Lemma 38 and 39, we conclude that there exist f ∈ Fn and G =

{g1, . . . , gk} ⊆ Fn which satisfy the following:

• f is (δ, ε,G)-easy, and

• for every multi-set I ⊆ [k] of size q = o( 1
ε2 log 1

δ
), Prx [D(gI(x)) 6= f(x)]

> δ.

Therefore, any algorithm Dec which realizes a strongly black-box (δ, ε, k)-

construction must have q = Ω( 1
ε2 log 1

δ
), when k = ω( 1

ε2 log 1
δ
). This completes

the proof of Theorem 16.

6.4 Advice Complexity in Weakly Black-Box

Construction

In this section, we show a length lower bound on the advice needed in any

weakly black-box construction of hard-core set. This explains why a uniform

version of the hard-core set lemma is hard to come by and any black-box

construction is inherently non-uniform. Formally, we have the following.

Theorem 17 Suppose 2−c1n ≤ ε, δ < c2, and 1
ε3 ≤ k ≤ 22c3n

, for small

enough constants c1, c2, c3 > 0. Then any weakly black-box (δ, ε, k)-construction

must need an advice of length Ω(1
ε
log k).

As a comparison, the construction of Klivans and Servedio (Lemma 37)

provides an upper bound of O( 1
ε2 log 1

δ
log k) on the advice length, so there is

a gap of a factor O(1
ε
log 1

δ
) between our lower bound and their upper bound.
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As in Theorem 16, one can also argue that the range assumption on the

parameters is reasonable.

The roadmap for the proof is the following. Consider any Dec realizing

such a weakly black-box construction. We will show the existence of a family

G = {g1, . . . , gk} ⊆ Fn with respect to which we can find a large collection

Γ of functions satisfying the following two properties: (1) any function in Γ

is (cδ, ε, G)-easy, and (2) any two functions in Γ are not 2δ-close. This then

implies a lower bound of log |Γ| on the advice length. Again, we will show

the existence of G by a probabilistic argument.

Now we proceed to the proof of the theorem. First, we independently

sample k perfectly random functions g1, . . . , gk ∈ Fn (for any i and x, gi(x) =

1 with probability exactly 1
2
), and let G = {g1, . . . , gk}. Now for any set

I = {i1, · · · , it} ⊆ [k], let GI be the function such that

GI(x) = Maj(gi1(x), · · · , git(x)),

where Maj denotes the majority function. Then we have the following, which

follows from the known result that any majority gate has a good correlation

with one of its input bits [HMP+87, GHR92]. For completeness we give its

proof.

Lemma 40 Let G = {g1, · · · , gk} be any set of functions from Fn. Then for

any I ⊆ [k], the function GI is (cδ, 1
|I| , G)-easy.

Proof. Let I be a multi-set of size t. For any H ⊆ {0, 1}n, consider the |H|×t

matrix M such that for x ∈ H and j ∈ I, Mx,j = 1 if gj(x) = GI(x) and

0 otherwise. Clearly, each row of M has more 1’s than 0’s, so the fraction

of 1’s must be at least 1
2
(1 + 1

t
) (otherwise, the number of 1’s minus the

number of 0’s is less than t · 1
t

= 1, a contradiction). Then by an averaging

argument, some column must have at least this fraction of 1’s. That is, for

any H ⊆ {0, 1}n (including those of size cδ2n), there exists a function gj ∈ G

such that

Pr
x∈H

[gj(x) = GI(x)] ≥ 1

2

(
1 +

1

t

)
.
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Therefore, GI is a (cδ, 1
t
, G)-easy function. 2

Let t =
⌊

1
ε

⌋
, let V t = {I ⊆ [k] : |I| = t}, and consider the class {GI :

I ∈ V t} of functions. From the previous lemma, we know that each function

in the class is (cδ, ε, G)-easy. Our next step is to find a large collection of

functions from this class such that any two of them are not close. Note that

whether or not two functions GI , GJ are close really depends on the choice

of G. We will show that if I and J have a small intersection, then GI and

GJ are unlikely to be close for a random G.

Lemma 41 For any I, J ∈ V t with |I∩J | < t
2
, PrG [GI is 2δ-close to GJ ] ≤

2−Ω(2n).

Proof. Consider any such I and J . First, we prove the following.

Claim 4 For any x ∈ {0, 1}n, PrG [GI(x) 6= GJ(x)] = Ω(1).

Proof. Note that for any x, g1(x), . . . , gk(x) can be seen as a sequence of

i.i.d. binary random variables Z1, . . . , Zk, with E[Zi] = 1
2

for each i. Let ZI

denote the subsequence of random variables Zi for i ∈ I, and similarly for

ZJ . Thus our goal is to show that Pr[Maj(ZI) 6= Maj(ZJ)] = Ω(1).

Let K = I ∩J , I1 = I \K, and J1 = J \K, and note that |K| < |I1|, |J1|.
Consider the following three events.

• A1:
∣∣∣∑i∈K Zi − |K|

2

∣∣∣ ≤ 1
2

√
|K|. By Chernoff bound, Pr[¬A1] < α for a

constant α < 1, so Pr[A1] = Ω(1).

• A2:
∑

i∈I1
Zi ≤ 1

2
(|I1| −

√
|I1|). By Fact 1 (1) with µ = 1

2
, Pr[A2] =

Ω(1).

• A3:
∑

i∈J1
Zi ≥ 1

2
(|J1| +

√
|J1|). By Fact 1 (2) with µ = 1

2
, Pr[A3] =

Ω(1).

Now observe that if A1 ∧ A2, then∑
i∈I

Zi ≤
1

2
(|K|+ |I1|+

√
|K| −

√
|I1|) <

|K|+ |I1|
2

=
|I|
2

,
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which implies that Maj(ZI) = 0. Similarly, if A1 ∧ A3, then

∑
i∈J

Zi ≥
1

2
(|K|+ |J1| −

√
|K|+

√
|J1|) >

|K|+ |J1|
2

=
|J |
2

,

which implies that Maj(ZJ) = 1. That is, if A1 ∧A2 ∧A3, then Maj(ZI) =

0 ∧Maj(ZJ) = 1, so Maj(ZI) 6= Maj(ZJ). Since the events A1, A2, A3 are

independent from each other (as each depends on a separate set of random

variables), we have

Pr[Maj(ZI) 6= Maj(ZJ)] ≥ Pr[A1∧A2∧A3] = Pr[A1]·Pr[A2]·Pr[A3] ≥ Ω(1).

2

From this, we next show that GI and GJ are unlikely to agree on many

x. For any x ∈ {0, 1}n, consider the binary random variable Yx such that

Yx = 1 if and only if GI(x) 6= GJ(x). From the above claim, we know that

EG[Yx] ≥ c0 for some constant c0. So by Chernoff bound, we have

Pr
G

[GI is 2δ-close to GJ ] = Pr

[∑
x

Yx ≤ 2δ2n

]
≤ 2−Ω((c0−2δ)22n) ≤ 2−Ω(2n),

as we assume that δ < c2 for a small enough constant c2. 2

Call G nice if for any I, J ∈ V t with |I ∩ J | < t
2
, GI is not 2δ-close to

GJ . By a union bound,

Pr
G

[G is not nice] ≤
(

k

t

)2

· 2−Ω(2n) ≤ 22t log k · 2−Ω(2n) < 1,

as we assume that t ≤ 1
ε
≤ 2c1n and k ≤ 22c3n

, for small enough constants

c1, c3 > 0. This guarantees the existence of a nice G, and from now on, we

will fix on one such G.

Consider the undirected graph G = (V, E) where V = {GI : I ∈ V t} and

E consists of those pairs of GI , GJ which are 2δ-close to each other. Then

we have the following.

Lemma 42 G has an independent set of size at least kΩ(t).
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Proof. Since G is nice, there cannot be an edge between vertices GI and GJ

if |I ∩ J | < t
2
. Thus, the degree of any vertex GI is at most the number of

GJ with |I ∩ J | ≥ t
2
, which is at most

∑
t
2
≤i<t

(
t

i

)(
k − t

t− i

)
≤

∑
t
2
≤i<t

(
t

i

)(
k
t
2

)
≤ 2t

(
k
t
2

)
≤

(
8ek

t

)t/2

≤ kt/2,

where the first and last inequalities, respectively, hold under the conditions

that k ≥ 1
ε3 ≥ t3 and t =

⌊
1
ε

⌋
is at least a large enough constant, while the

third inequality uses the fact that
(

n
m

)
≤ ( en

m
)m. Then by Turán’s theorem

(Fact 6), G has an independent set of size(
k

t

)
1

kt/2 + 1
≥

(
k

t

)t
1

kt/2 + 1
≥ k2t/3 1

kt/2 + 1
≥ kΩ(t),

where the second inequality follows from the assumption that k ≥ t3. 2

Now we are ready to finish the proof of the theorem. From Lemma 42,

we know that G has an independent set Γ of size kΩ(t). Note that any two

GI , GJ ∈ Γ are not 2δ-close. Furthermore, we know from Lemma 40 that

every GI ∈ Γ is (cδ, ε, G)-easy, since |I| = t ≤ 1
ε
. Therefore, an advice of

length log |Γ| = Ω(t log k) = Ω(1
ε
log k) is required, because for each advice

α, DecG,α is only δ-close to at most one GI ∈ Γ. This proves Theorem 17.

6.5 Weakly Black-Box Construction /∈ AC0[p]

In this section, we show that no weakly black-box construction of hard-core

set can be realized in AC0[p]. More precisely we have the following.

Theorem 18 Suppose 1/20 ≤ δ < 1, 0 < ε < 1, k ≥ n, and p a prime.

Let t = min(b1/εc, n). Then no weakly black-box (δ, ε, k)-construction can be

realized in AC0[p](2poly(log t)).

The idea is the following. Suppose we have a function Dec realizing such

a black-box construction. Let I = [t] and note that 1/t ≥ ε. From the

previous section, we know that for any G, the function GI is (cδ, ε, G)-easy,
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so there must exist some advice α such that DecG,α is δ-close to the function

GI , which is the majority function over g1, . . . , gt. As will be shown later, by

defining G properly, we can use DecG,α to approximate the majority function

on t input variables. Then we need to show a lower bound on the majority

function. To obtain it, we need two following theorems.

Theorem 19 [Smo87] For any C : {0, 1}t → {0, 1} in AC0[p](2poly(log t)),

there is a polynomial Q over GF (p) of degree poly(log t) such that Prx [C(x) 6= Q(x)] ≤
2−poly(log t).

Theorem 20 [Sze89, Tar91] For any polynomial Q of degree poly(log t) and

for a large enough t, Prx[Q(x) 6= Maj(x)] ≥ 1/10.

Now we are able to give a lower bound on the majority function.

Lemma 43 For any C : {0, 1}t → {0, 1} in AC0[p](2poly(log t)) and for a large

enough t, we have Prx [C(x) 6= Maj(x)] ≥ 1/20.

Proof. This lemma can be easily obtained from the above two theorems.

In fact, by Theorem 19 and Theorem 20, we have Prx [C(x) 6= Maj(x)] ≥
1/10 − 2−poly(log n) ≥ 1/20 for any C : {0, 1}t → {0, 1} in AC0[p](2poly(log t))

when t is large enough. 2

We define the function gi, for i ∈ I, as gi(x) = xi, and define gj, for

j /∈ I, as gj(x) = 0, for x ∈ {0, 1}n. Let G = {g1, . . . , gk}. Then GI(x) =

Maj(x1, . . . , xt) for any x ∈ {0, 1}n, so there must be some advice α such

that Prx[DecG,α(x) 6= Maj(x1, . . . , xt)] ≤ δ, and by an average argument

there must be some fixed x̄t+1, . . . , x̄n such that

Pr
x1,...,xt

[DecG,α(x1, . . . , xt, x̄t+1, . . . , x̄n) 6= Maj(x1, . . . , xt)] ≤ δ.

Such α and x̄t+1, . . . , x̄n can be hard-wired into the circuit for Dec, and ob-

serve that each oracle query of Dec can be simulated easily. So if Dec is com-

putable by an AC0[p](2poly(log t)) circuit, we can get another AC0[p](2poly(log t))

circuit which is δ-close to the majority function on t bits and contradicts

Lemma 43. This proves Theorem 18.
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