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摘  要 

 計算解剖學（computational anatomy）廣泛運用非侵入式造影與影像處理方

法於腦部結構分析上。為讓結構分析聚焦於腦組織並使腦結構空間標準化，腦區

域擷取（brain extraction）與腦部結構對位（brain registration）在計算解剖學上

扮演重要之角色。此兩項技術之準確性可提升結構分析之可信度，且其高執行效

率可增加結構分析之處理容量進而提升統計效度。本論文針對快速且準確之腦部

結構分析提出腦區域擷取與腦部對位演算法，並將所開發之影像處理技術運用於

躁鬱症病患之腦纖維病理分析上。 
在腦區域擷取方法中，本論文提出新的隱式形變模型（implicit deformable 

model）以期能有效的切割出腦部區塊。我們採用一組具區域影響性之 Wendland
輻射基底函數（radial basis function）以描述平滑的腦部曲線，並降低隱式形變

模型之計算複雜度。在內力（internal force）與外力（external force）的交互作用

下，輻射基底函數中心點將依次由初始位置逐漸推進至腦部邊界。由於不同視角

下的腦部邊界曲率往往差異頗大，因此我們分別對矢狀面（sagittal view）與冠狀

面（coronal view）的影像切片進行腦部區域擷取，並將不同切面的擷取結果整

合以達到互補之效果。利用 Internet Brain Segmentation Repository 兩組測試影像

所進行的效能評估結果，顯示本論文所提出的腦部擷取技術較 Brain Surface 
Extractor、Brain Extraction Tool、Hybrid Watershed Algorithm 與 Model-based Level 
Set 等方法有更佳的準確性與強健性（robustness）。 

在腦結構影像對位方面，我們藉由影像導數（image derivatives）所得到的腦

結構資訊，以仿射轉換（affine transformation）與非線性形變模型建立測試影像

與目標影像間的空間對應關係。利用腦結構方向性之不同與腦重心位置之差異可

估計一組旋轉角度與位移量，以作為仿射對位的初始值。承續仿射對位之空間對

應結果，所提出的非線性方法階層式的將 Wendland 輻射基底函數佈置於具顯著

腦結構的區域上以描述影像的形變，仿射轉換與非線性形變均以階層式之影像解

析度進行影像相似度之最佳化。一般而言，非線性最佳化（nonlinear optimization）
結果之優劣深受初始值之影響。而本論文所提出之方法能有效的估計仿射對位與

非線性對位的初始空間對應關係。運用多組高解析度與低解析度影像之效能評估

結果，顯示所提出的影像對位方法較許多已廣泛運用的演算法精準且快速。另外，

本論文亦以模擬影像實驗量化影像對位準確度對腦結構分析正確性之影響。 
雖然罹患第一型與第二型躁鬱症（bipolar disorders）之病患呈現相異的表徵

與認知能力（cognitive functions），然而此二亞型（subtypes）是否亦具有不同之

神經基質（neural substrates）卻一直是未知的。為探究第一與第二型躁鬱症病患

間之腦部纖維結構性差異，我們運用所開發之影像處理技術以及由擴散張量磁振

造影（diffusion tensor imaging）所導出之非等向性指標（fractional anisotropy）
於正常人、第一型躁鬱症病患、第二型躁鬱症病患與所有躁鬱症病患間之腦部纖



維結構之分析上。此研究採用雙樣本 t 檢定（two-sample t-test）之體素分析

（voxel-wised analysis）方式進行，所發現的顯著性差異區域之平均非等向性指

標亦用於探究其與臨床表徵及認知測驗分數之相關性。研究結果顯示第一與第二

型躁鬱症病患的腦部纖維均在視丘（thalamus）、前扣帶（anterior cingulate）與

下額頁（inferior frontal）等位置有顯著性之結構異常。另外，第二型躁鬱症病患

的腦部纖維損傷現象亦呈現於顳頁（temporal）及下前額頁（inferior prefrontal）
等區域。第一型躁鬱症的右下額頁與第二型躁鬱症的左中顳頁等區域之平均非等

向性指標與認知執行功能具顯著性相關，第二型之躁鬱症病患的左中顳頁與下前

額頁等區域之平均非等向性指標與楊氏躁症量表（YMRS）分數及輕躁症發作期

（hypomanic episodes）呈顯著性相關。此研究結果指出第一型躁鬱症病患的腦

纖維異常處多與認知功能有關，而第二型躁鬱症病患具顯著性差異之位置則涵括

了認知與情緒處理等功能。 
本論文提出兼具高執行效率與高準確度之腦部擷取與腦結構對位等演算法，

所提出之影像處理方法的高準確性可使結構分析結果更值得信賴；而其低計算複

雜度可使需要大量運用腦部擷取與腦結構對位的結構分析更有效率。本論文亦將

所開發的影像處理方法運用於分析躁鬱症病患的腦部纖維結構之損傷，此結構分

析結果顯示第一型與第二型躁鬱症病患具有不同之神經基質。 



Abstract

Computational anatomy, or morphometry, concentrates upon the quantitative analysis of

brain structure, such as gyrification study and the examination of anatomical size and

shape. Neuroimaging as well as image processing techniques are extensively utilized in this

emerging field. Two key computerized methods of morphometry are brain extraction and

registration, which can be applied to remove the non-brain tissues followed by normaliz-

ing brain structures into a standard stereotaxtic space. Accurate extraction and registration

algorithms facilitate the validity of morphometric analysis. Computational anatomy gen-

erally requires large participants to provide the statistical power, and thus efficient image

processing approaches support the feasibility of a large-scale study. Toward an accurate and

efficient morphometric analysis, this thesis proposes a brain extraction method and brain

registration algorithms. The developed image processing techniques were implemented

in a voxel-based analysis protocol which was conducted to explore the fiber pathology of

bipolar disorders.

The proposed brain extraction method utilizes a new implicit deformable model to well

represent brain contours and to segment brain region from magnetic resonance (MR) im-

ages. This model is described by a set of Wendland’s radial basis functions (RBFs) and has

the advantages of compact support property and low computational complexity. Driven by

the internal force for imposing the smoothness constraint and the external force for consid-

ering the intensity contrast across boundaries, the deformable model of a brain contour can

efficiently evolve from its initial state toward its target by iteratively updating the RBF loca-

tions. In the proposed method, brain contours are separately determined on 2-D coronal and

sagittal slices. The results from these two views are generally complementary and are thus

integrated to obtain a complete 3-D brain volume. The proposed method was compared to

four existing methods, Brain Surface Extractor, Brain Extraction Tool, Hybrid Watershed

Algorithm, and Model-based Level Set, by using two sets of MR images along with man-

ual segmentation results obtained from the Internet Brain Segmentation Repository. Our
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experimental results demonstrated that the proposed approach outperformed others when

jointly considering extraction accuracy and robustness.

The proposed brain registration algorithms (BIRT) can rapidly and accurately register

brain images by utilizing the brain structure information estimated from image derivatives.

Source and target image spaces are related by affine transformation and non-rigid defor-

mation. The deformation field is modeled by a set of Wendland’s RBFs hierarchically

deployed near the salient brain structures. In general, nonlinear optimization is heavily

engaged in the parameter estimation for affine/non-rigid transformation and good initial

estimates are thus essential to registration performance. In this work, the affine registra-

tion is initialized by a rigid transformation, which can robustly estimate the orientation and

position differences of brain images. The parameters of the affine/non-rigid transforma-

tion are then hierarchically estimated in a coarse-to-fine manner by maximizing an image

similarity measure, the correlation ratio, between the involved images. T1-weighted brain

magnetic resonance images were utilized for performance evaluation. Our experimental

results using four 3-D image sets demonstrated that BIRT can efficiently align images with

high accuracy compared to several extensively adopted algorithms. Moreover, a voxel-

based morphometric study quantitatively indicated that accurate registration can improve

both the sensitivity and specificity of the statistical inference results.

Patients with bipolar I and II disorders exhibit heterogeneous clinical presentations and

cognitive functions, however, it remains unclear whether these two subtypes have distinct

neural substrates. Fractional anisotropy (FA) maps calculated from diffusion tensor images

and processed by the developed techniques were compared among healthy, bipolar I, and

bipolar II groups using two-sample t-test analysis in a voxel-wise manner. Correlations

between the mean FA value of each survived area and the clinical characteristics as well

as the scores of neuropsychological tests were further analyzed. Patients of both subtypes

manifested fiber impairments in the thalamus, anterior cingulate, and inferior frontal areas,

whereas the bipolar II patients showed more fiber alterations in the temporal and inferior

ii



prefrontal regions. The FA values of the subgenual anterior cingulate cortices for both

subtypes correlated with the performance of working memory. The FA values of the right

inferior frontal area of bipolar I and the left middle temporal area of bipolar II both corre-

lated with execution function. For bipolar II patients, the left middle temporal and inferior

prefrontal FA values correlated with the scores of YMRS and hypomanic episodes, respec-

tively. Our findings suggest distinct neuropathological substrates between bipolar I and II

subtypes. The fiber alterations observed in the bipolar I patients were majorly associated

with cognitive dysfunction, whereas those in the bipolar II patients were related to both

cognitive and emotional processing.

This dissertation proposes brain extraction and registration algorithms which can rapidly

extract brain volumes and align brain images with high accuracy. The high accuracy of our

methods can facilitate computational anatomy to report accurate results. Due to the high

execution efficiency, the developed image processing techniques are feasible to morpho-

metric analysis which applies brain extraction and registration processes intensively. The

proposed algorithms are also utilized to investigate the fiber impairments of bipolar disor-

ders. Our analysis results demonstrated the distinct neuropathological substrates between

bipolar I and II disorders.
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Chapter 1

Introduction



2 Introduction

1.1 Morphometric analysis of brain images

The great advances of medical imaging technology in past decades have facilitated the

explosion of human brain mapping research. One at the core of brain mapping is compu-

tational anatomy, or morphometry, which relies on image-processing techniques and large

image ensembles for the quantification of anatomical features and the changes thereof.

Large participants provide statistical power as compared to the conventional psychobehav-

ioral or molecular biological methods. The use of image processing techniques avoids sub-

jective and labor-intensive human intervention and provides the feasibility of large-scale

study. Automated longitudinal follow-up or group comparison of tissue volumes [1–6] or

fiber tracts [7, 8] can thus be statistically inferred.

Non-invasive magnetic resonance (MR) images are extensively used in computational

anatomy. Generally, MR imaging (MRI) provides good intensity contrast between soft tis-

sues compared to other 3-D imaging methods, such as computed tomography (CT) and

ultrasound imaging. The acquisitions of MR images with different pulse sequences result

in distinct image properties which are valuable to varied clinical and research applications.

For example, the majority of brain structural analyses prefer T1 weighting (Fig. 1.1a) be-

cause it performs best at defining anatomy. T2-weighted scans (Fig. 1.1b) are sensitive to

water content and thus are well suited to the diagnosis of edema. Increasing brain morpho-

metric studies utilize diffusion tensor images (Fig. 1.1c) to investigate the abnormalities or

changes of white matter (WM) because it is capable of revealing subtle fiber alterations [9].

Computational approaches established for structural analysis include voxel-based mor-

phometry (VBM), deformation-based morphometry (DBM), and surface-based morphom-

etry (SBM) [10]. VBM differentiates anatomical differences between spatially normal-

ized image groups in a voxel-wise manner [11]. Instead of the utilization of aligned brain

images, DBM examines anatomical shape based on the deformation fields obtained from

highly non-rigid registration [12]. SBM employs surface model to characterize the shape
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Figure 1.1: MR images acquired using different pulse sequences. (a) T1-weighted MR
image. (b) T2-weighted MR image. (c) Diffusion tensor image.

properties of brain anatomy [13], such as the cortical thickness [14], sulcal depth [15], and

surface curvature [16]. All these morphometric methodologies heavily rely on computer-

ized algorithms though they are different in the underlying theoretical frameworks.

Voxel-based structural analysis of brain MR images requires a number of image pro-

cessing tasks before the statistical inference, as shown in Fig. 1.2. Due to the technical fac-

tors of MRI, the intensity of homogeneous tissue is seldom uniform in each scanned image

(Fig. 1.3) and may greatly alter between multi-site acquisitions (Fig. 1.4). Reducing inten-

sity inhomogeneity and variability facilitates the accuracy and robustness of intensity-based

image-processing algorithms as well as the reliability of structural analysis results [17,18].

Image segmentation techniques, brain extraction and tissue segmentation methods, are used

to determine the regions concerned in morphometric analysis, such as specific anatomical

structures or the WM, gray matter (GM), and cerebrospinal fluid (CSF) tissues. Consid-

ering the accuracy of inhomogeneity correction, brain extraction is generally performed

beforehand [19,20]. Image normalization spatially registers homologous anatomical struc-

tures of intra- or inter- subjects to a standard stereotactic space. The standard space used

in morphometric analysis is commonly defined by an average brain template which well

represents the population [21] and is annotated with anatomical labels, such as the MNI-
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305 [22] and MNI-152 [23]. Once brain structures are spatially aligned, image groups can

be compared statistically in a voxel-wise manner.

Brain extraction

Intensity

correction/standardization

Tissue segmentation

Spatial normalization

Statistical analysis

Image acquisition

Brain template 

construction

MRI database

T1/T2/PD/DTI

Brain templates

T1/T2/PD/DTI

Figure 1.2: Brain morphometric analysis system. This dissertation focuses on the develop-
ment of brain extraction and brain registration techniques. The developed image-processing
algorithms were used for the structural analysis of bipolar patients.

1.2 Research scope

Toward an accurate and efficient structural analysis of human brain, this dissertation fo-

cuses on the development of brain extraction and brain registration techniques. The devel-

oped image processing techniques were implemented in a morphometric analysis protocol

for the investigation of fiber pathology between bipolar I and II disorders.
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Figure 1.3: Intensity inhomogeneity of T1-weighted MR image. The right-posterior tissues
highlighted in dashed boxes show obviously higher intensity compared to other regions.

Figure 1.4: T1-weighted MR images acquired from different scanners present quite differ-
ent intensity properties. MR images (a), (b), and (c) were scanned on a Bruker MedSpec
S300 3T system, GE Signa EXCITE 1.5T system, and Siemens Magnetom 1.5T system,
respectively.



6 Introduction

Brain extraction from head MR image is a classification problem of segmenting im-

age volumes into brain and non-brain regions. The difficulties of brain extraction primarily

arise from the complicated brain surface and the varied intensity properties of images. Usu-

ally intensity is utilized to differentiate between brain and non-brain tissues. However, the

inevitable image artifacts, intensity inhomogeneity, inapparent brain/non-brain boundaries,

and the diverse intensity profiles of multi-site images can degrade the extraction perfor-

mance significantly, especially for the methods based on intensity thresholding and region

clustering. Extraction algorithms using deformable models are generally more robust to

both image artifacts and boundary discontinuities [24–26], but these kind of methods are

commonly hard to tackle the varied curvature of brain surface [24, 27].

This thesis presents a brain extraction method which utilizes a new implicit deformable

model to well represent the brain contour and to segment the brain region of MR image

with high accuracy. The deformable model is described by a set of Wendland’s radial basis

functions (RBFs) and has the advantages of compact support property and low computa-

tional complexity. Driven by the internal force for imposing the smoothness constraint and

the external force for considering the intensity contrast across boundaries, the deformable

model of a brain contour can efficiently evolve from its initial state toward its target by

iteratively updating the RBF locations. In the proposed method, brain contours are sepa-

rately determined on 2-D coronal and sagittal slices. The results from these two views are

generally complementary and are thus integrated to obtain a complete 3-D brain volume.

Registration of MR brain images is a geometric operation that determines point-wise

correspondences between two brains. Convoluted brain structures and considerable data

amount pose obstacles to the registration of brain images, in terms of alignment accuracy

and execution efficiency. Highly non-rigid method is indispensable for the alignment of

brain structures with inter-subject variance or intra-subject deformation. However, it is

generally difficult to determine a good spatial mapping between brains in a large parameter

space. High-resolution images are helpful for precise morphometric analysis, but the large
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amount of data contributes to the major computational burden in registration process. On

the other hand, the registration of low-resolution images is relatively time efficient at the

expense of the degradation of alignment accuracy.

This thesis presents novel methods that can rapidly and accurately register brain images

by utilizing the brain structure information estimated from image derivatives. Source and

target image spaces are related by affine transformation and non-rigid deformation. The

deformation field is modeled by a set of Wendland’s RBFs hierarchically deployed near

the salient brain structures. In general, nonlinear optimization is heavily engaged in the

parameter estimation for affine/non-rigid transformation and good initial estimates are thus

essential to registration performance. In this work, the affine registration is initialized by a

rigid transformation, which can robustly estimate the orientation and position differences

of brain images. The parameters of the affine/non-rigid transformation are then hierarchi-

cally optimized in a coarse-to-fine manner by maximizing an image similarity measure, the

correlation ratio, between the involved images.

Bipolar disorder is a psychiatric illness which affects approximately 5% of the general

population [28]. According to the clinical characteristics, bipolar disorders can be catego-

rized into several subtypes, including bipolar I, bipolar II, cyclothymia, and bipolar disorder

not otherwise specified. Although patients with bipolar I and II disorders exhibit hetero-

geneous clinical presentations and cognitive functions, it remains unclear whether these

two subtypes have distinct neural substrates [29–31]. This dissertation utilized fractional

anisotropy maps calculated from diffusion tensor images to investigate the white matter

integrity of bipolar I and II disorders in a voxel-wise manner. Diffusion tensor imaging

was utilized because it is capable of detecting subtle fiber alterations [32]. The developed

brain extraction and registration algorithms were adopted in this morphometric study for

efficient and accurate image processing as well as reliable analysis results.
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1.3 Thesis organization

The rest of this thesis is organized as follows. Chapter 2 introduces the proposed im-

plicit deformable model as well as the application in brain extraction. The registration

techniques presented in Chapter 3 comprise an affine and a non-rigid approaches. Chap-

ter 4 introduces the morphometric analysis conducted to examine the neuropathological

substrates of bipolar I and II disorders. Finally, Chapter 5 concludes the researches pre-

sented in this dissertation.



Chapter 2

Brain extraction



10 Brain extraction

2.1 Background and related works

Brain extraction is essential or beneficial to many neuroimaging applications. For ex-

ample, removal of the non-brain tissues facilitates the correction of intensity non-uniformity

for MR images [20]. Tissue segmentation algorithms for separating brain regions into GM,

WM, and CSF usually incorporate brain extraction as a preprocessing step to simplify

the segmentation problem [33–35]. Extraction of brain regions can improve the accuracy

of brain image registration by avoiding the interference of inter-subject variation of non-

brain structures [36], including affine and non-rigid methods [37–39]. In the past decade,

VBM [11] has been extensively applied to statistically reveal regions with significant struc-

tural discrepancy between image groups [1,3,40–42]. Recent studies indicated that accurate

brain extraction can improve the validity of VBM results because of better tissue segmen-

tation and brain registration [20, 43].

Brain extraction algorithms can be classified into four major classes: (1) threshold-

ing/clustering based methods, (2) boundary-based methods, (3) deformable model meth-

ods, and (4) hybrid methods. Thresholding/clustering based methods extract brain regions

according to the phenomenon that intensities of the voxels belonging to the same tissue

are similar. Lemieux et al. proposed a fine-tuned algorithm which utilizes several inten-

sity thresholds and morphological operations to remove non-brain areas [44]. Analysis of

Functional NeuroImages (AFNI) fits a Gaussian mixture model to the intensity histogram

of a brain image and estimates an intensity range to segment the brain areas in a slice-by-

slice manner [45, 46]. Hahn and Peitgen presented a watershed algorithm which uses a

connectivity criterion, pre-flooding height, to group image voxels with similar intensities

and then regards the largest connected component as the brain volume [47]. More exam-

ples can be found in [48–53]. Methods of this type are usually sensitive to image scanning

parameters and image artifacts, such as noise and intensity inhomogeneity. Therefore, user

intervention is usually required to determine proper parameters.
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Boundary-based methods locate brain boundaries using the edge information obtained

from image derivatives. Bomans et al. presented a semi-automated algorithm in which

the brain region was manually labelled from the connected components detected with the

Marr-Hildreth operator [54]. Brain Surface Extractor (BSE) method improved the work of

Bomans et al. by adaptively smoothing the noisy regions, detecting structure edges, and au-

tomatically determining the brain volume [35,55]. In contrast to the thresholding/clustering

based approaches, these methods are less sensitive to intensity inhomogeneity and scanning

parameters. However, automated methods of this type may encounter difficulties in differ-

entiating true boundaries from the false ones. For example, the GM/WM edges are usually

very close to the target boundaries, the CSF/GM edges, and thus may perplex the determi-

nation of the brain volume.

Extraction methods using deformable models segment brain volumes by evolving con-

tour or surface toward the target. Deformable model can be characterized by its repre-

sentation method, implicit or explicit, and the evolution scheme [56, 57]. An explicit

model directly describes the brain contour or surface and the fitting process is usually

rapid [24,33,58,59]. On the other hand, implicit model can easily change the model topol-

ogy, for example, to split or merge objects, but the computational complexity is usually

high. The level set method adopted in Zhuang et al.’s work [26] is an example of this kind

of methods. Brain extraction using deformable model is generally more robust and accu-

rate compared to the thresholding/clustering based and boundary-based methods [24–26].

Moreover, incorporation of constraints or prior knowledge about the brain shape is rela-

tively easy for this kind of methods. Therefore, they are more robust to both image artifacts

and boundary discontinuities and can achieve subvoxel accuracy [56].

Hybrid approaches integrate the methods of different types with the anticipation to draw

on the specific strengths at the expense of more computational cost [60–65]. Ségonne et al.

applied the watershed algorithm [47] to generate an initial brain volume and incorporated

the prior information of the brain shape into a deformable model to refine the extraction
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results [25]. Rehm et al. integrated the extraction results obtained from atlas registration

[36], intensity thresholding, and the BSE algorithm [35,55] by means of voting in the brain

volume [66].

For large-scale studies, both accuracy and efficiency are important issues when con-

sidering brain extraction algorithms [19]. The level set methods, which use implicit de-

formable models, are superior in accuracy and robustness, but the computational complex-

ity of these methods is usually very high. On the contrary, methods using explicit models

are generally more efficient. However, the discretization process in this kind of meth-

ods needs to compromise between the extraction accuracy and evolution efficiency. Finer

(coarser) discretization employs more (fewer) sampling points to model object boundaries

and can achieve more precise (rougher) results at a relatively slow (rapid) evolution speed.

In this work, we designed a new deformable model and developed an automated brain

extraction method. The deformable model is implicitly represented by a set of Wend-

land’s RBFs and can efficiently evolve toward the target boundary by iterative updates of

RBF locations. Because of the use of RBFs, the new model can smoothly represent object

boundaries though each RBF keeps a distance to the neighboring ones. Brain contours of

2-D coronal and sagittal slices are individually fitted. The results of these two views are

generally complementary and thus can be integrated to obtain accurate 3-D brain volumes.

According to our experiments, the proposed brain extraction method outperformed others

when jointly considering extraction accuracy and robustness.

2.2 Methods

The proposed brain extraction method comprises three major steps, as shown in Fig. 2.1.

Image intensity parameters and brain centroid are first estimated for the following segmen-

tation procedures. Then the proposed deformable model is applied to extract the brain area
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on each of the coronal and sagittal slices. Complementary areas extracted from two dif-

ferent views are then integrated into a complete 3-D brain volume. Before the detailed

description of the brain extraction method, we first introduce the structure information of

the brain obtained from image derivatives. The structure information is not only useful

for the estimation of intensity parameters required in our brain extraction approach but for

the estimation of brain orientation and the modeling of image deformation required in the

proposed registration algorithms.

2.2.1 Structure information of the brain

Difference of Gaussian (DOG) performs image substraction after convolution with two

Gaussian kernels 𝐺(𝜎1) and 𝐺(𝜎2), 𝜎1 > 𝜎2:

𝐷𝑂𝐺(𝐼, 𝜎1, 𝜎2) = 𝐺(𝜎1) ∗ 𝐼 −𝐺(𝜎2) ∗ 𝐼 , (2.1)

where 𝐼 is a T1-weighted MR image and “∗” denotes the convolution operator. We define

the thresholded DOG (TDOG) value to be one (foreground) when the DOG value is larger

than a threshold, and otherwise the TDOG value is zero (background). Instead of using

the zero-crossings of DOG results to detect edge features, we utilize the foreground in the

TDOG image to reveal those regions with relatively low intensity in 𝐼 , such as the GM

and CSF, as shown in Fig. 2.2. We can observe that the background voxels in the brain

area are mostly the WM. This information can be applied to estimate the global intensity

parameters for the proposed brain extraction method. Notice that the region between two

hemispheres contains mostly TDOG foreground voxels. This phenomenon can be utilized

to determine the mid-sagittal planes (MSPs) and then estimate the orientation of brains.

Non-brain tissues may present in TDOG foreground and can be easily removed by applying

the brain masks. Then the masked foreground can guide the deployment of RBFs to cortices

and ventricles in the proposed non-rigid registration method.
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t2t1 t

Figure 2.1: Flowchart of the brain extraction method. (a) The effective intensity range
[𝑡1, 𝑡2] and a rough head/background threshold 𝑡 are estimated from the intensity histogram.
(b) Then the voxels with intensity value within [𝑡, 𝑡2] are used to approximate the brain
centroid. (c) Applying DOG operator with zero threshold, the global WM intensity 𝑡w and
CSF intensity 𝑡c are decided from the voxels within the ellipsoid approximating the brain
shape. The brain areas of the (d) coronal slices and (e) sagittal slices are extracted. (f) A
complete 3-D brain region is determined from the complementary areas segmented from
two different views.
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Figure 2.2: The TDOG foreground reveals the regions with relatively low intensities. (a)
One axial slice of a T1-weighted MR brain image. (b) The pixel intensity profile on the
scan line X. (c) An example of DOG kernel. (d) The results obtained by convolving DOG
kernel to the scan line X. (e) Image overlay of the the 2D TDOG foreground (in red color)
on the axial slice.
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2.2.2 Estimation of image intensity parameters and brain centroid

We estimate the effective intensity range and centroid of the head as the work of [24].

An effective intensity range [𝑡1, 𝑡2] is determined to ignore the voxels with unusual intensi-

ties, such as noises or DC spikes, in which 𝑡1 and 𝑡2 are the intensity values in the histogram

such that the accumulated number of voxels reaches 2% and 98%, respectively, as shown in

Fig. 2.1. To roughly separate the head from the background, the threshold 𝑡 is set to be 10%

in the range of [𝑡1, 𝑡2]. The brain centroid O is calculated by the first order image moment

using the voxels with intensity value in the range of [𝑡, 𝑡2].

An ellipsoid approximating the brain shape is determined by detecting the head bound-

ing box from those voxels with intensity within [𝑡, 𝑡2]. The polar radius is set to the distance

between the centroid and superior plane and the two equatorial radii are set to the halves of

the distances between the opposite bounding planes, that is, the left-right and the anterior-

posterior planes.

The voxels with DOG values smaller than zero are in the regions with relatively high

intensities, which are mostly the WM areas in the brain. Therefore, the median intensity of

these voxels within the brain-approximating ellipsoid estimates the global WM intensity,

𝑡w. On the other hand, the regions with DOG values larger than zero indicate the tissues

with relatively low intensities. These voxels within the ellipsoid are mostly the GM and

CSF. We apply Otsu’s algorithm [67] to calculate an intensity threshold 𝑡o for separating

CSF voxels from GM voxels. The median intensity of the CSF voxels estimates the global

CSF intensity, 𝑡c.

2.2.3 Brain extraction on the slices in two views

Brain extraction using deformable model generally requires a constraint to keep the

contour or surface smooth. Loosening this constraint may lead to better fitting for the
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uneven brain surface but may face the risk of leakage through the weak boundaries. On the

other hand, models with strict smoothness constraint can achieve stable results, but they

usually underestimate the curvature of brain surface. To tackle this problem, Smith utilized

a hyperbolic tangent function with empirically obtained maximum and minimum curvature

values to adaptively smooth the model of brain surface [24].

In this work, we apply the deformable contour model to extract the brain regions on

both coronal and sagittal slices and then integrate the results from two views. As shown

in Fig. 2.3, local curvatures of a region extracted from different views are usually quite

different. Fitting a local boundary in the view with relatively low curvatures often achieve

more reliable results, whereas the boundaries frequently cut through the tissues due to the

high curvatures in another view. Therefore, segmentation results in different views can

complement each other. Applying a strict smoothness constraint for two views followed

by the simple logical OR operation for the integration can achieve accurate and stable

extraction. Notice that brain extraction on the axial slices is not considered in this work

because of the efficiency issue.

The segmentation in the coronal view starts with the slice nearest to the brain centroid

O and proceeds with the slices toward the anterior and posterior directions. The extraction

on the sagittal slices, which are parallel to the detected MSP, is divided into two parts.

Each part starts with a sagittal slice 30 mm apart from the MSP and proceeds with the slices

toward the MSP and the most lateral slice, as shown in Fig. 2.1. Sagittal slices within 3 mm

from the MSP are not processed to avoid the unstable segmentation due to relatively few

GM and WM tissues. Because the extracted brain region shrinks gradually as the extraction

goes forward along the anterior, posterior, left, and right directions, brain extraction in each

of these directions is terminated once the size of the extracted brain region is smaller than

a threshold.
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Figure 2.3: Brain surface presents quite different curvatures in the coronal and sagittal
views. (a) The yellow curves show that the local curvature of brain surface in the coronal
view is significantly higher than that in the sagittal view, and (b) vice versa. (c) Boundary
fitting can achieve more reliable results with low curvatures than with high curvatures. The
regions marked as red in (a) and (b) illustrate that the fitting results obtained from coronal
and sagittal views are mutually complementary.
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Figure 2.4: Initial brain contour. An elliptic contour centered in the approximated bounding
box of the brain is regarded as the initial contour for the brain extraction on each of the
starting slices.

2.2.4 Initial contour

An initial contour within the brain region is required for each of the three starting slices,

as shown in Fig. 2.4. The brain bounding box is first detected from those pixels with their

intensity values within [𝑡, 𝑡2]. In this way the lower boundary of the bounding box is usually

located at the bottom of the MR volume and is thus adjusted according to the aspect ratios

8:7 and 4:3 for the coronal and sagittal slices, respectively. A set of Wendland’s RBFs

are then equally spread along an ellipse centered in the bounding box with the lengths of

its axes set to be 0.7 times the length and width of the box. These RBFs determine an

initial contour which can evolve to fit the brain contour by the method described in the

next section. Because the brain contours of adjacent slices are usually similar, the evolved

contour of current slice provides a good initial for the neighboring ones. This propagation

way improves the performance of brain extraction, in terms of both accuracy and efficiency.
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2.2.5 Deformable model for brain extraction

Implicit contour representation

A contour in a 𝑑-dimensional image space (𝑑 is 2 or 3) can be implicitly modeled as the

zero set of a scalar function 𝜑 : ℜ𝑑 → ℜ:

𝐶 = {x ∣ 𝜑(x) = 0, x ∈ ℜ𝑑} . (2.2)

In this work, we define the scalar function 𝜑(⋅) as the sum of 𝐾 weighted RBFs:

𝜑(x) =
𝐾∑
𝑖=1

𝑇𝑖(x− c𝑖)𝜙𝑠(∥x− c𝑖∥) , (2.3)

where ∥ ⋅ ∥ is the Euclidean norm and 𝑇𝑖(⋅) is a weighting function for the RBF 𝜙𝑠(⋅). The

one-argument function 𝜙𝑠 : ℜ+ → ℜ is the RBF centered at c𝑖, c𝑖 ∈ ℜ𝑑. This work adopts

the Wendland’s 𝜓-functions, 𝜓3,1, as the function 𝜙𝑠 because of its advantages of compact

support property and low computational complexity [68, 69]:

𝜙𝑠(𝑟) =

⎧⎨
⎩ (1− 𝑟

𝑠
)4(4𝑟

𝑠
+ 1) , 0 ≤ 𝑟 < 𝑠

0 , 𝑠 ≤ 𝑟
, (2.4)

where 𝑠 is the shape parameter for accommodating various extents of the compact support.

Given the outward normal vector n𝑖 at c𝑖, the weighting function 𝑇𝑖 : ℜ𝑑 → ℜ is defined

as:

𝑇𝑖(v) = v𝑡n𝑖 . (2.5)

Therefore, each 𝑇𝑖(⋅)𝜙𝑠(⋅) term in Eq. (2.3) implicitly represents a line as the zero set in

2D image space. The normal vector at the RBF center determines the orientation of the

line and the summation of these products results in a smooth contour representation, as

illustrated in Fig. 2.5. Notice that we only consider the zero set within the support extents

of RBFs and usually the contour does not pass through RBF centers in this model. From

the implicit function, the normal vector n𝑖 at the control point c𝑖 is calculated as

n𝑖 =
∇𝜑(c𝑖)

∥∇𝜑(c𝑖)∥ . (2.6)
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Figure 2.5: Implicit contour representation. (a) Image intensity in this figure represents the
value of 𝑇𝑖(⋅)𝜙𝑠(⋅). The zero set where 𝑇𝑖(⋅)𝜙𝑠(⋅) = 0 within the compact support region
represents the implicit model, marked as the red line. (b) The combination of 𝑇𝑖(⋅)𝜙𝑠(⋅)
can represent contour smoothly.

During the contour evolution, we adaptively allocate or deallocate RBFs according to the

distance between the neighboring RBF centers.

Contour evolution forces

The brain area on each slice is determined by iteratively moving each RBF center c𝑖

along the normal direction n𝑖 to a compromise between an internal force 𝐹s(c𝑖) and an

external force 𝐹e(c𝑖), 𝑖 = 1 . . . 𝐾:

∂c𝑖
∂𝑡

= (𝑎𝐹s(c𝑖) + 𝑏𝐹e(c𝑖))n𝑖 , (2.7)

where the weighting parameters 𝑎 and 𝑏 are both generally set to be 0.5.

The internal force calculated from the contour itself is used to keep the contour smooth

during the evolution process. We define the smoothness constraint function 𝐹s(⋅) at c𝑖 as

the averaged magnitude of the orientation differences between the normal vector n𝑖 and the
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normal vectors n𝑖−1 and n𝑖+1 of c𝑖’s neighboring RBFs centered at c𝑖−1 and c𝑖+1:

𝐹s(c𝑖) = u𝑡
𝑖n𝑖 × ∥n𝑖 − n𝑖−1∥+ ∥n𝑖 − n𝑖+1∥

2
, (2.8)

where u𝑖 is the normalized vector which starts from c𝑖 and points to the midpoint between

c𝑖−1 and c𝑖+1. Because each RBF keeps a distance to its neighboring ones, the contour

smoothness is estimated from a larger scale of view, compared to the local curvature ∇n𝑖

estimated at c𝑖.

The external force is used to evolve the initial contour toward its target boundary. Here

we modify the external force adopted in Zhuang et al.’s work [26], which originated from

[33] and [24], as follows:

𝐹e(c𝑖) = 𝑤(𝑑, 𝛼, 𝑠
′)× (

𝐼min(c𝑖)

𝐼max(c𝑖)
− 𝛽) . (2.9)

The function above is designed according to the phenomenon that the intensity contrast
between the CSF and GM/WM is usually high. Functions 𝐼min(⋅) and 𝐼max(⋅) find the
local minimum intensity and local maximum intensity, respectively, among several sampled
pixels starting from each RBF center c𝑖 along the opposite direction of n𝑖:

𝐼min(c𝑖) = max(𝑡1,min(𝑡m, 𝐼(c𝑖), 𝐼(c𝑖 − n𝑖), 𝐼(c𝑖 − 2n𝑖), . . . , 𝐼(c𝑖 −𝑀n𝑖))) , (2.10)

𝐼max(c𝑖) = min(𝑡2,max(𝑡w, 𝑡m, 𝐼(c𝑖), 𝐼(c𝑖 − n𝑖), 𝐼(c𝑖 − 2n𝑖), . . . , 𝐼(c𝑖 −𝑁n𝑖))) , (2.11)

where 𝑀 and 𝑁 determine the search ranges and 𝑡m is the median intensity of the brain

tissues on each slice, which is approximated from the pixels within the initial brain region.

The parameter 𝛽 is used to characterize the intensity contrast between the brain and non-

brain tissues. Its value is slightly larger than the intensity ratio of the CSF to WM:

𝛽 =
𝑡c
𝑡w

+ 𝑘 , (2.12)

where 𝑘 is a small positive number. In this way the value of the parameter 𝛽 is not fixed but

adaptively determined because the WM and CSF intensities, 𝑡w and 𝑡c, are estimated from

the MR image. This advantage benefits the robustness of the proposed brain extraction



2.2 Methods 23

method. Generally, the distance 𝑁 in 𝐼max(⋅) should be large enough to reach the WM

during the evolution. Therefore, 𝐼max(⋅) roughly equals to the local WM intensity. If the

evolving contour is inside the brain region, 𝐼min(⋅) is most likely the intensity of GM or

WM. This results in a positive external force and drives the contour outward. Once the

contour is outside the brain boundary, 𝐼min(⋅) is most likely the CSF intensity and the

resulted negative external force (approximately −𝑘) pulls the contour inward.

Because the brain boundaries of neighboring slices are usually similar, we apply a

weighting function 𝑤(⋅) to constrain the moving distance 𝑑 of the RBF while the de-

formable model evolves from its initial position. Here the weighting function 𝑤(⋅) is de-

fined as the Wendland’s RBF in Eq. (2.4) with support extent 𝑠′:

𝑤(𝑑, 𝛼, 𝑠′) = 𝜙𝑠′(max(0, 𝑑− 𝛼)) . (2.13)

As the example shown in Fig. 2.6, 𝑤(⋅) begins to gradually decrease to zero when the

moving distance 𝑑 is larger than 𝛼. Therefore, this function regularizes the amount of

brain contour evolution and thus imposes the smoothness constraint of the extracted brain

volume across adjacent slices. Note that this term is set to be the constant one in the

extraction process for each of the starting slices.

2.2.6 Integration of segmentation results

The brain regions determined from the coronal and sagittal slices are complementary

and thus can be integrated to increase the sensitivity of brain extraction. Segmentation

results of the sagittal slices are first transformed back to the native space because these

slices are sampled from the planes parallel to the detected MSP. Logical OR operation

is then applied to combine the coronal and the transformed sagittal results. Finally, we

apply morphological opening with a circle as the structural element to remove the weak

connected components and to smooth the brain surface. Fig. 2.7 illustrates the extraction

results of a T1-weighted head image.
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Figure 2.6: The weighting function 𝑤(𝑑, 𝛼, 𝑠′) used to constrain the moving distance 𝑑 of
the RBF while evolving from its initial position. In this example, 𝛼 and 𝑠′ are set to be 2
and 5, respectively.

2.2.7 Performance evaluation

This section introduces the methods used to evaluate the performance of the proposed

brain extraction algorithm, including the data sets, performance criteria, and the approaches

used for comparisons. The obtained accuracy evaluation results are further analyzed by

two-sample t-test for performance comparison among the brain extraction methods. More-

over, previous evaluation works can be found in [19, 70, 71].

Brain extraction algorithms for performance comparisons

The proposed method was compared with the Brain Surface Extractor (BSE) in Brain-

Suite2 [35,55,72], Brain Extraction Tool (BET) version 2.1 [24,73], Hybrid Watershed Al-

gorithm (HWA) version stable 3 [25], and Model-based Level Set (MLS) version 0.5 [26].

The programs of the compared methods used in our experiments were downloaded from

their webpages. BET, BSE, HWA, and our method were implemented in C++ whereas

MLS was programmed in Java. All extraction experiments were performed on an AMD
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Figure 2.7: Brain extraction results of a T1-weighted image shown in (a) coronal and (b)
sagittal views.
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Opteron 240 processor running Linux, except BSE. Software of BSE is available only for

Windows system, thus we evaluated its performance on another machine with an AMD XP

2400+ processor. Furthermore, we adopted the nearest neighbor sampling in our imple-

mentation not only because of its efficiency but also its accuracy compared to the trilinear

interpolation. This observation agrees with the findings in [24]. The reason could be that

sampling methods other than the nearest neighbor somewhat blur images and the resulted

weak boundaries may deteriorate the accuracy of brain extraction.

Image data sets with manual segmentation results

Two sets of T1-weighted head MR images as well as manual segmentation results were

obtained from the Internet Brain Segmentation Repository (IBSR)1. In the experiments,

we applied extraction algorithms to determine the brain volumes of these subjects and

employed the manually segmented brain areas, including the ventricles, to evaluate the

extraction accuracy.

The first IBSR data set comprises twenty MR volumes, each with around 60 coronal

slices, matrix size 256× 256, FOV 256× 256 mm2, and slice thickness 3.1 mm. Obvious

intensity inhomogeneity and other significant artifacts present in most of the MR images

in this data set. Another challenge of this data set is that the neck and even shoulder areas

are included. This may influence the extraction accuracy of BET and HWA methods, as

the examples shown in Figs. 2.8a and 2.8c (HWA even failed to process eighteen of the

twenty MR images), because the excess non-brain tissues severely bias the estimation of

the required parameters. To fairly evaluate extraction performance, several inferior slices of

the image volumes containing neck or shoulder area were manually removed beforehand.

In this way, BET and HWA achieved better segmentation results, as shown in Figs. 2.8b

and 2.8d.

1IBSR was developed by the Center for Morphometric Analysis at Massachusetts General Hospital and is
available at http://www.cma.mgh.harvard.edu/ibsr .
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The second IBSR data set contains eighteen MR images, each with around 128 coronal

slices, matrix size 256 × 256, FOV 240 × 240 mm2, and slice thickness 1.5 mm. All

images were transformed to radiological convention beforehand based on the orientation

information obtained from IBSR. These images have superior quality in contrast to those

in the first data set. According to the document of IBSR, each image in this data set has

been roughly registered to the Talairach space and the intensity inhomogeneity has been

corrected using the software developed by the Center for Morphometric Analysis at the

Massachusetts General Hospital.

Criteria for extraction accuracy assessment

Several criteria are utilized to measure the extraction accuracy, including the Jaccard

similarity coefficient (JSC), the sensitivity and specificity coefficients, and the risk evalua-

tion of the segmentation results. The JSC, also known as the Jaccard index, is an extensively

adopted measurement which evaluates the similarity between the extracted brain region 𝐵

and the corresponding ground truth 𝐴:

𝐽𝑆𝐶(𝐴,𝐵) =
∣𝐴 ∩𝐵∣
∣𝐴 ∪𝐵∣ , (2.14)

where ∣ ⋅ ∣ denotes the cardinality value. The value of JSC is within [0, 1] and a larger JSC

value means a better overlap with the ground truth.

Brain extraction is usually a compromise between the high recognizing percentage for

brain voxels (that is, high sensitivity) and the high rejecting percentage for non-brain voxels

(that is, high specificity). Therefore, the coefficients of sensitivity 𝑆e and specificity 𝑆p can

be used to characterize brain extraction algorithms:

𝑆e =
TP

TP + FN
, (2.15)

𝑆p =
TN

TN+ FP
. (2.16)
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The true positive rate, TP, and false positive rate, FP, are the number of voxels correctly

and incorrectly classified as brain tissues, respectively. The true negative rate, TN, and

false negative rate, FN, are the number of voxels correctly and incorrectly classified as

non-brain tissues, respectively.

In some applications, it is more important to avoid missing brain tissues than to reject

all non-brain regions. From this point of view, Ségonne et al. proposed an error function 𝐸

to measure the extraction risk [25]:

𝐸(𝑐) =
𝑝f + 𝑐𝑝m
1 + 𝑐

, (2.17)

where 𝑐 is the risk ratio between the probabilities of missed detection for brain tissues, 𝑝m,

and false alarm, 𝑝f . These two probabilities are calculated as

𝑝m =
∣𝐴− 𝐵∣
∣𝐴 ∪𝐵∣ , (2.18)

𝑝f =
∣𝐵 − 𝐴∣
∣𝐴 ∪𝐵∣ , (2.19)

where 𝐵 is the extracted brain region, 𝐴 is the corresponding ground truth, and ∣ ⋅ ∣ denotes

the cardinality value.

Parameters of brain extraction algorithms

The parameters of the compared methods were determined to achieve the best average

JSC value for each data set. In other words, there were two sets of parameter values for

each method and each set is for one data set. For the first (second) IBSR image set, the

smoothness weighting of MLS was chosen as 0.05 (0.1); the fractional intensity threshold

of BET was set to be 0.6 (0.7); the parameters of HWA were set to the default values

(default values with surface-shrink option turned on); the parameter 𝑘 of the proposed

method was set to be 0.15 (0.15); and the edge constant, diffusion iteration, and diffusion

constant of BSE were set to be 3 (3), 1 (1), and 0.70 (0.66), respectively.
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2.3 Experimental results

This section presents our results of performance evaluation for brain extraction meth-

ods. Table 2.1 lists the experimental outcomes of the proposed and other brain extraction

algorithms using the first IBSR data set. In general, MLS and our method performed better

than others. Jointly considering both the sensitivity and specificity, the accuracy indices of

BET and BSE were moderate among the five methods evaluated. In this experiment, HWA

did not achieve significant outperformance for all accuracy criteria (𝑝 > 0.05). Notice that

the performance indices of each method shown in Table 2.1 did not count in the cases that

(1) the JSC value between the extracted brain volume and the ground truth is smaller than

0.6 (three cases for BSE); (2) the program terminates without any results (three cases for

HWA); and (3) the extraction result is blank (one case for BSE and one case for MLS). Ex-

cluding these cases (seven in total), all methods achieved slightly larger JSC values, which

means better overlapping of the extracted brain regions with the ground truths, as shown

in Table 2.2. HWA had remarkable improvement in its sensitivity due to the omission of

additional four poor cases. Because of the exclusion of these seven cases, outperformance

of BSE and MLS to our method became significant in terms of the specificity (𝑝 = 0.001)

and JSC (𝑝 = 0.024), respectively.

To verify that the manual removal of slices containing neck or shoulder region in the

first experiment did not largely affect the performance for BSE, MLS, and the proposed

methods, we applied these three algorithms again to extract the brain volumes from original

IBSR images. The obtained results indicated that these three algorithms produced similar

extraction outcomes no matter the excess non-brain slices were removed or not.

Table 2.3 lists the experimental results of the proposed and other extraction algorithms

using the second IBSR data set. Our method generally performed better than others with

respect to all accuracy criteria, except for the sensitivity. HWA achieved the best sensitivity

in detecting brain tissues at the expense of the relatively low specificity. BET, MLS, and
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Figure 2.8: Excess non-brain tissues affect the extraction accuracy of BET and HWA. The
MR images of the first IBSR data set contain neck areas, as shown in the left of (a) and (c).
In this case BET and HWA cannot well extract the brain volumes, as shown in the middle
of (a) and (c). Manually removing several inferior non-brain slices, as shown in the left of
(b) and (d), can facilitate BET and HWA to produce better extraction results, as shown in
the middle of (b) and (d). On the other hand, the proposed method is relatively robust to
the excess non-brain tissues, as shown in the right from (a) to (d).
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BSE were statistically equal in all accuracy criteria, except for the specificity of BSE. BSE

had the significantly lower specificity in detecting non-brain regions compared to BET

(p=0.046) and MLS (p=0.02).

Tables 2.1 to 2.3 also list the average execution time of extraction methods using the

first and second IBSR data sets. Both experiments show that BSE achieved the best effi-

ciency, followed by BET and our method, though BSE was executed on a relatively low-end

processor. The processing time of HWA and MLS was apparently longer among the com-

pared methods. Notice that MLS has a chance to achieve better efficiency if the algorithm

is implemented in C/C++, instead of Java.

For each brain extraction method, the probabilities of the false classification for brain

and non-brain voxels, 𝑝m and 𝑝f , were calculated to evaluate its extraction risk. Fig. 2.9a

shows the risk profiles of the first experiment when the risk ratio 𝑐 between 𝑝m and 𝑝f ranged

from 1 to 10. It is apparent that MLS and our method have relatively lower extraction risks.

BET and HWA perform better than BSE when the risk ratio is larger than 1.8 and 8.0,

respectively. This figure also illustrates the extraction risk for the results excluding the

seven subjects that caused markedly poor results. We can see that the performance of

the proposed method, BSE, and MLS has been slightly improved. The extraction risk of

HWA decreases rapidly due to its high sensitivity to the inclusion of brain tissues. The risk

profiles of the second experiment shown in Fig. 2.9b indicate that the proposed method

has the lowest extraction risk compared to other algorithms if the penalty is smaller than 6.

HWA performs better than BSE, MLS, BET, and our method if the risk ratio is larger than

1.6, 2.0, 3.0, and 6.0, respectively.
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Figure 2.9: Extraction risk evaluation using (a) the first IBSR data set and (b) the second
IBSR data set. The mark “∗” indicates that some failed or extremely poor segmentation
case(s) are not included. After excluding all of these cases for each method, the risk profiles
are shown as the dashed lines in (a).
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2.4 Discussion

Our method implicitly represents the brain contours with the proposed deformable

model and explicitly evolves the contours by moving the RBF centers of the deformable

model. Wendland’s RBFs can well represent smooth object boundaries and are thus ap-

propriate for brain extraction. By utilizing the explicit evolution, boundary determination

of our method is efficient, at the expense of not being able to change the model topology.

Therefore, the proposed model is appropriate for the application in which the object to be

segmented has the same topology as the initial contour. Moreover, the performance of our

deformable model, in terms of both accuracy and efficiency, can be further improved by

considering adaptive RBF placement. For example, sparsely (densely) deploying RBFs

with larger (smaller) support extent to the boundary with smaller (larger) curvature.

The first experiment indicated that excess non-brain tissues may greatly affect the ex-

traction accuracy of BET and HWA. Neck or shoulder region in the image volume largely

biases the estimation of brain centroid and brain size. Therefore, BET may locate the initial

surface far from a reasonable position and thus fail to drive it toward the target. For HWA,

the deviation of initial parameters may cause erroneous estimation of tissue intensity in the

following watershed procedure. On the contrary, the proposed method is more robust that

the excess non-brain regions do not obviously affect the segmentation results, as the exam-

ples shown in Fig. 2.8. In this work, we considered fully automated procedure for brain

extraction. Nevertheless, softwares of both BET and HWA provide options for the man-

ual specification of brain radius and centroid parameters to remedy the biased estimation

caused from the excess non-brain regions.

Three of the compared methods, BSE, HWA, and MLS, obtained unsatisfactory extrac-

tion results or even failed for some subject(s) in the first experiment. These cases were

further analyzed to comprehend the underlying properties of these extraction algorithms.

By correcting the intensity inhomogeneity beforehand using the N3 method [17], MLS



2.4 Discussion 37

produced good extraction result for the previously failed case whereas BSE and HWA still

obtained unsatisfactory results. This suggests that inhomogeneity correction may improve

the extraction stability of MLS. The failed cases of HWA resulted from program termina-

tion because the estimated brain size or WM intensity was too large. Manual specification

of brain centroid and radius can avoid the extraction failure of HWA. This suggests that

poor image quality may cause poor initial extraction results for the watershed procedure,

a thresholding/clustering method, of HWA. From the excluded cases of BSE, we observed

that all the images present systematic edge artifacts caused by, for example, the noise spike

in k-space. Enlarging the kernel size of diffusion smoothing, BSE can improve the extrac-

tion accuracy for the images with moderate edge artifacts though it could not tackle the

images with obvious edges, as shown in Fig. 2.10. On the other hand, the proposed method

and BET are more robust because these two methods did not obtain poor results for the first

IBSR data set.

Images of the first IBSR data set are with relatively poor quality and manifest them-

selves in high intensity inhomogeneity, low signal-to-noise ratio, and other significant ar-

tifacts. Image quality of the second IBSR data set is closer to what a modern MR image

scanner can achieve. Quantitative evaluation results shown in Tables 2.1 to 2.3 indicated

that our method can accurately extract the brain volumes for the images in both sets, and

this may imply that the proposed method is less sensitive to image quality compared to

other algorithms. These experiments also show that the segmentation risk using HWA de-

creases rapidly as the relative importance to the inclusion of brain tissues increases. This

phenomenon implies that HWA is appropriate if applications prefer to keep most brain vox-

els at the expense of the inclusion of non-brain tissues, such as the meninges and venous

sinuses.

Quantitative morphometric studies of brain MR images require a large number of sub-

jects to increase the statistical power. In this case, MR images used for structural analysis

are probably obtained from different scanners [18, 74]. Because the tissue intensity of
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Figure 2.10: Influence of systematic edge artifacts, indicated by the arrows, to the extrac-
tion results of BSE. (a) A large kernel size of diffusion smoothing may facilitate BSE to
improve the brain extraction results for the images with moderate edge artifacts, (b) but not
for the images with obvious edges.
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multi-site images can vary considerably, a robust brain extraction algorithm should prevent

from the parameter adjustment for images obtained by different scanners. To accommo-

date the various intensity properties, we utilize DOG to estimate the principal parameter of

our algorithm, the intensity ratio of CSF to WM. The use of image derivative reduces the

influence of noise and intensity inhomogeneity. Thresholded DOG can robustly reveal the

regions with relatively low and high intensity and thus it provides good information for the

estimation of global CSF and WM intensities.

In conclusion, we have proposed an implicit deformable model and developed a novel

brain extraction method for head MR images. Experimental results using two IBSR data

sets indicated that our method can extract brain volumes with high accuracy compared to

four existing algorithms, which have been extensively applied in neuroimaging applica-

tions.
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Brain registration
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3.1 Background and related works

Registration is an essential geometric operation in medical image analysis. In lon-

gitudinal studies, for instance, images acquired repeatedly over a period of time can be

used to observe the temporal changes of brain structures by subtracting the registered im-

ages [75, 76] or by analyzing the structure deformation [77, 78]. Customized or standard

brain templates can be constructed by spatially normalizing and then averaging the brain

images in a stereotaxic space [21–23, 79]. Registration of an individual brain to the tem-

plate can bridge the individual brain to the Talairach space [80] and can also help to obtain

the gross anatomical structures of the individual brain with template-based segmentation

methods [81, 82].

When registering images, the degree of structural variability determines the transfor-

mation model to be adopted. Rigid or affine transformation can only accommodate the

global transformation and are adequate to register the images acquired for the same sub-

ject. Many approaches were proposed for affine registration of brain images. Ashburner

et al. incorporated the prior knowledge of human brains into a Bayesian framework [83].

Wood et al. used a Newton-type method to iteratively optimize the values of transformation

parameters [84]. Jenkinson et al. proposed a coarse-to-fine method that can optimize the

transformation parameters from multiple candidates [37, 85].

A transformation model with a high degree of freedom is indispensable to inter-subject

registration, in which the anatomical difference is non-rigid. In the following, non-rigid

registration methods are briefly introduced according to the adopted transformation model.

Comprehensive surveys can be found in [38, 86–88].

Elastic methods register images by compromising the deformation smoothness and the

similarity measurement between images [89]. Because of the smoothness constraint, these

kind of methods may not sufficiently model highly localized deformation, such as the con-
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volution of cerebral cortex [90, 91]. Their variants, fluid models, relax the smoothness

constraint to overcome this problem at a higher risk of false registration [90]. Fluid regis-

tration works can be found in [75, 92, 93]. Moreover, the Demons algorithm [94] and its

variant [95] are also considered as an approximation of fluid registration [38].

A finite element method (FEM) registers images by using the segmented objects, which

are usually represented by the meshes of tetrahedrons or hexahedrons [96–102]. It can

deform objects in a more realistic way because different energy terms can be assigned to

objects according to their physical properties. However, the computational complexity of

the FEM approach is generally high and the error of tissue segmentation contributes to the

deviation of registration.

Basis functions have been extensively applied to describe the spatial mapping rela-

tionship between images. These methods can be further divided into two sub-categories.

The first kind of methods, referred as landmark-based approaches, establishes the spatial

transformation from a set of corresponding control points or landmarks. Numerous ba-

sis functions have been used to model the spatial mapping, such as the thin-plate splines

(TPS) [103, 104], Gaussian [105], inverse multi-quadrics [106], multi-quadrics [104], and

Wendland’s RBFs [69]. The major disadvantage of these kind of methods is that the iden-

tification of landmarks is not only time-consuming but also prone to errors. To alleviate

this problem, Likar and Pernus applied affine registration to the sub-regions of images and

regarded the centers of the registered parts as the matching control points [107].

Instead of the labor-intensive landmark selection, the second kind of methods regularly

deploy basis functions in image volumes and calculate the coefficients of basis functions

by optimizing an objective function. Many basis functions have been applied to model

the deformation fields, including wavelets [108], discrete cosine transform [109], and B-

splines [110,111]. However, a large number of basis functions are required to model subtle

deformation. In this case, the computational complexity is high and it is usually difficult

to obtain good results by searching in a large parameter space. To reduce the number
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of basis functions, Rohde et al. used the gradient magnitude of the normalized mutual

information (NMI) to detect poorly aligned image regions and repeatedly deployed RBFs

in these regions for registration refinement [112].

Anatomical information has also been applied in non-rigid registration frameworks.

Pluim et al. incorporated image gradient into the similarity measurement, mutual informa-

tion (MI), for utilizing the spatial information [113]. Marsland et al. iteratively determined

the poorly registered regions and deployed knot points to the strong edges for modeling the

deformation field with the clamped-plate splines [114]. Camara et al. registered the cor-

responding structures and used the obtained results to initialize the subsequent procedure

for the multimodal registration of whole-body images [115]. More examples can be found

in [116–120]. Generally, these type of methods take advantage of both the structure and

intensity information during the registration process.

Image registration is an important tool in quantitative analysis using VBM. VBM sta-

tistically reveals the structural differences between two image groups through a voxel-wise

comparison of tissue volumes [11]. There have been numerous VBM studies presented

in the literature, such as the examination of brain asymmetry and the effects of sex and

handedness in brain structures [2], the aging of brains [1], and the characterization of dis-

eases [3, 40, 41]. Before the statistical comparison, all images have to be spatially normal-

ized into the same stereotaxic space such that the corresponding structures are well aligned.

Many registration techniques have been adopted in the VBM procedure and the accuracy

of image registration can greatly affect the reliability of the analysis results [121–124].

Moreover, VBM analysis usually applies registration procedure intensively. Therefore,

an accurate and time efficient registration algorithm is generally considered preferable for

VBM.

In this work, we utilize the structure information of the brain extracted from image

derivatives and develop affine and non-rigid methods, called the Brain Image Registra-

tion Tools (BIRT), for the accurate and time efficient registration of MR brain images.
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The proposed affine method aligns brain images by estimating the orientation and position

differences between brains followed by optimizing the similarity between images in a hier-

archical manner. The non-rigid deformation of the brain is modeled by a set of Wendland’s

RBFs, which are hierarchically deployed near the salient anatomical structures. In this

way, a small amount of RBFs are sufficient to well represent the deformation field and thus

are beneficial to the execution efficiency. A VBM study of inter-group structural analysis

is also conducted to qualitatively and quantitatively investigate the effect of registration

accuracy upon the VBM analysis results. Software packages of the proposed registration

algorithms are available at http://bsp.cs.nctu.edu.tw/software.

3.2 Methods

Image registration establishes the spatial mapping T : p �→ q, which transforms every

point p in the source (or test) image to its corresponding point q in the target (or reference)

image, such that the same structures are well aligned. The mapping relation T generally

consists of a global transformation Tg, which is usually an affine transformation, and a

local, non-rigid deformation Tl:

q = T(p) = Tg(p) +Tl(Tg(p)) . (3.1)

Notice that Tg maps each point p to its corresponding point Tg(p) while Tl represents the

non-rigid displacement vector field. In addition, the brain structure information required in

the proposed affine and non-rigid registration methods has been introduced in Sec. 2.2.1.
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3.2.1 Affine registration

Overview of the affine registration method

The proposed affine registration method comprises four major steps, as shown in Fig. 3.1,

which determine the twelve degrees of freedom of the transformation Tg(p) = Ap + b,

where b is a translation vector and A is the transformation matrix representing the rotation,

scaling, and shearing of an image volume. Among the twelve parameters of affine regis-

tration, the rigid parameters for rotation and translation are highly coupled and hence the

estimation accuracy is critical to the whole affine registration process [37]. We estimate the

six parameters of the rigid-body transformation by locating the MSPs followed by aligning

brain volumes on the overlapped MSPs, as described in Secs. 3.2.1 and 3.2.1. Subsequently,

the six rigid parameters are further refined and the results provide a good set of initial values

in the parameter estimation for affine transformation. The engaged optimization process for

the refinement of rigid transformation Tr and affine transformation Tg utilizes a hierarchi-

cal image structure and the Nelder-Mead downhill simplex method [125] to maximize the

correlation ratio (CR), 𝑆CR(𝐼𝑡, 𝐼𝑠,Tr) and 𝑆CR(𝐼𝑡, 𝐼𝑠,Tg), between the spatially mapped

source image 𝐼𝑠 and target image 𝐼𝑡. Fig. 3.2(d) shows an example of the alignment results

using our affine registration method. Detailed description about CR criterion will be given

in Sec. 3.2.3.

Determination of brain MSP

The MSP of a brain is defined as the plane which best separates the two hemispheres

[126]. Locating brain MSPs requires the estimation of two rotation and one translation

parameters among the six parameters of rigid transform. Some methods of automatic de-

termination of MSPs can be found in [127], [128], and [126]. In this work, we first estimate

the MSP in an analytical way. By utilizing the first order image moment as the work of [24],
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Target image TDOG of target image

Source image TDOG of source image

Source image aligned by the 

estimated MSP
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Alignment on overlapped MSPs
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by initial rigid 
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Figure 3.1: Flowchart of the proposed affine registration method. The brain MSPs in the
source and target images are determined according to the TDOG images and are then over-
lapped together. The alignment on the overlapped MSPs is achieved by maximizing the
image similarity. The obtained rigid parameters are further refined and then applied to
initialize the affine registration of brain images.
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(a) (b) (c)

(d) (e) (f)

R

Source image

Target imageNon-rigid registrationAffine registration

MSP overlapping Alignment on overlapped MSPs

Figure 3.2: Registration between the source image (a) and the target image (f) by using
the proposed BIRT methods. The slices shown from (b) to (e) illustrate the results of
the MSP overlapping, alignment on the overlapped MSP, affine registration, and non-rigid
registration, respectively. The white line in (a) indicates the estimated MSP of the source
image whereas those in (b), (c), and (f) indicate the estimated MSP of the target image.
The arrows in (d) and (e) indicate those areas with stepwise improved alignment refined by
the proposed affine and non-rigid methods.
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the brain centroid is calculated as a point on the initial MSP. The normal vector of the initial

MSP is estimated by applying principal component analysis (PCA) to the TDOG image.

As the example shown in Fig. 3.3(a), the TDOG foreground is planarly distributed nearby

the MSP, whereas the distribution is more isotropic in other regions. Applying PCA to the

TDOG image, the two eigenvectors corresponding to the largest two eigenvalues roughly

span the MSP and the eigenvector corresponding to the smallest eigenvalue provides an

estimate for the normal vector of the MSP. Fig. 3.3(b) shows that the closed-form solu-

tion provides a good initial estimation of the MSP. This initial estimation is further refined

toward the “relatively darkest” plane in the brain by maximizing the number of TDOG fore-

ground voxels. This optimization process can improve the MSP determination, as shown in

Fig. 3.3(c), as well as the overlapping of the MSPs in the source and target images, which

is required in the proposed affine registration method, as shown in Fig. 3.2(b).

Alignment on the overlapped MSPs

We align the brain volumes on the overlapped MSPs to estimate other three rigid pa-

rameters, including a translation vector on the MSP and a rotation angle around the MSP

normal. The rotation angle is first estimated by the directions of corpus callosums (CC)

segmented from the MSPs. Applying PCA to the segmented CC, the eigenvector corre-

sponding to the largest eigenvalue provides an estimate of the CC direction. Directional

difference between CCs gives a good initial estimate of the rotation around the MSP nor-

mal. The rotation angle and the translation vector compose a rigid transform T′
r and are

refined by optimizing the CR, 𝑆CR(𝐼𝑡, 𝐼𝑠,T
′
r), between the source image 𝐼𝑠 and target im-

age 𝐼𝑡. As shown in Fig. 3.2(c), the proposed method can robustly register brain images,

even if there are large rotational differences in some unusual cases.

The segmentation of CC is based on the phenomenon that the intensities of CC in a

T1-weighted MR image are significantly larger than those of the surrounding tissues. One
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Figure 3.3: Brain MSP estimation and refinement. (a) TDOG image is more planarly
distributed nearby the MSP (top), compared to other regions (middle). Applying PCA
to the TDOG image, the eigenvector corresponding to the smallest eigenvalue gives an
estimate to the MSP normal (bottom). (b) The MSP estimated with an analytical solution.
(c) The MSP refined by maximizing the number of foreground TDOG voxels.
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or two intensity thresholding steps are used to segment the CC. For each located MSP, we

first calculate an effective intensity range [𝑡1, 𝑡2] to ignore the pixels with unusual intensi-

ties, the brain centroid O, and a radius 𝑟 mm which estimates the brain size, as the work

of [24]. The segmentation of CC only considers the area within the circle with center at

O and with radius 𝑘𝑟 mm, where the value of 𝑘 is set to be 0.7 in our implementation, as

shown in Fig. 3.4(a). All the connected regions with intensity larger than 𝑡1 + 𝛽(𝑡2 − 𝑡1)
and with area larger than 𝛾 are extracted from MSP, where the values of 𝛽 and 𝛾 were

set to be 0.7 and 100 mm2 in BIRT, respectively. We regard the extracted region(s) as the

candidate(s) of CC. The segmentation of CC is achieved if there is only one CC candidate,

as shown in Fig. 3.4(b). However, the intensity differences between CC and the surround-

ing tissues can vary considerably and thus the regions other than CC often survive in the

first thresholding process, as shown in Fig. 3.4(d). To further distinguish these tissues, we

apply Otsu’s method [67] to calculate another intensity threshold if there are many CC can-

didates. Notice that only the pixels in the candidate regions are involved in the calculation.

The proposed method can well segment the CC on MSP, even if there are excess non-brain

tissues, such as the neck and shoulder areas, as shown in Fig. 3.4(e). Nevertheless, ex-

tracting the brain regions beforehand increases the robustness of our segmentation method

because it avoids the disturbance of non-brain tissues, which can result in the estimation

bias of the brain centroid, as shown in Fig. 3.4(c).

3.2.2 Non-rigid registration

Non-rigid spatial mapping between brain images is related by a set of Wendland’s

RBFs with different levels of support extents. Fig. 3.5 shows the flowchart of the pro-

posed non-rigid registration procedure. Non-brain structures are first removed because the

inter-subject variation of these regions is relatively large compared to that of brain tissues

and hence could interfere with registration efficacy [36]. Therefore, we use a brain mask

to extract the brain area as well as the boundary of the brain in the TDOG image, referred
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(a) (b)

(c) (d) (e)

O

O

Figure 3.4: Segmentation of CC on MSP. (a) The circular area centered at the gravity of
brain MSP, O, is considered in the segmentation of CC. (b) Only one connected region,
the CC on MSP, is found in the first thresholding step locates the CC. (c) Excess non-brain
tissues can bias the estimation of the circular area considered in the CC segmentation. (d)
The intensity differences between CC and the surrounding tissues are not significant and
thus many connected regions, the candidates of CC, are found in the first thresholding step.
(e) Applying Otsu’s method [67], the calculated intensity threshold can distinguish the CC
from other tissues.
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Figure 3.5: Flowchart of the proposed non-rigid registration method. Non-brain regions of
the target brain are first removed to obtain a brain mask, which is then used to extract the
brain region in the TDOG image of the target brain and construct the brain-only TDOG.
The deformation field is modeled by a set of Wendland’s RBFs hierarchically distributed at
the anatomical structures revealed in the brain-only TDOG.

as the brain-only TDOG. Though the structures revealed in the brain-only TDOG are quite

rough, they provide a guidance to deploy RBFs near the brain boundary, the boundary

between GM and WM, and the boundary between CSF and GM/WM. Furthermore, the

deformation field is progressively estimated by optimizing the coefficients of each RBF in

a coarse-to-fine manner.

Non-rigid transformation model

We use a combination of 𝐾 RBFs to model the non-rigid deformation field, Tl(⋅),

Tl(p) =
𝐾∑
𝑖=1

𝛼𝑖𝜙(∥p− c𝑖∥) , (3.2)
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Figure 3.6: Wendland’s RBF 𝜙(𝑟) adopted in this work.

where ∥ ⋅ ∥ is the Euclidean norm and the one-argument function 𝜙 : ℜ+ → ℜ is the RBF

centered at c𝑖 with coefficients 𝛼𝑖 ∈ ℜ3, 𝑖 = 1, . . . , 𝐾. There are different types of RBFs.

In this work, we use one of the Wendland’s 𝜓-functions, 𝜓3,1, as the RBF 𝜙 due to its low

computational complexity and the compact support property [68, 69]. This function 𝜙 is

shown in Fig. 3.6 and is formulated as

𝜙(𝑟) =

⎧⎨
⎩ (1− 𝑟)4(4𝑟 + 1) , 0 ≤ 𝑟 < 1

0 , 1 ≤ 𝑟
. (3.3)

Based on this set of 𝐾 RBFs, the positions c𝑖 and the coefficients 𝛼𝑖, 𝑖 = 1, . . . , 𝐾, of the

RBFs determine the 3-D displacement vector Tl(p) for each point p in the image volume.

With the compact support property, the influence of each RBF is restricted to a local

region which is a unit sphere around the RBF center. It is a preferred characteristic in non-

rigid registration because the deformation of one area should not affect remote regions.

This property also greatly alleviates the computational complexity of spatial transformation

in contrast to the functions with global support, such as TPS and multi-quadrics, because

only a few RBFs are involved in the calculation of displacement vector for an image point.

To accommodate various extents of compact support, the argument 𝑟 of the function 𝜙(⋅)
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is scaled by the shape parameter, 𝑠 [129]. The Wendland’s RBF with support extent 𝑠 is

formulated as

𝜙𝑠(𝑟) = 𝜙(
𝑟

𝑠
) . (3.4)

Hierarchical decomposition of deformation field

For the 𝐾 RBFs involved in our non-rigid deformation model, there are 𝐿 different

support extents, 𝑠𝑗 , 𝑗 = 1, . . . , 𝐿, each with 𝐾𝑗 RBFs and 𝐾1 + 𝐾2 + ⋅ ⋅ ⋅ + 𝐾𝐿 = 𝐾.

Therefore, the non-rigid deformation field, T𝑙(⋅), can be rewritten as

Tl(p) =
𝐿∑

𝑗=1

𝐾𝑗∑
𝑖=1

𝛼𝑗,𝑖𝜙𝑠𝑗(∥p− c𝑗,𝑖∥) , (3.5)

where 𝜙𝑠𝑗(⋅) denotes the RBF with support extent 𝑠𝑗 and coefficients 𝛼𝑗,𝑖 centered at c𝑗,𝑖.

For proper deployment of RBFs, brain volume is hierarchically divided into eight equal

subregions, which are cubes in our implementation, and each subregion has an RBF placed

at the center if this region contains any foreground voxels in the brain-only TDOG, as

shown in Fig. 3.7. Although the maximum number of RBFs required at level 𝑗 is 8𝑗 , the

use of brain-only TDOG can help to place necessary RBFs near important anatomical fea-

tures and avoid the dramatic increase of the number of RBFs. This deployment method is

fairly beneficial for computational efficiency while maintaining high registration accuracy,

particularly at the fine levels. The support extent 𝑠𝑗 at each level 𝑗 is a parameter which is

set to be multiples of the width of subregions. Therefore, the RBFs from low to high levels

are capable of modeling the deformation field from coarse to fine resolutions.

Since the deformation field model is hierarchically decomposed into RBFs with differ-

ent levels of support extent, we estimate the coefficients of RBFs one-by-one while gradu-

ally accumulating the deformation field in a coarse-to-fine manner. Consider the coefficient

estimation for the𝑚-th RBF at level 𝑙. The centered positions and coefficients of the RBFs

at the coarser levels from 1 to 𝑙 − 1 and the RBFs from 1 to 𝑚 − 1 at level 𝑙 are all deter-
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Level 1 Level 2 Level 3 Level 4

Figure 3.7: The whole brain volume is hierarchically divided into eight subregions. An
RBF is deployed at the center of a subregion containing salient structure revealed by the
brain-only TDOG. This figure illustrates the RBF distributions at four levels, in which a
red square represents a subregion deployed with an RBF.

mined previously. We update the deformation field by adding a new RBF 𝜙𝑠𝑙(∥p − c𝑙,𝑚∥)
centered at c𝑙,𝑚 with coefficients 𝛼𝑙,𝑚:

T𝑙,𝑚
l (p) =

𝑙−1∑
𝑗=1

𝐾𝑗∑
𝑖=1

𝛼𝑗,𝑖𝜙𝑠𝑗(∥p− c𝑗,𝑖∥) +
𝑚−1∑
𝑖=1

𝛼𝑙,𝑖𝜙𝑠𝑙(∥p− c𝑙,𝑖∥)

+𝛼𝑙,𝑚𝜙𝑠𝑙(∥p− c𝑙,𝑚∥) . (3.6)

In this way, the displacement vector for the point p is progressively updated. The accumu-

lation process terminates when 𝑙 = 𝐿 and 𝑚 = 𝐾𝐿, that is, Tl(p) = T𝐿,𝐾𝐿

l (p). Because

only three coefficients of an RBF are estimated at a time, the proposed method avoids the

searching in a huge parameter space and thus the whole optimization process is quite fast.

Objective function

Coefficient estimation for each RBF is an optimization process that minimizes an ob-

jective function:

𝐶(𝐼𝑡, 𝐼𝑠,T) = −𝑆CR(𝐼𝑡, 𝐼𝑠,T) + 𝜆𝐸(T) , (3.7)

where T is the spatial mapping between the target image 𝐼𝑡 and the source image 𝐼𝑠, 𝑆CR

measures the image similarity by CR, the smoothness regularization function 𝐸 calculates
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the deformation energy of T, and the parameter 𝜆 compromises the measurements 𝑆CR

and 𝐸. The Laplacian model and the thin-plate model are widely applied to regularize the

structure deformation in image registration [91]. Due to the computational efficiency, we

adopt the Laplacian model in this work:

𝐸(T) =
1

𝑉

∫ ∫ ∫ [(
∂T

∂𝑥

)2

+

(
∂T

∂𝑦

)2

+

(
∂T

∂𝑧

)2
]
𝑑𝑥 𝑑𝑦 𝑑𝑧 , (3.8)

where 𝑉 is the volume involved in the estimation. The Nelder-Mead downhill simplex

method is utilized to optimize the objective function. Fig. 3.2(e) demonstrates that the

proposed non-rigid method can well register the corresponding anatomical structures.

Implementation issues

In the optimization process of non-rigid registration, iterative calculation of image

transformation contributes to the major computation burden, particularly when registering

high resolution image volumes. The hierarchical decomposition of the non-rigid transfor-

mation model and the compact support property of Wendland’s RBFs are both beneficial

to the alleviation of this heavy burden. However, the execution time of non-rigid registra-

tion is still large. Some implementation techniques described below are helpful to further

improve the efficiency. First, we construct a volume pyramid with 𝐿′ levels for each MR

image volume, generally 𝐿′ ≤ 𝐿. When evaluating the objective function, the 𝐾𝑗 RBFs,

𝜙𝑠𝑗(⋅) with support extent 𝑠𝑗 , 𝑗 = 1, . . . , 𝐿, are associated with the 𝑗′-th level of volume

pyramid, where 𝑗′ = 𝑗 when 𝑗 ≤ 𝐿′ and 𝑗′ = 𝐿′ when 𝑗 > 𝐿′. This hierarchical architec-

ture enables a coarse-to-fine optimization that helps to avoid the local traps and improves

the computational efficiency. Second, one lookup table is constructed beforehand for each

support extent level of Wendland’s RBFs to avoid the repeated function evaluations. There-

fore, updating the deformation field with the RBF 𝜙𝑠𝑗(⋅) in Eq. (3.6) requires only three

subtractions, one table lookup, three multiplications, and three additions.
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3.2.3 Correlation ratio

The image similarity function has strong influence on registration results. Statistical

measurements such as MI [130, 131], NMI [132], and CR [133] have been used in multi-

modal image registration [38, 87, 88]. These measurements are also adequate to unimodal

image registration because they are robust to the noise, the different intensity contrast, and

the intensity inhomogeneity. In this work, CR is adopted because it is superior in accuracy,

efficiency, and robustness [37, 133, 134].

For the voxels of the same tissue in the target image, CR measures the intensity disper-

sion for their corresponding points in the source image. Let 𝑁 be the number of voxels in

the overlapping region Ω between the source image 𝐼𝑠 and the target image 𝐼𝑡. We divide

the whole intensity range into 𝑁𝐵 bins: 𝐵𝑖, 𝑖 = 1, . . . , 𝑁𝐵. Let 𝑋𝑖 denote a set of voxels

in the region Ω of the source image satisfying that their corresponding voxels in the target

image have intensities belonging to the same intensity bin, 𝐵𝑖, as shown in Fig. 3.8. That

is,

𝑋𝑖 = {p ∣ p ∈ Ω, 𝐼𝑡(F(p)) ∈ 𝐵𝑖} , (3.9)

where F can be the spatial transformation function Tr, T′
r, Tg, or T in this work. Notice

that 𝑁1 +𝑁2 + ⋅ ⋅ ⋅+𝑁𝑁𝐵
= 𝑁 , where 𝑁𝑖 is the number of voxels in𝑋𝑖. Image similarity

based on CR is calculated by

𝑆CR(𝐼𝑡, 𝐼𝑠,F) = 1− 1

𝑉 𝑎𝑟(𝐼𝑠(Ω))

𝑁𝐵∑
𝑖=1

𝑁𝑖

𝑁
𝑉 𝑎𝑟(𝐼𝑠(𝑋𝑖)) , (3.10)

where function 𝑉 𝑎𝑟(𝐼𝑠(Ω)) and 𝑉 𝑎𝑟(𝐼𝑠(𝑋𝑖)) evaluate the intensity variances of source

image in Ω and 𝑋𝑖, respectively. The voxels belonging to the same tissue generally have

similar intensities. In the target image, therefore, the voxels having intensities within each

intensity bin 𝐵𝑖 very likely belong to the same tissue. If the source and target images are

well aligned, voxels in 𝑋𝑖 of the source image should also belong to the same tissue and

hence the intensity variance of𝑋𝑖 should be small. Consequently, larger CR value indicates

higher image similarity and hence better alignment.
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Figure 3.8: CR measures the intensity dispersion for the voxel set 𝑋𝑖 in the source image
which contains voxels with their corresponding points in the target image belonging to the
same intensity bin 𝐵𝑖.
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3.2.4 Evaluation of registration performance

This section introduces the methods used to evaluate the performance of the proposed

affine and non-rigid registration algorithms, including the data sets and the approaches used

for comparisons.

Registration algorithms for performance comparisons

The proposed affine registration method in BIRT was compared with Statistical Para-

metric Mapping 2 (SPM2) [83], Automated Image Registration version 5.2.5 (AIR5) [84],

and FMRIB’s Linear Image Registration Tool version 5.5 (FLIRT) [37]. The proposed non-

rigid registration method in BIRT was compared with SPM2 [109], Hierarchical Attribute

Matching Mechanism for Elastic Registration version 1.0 (HAMMER) [99], and Diffeo-

morphic Anatomical Registration Through Exponentiated Lie algebra (DARTEL) [135] in

SPM5. BIRT was implemented in C++ and the programs of other algorithms were down-

loaded from their webpages. All registration experiments were executed on a PC with an

AMD Opteron 1.4 GHz processor running Linux.

Data sets with known spatial mapping relation

T1-weighted head MR images acquired on a 1.5 Tesla GE MR scanner (3D-FSPGR

pulse sequence; TR = 8.67 ms, TE = 1.86 ms, TI = 400 ms, NEX = 1, flip angle = 15∘,

bandwidth = 15.63 kHz) were used to construct simulation data in our experiments. Both

the experiments of affine and non-rigid registration quantitatively measured the alignment

accuracy and execution efficiency using two sets of images, each set with 30 images, with

different spatial resolutions (256 × 256 × 124, voxel size = 1.02 × 1.02 × 1.5 mm3 and

128 × 128 × 34, voxel size = 2 × 2 × 5 mm3). The registration error was evaluated by

the average deviation of the estimated displacement vectors from the ground-truth ones,
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and the computational efficiency was compared according to the average execution time

for registering an image pair.

Both the low- and high- resolution data sets applied in the experiment of affine registra-

tion were constructed by applying 30 times of affine transformation to each of the 30 MR

images originally scanned, each time with random transformation parameters uniformly

distributed within [−𝜋/15, 𝜋/15] in radian, [−15 mm, 15 mm], [−0.05, 0.05], and [−0.01,

0.01] for rotation, translation, scaling, and shearing, respectively. In the accuracy evalua-

tion, each originally scanned MR image was regarded as the source image and the randomly

transformed images were regarded as the target images, one at a time. The known random

transformations provided the ground truths of corresponding points. Moreover, the rigid

parameters of the ground truths with the same image set were also used to evaluate the

accuracy of the rigid transformation estimated by the proposed method.

Three sets of source-target pairs of brain images, low and high resolution, with known

deformation fields were constructed by applying SPM2, HAMMER, and DARTEL to non-

linearly register 30 originally scanned MR images to a specified target image. We regarded

the originally scanned images, the deformed images, and the deformation fields obtained

by each registration method as the source images, the target images, and the ground truths

of deformation, respectively, to evaluate the performance of other three algorithms. These

materials facilitate the performance evaluation in a more objective way because the results

are not biased toward a specific deformation type. The value to threshold the TDOG im-

age can affect the performance of our non-rigid registration method, in terms of alignment

accuracy and computational efficiency. Therefore, the constructed image pairs were also

used to evaluate the influences of the thresholding level.
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Parameters of registration algorithms

In our experiments, the parameters of the compared methods were set to their default

values, except AIR5. The intensity thresholds in AIR5 were set to the values which can

exclude most of the background voxels and the scales of Gaussian kernels were determined

by the best average accuracy. Two necessary preprocesses in HAMMER, brain extraction

and tissue segmentation, were accomplished by Brain Extraction Tool (BET) version 2.1

[24] and FMRIB’s Automated Segmentation Tool version 4.1 [34], which are parts of the

FMRIB’s Software Library [73]. For our affine and non-rigid methods, we set the FWHM

of the Gaussian variances (𝜎21 , 𝜎22) in TDOG to be (4 mm, 3 mm). The proposed non-rigid

method applied BET2 to obtain brain masks and the RBF support extent was set to be 1.5

times of the subregion width.

3.2.5 Effects of registration accuracy on VBM analysis

This section introduces the experiment designed to investigate the influence of registra-

tion accuracy on the results of VBM analysis, including the construction of image groups

and the criteria used for quantitative evaluation.

Construction of image groups

Six groups of GM images were generated by applying TPS transformation to deform a

phantom GM image obtained from BrainWeb [136]. This avoids the segmentation step in

VBM protocol [1, 11] such that the analysis results were not confounded by segmentation

error. One normal group and five patient groups with different scales of volume differences

were generated in this experiment, in which each group contained 30 subjects and all the

images were 157 × 189 × 156 with voxel size 1.0 mm3. Some related techniques for

generating brain images with volumetric changes can be found in [137–139].
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A total of 208 control points on the cortical surface of the cerebrum and cerebellum

were selected to create MR brain images with or without volume difference in the cerebel-

lum. Thirty of these points, referred as manipulating points, were identified on the exterior

cortical surface of the cerebellum and were used to generate difference patterns with differ-

ent scales. The other 178 points were used to fix anatomical structures, in which 38 points

were selected from the interior surface of the cerebellum and 140 points were placed on the

surface of the cerebral cortex. Fig. 3.9(a) illustrates the placement of these control points.

MR brain images of the normal subjects and patients were constructed by the following

procedures. There are three steps in the generation of a patient image. First, we moved

the manipulating points toward the cerebellum center. The displacement magnitude, that

is, the volume difference scale, was parameter-controlled. Second, all the 208 control

points were moved by a random vector with uniformly distributed magnitude within 2 mm

in order to model the inter-subject structure variation. In the last step, we applied TPS

transformation to construct a patient image according to these 208 control points. The

construction procedure for a normal subject was the same as that for a patient, except the

scale of volume difference was set to zero. In our experiments, the magnitude of the volume

difference was uniformly distributed within different scales. Figs. 3.9(b) to (g) show the

examples of the constructed images with difference scale of 0 mm (normal subject), 2 mm,

3 mm, 4 mm, 5 mm, and 6 mm, respectively.

Accuracy assessment of VBM analysis

Two non-rigid registration algorithms, SPM2 and BIRT, were applied in the VBM anal-

ysis procedure. Normal subjects and patients were first registered to the GM phantom and

the obtained deformation fields were used to modulate the deformed images for GM vol-

ume estimation [11]. The modulated images were convolved by a Gaussian kernel (FWHM

= 4 mm) and the resulted images were statistically analyzed by using two-sample t-test.
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(a)
(b) (c) (d)

(e) (f) (g)

Figure 3.9: The construction of simulated images with different degrees of volume differ-
ence in the cerebellum. (a) All the images were constructed from the BrainWeb phantom
GM (top) by using the TPS transformation. An inferior slice (bottom) of the phantom
image illustrates the distribution of the control points. The red points placed on the exte-
rior cortical surface of the cerebellum are used to generate volume difference patterns in
the cerebellum. The green and the blue points distributed on the interior cortical surface
of cerebellum and the cortical surface of cerebrum, respectively, are used to fix anatomi-
cal structures. The following figures illustrated the constructed MR images with different
scales of volume differences: (b) 0 mm (normal subject), (c) 2 mm, (d) 3 mm, (e) 4 mm,
(f) 5 mm, and (g) 6 mm.



3.3 Experimental results 65

We examined the VBM analysis procedure and defined proper ground truths for quanti-

tative comparison. VBM structure analysis uses a registration method to normalize all sub-

jects into the same stereotaxic space such that the corresponding structures are aligned and

the structure variances between subjects can be removed. Therefore, the MR images trans-

formed by a perfect registration method should be identical to the target (the GM phantom

in this experiment). According to this viewpoint, the structural discrepancies discovered

by the VBM analysis with a perfect registration method were the subtraction between the

phantom image (that is, the perfectly registered images of normal subjects) and the phan-

tom image modulated by the TPS deformation field (that is, the perfectly registered patient

images). We applied Gaussian kernel (FWHM = 4 mm) to smooth the obtained ground

truths of different scales of volume differences because the same kernel was applied to

convolve the normalized and modulated subjects before the statistical analysis.

Correlation coefficient provides another quantitative measurement showing that whether

accurate registration can facilitate VBM procedure to reveal more accurate statistical infer-

ences. The voxels with higher values in the Gaussian smoothed ground truth indicate that

there are larger volume differences between groups. For an accurate VBM analysis, the

positions of these voxels in the t-map obtained from VBM results should have higher sig-

nificance. Therefore, the higher correlation coefficient between the ground truth and the

t-map implies that the VBM analysis can reveal regions with volume differences more ac-

curately.

3.3 Experimental results

This section presents our experimental results, including the validation of registration

performance and the investigation for the influences of registration accuracy upon VBM

analysis.



66 Brain registration

3.3.1 Comparison of affine registration algorithms

Table 3.1 lists the performance comparisons for affine registration algorithms in terms

of execution time and mean registration error calculated from all image voxels. For BIRT,

the performance indices of the estimation for rigid parameters and the affine registration

across four multi-resolution levels are listed in the table. The results of our experiment us-

ing high- (low-) resolution images showed that BIRT can achieve better accuracy than other

algorithms in 76 (28) seconds, which is longer than that of SPM2 (SPM2 and AIR5) within

30 seconds. We can observe that the initial rigid transformation estimated by the proposed

method is quite accurate, which was 1.46 (2.62) mm in the alignment of high- (low-) res-

olution images when only the rigid parameters of the ground truths are considered. It is

apparent that the alignment error of the subsequent affine registration decreases rapidly

from coarse to fine levels. Fig. 3.10 plots the sorted registration accuracy for all methods.

The relatively low increasing rate indicates that BIRT can stably register brain image vol-

umes. This figure also shows that the accuracy of about 95% cases was smaller than 0.1

mm by using the proposed method in this experiment. From Table 3.1 and Fig. 3.10, we

can see that good spatial resolution of images can benefit the alignment accuracy for all

compared methods at the expense of longer execution time. Nevertheless, BIRT was less

sensitive to image resolution in contrast to other algorithms.

3.3.2 Determination of TDOG threshold

Fig. 3.11 illustrates the performance of our non-rigid method with respect to different

settings of the Gaussian variances and TDOG threshold. Our experimental results showed

that a smaller TDOG threshold, which increases the amount of structure information, gen-

erally resulted in better alignment accuracy at the expense of longer execution time. We

can observe that both the alignment accuracy and computational efficiency of our non-rigid

method converged when the threshold was smaller than −5. Gaussian variances also deter-
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Figure 3.10: Comparison for the stability and accuracy of affine registration algorithms.
The solid (dashed) lines show the results of experiments using 256 × 256 × 124 (128 ×
128× 34) images with voxel size 1.02× 1.02× 1.5 (2× 2× 5) mm3.
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mine the amount of the structure information, coarse or fine. With the same thresholding

level, it can be observed that the Gaussian variances providing coarse structure information

commonly resulted in efficient registration process at the cost of high alignment error. Our

experimental results also showed that the TDOG threshold had greater influences upon the

registration performance for high-resolution images compared to that for low-resolution

images. Compromising the registration accuracy and execution efficiency, we empirically

determined the values of the FWHMs of the Gaussian variances 𝜎21 and 𝜎22 and the TDOG

thresholding level to be 4 mm, 3 mm, and 0, respectively.

3.3.3 Comparison of non-rigid registration algorithms

Table 3.2 shows the evaluation results of BIRT (both the affine and non-rigid methods),

SPM2, HAMMER, and DARTEL, in which the registration error was calculated from the

voxels in the brain area. Both the experiments using high- and low- resolution images in-

dicated that the registration error of BIRT steadily decreased across five deformation levels

and achieved better accuracy than other algorithms in a short period of time. It can be

observed that HAMMER, DARTEL, and BIRT performed better for the simulation images

constructed by SPM2, compared to other data sets. The registration accuracy of BIRT at

the second (third) deformation level was comparable to that of SPM2 with the high- (low-)

resolution HAMMER and DARTEL data sets. The registration errors of HAMMER and

BIRT for the images constructed by DARTEL were relatively higher than those for other

data sets. On the other hand, in the experiments using high-resolution images, DARTEL did

not perform as well for the alignments of the HAMMER data set as that of the SPM2 data

set. Figure 3.12 illustrates the sorted accuracy for the experiments of all data sets. From

the increasing rate of the profiles, we can see that the registration processes of all non-rigid

methods were quite stable, except for SPM2 with the DARTEL data set and HAMMER

with the low-resolution DARTEL data set. Our experimental results also indicated that the

alignment of high-resolution images can achieve better accuracy at the expense of longer
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Figure 3.11: Influences of the thresholding value in TDOG upon the alignment accuracy
and computational efficiency of our non-rigid registration method. Four different FWHM
settings for the Gaussian variances were evaluated, including (12 mm, 11 mm), (8 mm,
7 mm), (4 mm, 3 mm), and (2 mm, 1 mm). The solid (dashed) lines show the results of
experiments using 256×256×124 (128×128×34) images with voxel size 1.02×1.02×1.5
(2 × 2 × 5) mm3. Notice that the listed computational efficiency excluded the execution
time of the required brain extraction and affine registration processes.
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execution time compared to the registration of low-resolution data. Notice that the ex-

ecution efficiency of DARTEL did not improve significantly for low-resolution images,

possibly because DARTEL imports data with the same spatial resolution, 1.5 mm3.

3.3.4 Effects of registration accuracy on VBM analysis

Fig. 3.13 shows the results of VBM analyses using two different registration algorithms,

SPM2 and BIRT. It can be seen that the revealed patterns of volume difference (𝑝 < 0.005)

using BIRT are more focal in all cases. This figure also depicts that the VBM analysis using

SPM2 non-rigid registration presents more false volume differences, particularly in the

groups with larger difference scales. Comparing the ground truths with the VBM results of

various thresholds for significance level, we obtained the receiver operating characteristics

(ROC) of each registration algorithm. According to the ROC curves shown in Fig. 3.14,

BIRT is superior to SPM2 with respect to sensitivity and specificity. Table 3.3 lists the

correlation coefficients between the ground truths and the t-maps. Apparently, BIRT has

higher values and thus is superior to SPM2 in all cases.

3.4 Discussion

The proposed affine method registers brain images by optimizing the twelve parameters

subsequent to the estimation of the rigid transformation. Generally, rigid parameters are

highly coupled and are critical to accurate registration results. Due to the use of structure

information, BIRT can robustly estimate the orientation and position differences between

MR images of the brains and the estimation error is small in our experiments. Therefore, the

rigid transformation can provide a good initial for the optimization of all affine parameters,

even if there are large orientation differences, as the example shown in Fig. 3.15. Both

FLIRT and BIRT can find the correct orientation in such cases. However, FLIRT achieves
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Figure 3.12: Comparison for the stability and accuracy of non-rigid registration algorithms
with the simulated images constructed by (a) SPM2, (b) HAMMER, and (c) DARTEL. The
solid (dashed) lines show the results of experiments using 256×256×124 (128×128×34)
images with voxel size 1.02× 1.02× 1.5 (2× 2× 5) mm3.

Table 3.3: The correlation coefficients between the ground truths and the t-maps obtained
from VBM analysis using BIRT and SPM2 methods

Scale of volume difference

2 mm 3 mm 4 mm 5 mm 6 mm

SPM2 0.61 0.61 0.63 0.60 0.58

BIRT 0.65 0.67 0.74 0.74 0.74
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2 mm 3 mm 4 mm

5 mm 6 mm

2 mm 3 mm 4 mm

5 mm 6 mm

(a)

(b)

Figure 3.13: The VBM structural analysis results (𝑝 < 0.005) using simulated images with
different scales of volume differences, in which the image normalization was performed by
using (a) BIRT and (b) SPM2.
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Figure 3.14: The ROC curves of the simulated VBM structural analyses, in which the red
and blue curves represent the results with different scales of volume differences from 2 mm
to 6 mm using BIRT and SPM2, respectively.
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(b)(a)

(c) (d) (e) (f)

L

Figure 3.15: The affine registration for brains with large orientation difference. (a) The
ICBM-152 brain template used as the target image. (b) A T1-weighted image used as the
source image. The affine-registered result using (c) BIRT, (d) FLIRT, (e) SPM2, and (f)
AIR5.

this goal by searching in a large space of parameters at the expense of longer execution time

than that of BIRT. Experimental results showed that the proposed affine method performs

well in terms of accuracy, efficiency, and stability.

The determination of brain MSP is an essential step in our affine registration algorithm.

In general, previously published methods [126–128] can be applied to locate the MSP in

the proposed procedure. In this work, we propose a new MSP location method based on

the TDOG image. Because of the structural properties of MSP revealed in the TDOG

image, the orientation of MSP can be estimated by a closed-form solution and the further

refinement is very time efficient. As shown in Table 3.1, the major computational burden

of our method is from the Gaussian filtering procedure in the TDOG image computation.

Because the TDOG image is necessary for the subsequent non-rigid registration process,

the proposed MSP location method only slightly increases the whole computation with the
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centroid estimation, the PCA computation of 3×3 matrices, and the following optimization

procedure. Moreover, the TDOG image and the PCA procedure can reduce the influence of

noise and intensity inhomogeneity. Even when the neck and shoulder regions are included

in the images and could largely bias the estimation of brain centroid, the MSP can also be

robustly located by the proposed affine method, as the example shown in Fig. 3.16.

Extracting the brain region beforehand is usually beneficial to registration accuracy

because the inter-subject variation of non-brain structures are relatively large [36]. Never-

theless, brain extraction is not included as a necessary step in the proposed affine method

for the generality of methodology. Notice that the estimation to brain orientation in the

proposed affine method is only adequate to the registration of brain images because it uses

the information specific to brain structures. Therefore, it is not a solution to general rigid

registration problems.

The non-rigid registration method in BIRT applies Wendland’s RBFs to model image

deformation field hierarchically, in which all RBFs are adaptively deployed near the im-

portant structures of brains. Execution efficiency is an important issue for the alignment

of 3-D images, especially for those applications which apply registration intensively, such

as VBM analysis. Some characteristics of the proposed method can greatly reduce the

computational complexity. First, the adaptive placement decreases the number of the re-

quired RBFs. Second, coefficient estimation for one RBF at a time can greatly reduce the

parameter search space and hence accomplish the registration task rapidly. In this way,

the structure topology is always preserved in the modeling of deformation fields. Third,

because of the compact support property of the Wendland’s RBFs, there are only a few

functions involved in the transformation calculation for each image point. Fourth, some

implementation skills, such as the use of pyramid images and the lookup tables of the

RBFs, are also quite beneficial to further improve the efficiency of image registration. Ex-

perimental results demonstrated that BIRT can accurately align brain images in a relatively

short period of time compared with SPM2, HAMMER, and DARTEL.
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(a) (b) (c) (d)

(e)

R

R

Figure 3.16: Affine registration for the brain images which include the neck regions and
partial brain tissues are out of the field of view. (a) Source image. (b) Source image
transformed using the estimated rigid parameters. (c) Affine registered source image. (d)
Target image. (e) The estimated MSP of (d).
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(a) (b)

Figure 3.17: Regularization degree of non-rigid registration influences the sharpness of
mean alignment results. Generally, highly regularized registrations result in sharp mean
image, (b), compared to that of less regularized alignments, (a). SPM2 was utilized in this
example for the non-rigid registrations of 57 T1-weighted MR images.

This work evaluated the performance of non-rigid registration techniques in an ob-

jective way which avoided the drawbacks of validation methods using the mean image

averaged from alignment results and using the materials constructed by landmark-based

transformation. The evaluation of registration performance utilizing landmark-based trans-

formation identifies a set of corresponding anatomical landmarks between brains by experts

and quantify the accuracy of alignment results. This approach requires manual selection

of landmarks and needs several experts to eliminated the subjective factor. Therefore, it is

time-consuming and the landmark identification is always prone to errors. Another exten-

sively adopted validation approach registers images to a specified target and evaluates the

sharpness of the averaged results. However, the sharpness of average image may not a good

criterion used to measure the accuracy of a registration technique. Firstly, the regulariza-

tion degree of non-rigid registration can influence the obtained result and less regularized

alignments generally produce a clear mean image, as shown in Fig. 3.17. Secondly, a clear

average image could not imply that a registration technique is accurate, as the example

shown in Fig. 3.18. In this work, we applied the compared methods to generate image

pairs with known deformation fields. These materials facilitated objective performance

evaluation because the results were not biased toward a specific deformation type.
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(b) (c)(a)

Figure 3.18: A sharp image averaged from non-rigid alignment results, (a), could not imply
accurate registration, (b) and (c). Automated Registration Tool [123] was utilized in this
example for the non-rigid registrations of 57 T1-weighted MR images.

The spatial normalization transforming MR brain images into the same stereotaxtic

space for statistical comparison is an essential step in VBM analysis. It is commonly be-

lieved that the registration accuracy greatly affects the analysis results. However, to the best

of our knowledge, there is still no quantitative study addressing this issue. Deviation of the

VBM analysis was majorly contributed by the smoothing, the voxel-wise statistics, and the

alignment errors of image registration. In this work, we constructed MR images of subjects

with or without volume differences to investigate the registration errors upon the accuracy

of VBM analysis. From the results of the well-controlled experiments, we conclude that an

accurate registration method can facilitate VBM analysis to precisely report the structure

differences between subject groups, in terms of both sensitivity and specificity.

BIRT can also be applied to register images of different modalities other than T1-

weighted MR images. Our affine method is applicable to the alignment of brain images

in which the MSP and CC have sufficiently large intensity contrast with the neighboring

tissues. Additional preprocessing is required to invert the intensity contrast of brain tissues

if the intensities in the MSP region are higher than those of CC. On the other hand, the

proposed non-rigid registration method is general and suitable for the registration of im-

ages with similar structures. Figs. 3.19 demonstrates an inter-subject alignment between

T1-weighted and T2-weighted images. Intra-subject registration of T1-weighted and non-

diffusion-weighted images (T1-weighted and CT images) is shown in Fig. 3.20 (Fig. 3.21).
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(a) Source image (b) Affine registration (c)Non-rigid registration (d) Target image

Figure 3.19: Inter-subject non-rigid alignment between T1-weighted and T2-weighted
brain images using the proposed BIRT methods. (a) T2-weighted brain image as the source
image. (b) Source image after the affine registration. (c) Source image after the non-rigid
registration. (d) T1-weighted brain image as the target image.

The intra-subject registration between non-diffusion-weighted and T1/T2-weighted images

are frequently applied for the structure analysis of diffusion images, such as the works

of [140,141]. Moreover, Fig. 3.22 shows that the proposed registration techniques can also

well align the brains of drosophilas, which were acquired using confocal imaging.

In conclusion, we have proposed image registration, affine and non-rigid, which utilize

the structure information derived from image derivatives. Experimental results indicated

that the proposed BIRT methods can rapidly align brain structures with high accuracy com-

pared to several other existing algorithms. An experiment using MR image groups with or

without volume differences was also conducted to demonstrate that accurate registration

can improve VBM analysis, in terms of both the sensitivity and the specificity.
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(c) Target image(a) Source image (b) Rigid registration

Figure 3.20: Intra-subject rigid alignment between non-diffusion-weighted and T1-
weighted images using the proposed affine method. (a) Non-diffusion-weighted image
as the source image. (b) Source image after the rigid registration. (c) T1-weighted brain
image as the target image.
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Figure 3.21: Intra-subject rigid alignment between T1-weighted and CT images using the
proposed affine method. (a) T1-weighted image as the source image. (b) Source image
after the rigid registration. (c) CT image as the target image. The images were provided by
Chang Gung Memorial Hospital.
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Figure 3.22: Registration of drosophila brains using the proposed BIRT methods. (a)
Source image. (b) Source image after the affine registration. (c) Source image after the
non-rigid registration. (d) Target image. The arrows in (b) and (c) indicate those areas with
stepwise improved alignment refined by the affine and non-rigid methods. The confocal
images of drosophila brains were provided by Brain Research Center, National Tsing Hua
University, Taiwan.
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4.1 Background and related works

In the Diagnostic and Statistical Manual of Mental Disorders (text revision; DSM-IV-

TR), bipolar disorder is categorized into bipolar I, bipolar II, cyclothymia, and bipolar

disorder not otherwise specified subtypes according to the clinical characteristics. Findings

of aberrant neuroanatomy from neuroimaging studies on bipolar patients are sometimes

inconsistent and even conflicting [5]. One possible origin is the pathophysiological hetero-

geneity manifested in bipolar patients [28, 31]. Recent neuropsychological study reported

that bipolar I patients manifested more cognitive dysfunction in verbal learning, recall,

recognition, and set-shifting compared to bipolar II patients [31]. However, whether bipo-

lar subtypes have distinct neural substrates remains unclear.

Diffusion tensor imaging allows us to detect abnormal white matter integrity by quanti-

fying the degrees of fiber alignment, such as fractional anisotropy (FA) indices [9]. Previ-

ous studies using diffusion tensor images reported the white matter impairments of bipolar

patients majorly in frontal areas [28, 142–144]. Bruno et al. indicated the fiber alterations

of bipolar patients in bilateral prefrontal, middle temporal, and middle occipital regions [7].

Recently, Mahon et al. reported that bipolar patients showed fiber impairments in the pon-

tine crossing tract, corticospinal/corticopontine tract, and thalamic radiation fibers [8]. To

date, most of the bipolar studies of diffusion tensor imaging adopted the region-of-interest

(ROI) approaches [28, 142–144]. Compared with ROI-based methods, voxel-wise whole-

brain analysis is advantageous when the locations of abnormalities are difficult to predict

and thus is more adequate to pathological investigation of bipolar disorders [7, 8].

The goal of this study was to investigate whether bipolar I and bipolar II patients man-

ifest different patterns of white matter abnormalities. FA indices of the recruited bipolar

I and II patients were compared in a voxel-wise manner, without specifying ROIs. We

hypothesized that white matter impairments exhibited in patients with bipolar I might be

more related to cognitive functioning in contrast to patients with bipolar II.
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4.2 Materials and methods

4.2.1 Participants

Twenty-seven right-handed bipolar patients (bipolar I = 14, bipolar II = 13) were re-

cruited from the outpatients of Taipei Veterans General Hospital. Clinical characteristics

were diagnosed by two independent psychiatrists according to DSM-IV-TR. All patients,

except one bipolar I and two bipolar II subjects, took a range of medications, including

lithium, anticonvulsants, antidepressants, and antipsychotics. The mood symptoms were

rated before image acquisition using the Young Mania Rating Scale (YMRS), 17-item

Hamilton Rating Scale for Depression (HAMD17), Montgomery Åsberg Depression Rat-

ing Scale (MADRS), and Hamilton Anxiety Rating Scale (HARS). The demographic and

clinical characteristics of all participated patients are listed in Table 4.1. Twenty-one right-

handed healthy participants without history of psychiatric or neurological disorders were

recruited from the community through advertisements. All the healthy subjects were eval-

uated using the Mini-International Neuropsychiatric Interview before the experiments to

exclude those with psychiatric morbidity. No subject had history of substance misuse or

abuse and everyone provided written informed consent to participate in the study accord-

ing to the guidelines approved by the Institutional Review Board of Taipei Veterans General

Hospital.

4.2.2 Neuropsychological assessments

The neurocognitive functions of all participants were assessed using a neuropsycho-

logical test battery, including the Wisconsin Card Sorting Test for measuring the problem-

solving ability, cognitive flexibility, and response maintenance; the Word List Test for eval-

uating the working memory capacity; and the Test for Attention Performance (version 1.02)

for assessing the attention function. The assessment results are listed in Table 4.2.
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4.2.3 Image acquisition and processing

All subjects were scanned on a GE Signa EXCITE 1.5T system. A total of fourteen

diffusion tensor images were acquired for each subject (spin-echo EPI, TR = 17000 ms, TE

= 69.2 ms, matrix size = 128× 128× 70, voxel size = 2.03× 2.03× 2.2 mm3), including

thirteen images obtained by using diffusion gradients applied along thirteen nonparallel

directions (b = 900 s/mm2) and one image without diffusion weighting (b = 0 s/mm2,

B0). One additional T1-weighted image was acquired for each subject to provide a high

resolution anatomical reference (3D-FSPGR, TR = 8.67 ms, TE = 1.86 ms, matrix size =

256× 256× 124, voxel size = 1.02× 1.02× 1.5 mm3).

Fig. 4.1 shows the image processing protocol used for the analysis of diffusion tensor

images. To reduce the head motion as well as the geometric distortion caused by eddy

currents, diffusion tensor images of each subject were first aligned to the B0 image using

affine registration. The aligned diffusion tensor images were then used to calculate the FA

maps using FMRIB’s Diffusion Toolbox1. The white matter regions in T1-weighted im-

ages were segmented using FMRIB’s Automated Segmentation Tool1 after removing the

non-brain tissues [27]. A customized white matter template was constructed by averaging

the white matter images of all participants nonlinearly registered to a white matter template

built from the local population. For each subject, a deformation field was estimated by

combining the results of rigid registration between the B0 and T1 images and non-rigid

registration between the segmented white matter image and customized white matter. Sub-

sequently, the FA map of each subject was spatially normalized to the customized white

matter space by applying the individual deformation field. Before statistical comparison,

all the normalized FA maps were smoothed by a Gaussian kernel with 6-mm full width at

half maximum, which was determined according to the diameter of major fiber tracts in the

human brain [7, 145]. In addition, the software of Brain Image Registration Tools (BIRT)

was adopted to perform the affine and non-rigid registrations in this work [146].

1http://www.fmrib.ox.ac.uk/fsl
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Figure 4.1: Morphometric analysis protocol for bipolar patients.
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4.2.4 Statistical analyses

A voxel-wise two-sample t-test analysis using Statistical Parametric Mapping (SPM2)2

with age, gender, education, and total intracranial volume as covariates was performed to

compare the whole-brain FA maps between the control group and three patient groups, in-

cluding bipolar I, bipolar II, and mixed bipolar groups. This analysis was also performed

to directly contrast the FA maps between the bipolar I and II groups. All the regions found

in the whole brain analysis (uncorrected, p<0.001) were corrected based on the false dis-

covery rate. The clusters surviving a threshold of p<0.001 (corrected) were reported as

significant loci with structure and fiber labels indicated by Anatomical Automatic Label-

ing3 and the probabilistic fiber tracts4, respectively. The Mann-Whitney U-test and Pearson

𝜒2 test were used to compare the demographic features and the neuropsychological perfor-

mance, respectively, among the healthy, bipolar I, and bipolar II groups. The Spearman’s

correlation analysis was also applied to calculate the correlations between the mean FA

value of each significant area and the clinical characteristics as well as the scores of neu-

ropsychological tests.

4.3 Results

All the group pairs did not differ significantly in age, gender, handedness, education,

and duration of illness (for patient groups only) (p > 0.05). The comparison results of

clinical rating scales showed that only the HARS values of the bipolar II patients were

significantly higher than those of the bipolar I patients (z=-2.32, p=0.02). In the comparison

of neuropsychological performance, the failure to maintain set scores measured from the

bipolar I patients was higher than those measured from the bipolar II patients (z=-2.0,

2http://www.fil.ion.ucl.ac.uk/spm/software/spm2
3http://www.cyceron.fr/freeware
4http://cmrm.med.jhmi.edu
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p=0.05). The healthy subjects had lower scores of divided attention (sounds) than the

bipolar I patients (z=-2.25, p=0.03) and bipolar II patients (z=-2.36, p=0.02).

The regions with significantly decreased FA values found in group pairs are listed in

Table 4.3. In contrast to the controls, the mixed bipolar group displayed lower FA values in

the right thalamus and right subgenual anterior cingulate cortex (Fig. 4.2a). For the bipolar

I patients, significant decreases in FA were found in the right thalamus, right subgenual

anterior cingulate cortex, right inferior frontal area, and left rostral anterior cingulate cortex,

compared to the controls (Fig. 4.2b). The bipolar II patients showed lower FA values than

the controls in the bilateral subgenual anterior cingulate, right inferior frontal, left middle

temporal, and left inferior temporal areas (Fig. 4.2c). Compared to the controls, no areas

with higher FA values were found in three patient groups. The bipolar II patients, compared

to bipolar I, presented decreased FA values in the right precuneus, right inferior frontal

gyrus, and left inferior prefrontal area (Fig. 4.2d). No areas with higher FA values were

found in the bipolar II group compared to the bipolar I patients.

For the areas found in the comparison between the bipolar I and control groups, our

correlation analyses showed that the mean FA value of the right subgenual anterior cin-

gulate cortex was significantly correlated with the scores of short-delayed recall (𝜌=-0.83,

p<0.001) and the mean FA value of the right inferior frontal area was significantly cor-

related with the performance of perseverative errors (𝜌=0.56, p=0.04), perseverative re-

sponses (𝜌=0.57, p=0.03), and word-list recognition (𝜌=-0.66, p=0.01). For the contrast

between the bipolar II and control groups, the mean FA value of the bilateral subgenual

anterior cingulate cortex was correlated with the scores of word-list retention (𝜌=-0.39,

p=0.05) and YMRS (𝜌=0.47, p=0.01), and the mean FA value of the left middle temporal

region was correlated with the performance of perseverative responses (𝜌=0.59, p=0.04).

The mean FA value of the left inferior prefrontal area found in the comparison between the

bipolar I and II patients was significantly correlated with the hypomanic episode (𝜌=0.38,

p<0.05).
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Figure 4.2: Regions with significantly decreased FA values found in the (a) mixed bipolar,
(b) bipolar I, and (c) bipolar II groups compared to the controls, and (d) bipolar II group
compared to the bipolar I patients. Detailed description of these regions can be found in
the text and Table 4.3.
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4.4 Discussion

In this study the fiber abnormalities of bipolar I and II patients were majorly located in

the frontal lobe. The abnormal regions found in bipolar II patients were more bilaterally

distributed, extending to the left temporal lobe, whereas the fiber alterations of bipolar I

patients were more lateralized to the right hemisphere. Our results suggest that bipolar I

and II patients present different neuropathological substrates in terms of the loss of bundle

coherence or the disruption of fiber tracts.

Brain regions with significantly decreased FA indices found in the bipolar I patients

majorly relate to the cognitive functions. The anterior cingulate cortex is highly involved

in the network regulating both cognitive and emotional processing cortex [147]. Particu-

larly, the rostral area found in this study locates in the cognitive division of anterior cin-

gulate [147] and plays an important role in monitoring/signaling conflict or interference,

decision making, and response to errors [148]. Thalamus is associated with the modula-

tion of attentional processing and self-regulation of affective states. Its abnormalities were

frequently reported in mood disorders, particularly in bipolar disorders [5, 149]. The ante-

rior region of thalamus manifested in the bipolar I patients connects to the prefrontal and

temporal areas [150] and is important to affective and cognitive regulation [151]. The in-

ferior frontal area found in bipolar I, which locates in the superior longitudinal fasciculus

III [152], participates in attention and executive functions [4] and plays an important role

in working memory [152]. Furthermore, this finding in superior longitudinal fasciculus III

embraces Brodmann area 44 which belongs to the dorsal attention-cognitive system [153].

The brain areas with fiber deficits found in the bipolar II patients majorly associate with

emotional processing. The observed bilateral subgenual anterior cingulate cortex locates

in the affective division (Brodmann areas 11 and 25) [147] and is important to emotion

regulation, such as affective responses and monitoring of rewarding or punishing results

[148]. The middle and inferior temporal areas found in bipolar II patients were related
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to bottom-up emotional appraisal processing [154]. The middle temporal area located in

the vertical part of arcuate fascicle, which links the frontal and temporal cortices, also

modulates audiospatial information [152]. The right inferior frontal area found in bipolar II

patients relates to the emotional communicative processing based on facial emotions [155].

The FA indices of mixed bipolar patients were significantly lower in the right subgen-

ual anterior cingulate cortex and the right thalamus compared to the controls. The right

subgenual anterior cingulate cortex observed in both subtypes represents the common fiber

abnormality in bipolar patients. This result is consistent with numerous previous findings

in functional and volumetric aspects [5]. On the other hand, the thalamus area shown in the

mixed bipolar group only revealed in bipolar I group, but not in bipolar II group. This also

supports the distinct neural substrates between the two subtypes.

For the contrast between bipolar I and II subtypes, the lower FA values of bipolar II

patients in the precuneus implicate the impairments of the appraisal of emotionally salient

visual perception as well as the subsequent preprocessing. As reported in [156], the right

precuneus of bipolar II patients manifested abnormal activation in response to positive vs.

negative captioned pictures compared to healthy controls. The bipolar II patients also pre-

sented lower FA indices in the left inferior prefrontal and right inferior frontal areas, which

were located in the superior longitudinal fasciculus and anterior thalamic radiation tract,

respectively. These two major fiber tracts link to the orbitofrontal cortex and dorsolateral

prefrontal cortex that participate in the process of emotion regulation [157]. The fiber ab-

normality of the right inferior frontal region was also reported in a previous diffusion tensor

imaging study [142].

The results of this study indicated that the fiber alterations found in bipolar I and II

groups were significantly correlated with the performance of working memory and execu-

tive function. However, the FA values of the bipolar I patients were correlated with more

neuropsychological tests and these results support the findings of a recent neuropsycholog-

ical study in which bipolar I patients presented cognitive dysfunction both in pattern and
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magnitude than bipolar II patients [31]. On the other hand, our correlation results indi-

cated that the bipolar II patients showed significant correlations with emotional symptoms,

including YMRS scores and hypomanic episodes. This strengthened the association of

bipolar II patients with the abnormal emotion regulation.

Treatments could affect the results of this study though the medication influences on

neuropathological abnormalities are currently not certain. Chronic exposure to antipsy-

chotics may alter the volume of thalamus [28]. Antidepressant treatment could decrease

the FA in frontal white matter [158]. It was also reported that lithium may protect the an-

terior cingulate cortices of bipolar patients from volume loss [159]. Due to the variety of

medication and the small numbers of patients taking each drug combination, analysis of

the medication effects is difficult in this work.



Chapter 5

Conclusions and future works
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We have proposed brain extraction and registration algorithms which can be utilized

in computational anatomy. The high processing accuracy of our methods facilitates mor-

phometry to report results precisely. Our methods also have the advantage of low compu-

tational complexity, and thus are feasible for structural analysis when a large number of

participants are involved. The developed image processing techniques have been adopted

in an analysis protocol which was conducted to investigate the fiber pathology of bipolar I

and II disorders.

This dissertation applied a new implicit deformable model for the development of brain

extraction algorithm. Our extraction method was less sensitive to image artifacts, such as

intensity inhomogeneity, low signal-to-noise ratio, and the noise spike in k-space. Due to

the use of brain structure information, the proposed extraction algorithm can accommodate

the varied intensity profiles of images. Furthermore, excess non-brain tissues do not affect

the segmentation results of our method significantly. The performance of a brain extraction

algorithm generally mediates a trade-off between extraction specificity and sensitivity, and

experimental results showed that our method outperformed BSE, BET, HWA, and MLS

when jointly considering both criteria. The proposed deformable model utilized a set of

Wendland’s RBFs to describe object contour smoothly and to fit the brain boundary effi-

ciently. This new model could be further applied to identify the areas of interest for other

medical imaging applications. For example, the segmentation of brain tissues or specific

anatomical structures is valuable in longitudinal or cross-section morphometry. Locating

brain tumors or other pathologies are useful in diagnosis and treatment planning. In addi-

tion, further extension of the proposed deformable model is required in order to describe

3-D object surface.

We have introduced affine and non-rigid methods for the registration of brain images.

Both algorithms utilized the structure information extracted from the TDOG image. The

orientation and position differences between brains can thus be well estimated and the re-

sults provide a good initial for the subsequent optimization of affine transformation. Adap-
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tively deploying RBFs near the extracted anatomical structures can not only model image

deformation accurately but also reduce the computational complexity dramatically. Exper-

imental results indicated that our methods can efficiently align low- and high- resolution

brain images with high accuracy compared to SPM2, AIR5, FLIRT, HAMMER, and DAR-

TEL, which are extensively applied in neuroimaging research. It was also demonstrated

that the proposed affine and non-rigid algorithms are capable of multi-modality registra-

tion, including T1-weighted, T2-weighted, CT, diffusion tensor, and confocal imaging.

Nevertheless, further performance validation is necessary for the alignment of different

modalities using the proposed approaches.

The morphometric analysis results of bipolar I and II disorders are highly relevant to

the literature, given that the pathophysiological differences between these two subtypes are

less known. Our results showed that the patients of both subtypes manifested fiber impair-

ments in the thalamus, anterior cingulate, and inferior frontal areas, whereas the bipolar

II patients presented more fiber alterations in the temporal and inferior prefrontal regions.

Correlations between the mean FA value of each survived area and the clinical charac-

teristics indicated that the left middle temporal and inferior prefrontal FA values of the

bipolar II patients were significantly correlated with the scores of YMRS and hypomanic

episodes, respectively. The correlation analyses for the scores of neuropsychological tests

showed that the FA values of the subgenual anterior cingulate cortices observed in both

subtypes correlated with the performance of working memory significantly. Furthermore,

the FA values of the right inferior frontal area of bipolar I and the left middle temporal

area of bipolar II both correlated with execution function. These findings suggested that

the bipolar I patients were majorly associated with cognitive dysfunction, whereas those in

the bipolar II patients were related to both cognitive and emotional processing.

Morphometric techniques other than the whole-brain exploration adopted in this dis-

sertation can be further utilized to confirm the analysis results of bipolar disorders. For

instance, Tract-Based Spatial Statistics proposed by Smith et al. is also adequate for esti-
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mating localized changes of FA maps [160]. To focus the investigation on specific brain

regions, one can segment the concerned anatomical structures followed by normalizing

the extracted areas into the same stereotaxtic space before the statistical inferences. Fur-

thermore, the deformation fields obtained from highly non-rigid registration encode the

structural differences between subjects and can also be applied in morphometric studies.
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