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摘 要 

相對於 BPMN 而言，現存的商業流程之研究或商業軟體大多只提供或使用

其中的部分。BPMN 主要的組成元素包括:控制流程、訊息流程、資料流程以及

角色分配。它也提供多實體 activity、事件觸發 activity 及進階控制機制。雖然這

些元素讓 BPMN 具更大的流程表達能力，但也增加了設計階段其所表達之流程

的分析困難度。本論文提出一個正規流程模型來協助根據 BPMN 四種組成元素

所描述的商業流程。同時，也提供一具階層特質之時間顏色派翠網模型。並建立

一套流程與此網的轉換規則，以便將上述 BPMN 商業流程轉換成相對之時間顏

色派翠網，來運用既有之分析方法做靜態分析—如 deadlock 檢查。在本論文中，

我們更進一步探討 well-formed 和 unstructured 相當普遍的流程之分析。此外，我

們將以一個實際的例子做示範，利用時間顏色派翠網 deadlock 分析方法，再根

據其結果推斷可能會影響流程執行的異常 artifact 之使用。最後，我們也將比較

刻下技術與我們之研究成果。 

關鍵字: 商業流程模型符號，工作流程，商業流程，分析，控制流程，資料流程，

訊息流程、顏色派翠網、時間顏色派翠網、階層式派翠網 
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Applying Timed CPNets with Hierarchy to Analyze a 

Workflow in BPMN 
 

Student：Ching-Huey Wang             Advisor：Dr. Feng-Jian Wang 

Institute of Computer Science and Engineering 
National Chiao Tung University 

 

Abstract 

Although many business process models have been proposed, most of them do 

not apply all the following arguments: control, message and data flows and role 

assignments, defined completely in BPMN. Besides, they do not provide the 

multi-instance activity, event-triggered activity or the control node with complex 

mechanisms as in BPMN. On the other hand, these features allow a process to be 

defined with richer semantics but increase the difficulty of correcting an error or 

inaccurate process in workflow design.  

This thesis proposes a formal process model to help describing a BPMN-based 

process. To simplify the analysis, we also provided Hierarchical Timed Coloured 

Petri Nets ( T
CH PNets), which is extended from Time Coloured Petri Nets with 

hierarchy and allows some analysis with existing techniques. Once a workflow based 

on our BPMN model is specified, a series of mapping rules can be used to transform 

the workflow into a T
CH PNets for analysis. An example is applied to demonstrate the 

transformation and the corresponding deadlock detection. Furthermore, the artifact 

usage anomaly detection mechanisms within either a well-formed or unstructured 
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process are discussed. Finally, a comparison among related works and ours and the 

future works are presented. 

 

Keyword: BPMN, workflow, business process, analysis, control flow, data flow, 

message flow, CPNets, Time CPNets and hierarchical PNets.  
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Chapter 1. Introduction 

Workflow can be viewed as a set of interrelated tasks that are systematized to 

achieve certain business goals by completing the tasks in a particular order under 

automatic control [1]. The Business Process Modeling Notation (BPMN) [2] is a 

standard for capturing workflow in the early phases of system development. Existing 

researches focus on 1) parts of the concepts included in BPMN only, e.g., control flow 

analysis [3][48] or 2) how to transform from control and message flow in BPMN into 

BPEL code [4][5][6].  

A BPMN-based workflow is described with four entities: 1) role: describing the 

performers of task instantiated, 2): control flow: defining what, when and how tasks a 

workflow performs, 3) data flow: specifying what information entities are 

produced/manipulated/passed in corresponding activities and 4) message flow: 

representing the interaction between processes through messages. An analysis based 

on the correlations among these four entities can help check or maintain consistency 

between execution order and data transition [7][8][9][10], as well as prevents exceptions 

due to contradiction between data flow, control and message interaction. 

There are five additional features introduced in BPMN, but not included in 

traditional process modeling languages. These features allow defining: 1) an 

interaction between participants, 2) a multi-instance (loop) activity 3) an 

event-triggered (supplement) process, 4) a join node designed by one of the three 

advanced join mechanisms, discriminator, multiple merge and N out of M join, and 5) 

a data flow described with explicit channel. In addition, time event-triggered 

behaviors can be described in a BPMN-based workflow, i.e., time constrains are 

embedded. These features allow defining a process with richer semantics, but increase 
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the difficulty of identifying the problems such as inaccuracy in a process specification 

at design time. 

Here, we provide an easier way to extract knowledge from the four entities of a 

workflow. Based on our previous work [11], a method for describing a BPMN-based 

process is proposed. Then, we propose a model, Hierarchical Timed Coloured Petri 

Nets ( T
CH PNets), extended from Timed Coloured Petri Nets (TCPNets) with hierarchy 

[13][14] for analysis. There are a series of mapping rules defined to transform a 

BPMN-based process into T
CH PNets, in which a set of analysis techniques works [14]. 

With our methodology, the artifact usage anomalies in our previous work are 

refined. An analysis method of control, data, and message flow is derived. An example is 

used to indicate our contribution of process development and anomaly detections. Finally, 

a comparison among ours and related works is presented. 

The remainder of this paper is organized as follows. Chapter 2 introduces the 

Petri Nets and its extensions, Coloured Petri Nets (CPNets), and TCPNets. It also 

compares existing flow specification model and BPMN. Besides, T
CH PNets is 

proposed for the problems identified. Chapter 3 presents our business process model, 

including the control flow, data flow and message flow. In Chapter 4, we present a 

set of rules transforming a process in BPMN into T
CH PNets. In Chapter 5, the 

well-behaved unstructured processes are identified and formulated. In Chapter 6, we 

present a case to demonstrate our methodologies including development and analysis. 

A comparison between our approach and related works on BPMN is given in 

Chapter 7. Finally, a conclusion and some recommendations of future works are 

given in Chapter 8.  
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Chapter 2. Petri Nets – PNets 

PNets, Petri Nets, is a formal model with graphical representations. The original 

PNets was developed by Petri [27], and various extensions have been developed with 

their own constructs. Some of these extensions are associated with easier modeling 

mechanism and keep the same expressiveness as classical PNets [28] and some 

provide more expressional power [22][23]. PNets has been applied to many areas, 

including workflow applications [29][30][31]. In this chapter, we discuss the 

problems rising when applying PNets or its extensions, Coloured Petri Nets and Time 

Petri Nets, to analyze business processes represented with BPMN. Before the 

discussion, definitions of PNets and the two extensions are given.  

2.1. Definition of Classical Petri Nets 

A PNet, defined in Definition 2.1, is a directed graph with two kinds of nodes, 

named place and transition. In general, a place is presented with a circle while a 

transition is presented with a rectangle. There are no arcs connecting two places or 

two transitions. An example of PNet is shown in Figure 2.1  where there are three 

places, two transitions and one token.  

Definition 2.1 (Classical Petri Nets – PNets) 

A Petri net is a 4-tuple ( )0=PNet P,T ,F ,m  where 

1. P is a finite set of places, 

2. T is a finite set of transitions such that φ∩ =P T , 

3. F is a finite set of directed arcs, ( ) ( )⊆ ∪ × ∪F P T P T , satisfying 
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( ) ( ) φ∩ × = ∩ × =F P P F T T ,  

4. 0m  is the initial marking function, 0 →`m :P  where { }1 2=` , ,... . 

 

 

 

 

 

Figure 2.1 An example of a PNet. 

 

Definition 2.2 (Marking) 

1. A marking M  of a set of places P  is a mapping →`m:P  where 

{ }0 1 2, , ,...=` . 

2. A marking M  of a Petri net ( )0=PNet P,T ,F ,m  is a marking of P . Initial 

marking 0M  of PNet  is generated by function 0m . 

In Definition 2.2, function m  is defined from a place to a nonnegative integer 

which means the number of tokens on the place. A PNet is also equipped with an 

initial marking 0M , i.e., an initial state of the PNet is associated with one or more 

token in some place(s). All the states of this net succeed to 0M , generated by function 

0m . Marking 0M  of an example PNet shown in Figure 2.1 can be expressed as an 

array based on the order ( )0 1 2p ,p ,p  with nonnegative integers ( )1 0 0, , . 

Definition 2.3 (Input/Output Set) 

Let ( )0=PNet P,T ,F ,m  be a Petri net, for an element ∈ ∪x P T  
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1. its input set 
•x  is defined as ( ){ }• = ∈ ∪ ∈x y P T | y,x F  and  

2. its output set 
•x  is defined as ( ){ }• = ∈ ∪ ∈x y P T | x,y F . 

Definition 2.3 defines the notations about the input and output sets of a node 

(place or transition) in a PNet. Note that both sets of a place contain transitions only 

and both sets of a transition contain places only.  

Definition 2.4 (Fire a Transition Enabled) 

A transition t  is able to be fired (named as enabled) if •∀ ∈p t , ( ) 1≥m p . 

Firing t  transforms marking M  into marking M'  and the transformation can be 

defined from place p  by function m  and m'  as  

( )
( )
( )

1
1

− ∈ −⎧
⎪= + ∈ −⎨
⎪
⎩

• •

• •

m p if p t t ,
m' p m p if p t t,

m(p) otherwise.
 

When t  is enabled in M , t  may fire to change marking M  to another 

marking M' . The new marking M'  is obtained by removing one token from each of 

its input places •t  and by putting one token to each of its output places •t . M'  is 

also called directly reachable from M  with firing of t , denoted as [ ;M t M' .  

A finite occurrence (of firing) sequence is [1 1 2 2 3 1 1− −⎡ ⎡⎣⎣ ; ; ;n n nM t M t M ...M t M  

where 1+;i i iM t M[  , 1 i n≤ ≤ . Marking 1M  is called start marking of the occurrence 

sequence, while nM  is called the end marking. The non-negative integer 1−n  is 

called the number of steps in the occurrence sequence.  
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Definition 2.5 (Reachable) 

A marking nM  is reachable from a marking 1M  iff there is a finite 

occurrence sequence whose start/end markings are 1M / nM  correspondingly  

[1 1 2 2 3 1 1− −⎡ ⎡⎣⎣ ; ; ;n n nM t M t M ...M t M  

nM  is reachable from 1M  in 1−n  steps. The set of markings which are reachable 

from 1M  is denoted by [ 1 ;M . 

2.1.1. Advantages of PNets Adoption 

Many researches [29][30][31][32][33][34][39] proposed workflow modeling and 

analysis paradigms based on PNets, e.g., control/data flow modeling [31][32][33], 

workflow pattern composition [35][36][37][46], and automatic control of workflow 

process [38]. Aalst and ter Hofstede [39] proposed a WorkFlow net (WF-net) based 

on PNets to model a workflow: Transitions represent activities, places represent 

conditions, tokens represent cases (process instances), and directed arcs connecting 

transitions and places. Concluding by Aalst [40], the advantages of adopting PNets to 

analyze process are : (1) presenting a process with formal expression keeps the 

verifiability of PNets, (2) utilizing its own state-based modeling power to present 

process state transitions is straight forward and (3) the abundance of analysis 

techniques associated with PNets are available. Furthermore, Advantage (1) indicates 

that a process specification presented mathematically holds the explicitness and 

generality, i.e., the process can be verified by but not depends on particular tools.  

Advantage (2) means that with PNets, the state transitions of the elements, task and 

sub-process, within workflow are expressible. In other words, PNets allows to (a) 

identify tasks which are enable or executing, (b) present resource competition during 
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an execution and (c) present a cancellation of process instance by removing tokens.  

Advantage (3) the available analysis techniques in control flow dimension are 

focused on correctness issues of control structure in a workflow. The techniques of 

detecting common control-flow anomalies, including deadlock, livelock (infinite 

loop), lack of synchronization, and dangling reference [28], are available.  

Although, the three advantages reduce the difficulty of modeling and analyzing 

workflow application, PNets is not good enough to handle a business process 

presented by BPMN [34]. The expression limitations of PNets are discussed in 

Chapter 2. Moreover, these problems were seldom addressed in the past and were not 

concerned in the designs of commercial tools, e.g., Microsoft office visio [25] and 

BPM Virtual Modeling Tool [26].  

2.1.2. Business Process Modeling Notation – BPMN 

In this thesis, our process model is designed based on the core elements set 

specified in BPMN specification v1.2 [2], released in 2009. A business process 

diagram, composed of the BPMN elements, is referred to as a BPD in the following 

sections.  

The core elements are classified into four categories, flow objects, connecting 

objects, artifacts and swimlanes, where  

 Flow Objects: are the elements used to define the behaviour of a business 

process. There are three flow objects: events, activities, and gateways. This thesis, 

extended our previous work [11], presents a process model for describing the 

processes presented with BPMN. The term “Control node” is adopted in our 

previous work to present gateways. In order to keep the consistency of 

terminology, “gateway” is called “control node” in this thesis also.  
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 Connecting Objects: define the ways of connecting flow objects. There are three 

connecting objects: sequence flow, message flow and association. The execution 

of a BPMN-based process is controlled not only by sequence flow, the order of 

activities, but also by message flow, e.g., a message arriving to trigger the 

execution of the target flow object, as well as by the resources required to enable 

activities. Upon the same reason mentioned above, the term “sequence flow” is 

called “control flow” and artifact “association relationship” is denoted with “data 

flow” here.  

 Artifacts: depict the information involved in a process. Within a process, what 

artifact is required/generated before/after an execution of activity are depicted in 

data flow.  

 Swimlanes: The specific processes designed for a participating business role (e.g., 

a buyer, seller, or manufacturer) or entity (e.g., a company) can be grouped with 

swimlane. The process contained in a swimlane is called private process.  

2.1.3. Problems of Modeling Processes with PNets 

A workflow management system (WfMS) does not execute tasks but merely 

coordinates the execution of these tasks by participants or involved software systems. 

In a process instance, each task needs to be enabled before execution, but an enabled 

task does not have to execute. The execution of a task is triggered by the participants 

or the software systems and not by the WfMS. In the other word, a WfMS does not 

control the environment but reacts to events generated from the environment, e.g., 

instantiate a process or terminate a scheduled task, by creating certain effects, such as 

“a process is instantiated” or “a scheduled task is terminated”. A reactive system is 

usually modeled using event-condition-action rules, stating the actions with which the 

system responds to events. A reactive system must respond to events in the 
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environment with the actions specified in its rules.  

Unfortunately, PNets and its higher-level extensions can model a closed active 

system under token-game semantics well only, but a WfMS, a reactive system, is 

actually open [40]. In other word, the information about the interactions between 

participants and their WfMS is not transformed into PNets. The omissions are 

summarized in Problem 1.  

Problem 1. (Interaction Omission)  

The interaction between a workflow management system and involved 

participants or systems is not captured by PNets. 

1-1. The behavior of WfMS is not modeled by PNets. 

1-2. An event generated from participants to enable a transition of WfMS must be 

fired immediately; otherwise, the system fails to respond the event. 

1-3. The tasks enabled by WfMS are executed by participants or systems. But, these 

executions are not necessary.  

When a process is modeled with a PNet, the behavior of the WfMS, on which the 

process executes, may not be included. Thus, the behavior simulated upon the PNet 

could be different from the corresponding executed at run time. The analysis results 

gained upon the net might be unavailable. Besides, a reactive net [41] has been 

proposed by extending PNets with reactive semantics; however, the indirect data 

presentation problem, discussed in the next two paragraphs, inherited from PNets was 

not addressed.  

Modeling a complex business process with a PNet, holding identical tokens, 

could generate a large-sized PNet. During modeling, a large net could increase the 

difficulty of handling its complexity as well as analyzing its net structure [29][32]. 

For example, let a process contain many similar parts, but not identical. Using PNets, 
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these parts must be represented by disjoint subnets of a nearly identical structure. The 

total PNet becomes very large. Besides, a property such as the similarities among the 

subnets would be very difficult to find.  

All the places in a PNet are identifiable. Distinguishing the tokens based on the 

places cannot present data types directly, especially for an application such as 

workflow whose data flow is modeled with explicit channels. Comparing with 

Colourd Petri Nets [22], a PNet can only use more places and transitions to present 

data transmissions or variations. In order to indicate what and how typed data are 

handled in a process without complicating the net structure, there are many researches 

[42] using CPNets to model workflow application.  

Based on our previous work [11], the artifacts involved in a process are defined 

to be operated by a set of legal operations, initialize, read, update and destroy. After 

an operation, an artifact state is transformed among the followings: UnInitialized, 

Initialized, Updated and Read. The correlations, existing between the operations and 

state transitions, can be constructed by guard and arc expressions and maintained 

during execution within CPNets. However, when the number of data types increases, 

the possible operations and their correlative state transitions are added 

correspondingly. Thus, constructing and maintaining the correlations with CPNets is 

more difficult. For example, let a process involve many different data types. Using 

CPNets, the correlations between the possible operations and the state transitions of 

all typed data need to be described in guard and arc expressions. These expressions 

are distributed over the CPNet. For a data type, the corresponding state transitions of 

its instance(s) are hard to extract. Therefore, verifying the correctness of the state 

transitions is difficult.  
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Problem 2.  (High Difficulty of Maintaining Correlations)  

The correlations between the artifact state transitions and legal operations 

within a process are not easy to be described with PNets or CPNets, because the 

restrictions of artifact state transitions listed in the followings are difficult to 

express with the two nets. 

3-1. A legal operation definitely triggers an artifact state transition; even the former 

and latter states are identical. 

3-2. Except UnInitialized state, for each state, there is one or more sequence of 

operations to transform the artifact from UnInitialized state to the state.  

3-3. No matter which state an artifact is at, the artifact can be transformed into 

UnInitialized state with one operation. 

In addition, when a process is modeled with BPMN, there are four different 

cases to introduce time conditions into the process. The four cases are: (1) inserting a 

timing start event to indicate the belonging process is started when a specific time 

condition occurs, (2) inserting a timing intermediate event into a sequential control 

flow to create a delay, (3) attaching a timing intermediate event to the boundary of an 

activity to create a deadline or time-out condition and (4) using a timing intermediate 

event as part of an event-based gateway. These time conditions could denote a 

specific or recurring time. Unfortunately, PNets and CPNets can model a process 

without taking time condition into account only. In other word, the information about 

the time conditions of a process with BPMN cannot transformed into PNets or 

CPNets. The omissions are summarized in Problem 3. 

Problem 3. (Time Condition Omission)  

The time condition(s) associated with timing start or intermediate event is not 
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captured by PNets or CPNets.  

3-1. Case (1) and (2) indicate that their implementations start to execute/continue 

when their corresponding time conditions are satisfied. 

3-2. Case (3) indicates that the activity involved a timing intermediate event needs 

to accomplish before the time condition denoted.  

3-3. Case (4) indicates that the outflow of an event-based exclusive gateway, started 

with a timing intermediate event, is selected to run when the event occurs first. 

The activities in a process modeled with BPMN are either atomic or compound. 

A compound activity, is known as a sub-process, can be broken down into a finer 

level. BPMN can be used to create a process with different degrees of details. 

However, the Petri Nets do not provide a function of structuring a complex net by 

replacing an element (place or transition) at a higher-level of abstraction with a 

lower-level, more detailed, subnet.  

Problem 4. (Un-introduce element refinement mechanism)  

The PNets and CPNets weakly support representing a process with BPMN 

constructed with a sub-process which is associated with a lower-level net, 

especially for Standard and MultiInstance  loop sub-processes.  

2.2. Coloured Petri Nets — CPNets 

A CPNet [22][23] allows modeling the identity of individual tokens by attaching 

values (or colour) to tokens. The data value may be of a primitive or a complex type 

as a record in PASCAL. The coloured tokens enable the modeling complicated of  

objects in the net. The number of the coloured token operated by a transition is 

assignable. The value of token(s) and its numbers in a place may be changed upon the 

design when one of its preceding and succeeding transition(s) is fired, i.e., the 
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transition is defined with more elaborate operation.  

This section applies the CPNet (named as net  and shown in Figure 2.2 ), 

designed with four places, two transitions and four tokens, to explain how a CPNet 

works. The value of a U-type token located in place 0p  is x  and the value of I-type 

tokens located in place 1p  is 0  and 1  and in place 3p  is 1 . The value fields of U 

and I data type are { },x y  and { }0,1,2 , respectively.  

 

 

 

 

 

 

Figure 2.2 An example of CPNet. 

Definition 2.6 (Coloured Petri Nets – CPNets) 

A Coloured Petri Net is a 9‐tuple  0( , , , , , , , , )CNet P T F C V A G m= Σ   where   

1. P  is a finite set of places,  

2. T  is a finite set of transitions,  

3. F is a finite set of directed arcs, ( ) ( )F P T P T⊆ ∪ × ∪ , satisfying  

( ) ( )F P P F T T φ∩ × = ∩ × = , 

4. ∑  is a finite set of non-empty types, called color sets, 

5. C  is a color function, 2:C P ∑→ , defined from P  into the power set of 

∑ ,  

6. V  is a finite set of variables declared by the types in ∑ , 

7. A  is an arc expression function, : expA F→  such that  

 



 

14 
 

( )( ) ( )( )( ) ( ): ( )f F Var A f Type Var A f C p f⎡ ⎤∀ ∈ ⊆∑∧ ⊆⎣ ⎦  1.  

8. G  is a guard function, : expG T→  such that t T∀ ∈  

(1) ( )( )Type G t Boolean=  2 , 

(2) ( )( )Var G t ⊆∑ , 

(3) ( )( ) ( )( ),
p t

Var G t Var A p t
•∈

=∪  and  

(4) ( )( ) ( )( )1 2 1 2, , , ,p p t Var A p t Var A p t φ•∀ ∈ ∩ = . 

9. 0m  is an initialization function, 0 : expm P→ , i.e., p P∀ ∈ , ( )0m p  can 

be represented with a multi-set3 over pVE , defined below. By taking a 

type ( )c C p∈ , a value element associated with p  is a pair ( )c,val  

where val  is one of the colors in color set c . The set of all value 

elements of p  is denoted by ( ) ( ){ }pVE c,val | c C p val c= ∈ ∧ ∈ . 

The data types associated with a place p  are defined as a place color domain, 

denoted as ( )C p . The place color domains of net  are ( ) { }0C p U= , ( ) { }1 ,C p U I= , 

( ) { }2 ,C p U I=  and ( ) { }3C p I= . All place color domains of a CPNet are included in 

∑ . The tokens defined with given types included in ( )C p  are the tokens allowing to 

access p  only. A transition t  in a CPNet is considered as a procedure with a 

                                                       
1 The place connected by arc f  is denoted as ( )p f . 
2 The data type of the value returned by evaluating an expression exp  is denoted as ( )expType . The set of 

variables in exp  is denoted by ( )expVar . The set of variable types used in the expression is denoted by 

( )( )expType Var . 
3 A multi-set m , over a non-empty set S , is a function m: S→` . The integer ( )m s ∈`  is the number of 

appearances of the element s  in the multi-set m . 
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pre-condition, declared by a guard expression, denoted as ( )G t . The variables 

associated with the expression of t  are defined in its transition variable domain, 

denoted as ( )( )Var G t . In net , the transition variable domains of 0t  and 1t  are 

{ },u j  and { }i , respectively. In addition, each variable in ( )( )Var G t  is adopted once 

in one of t ’s input arc expressions, e.g., in net , the variable u  is used in 0t ’s input 

arc expression, ( )0 0, varA p t u= , only. For a variable v  adopted in an arc 

expression ( ),A p t , ( )Type v  needs to include in ( )C p .  

Assigning the variables of a transition t  with values is called transition binding, 

defined in Definition 2.7. All bindings satisfying t ’s guard expression are stored in 

( )B t . The form of binding b  can be represented as 

1 1 2 2 n nb v val ,v val ,...,v val= = = =  where iv  is assigned with value ival , 

( )( ) { }1|iVar G t v i n= ≤ ≤ . In net , there are two bindings 1 3b i= =  and 

2 5b i= =  in ( )1B t . 

Definition 2.7 (Transition Binding) 

A binding of a transition t  is a function ( )( ):b Var G t M→  , M  is defined 

in Definition 2.8, where ( )( )v Var G t∀ ∈  

1. ( ) ( )( )1 , ,b v p c val= , i.e., the value val  of the c -typed token in p  is 

assigned to variable v  in ( )A p,t  and replaces v  of ( )G t , and 

2. ( )Type v c= , i.e., the type of variable v  is the same as that of the selected 

token.  



 

16 
 

A token element is a pair ( )( )p, c,val  where p P∈  and ( ) pc,val VE∈ , while a 

binding element is a pair ( )t,b  where t T∈  and ( )b B t∈ . The set of all token 

elements of a CPNet is denoted by TE  while the set of all binding elements is 

denoted by BE . In net , the color sets associated with 1p  and 2p  are U  and I  

while 0p  and 3p  are associated with U  and I , respectively. The TE  of net  is 

composed of the token elements in the two sets,  

( )( ) ( )( ) ( ){ }0 1 2p, U,x , p, U,y | p p | p | p=  and 

( )( ) ( )( ) ( )( ) ( ){ }1 2 30 1 2p, I, , p, I, , p, I, | p p | p | p= . 

The BE  are ( )0 0t ,b , ( )1 1t ,b  and ( )1 2t ,b  where 0 1b u x,j= = = , 1 0b i= =  

and 2 1b i= = . 

Definition 2.8 (Marking) 

A marking M  is a multi-set over TE  while a step Y  is a non-empty and 

finite multi-set over BE . The initial marking 0M  is obtained by initialization 

function 0m : 

( )( ) ( )( ) ( )( )( )0 0p, c,val TE :M p, c,val m p c,val .∀ ∈ =  

The set of all markings and steps are denoted by M�  and Y� , respectively. 

 

Definition 2.9 (Step Enabled) 

A step Y  is enabled in a marking M , obtained by a marking function m , if 

and only if the following property is satisfied: 

( )
( )

( )
t ,b Y

p P : A p,t b m p
∈

∀ ∈ ⊆∑  
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Let ( )t,b Y∈ . The tokens in ( )A p,t b , a multi-set over pVE  yielded by the 

arc expression ( )A p,t  upon b , are removed from p  when t  is fired with 

binding b . By taking all binding elements ( )t,b Y∈ , the tokens in the union of 

multi-sets generated by these binding elements are removed from the input places 

concurrently when Y  occurs. Each binding element ( )t,b  in Y  must be able to get 

the tokens specified by ( )A p,t b , without having to share these tokens with other 

binding elements of Y . 

Let step Y  be enabled in the marking M . When ( )t,b Y∈ , t  is enabled in M  

with the binding b . If ( ) ( )1 1 2 2t ,b , t ,b Y∈  and  ( ) ( )1 2 1 2t t b b≠ ∧ ≠ , ( )1 1t ,b  and 

( )2 2t ,b  are enabled concurrently in marking M . If ( ) 2Y t ≥  , i.e., i , j∃  

( ) ( )i jt,b , t,b Y∈  and i  may be j , t  is enabled more than one time concurrently.  

Definition 2.10  (Fire a Step) 

When a step Y  is enabled in a marking 1M , generated by marking function 

1m , marking function 2m  generating the next marking 2M  from 1M  can be 

defined as:  

( ) ( ) ( )
( )

( )
( )

2 1
t ,b Y t ,b Y

p P :m p m p A p,t b A t,p b
∈ ∈

⎞⎛
∀ ∈ = − +⎟⎜⎜ ⎟

⎝ ⎠
∑ ∑  

Multi-set ( )
( )t ,b Y

A p,t b
∈
∑  represents the tokens removed from p , while 

( )
( )t ,b Y

A t,p b
∈
∑  denotes the tokens added to p . 2M  is directly reachable from 

1M  by the occurrence of the step Y , denoted as [1 2M Y M> . 
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The initial marking 0M  , generated by 0m , of net is 

( )( ) ( )( ) ( )( ) ( )( )0 1 1 31 1 0 1 1 1 1' p , U,x ' p , I, ' p , I, ' p , I,+ + + . Let two sequential steps 1Y  and 

2Y  be ( ){ }0 0t ,b  and ( ) ( ){ }1 1 1 2t ,b , t ,b . Before executing 1Y , the values of the tokens, 

( )( )01' p , U,x  and ( )( )31 1' p , I, , are assigned to variable u  and j  upon 

0 1b u x,j= = =  for evaluation, i.e., u  is assigned with x  of the token in place 0p , 

while j  is assigned with value 1  of the token in place 3p . In this case, the 

evaluation result is true, hence 1Y  is enabled in 0M  and it may be fired. When 1Y  is 

fired, one U-type token with value x  and one I-type token with value 1  are 

removed from 0p  and 3p , respectively, and two U-type tokens with value x  are 

added into 1p . The result is shown in Figure 2.3. 

In 2Y , transition 1t  is enabled twice concurrently by binding 1 0b i= =  and 

2 1b i= = , i.e., the two binding elements in 2Y  are able to remove the 

corresponding tokens, expressed as ( )( ) ( )( )1 11 1 0' p , U,x ' p , I,+  and 

( )( ) ( )( )1 11 1 1' p , U,x ' p , I,+  respectively, from 1p  at the same time.  

 

 

 

 

 

Figure 2.3 The result net of firing step 1Y . 
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The definition of occurrence sequence of CPNets, omitted here, is similar to that 

of PNets, given in Definition 2.5. 

2.3. Time Coloured Petri Nets — TCPNets 

CPNets with timing constraints can be classified according to the ways of 

specifying timing constraints, a timing interval [16][17][23] or a specific time [18], or 

the elements of the net, place [19] , transition [16][18] and arc [15][20], these 

constraints are associated with. When timing constraints are associated with a 

transition, the constraint can be interpreted as (1) a delay time [18] [23], i.e., when the 

transition is fired, its input tokens are removed, but the output tokens is created until 

the delay time associated with the transition has elapsed, (2) a holding duration [21], 

i.e., when the transition is fired, its input and output tokens are removed and added 

concurrently, but the succeeding transition is enabled when the token created time 

within the holding duration denoted and (3) an firing interval [16][23], i.e., the 

transition can be fired in its firing interval only. For such transition, the mechanism of 

removing and adding tokens is the same as that of a transition associated with a delay 

time.  

A common approach [23] is to associate a time stamp, denoted as @r , r∈\ , 

with token, and attach a restricted firing interval, denoted as [ ]min,max , 

min,max∈\ , with transition. The transition output arc(s) can associate with a time 

requirement tΔ  to denote how many time units an execution of the transition takes.  

When a token is associated with a time stamp, the token is timed. If the time 

stamp is @r , the token is available to consume after r , i.e., r  is the earliest time at 

which the token can be used. Otherwise, the token is untimed and always ready to be 

used. For a timed transition t , there is a restricted firing interval [ ]min,max  

associated with t  which is a pair of real numbers referred to the minimum and 
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maximum firing time, respectively, i.e., t  can be fired between min  and max  

only. In addition, an execution of t  takes tΔ  time units which is equal to or more 

than 0 . tΔ  is specified in t ’s output arc expression(s). An untimed transition, 

defined without restricted firing interval, can be fired when it is enabled. The firing 

mechanism of untimed transition is the same as that defined in CPNets.  

In a TCPNet, timed CPNet, a global clock is introduced. Let an activity, 

associated with a restricted firing interval [ ]min,max , be presented with a transition 

t  in the net and t  be fired at τ , min maxτ≤ ≤ . An execution of t  takes tΔ  time 

units. The value of the time stamp(s) associated with the token(s), which will be 

removed from t ’s input place(s) when t  is fired, needs to be less than τ . When t  

is fired, t  creates a time stamp tτ +Δ  for its output token(s). 

Definition 2.11 (Timed Coloured Petri Nets) 

A Timed Coloured Petri Net is a 5-tuple ( )0INT RTNet CNet,I ,I ,R,r=  where  

1. 0( , , , , , , , , )CNet P T F V C G A m= Σ  is a CPNet where  

(1) U TΣ = Σ ∪Σ , i.e., the colour sets (types) in Σ  can be divided into two 

disjoint sets, UΣ  and TΣ . The elements in UΣ  are untimed and the 

elements in TΣ  are timed, i.e., a token typed with Tc∈Σ  is associated 

with a time stamp,  

(2) f F∀ ∈ , the variables ( )( )Var A f  used in arc f  are timed/untimed over 

the timed/untimed subset of ( )( )C p f  and  

(3) p P∀ ∈ , ( )0m p  generates a timed/untimed multi-set over the 

timed/untimed subset of ( )C p . The details are given in Definition 2.12. 

2. INTI  is an interval function :INTI T INT→  where { }[ , ] |INT x y x y= ∈ × ≤\ \ . 
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For a transition t , t T∈ , the function assigns a firing interval [ ]min,max . 

3. RI  is a time function :RI F R→  where { }0|R t t= Δ ∈ Δ ≥\ . For an arc 

( )t,p , ( )t,p F∈ , the function assigns the time units consumed by executing 

t  on ( )t,p . 

4. R , R⊂\ , is a set of time values, called time stamps. 

5. 0r , 0r R∈ , is the start time. 

The definitions of the set of transition bindings ( )B t , token elements TE , 

binding elements BE  and step Y  are the same as those of CPNets.  

This section applies the TCPNet net  (shown in Figure 2.4), designed with four 

timed tokens and two timed transitions, to explain how a TCPNet works. We declare 

that R  includes time stamps 100, 200 and 220. There are four tokens typed with the 

colour sets in Σ , TΣ = Σ . The U -typed token, which is assigned with value x  and 

located in place 0p , is available after time 100. The three I -typed tokens, which are 

assigned with value 0, 1, 1 and located in place 1p , 1p , 3p , are available at 100, 

respectively. Transition 0t  and 1t  are associated with restricted firing intervals 

[ ]180 220,  and [ ]200 250, , respectively. An execution of 0t / 1t  takes 20/30 time units.  

 

 

 

 

 

Figure 2.4 Introducing time constraints into the CPNet shown in Figure 2.1. 
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Definition 2.12 (Timed Multi-set) 

A timed multi-set tm , over pVE  of a place p  in CNet , is a function 

ptm:VE R× →` , such that  

1. ( ) ( )( )c ,val
r R

tm tm c,val ,r
∈

=∑ , an non-negative integer, denotes the number of 

c -typed tokens associated with val  in p , 

2. the time stamps associated with these c -typed tokens are listed in  

( )
( )1 2 c ,vali tmtm c,val r ,r ,...,r ,...,r⎡ ⎤=⎡ ⎤⎣ ⎦ ⎣ ⎦  

where the time value ir  for ( )( ) 0itm c,val ,r ≠ , ( )1 c ,vali tm≤ ≤ , are listed. ir

appears ( )( )itm c,val ,r  times in the list and ( )tm c,val⎡ ⎤⎣ ⎦  is sorted, i.e., 

1i ir r+≤ , ( )1 c ,vali tm≤ ≤ .  

A formal presentation of tm of p  is ( ) ( )
( )

( )
p

c ,val
c ,val VE

tm ' c,val @tm c,val
∈

⎡ ⎤⎣ ⎦∑ .   

In net , formal presentations of the tokens located in place 0p , 1p , 3p  are 

( ) [ ]1 100' U,x @ , ( ) [ ] ( ) [ ]1 0 100 1 1 100' I, @ ' I, @+  and ( ) [ ]1 1 100' I, @ , respectively. 

Definition 2.13 (Timed Marking) 

Given a Timed CPNet ( )0INT RTNet CNet,I ,I ,R,r= , a timed marking (state) of 

TNet  can be denoted by a pair ( )M,r , the untimed marking M  is a multi-set 

over TE  of CNet  and generated by marking function m  at time r  such that 

( )( ) ( )( ) ( )( )( )rr
p, c,val TE :M p, c,val m p c,val∀ ∈ = . 

The initial timed marking can be denoted by a pair ( )0 0M ,r . The sets of all 

untimed and timed markings are denoted by iUM  and i TM , respectively. 
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Upon Definition 2.13, the initial timed marking ( )0 0M ,r  of net  is  

 ( )( ) ( )( ) ( )( ) ( )( )( )0 1 1 31 1 0 1 1 1 1 100' p , U,x ' p , I, ' p , I, ' p , I, ,@+ + +  where 

( )( ) ( )( ) ( )( ) ( )( )0 0 1 1 31 1 0 1 1 1 1M ' p , U,x ' p , I, ' p , I, ' p , I,= + + +  and 0 100r = . 

Definition 2.14 (Step Enabled) 

Given a Timed CPNet ( )0INT RTNet CNet,I ,I ,R,r= , a step Y  of TNet  is 

enabled in a timed marking ( )1 1M ,r  at time 2r  if and only if the following 

properties are satisfied:  

(1) ( )
( )

( )
2

1r
t ,b Y

p P : A p,t b m p
∈

∀ ∈ ⊆∑ , 

(2) 1 2r r≤ , 

(3) 2r  is the smallest value of R  which satisfies (1) and (2). 

Let step Y  of TNet  be enabled in ( )1 1M ,r  at the smallest time 2r  in R , 

1 2r r≤ . For each binding element ( )t,b Y∈ , the tokens in ( )A p,t b , a multi-set over 

pVE  yielded by the arc expression ( )A p,t  upon b  at time 2r , are associated with 

time stamps whose values are equal to or smaller than 1r .  

The set of time stamps of net , marked with ( )0 0M ,r  where 0 100r = , is 

{ }100 200 220R , ,= . Let two sequential steps 1Y  and 2Y  of net  be ( ){ }0 0t ,b  and 

( ) ( ){ }1 1 1 2t ,b , t ,b . The two steps are enabled at 1r  and 2r , respectively. The restricted 

firing intervals of transition 0t  and 1t  are [ ]180 220,  and [ ]200 250, . In Section 0, 

the two sequential steps can be fired sequentially without concerning time constrains. 

Here, we concern the firing intervals of transition 0t  and 1t .  
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For the case of 1Y , 1Y  is enabled when 1 200r =  only, because ‘ 200 ’ is the only 

time stamp in R  between firing boundary 180 and 220 of 0t . If 1Y  is fired at 1τ , 

1200 220τ≤ ≤ , one U-type token with value x  and one I-type token with value 1  

are removed from 0p  and 3p , respectively, and two U-type tokens with value x  

are added into 1p . A time stamp 1 20@τ +  is created for the two added tokens. The 

timed marking of the result net, shown in Figure 2.5, is 

( )( ) ( )( ) ( )( )1 1 1 11 0 100 1 1 100 2 20' p , I, @ ' p , I, @ ' p , U,x @τ+ + + . After firing 1Y , 2Y  can 

be enabled at 2 220r = , if 1 20 220τ + ≤ . For the case of 2Y , 2Y  can be enabled 

when 1 200τ =  only. If 2Y  is fired at 2 220τ = , the two binding elements ( )1 1t ,b  

and ( )1 2t ,b  in 2Y  are able to remove the corresponding tokens, expressed as 

( )( ) ( )( )1 11 220 1 0 100' p , U,x @ ' p , I, @+  and ( )( ) ( )( )1 11 220 1 1 100' p , U,x @ ' p , I, @+  

respectively, from 1p  at the same time. A time stamp 220 30@ +  is created for the 

four tokens generated by 1t  and added into 2p . 

 

 

 

 

 

 

 

Figure 2.5 The result net of firing step 1Y . 
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Definition 2.15 (Fire a Step) 

When a step Y  is enabled in a timed marking ( )1 1M ,r  at time 2r , generated 

by marking function 1m , marking function 2m  generating the next marking 

( )2 2M ,r  from ( )1 1M ,r  can be defined as:  

( ) ( ) ( )
( )

( )
( )

2 22 1 r r
t ,b Y t ,b Y

p P :m p m p A p,t b A t,p b
∈ ∈

⎞⎛
∀ ∈ = − +⎟⎜⎜ ⎟

⎝ ⎠
∑ ∑  

Multi-set ( )
( )

2r
t ,b Y

A p,t b
∈
∑  represents the tokens removed from p , while 

( )
( )

2r
t ,b Y

A t,p b
∈
∑  denotes the tokens added to p . ( )2 2M ,r  is directly reachable 

from ( )1 1M ,r  by the occurrence of the step Y , denoted as ( ) ( )1 1 2 2 2M ,r Y,r M ,r>⎡⎣ . 

2.4. Timed CPNets with Hierarchy – T
CH PNets 

A T
CH PNet defined in Definition 2.16 is a Timed CPNet with hierarchy, which is 

defined as the followings:  

1. Hierarchical Transition: A transition t  in a T
CH PNet can denote a collapsed 

sub-process whose expansion is another T
CH PNet. The pre-condition associated 

with t  has to be met before the execution of t ’s corresponding net.  

2. Hierarchical Token: Each token in a T
CH PNet is typed with a Petri net PNet , 

called PNet type, accompanied an initiation marking 0M . The set of markings 

0[M ; , reachable from 0M , is the color set of PNet  type. 
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Var in 1'(0,1) @+20

p0 p1

t0[0,30]

Type PNet = {(0,1),(1,0)} timed;
Var in : PNet ;
Global clock : 100 time units/cycle 

(1,0) 1'(0,1) 1'(0,1) 

p2

t1[50,100]

((PNet,(1,0))@10)

 

(a) An example of T
CH PNet. 

 

(b) The design of PNet . 

 

(c) The T
CH PNet net'  of compound 

transition 0t . 

Figure 2.6 An example of T
CH PNet. 

This section applies the T
CH PNet net , shown in Figure 2.6 (a), designed with 

three places and two transitions, to explain how a T
CH PNet works. Let the initial 

marking of net  be ( )( )( ) [ ]01 1,0 10' p , PNet, @  and transition 0t  be compound. A 

PNet -type token is putted in place 0p  of net  at time 10. The token is marked with 

( )1,0  while the place array of PNet  is ( )a bp ,p . The compound transition 0t  can 

be expanded to net' , shown in Figure 2.6 (c).  

Definition 2.16  (Hierarchical Timed Petri Nets – T
CH PNets) 

A Hierarchical Timed Petri Net is a 5-tuple 
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( )HNet TNet,TrSet,TkSet,TrFun,TkFun=  where 

1. ( )0INT RTNet CNet,I ,I ,R,r=  is a Timed CPNet, where the set of transitions T  in 

0( , , , , , , , , )CNet P T F C V A G m= Σ  can be divided into two disjoint sets, AT  and 

CT . The transitions in AT  are atomic and the transitions in CT  are 

compound. 

2. TrSet  is a finite set of T
CH PNets each of which represents the expansion of a 

compound transition in CT . 

3. TkSet  is a finite set of PNets each of which represents the design of a data 

type in ∑ . 

4. TrFun  is a compound transition mapping function, : CTrFun T TrSet→ , 

defined from CT  to TrSet , TNet TrSet∉ . The number of nets in set TrSet

is equal to the number of compound transitions in set CT , i.e., CTrSet T=

and 0CT ≥ . Each compound transition in CT  is mapped into one of the 

T
CH PNets in TrSet . Function TrFun  is 1-1 and onto. 

5. TkFun  is a type mapping function, :TkFun TkSet∑→ , defined from ∑

into TkSet . The number of nets in set TkSet  is equal to the number of 

types in ∑ , i.e., TkSet = ∑  and 0∑ ≥ . Each type (color set) in ∑  is 

mapped into one of the PNets in TkSet . Function TkFun  is 1-1 and onto. 

 

Definition 2.17 (Weakly Connected Net) 

A net, PNet or its extension, is called weakly connected if and only if replacing 

all of its directed arcs with undirected ones produces a connected net, i.e., there is a 

path between any pair of distinct nodes in the net at least. 
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Definition 2.18 ( T
CH PNet of Compound Transition) 

Given two weakly connected T
CH PNets, HNet  and HNet' , HNet HNet'≠ , a 

compound transition t  of HNet  is associated with HNet' , ( ) 'TrFun t HNet= , if 

and only if the following conditions hold. Let 'CNet  of HNet'  be composed of 

0
'( ', ', ', ', ', ', ', ', )P T F V C G A mΣ . 

1. The input and output places of t  are transferred into 'P , 

( ) ( )( ) 'In t Out t P∪ ⊂ , i.e., HNet'  is started from the places in ( )In t  and 

terminated at the places in ( )Out t . There is a path between any pair of start 

and terminated nodes at least,  

2. 1'T > , the number of transitions in T'  is more than 1,  

3. ( )
( ) ( )

'
p In t Out t

C p
∈ ∪

⊆ ∑∪ , the types (color sets) associated with the places in 

( ) ( )In t Out t∪  are included in '∑  and 

4. ( ) ( )( )p In t Out t∀ ∈ ∪ , ( ) ( )'C p C p= , i.e., the types associated with p  in 

HNet  are the same as that in HNet' .  

 

Definition 2.19 (PNet of Color Set) 

Given a T
CH PNet HNet  and a weekly connected Petri Net ( )0PNet P,T ,F ,m= , 

a type (color set) tp  involved in HNet  is designed with PNet , i.e., 

( )TkFun tp PNet= , if and only if the following conditions hold: 

1. 1| |P ≥ , i.e., there is one or more place in P ,  
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2. t T∀ ∈ , 1| | | |t t• •= = , i.e., t  has exact one input and output places,  

3. The initial marking function { }0 0 1m :P ,→  and ( )0 1
p P

m p
∈

=∑ , i.e., an initial 

marking 0M  of PNet , generated by function 0m , includes one token only. 

From 0M , all reachable markings include one token also, 

[ ( )0 1i i
p P

M M : m p
∈

∀ ∈ =∑; , 0 i n< ≤  and [ 0n M= ;  

The number of colors in color set tp  is less than or equal to the number of 

places in PNet . These colors are presented with the states in [ 0M ; . 

For simplicity, and without losing generality, we assume that each T
CH PNet has 

two levels in its hierarchy only. When a T
CH PNet is designed with more than two 

levels, the compound transitions located in higher levels, 2 or more than 2, can be 

recursively replaced by its finer nets. In addition, any T
CH PNet, restricted to start and 

end with places, is weakly connected, i.e., there is a path between any pair of distinct 

nodes (places and transitions) in the net at least.  
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Chapter 3. Business Process Modeling  

In general, a business process is implemented with one or more private processes 

(also called “process” in this thesis for short) for a business purpose. Each process is 

designed for a distinct business role (e.g., a buyer, seller, or manufacturer) or entity 

(e.g., a rule checking machine or banking system) involved. The participants acting 

the appointed roles cooperate according to the processes assigned to produce a 

product or service for a particular customer or market. Message sending is the only 

way to create a communication between processes. We define messaging as the 

(usually asynchronous) sending of a data item from a business role(s)/entity to other 

role/entity(ies). A message flow is used to present the transmission of messages. A 

business process specification, in Definition 3.1, defines the interactions between 

processes with message flow while the details of these processes are specified in their 

own specifications. The core modeling elements in BPMN are adopted and shown in 

Figure 3.1. 

Definition 3.1. (Business Process Specification) 

A business process specification is a 7-tuple j �=BP (PP,A,M,MF,MF,PF ,P) , where 

1. PP  is a set of private processes, as defined in Definition 3.2,  

2. A  denotes the set of artifacts used in BP , 

3. M  denotes the set of messages used in BP , 

4. ( )⊆ ×MF PP PP  is a set of directed edges, called message flow, indicating the 

sender-receiver relations, 
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5. j →MF :MF M  is a message function that maps each message flow into one of 

the messages in M ,  

6. PF  defines the set of resources that perform or are responsible for BP  

7. � →P :PP PF  is a resource (onto) function that maps each process into one of 

the resources in PF . 

 

Figure 3.1 The core modeling elements in BPMN. 

A business process for resolving problem through e-mail votes is applied in this 

thesis for demonstrating the usage of our formal model. The example is illustrated 

from broad to narrow.  

There are three roles, working group, manager and voter, responsible for the 

voting business process, voteBP . The assignments of the three roles, process workingGP , 

managerP  and voterP , are described within their own swimlanes. The control and data 

flows of the three processes are introduced in Section 3.2.4 and 3.3.4, respectively. 

The participants acting working group, manager or voter execute workingGP , managerP  or 

voterP  to solve an intended problem. In the beginning of voteBP  execution, message 
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“issue list” is sent from a working group to its manager. And then, the messages in set 

voteM  are transmitted between the manager and voters as the message flow shown in 

the business process diagram, displayed in Figure 3.2,  

vote

IssueAnnouncement,Vote,DeadlineWarning ,
M

VoteResults,ChangeMessage
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

. 

These message flows can be presented formally as 

j ( )manager voterMF P ,P IssueAnnouncement= .  

 
Figure 3.2 E-mail voting process 

3.1. Private Process Specification 

Within business process BP , a process P , associated with performer � ( )P P , 

consists of a network of actions designed to achieve part of work in BP . The 

specification of process P  contains a control flow and data flow.  

A control flow defines a set of connected (parallel and/or sequential) actions and 

indicates the start and end event(s) of the process. In addition, the intermediate events 

occurring between the start and the end are described for the execution flow of 

process, not for its start or end. For example, when a process instance catches a time 

event, it can switch the execution from normal flow to some handling process.  
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The control flow construction mechanism proposed in this thesis contains two 

parts: basic and supplement. The basic construction mechanism, defined in Definition 

3.3, is used to build an action network without including an activity involving event(s). 

Otherwise, the supplement mechanism, defined in Definition 3.12, is adopted.  

A process is specified with an explicit data flow in the thesis. A data, called 

artifact, is passed from one action to another via explicit channels which are distinct 

from the control arc between these actions. Each action takes a subset of the process 

input or the output of its previous action(s) connected by the data flow and transforms 

them into data for next action(s) or as process outputs. The details are described in 

Section 3.3. 

Here, we give a formal definition of private process in Definition 3.2.  

Definition 3.2. (Private Process Specification) 

For a given business process BP , a process P  belonging to BP  is specified 

with a tuple ( )=P ControlFlow,DataFlow , where 

1. ControlFlow  represents a control flow specification of process P , 

2. DataFlow  represents a data flow specification of process P . 

3.2. Control Flow Specification 

Definition 3.3. (Control Flow Specification) 

Given a process P , the control flow associated with P  is specified with a 

6-tuple ( ) i( )=ControlFlow P G,V ,A,M,I,O , where 

1. ( )G V ,CF=  represents the control flow of P  with a directed graph, where 

V  is a set of vertices of which each represents an action and   ⊂CF V x V  
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is a set of directed edges indicating the precedence relation between two 

actions, 

2. i →V :V T  is type function that maps each action into one of the action 

types in T , where { }=T Event,Activity,ControlNode , 

3. A  is a set of artifacts used in P  and ⊆ BPA A , 

4. = ∪I IA IM  is a set of process inputs, where IA , ⊆IA A , denotes the set of 

artifact inputs and IM  denotes the set of messages (sent from other 

processes in BP ) can be caught at P , 

5. = ∪O OA OM  is a set of process output, where OA , ⊆OA A , denotes the 

set of artifact outputs and OM  denotes the set of messages threw out from 

P , 

6. M  is a set of messages used in P , ⊆ BPM M  and = ∪M IM OM .  

 

Definition 3.4.   (Predecessors and Successors). 

1. { | ( , ) }= ∈ ∈IsPredecessor
vV u V u v CF

{ | ( : )}IsPredecessor IsPredecessor IsPredecessor IsPredecessor
v v v uV t V t V u V t V= ∈ ∈ ∨ ∃ ∈ ∈  

2. { | ( , ) }= ∈ ∈IsSuccessor
vV u V v u CF  

3. { | ( : )}IsSuccessor IsSuccessor IsSuccessor IsSuccessor
v v v uV t V t V u V t V= ∈ ∈ ∨ ∃ ∈ ∈  

IsPredecessor
vV comprises the set of vertices which are the source of an edge with 

destination vertex v V∈ . Each element u in IsPredecessor
vV is called a direct 

predecessor of the vertex and is denoted by u v→ . IsPredecessor
vV denotes the 
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transitive closure of IsPredecessor
vV . IsPredecessor

vu V∀ ∈ , v is reachable from u. Each 

element u in IsPredecessor
vV is called a predecessor of v and is denoted by u v . 

IsSuccessor
vV  and its transitive closure IsSuccessor

vV are defined similarly. 

3.2.1 Events 

In a process, an event, defined in Definition 3.5, is an action that is handled by an 

activity inside the process. An event affects the execution of a process; a process 

changes its flow in response to events. Based on the time the events affect a process, 

the events can be classified into three categories: start, intermediate, and end, defined 

in Definition 3.6. 

Definition 3.5. (Event)                                              

Given a process P where ( )=G V ,CF , each event in set i ( ){ }= ∈ =E v V |V v Event  

can be described with the attributes listed followings:  

1. vEC  attribute represents the category of v , which is defined by →�E :E C , 

a classification function to map each event in E  into one category in C , 

where { }=C Start,End,Intermediate . 

2. vET  attribute represents the type of v , which is defined by →�E :E T , a 

type function to map each event in E  into one type in T , where 

{ }=T None,Message,Time . 

3. vTimer  is an attribute to represent the timer set on v . The default value of 

vTimer  is None . 

4. vInMessage , ∈v PInMessage IM , is an attribute to represent the message 
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expected to receive on v . The default value of vInMessage  is None . 

5. vOutMessage , ∈v POutMessage OM , is an attribute to represent the 

message dispatched on v . The default value of vOutMessage  is None . 

 Start Event 

An event is a start event if only if when the trigger for the event occurs, a process 

belonged is instantiated and a token is generated with identification for that instance.  

 Intermediate Event 

An event is an intermediate event if only if the event happens between the start 

and end of a process. The event affects the flow of process, but does not start or 

terminate the process. It can be used to show where messages are expected/sent or 

where action delays are defined. 

 End Event 

An event is an end event if only if the event ends the process by consuming the 

token generated from a start event.  

Definition 3.6. (Categories of Event)                                    

Given a process P  defined by control flow ( )G V ,CF= , the events 

belonging to P  are in i ( ){ }= ∈ =E v V |V v Event . E  can be divided into three 

disjoint sets, StartSet , EndSet , and InterSet , such that 

 ( ) ( )( ){ }0 0= ∈ = ∧ = ∧ >vStartSet v E |EC Start InDegree v OutDegree v 4, 

 ( ) ( )( ){ }0 0= ∈ = ∧ > ∧ =vEndSet v E |EC End InDegree v OutDegree v , 

                                                       
4 Function InDegree and OutDegree  are used to denote the number of incoming and outgoing control 

flows of action.  
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 ( ) ( )( ){ }1 1= ∈ = ∧ = ∧ =vInterSet v E |EC Intermediate InDegree v OutDegree v

The number of events in  StartSet   and  EndSet   is more than 0.   

There are many cases which could be considered as an event, e.g., the start of an 

activity, the state change of a document or the end of a process. To simplify the 

discussion, we restrict the use of events to include only those message or timing 

events that affect the sequence or timing of activities of a process. The event types 

concerned in our model are: none, message and time. How these events are executed 

in a process is described in the followings:  

 None event 

When a process execution reaches an event node which is denoted with none, the 

event occurs immediately. A formal definition of none event is given in Definition 3.7. 

In general, this kind of event is a start or end event, because an intermediate event 

denoted with none is omissible. Thus, if a process modelled with none start or 

intermediate event, the process can be instantiated right away or terminated 

immediately when reaching the end. The notations for none event in BPMN are 

adopted and shown in Figure 3.3. 

Definition 3.7. (None Event)                                          

Given a process P , a StartEvent  of P  instantiates the process without 

waiting for a trigger if only if the following condition holds: 

 
∃ ∈ = ∧

= ∧ =
StartEvent P.StartSet : StartEvent.Timer None

StartEvent.InMessage None StartEvent.OutMessage None
.  

An EndEvent  of P  terminates an instance when reaching the end if only if 

the following condition holds: 
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∃ ∈ = ∧

= ∧ =
EndEvent P.EndSet :EndEvent.Timer None

EndEvent.InMessage None EndEvent.OutMessage None
. 

 
Figure 3.3 The notations for none events. 

 Message Event  

When a process execution reaches an event node which is denoted with message, 

the process continues upon when the message is received or submitted. If the event 

node is a message start event, the process starts to wait for an inserting message. 

When the message trigger for the event occurs, a new process instance is generated. If 

the event node is a message intermediate event, there are two possible scenarios. 

Firstly, the process is blocked till an expected message is received. Secondly, a 

described message is dispatched. The notations of a message intermediate event 

associated with receiver and dispatcher are presented in Figure 3.4(a) and (b), 

respectively. If the event node is a message end event, the process dispatches a 

message at the end of process. A formal definition of message event is given in 

Definition 3.8. Notations for the message events in BPMN are adopted and shown in 

Figure 3.4. 

Definition 3.8. (Message Event)                                       

Given a business process BP  composed of the processes in PP , there is a 

process xP  in PP , a StartEvent  of xP  is associated with a message 

receiver, receiving the expected message meg , if only if the following 

conditions hold: 

 
∃ ∈ = ∧

= ∧ =
xStartEvent P .StartSet : StartEvent.Timer None

StartEvent.InMessage meg StartEvent.OutMessage None
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 j ( )∃ ∈ =y y xP PP :MF P ,P meg , the StartEvent of xP  receives meg  sent 

from yP , ≠y xP P . 

An EndEvent  of xP  is associated with a message dispatcher, submitting 

message meg , if only if the following conditions hold: 

 
∃ ∈ = ∧

= ∧ =
xEndEvent P .EndSet : EndEvent.Timer None

EndEvent.InMessage None EndEvent.OutMessage meg
 

 j ( )∃ ∈ =y x yP PP :MF P ,P meg , the EndEvent  of xP  submits meg  to yP , 

≠y xP P . 

An InterEvent  of xP  can be associated with a message receiver or 

dispatcher. When InterEvent  is associated with a message receiver, the 

following conditions hold: 

 
∃ ∈ = ∧

= ∧ =
xInterEvent P .InterSet : InterEvent.Timer None

InterEvent.InMessage meg InterEvent.OutMessage None
 

 j ( )∃ ∈ =y y xP PP :MF P ,P meg , the InterEvent  of xP  receives meg  sent 

from yP , ≠y xP P . 

When InterEvent  is associated with a dispatcher, the following conditions 

hold: 

 
∃ ∈ = ∧

= ∧ =
xInterEvent P .InterSet : InterEvent.Timer None

InterEvent.InMessage None InterEvent.OutMessage Meg
 

 j ( )∃ ∈ =y x yP PP :MF P ,P meg , the InterEvent  of xP  submits meg  to 

yP , ≠y xP P . 

 
Figure 3.4 The notations for message events. 
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 Timing Event  

When a process execution reaches an event node which is associated with timer, 

the process is blocked till the time set on the timer. In general, this kind of event is a 

start or intermediate event, because a process blocked at the end could occupy a 

resource which other processes are waiting for. Thus, the case is not concerned in our 

model. When a process is modelled with a timing start event, the process can be 

instantiated at the time (interval) specified. If a process is modelled with a timing 

intermediate event, its execution could be blocked till the time specified or continue 

within the interval specified. A formal definition of timing event is given in Definition 

3.9. Notations for the timing events in BPMN are adopted and shown in Figure 3.5. 

Definition 3.9. (Timing Event)                                       

Given a process P , a StartEvent  of P  is associated with timer if and only 

if the following condition holds: 

 
∃ ∈ ≠ ∧

= ∧ =
StartEvent P.StartSet : StartEvent.Timer None

StartEvent.InMessage None StartEvent.OutMessage None
.  

An InterEvent  of P  is associated with timer if and only if the following 

condition holds: 

 
∃ ∈ ≠ ∧

= ∧ =
InterEvent P.InterSet : InterEvent.Timer None

InterEvent.InMessage None InterEvent.OutMessage None
. 

 
Figure 3.5 The notations for the timing events. 

In order to describe Timer  attribute, we define a time set and a time interval, in 

a similar formulation as [43]. A time set is a set of all non-negative reals: 
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{ }0= ∈ ≥Time x REAL | x . A time interval from x  to y  is denoted as [ ]x,y , 

[ ]∈ ×x,y Time Time . If ∈z Time , then [ ]∈z x,y  iff ≤ ≤x z y . Also, [ ]∈z x,x  iff 

=x z . The set of time interval is defined as [ ]{ }= ∈ × ≤Interval x,y Time Time | x y . A 

formal definition of Timer  attribute is given in Definition 3.10.  

Definition 3.10. (Timer attribute of Timing Event)                         

Given a set E , let the timing events of process P  be contained in E . The 

Timer  attribute of event in E  is defined by k →Time :E Interval , a timing 

function maps each timing event to a static interval [ ]min,max , which 

specifies the earliest start time and the latest end time of event, ≤min max . A 

dynamic interval ⎡ ⎤⎣ ⎦min,max  is used to denote the active interval of event 

during an execution. 

Given two timing events, u  and v , u  is a direct predecessor of v  and v  is 

set with a static trigger interval [ ]min,max . Let u  be triggered at ( )τ u  time. The 

dynamic interval ⎡ ⎤⎣ ⎦min,max  of v  is shifted by ( )τ u : ( ){ }0 τ= −min Max ,min u  

and ( ){ }0 τ= −max Max ,max u . v  is allowed to trigger after min  units of time and 

should be triggered before max . 

3.2.2 Activities 

In a process, an action typed with Activity  is a unit of work which makes some 

function progress. The activity might be atomic or compound. An atomic activity, 

named as a task, is an indecomposable unit of work, while a compound activity 

contains a group of activities within a process. To be compatible with BPMN, the 
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tasks contained in another task are called the sub-processes latter. The set of attributes 

common to both task and sub-process is defined in Definition 3.11. 

Definition 3.11. (Activity)                                            

Given a process P  whose control flow is presented by graph ( )=G V ,CF , the 

activities in set i ( ){ }= ∈ =A v V |V v Activity  have the attributes listed as 

followings:  

1. vAT  is an attribute to represent the type of v , which is defined by 

i →A : A T , a grain function, maps an activity in A  into one of the two 

types inT , where { }=T Task,SubProcess . 

2. vPre  and vPos  are the sets of logical expressions which are evaluated by 

a workflow engine.  

(1) vPre is the pre-conditions of which each is evaluated to decide whether 

activity v  within a P  instance can be started.  

(2) vPos  is the post-conditions of which each is evaluated to decide 

whether activity v  is completed. 

3. = ∪ ∪v v v vI IA IE IM  is a set of inputs, where vIA  identifies all the artifacts 

required to be accessed by activity v , vIE  is a set of intermediate events 

could be generated by direct predecessors (activities) for starting an 

execution of v , and vIM , ⊆v PIM IM , is a set of messages could be 

received for starting an execution of the corresponding event-driven flow 

splitting from v  or continuing following execution. vIE  and vIM  are 

defined for constructing event-driven flows. 

4. = ∪ ∪v v v vO OA OE OM  is a set of outputs, where vOA  identifies all the 
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artifacts produced, updated or destroyed by v , vOE  contains the events 

which can be threw out to direct successor from v  and vOM , 

⊆v POM OM , is composed of the messages which can be transmitted to other 

process(es) from v . vOE  and vOM  are defined for constructing 

event-driven flows. 

 + −= ∪v v vOA OA OA  , where +
vOA  and −

vOA  are disjoint. +
vOA  

represents the set of artifacts produced or updated by v  and −
vOA  

represents the set of artifacts destroyed by v . 

5. ( )vST None |Ready | Active | Aborted |Completed  represents a state of v  

during execution. The details are given in Definition 3.13.  

6. vPF  defines the resource that performs or is responsible for v , � ( )=vPF P P . 

7. ( )=vLT None |Standard |MultiInstance  defines the loop type of  activity 

v . By default, activity v  is executed once and the value of vLT  is None . 

Standard  and  MultiInstance  activities are defined in Definition 3.14 

and Definition 3.15, respectively.  

A process P , created by the basic construction mechanism, contains the 

activities whose inputs and outputs are artifacts only, i.e., if activity v  belongs P , 

=v vI IA  and =v vO OA . When an activity involving event(s) is concerned, the 

supplement construction mechanism in Definition 3.12 is applied.  

Definition 3.12. (Supplement Construction Mechanism). 

Given a control flow ( )=G V ,CF , built by the basic construction 
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mechanism, G  can be divided into two weakly connected components, 

( )=u u uG V ,CF  and ( )=v v vG V ,CF , where φ∩ =u vV V  and φ∩ =u vCF CF . Let 

activity u  and v  belonging to uG  and vG  respectively and ( )∉u,v CF  and 

( ) 0=InDegree v . When ( ) ( )1 φ∩ = ∧ =u v vOE IE IA , supplement arc ( )u,v  can 

be added into G . ( )isExtended u,v  is a boolean function to represent if arc 

( )u,v  is added into G . 

 ( ) ( )( ) ( ) ( )1 1 φ= ⇒ = ∧ ∩ = ∧ =u v visExtended u,v true InDegree v OE IE IA . 

( ) =isExtended u,v true  indicates that arc ( )u,v  is added and activity v  

is executed when the event et , ( )∈ ∩u vet OE IE , involved in u  is triggered. 

=et.ET Message  or =et.ET Time  can be represented with BPMN as the 

diagrams shown in Figure 3.6 (a) or (b). 

If φ≠uIM , ∀ ∈ umeg IM , there is a message inflow ( )xP ,P  of P , denoted 

as j ( ) =xMF P ,P meg , ≠xP P . Mapping function j →u u uIM : IM OE , a one-to-one 

function, maps each message in uIM  into one of the outgoing events in uOE , 

≥u uOE IM .  

 When =u uOE IM , 

j ( )( ){ }= = ∧ ∃ ∈ =uu uOE et | et.ET Message meg IM : IM meg et . 

 When >u uOE IM ,  
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j ( )( ){ }
{ }

= ∈ = ∧ ∃ ∈ = ∪

∈ =

uu u u

u

OE et OE |et.ET Message meg IM : IM meg et

et OE |et.ET Time
. 

If ( ) ( )φ φ= ∧ ≠u uIM OE , { }= =uOE et | et.ET Time . 

In addition, if φ≠uOM  as the case shown in Figure 3.7, ∀ ∈ umeg OM , 

there is a message outflow ( )yP,P , denoted as j ( ) =yMF P,P meg , ≠ yP P . 

 
Figure 3.6 The cases of supplement arcs. 

 

Figure 3.7  An activity with a message dispatcher. 

 Activity States 

An activity may change its state when it runs in a workflow engine. In general, 

there are five process states for an activity inside a process.  

1. None: an activity has not been admitted to entry the execution pool of 

workflow engine.  

2. Ready: an activity does not wait for anything and is prepared to run if it is 
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selected by workflow engine.  

3. Active: an activity that is currently being executed. 

4. Aborted: an activity that cannot be completed because a specified event 

occurs during its execution. 

5. Completed: an activity that has been released by workflow engine after a 

normal termination. 

A formal definition of these states is given in Definition 3.13. 

Definition 3.13.  (States of Activity). 

For a given activity v , the state ST  of an instance of v  can be defined 

by its incoming and outgoing data (artifacts, events and messages) and the 

input and output set specified, = ∪ ∪v v v vI IA IE IM  and = ∪ ∪v v v vO OA OE OM . 

The default value of vST  is None . 

( )=vST None |Ready | Active | Aborted |Completed  

Let l l l= ∪ ∪�
v v v vI IA IE IM  be a set of inputs received by v  at run time, 

where l vIA  contains the artifacts propagated from the predecessor(s) directly 

connected by data flow(s), l
vIE  contains the events received from the 

preceding activity connected by supplement arc(s) and l vIM  contains the 

messages received from the preceding action(s) connected by message flows. 

Let l m m m= ∪ ∪v v v vO OA OE OM  be a set of outputs submitted from v  at run 

time, where m vOA  contains the artifacts propagated to the successor(s) directly 

connected by data flow(s), m
vOE  contains the events submitted to the 

succeeding activity connected by supplement arc(s) and m vOM  contains the 

messages submitted to the succeeding activity(ies) and/or intermediate message 

event(s) connected by message flows. In addition, m m m− +
= ∪v v vOA OA OA , where 



 

47 
 

m +
vOA  and m −

vOA  represents the sets of artifacts produced/updated and 

destroyed, respectively. All the possible states of v  are defined as follows:  

When =v vI IA  and =v vO OA , 

 If ( ) ( )φ φ= ∧ ≠v vIA OA , the default state of v  is Ready .  

 If m φ=vvOA \OA , the state of v  is Completed . 

 If ( ) ( )φ φ≠ ∧ =v vIA OA , the default state of v  is None . 

 Once l φ=vvIA \ IA , vST  is transferred from None  to Ready .  

 If ( ) ( )φ φ≠ ∧ ≠v vIA OA , the default state of v  is None . 

 Once l( ) m( )φ= ∧ =v vv v vIA \ IA OA \OA OA , vST  is transferred from 

None  to Ready .  

 Once l( ) m( )φ= ∧ ⊂v vv v vIA \ IA OA \OA OA , the state of v  is 

Active . 

 Once l( ) m( )φ φ= ∧ =v vv vIA \ IA OA \OA , the state of v is 

Completed . 

If φ≠vOM , the messages defined in vOM  are submitted when the state of 

v is Completed . In addition, if there is an activity u , a direct predecessor of v

connected by supplement arc, 1∩ =u vOE IE , =uST Active  and =vST Ready .  

 When φ=uIM ,  

 if ( ) m( )φ∩ =uu vOE IE \OE , uST  is transferred from Active  to 

Aborted  and vST  is transferred from Ready  to Active . 
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 When φ≠uIM  and j ( ) ( )∃ ∈ ∈ ∩uu u vmeg IM : IM meg OE IE , 

 if l j ( ) ( )( ) ( ) m( )φ∃ ∈ ∈ ∩ ∧ ∩ =u u uu v u vmeg IM : IM meg OE IE OE IE \OE , 

uST  is transferred from Active  to Aborted  and vST  is 

transferred from Ready  to Active . 

 When φ≠uIM  and j ( ) ( )∃ ∈ ∈ ∩uu u vmeg IM : IM meg OE IE , 

 if ( ) m( )φ∩ =uu vOE IE \OE , uST  is transferred from Active  to 

Aborted  and vST  is transferred from Ready  to Active . 

 Loop Activity 

There are three different loops of activity, None , Standard and MultiInstance . 

None-loop activities are executed once only. Except such activities, the execution 

times of activities implemented with the remaining two types are decided by the 

expression evaluation results.  

There are two standard loop for activities: While  and RepeatUntil . The 

expressions associated with these loops return with boolean value. A While loop 

evaluates the expression before the activity is performed. A RepeatUntil loop 

evaluates the expression after the activity has been performed. Obviously, the least 

time of RepeatUntil (R)/ While (W) execution is 1/0. During an execution, the 

number of iterations is bounded and recorded. These specific attributes of standard 

loop activity are defined in Definition 3.14. 

The numeric expression for an activity, designed with MultiInstance  loop, is 

evaluated once only before the activity is performed. The evaluation result is an 

integer that specifies the number of times that the activity will be repeated. There are 

two variations of the multi-instance loop where the instances are either performed 
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sequentially or in parallel. When a multi-instance loop is performed in parallel, the 

execution of these instances can be categorized into three cases: (1) all instances 

continue to execute succeeding flow when that instance is completed, (2) all instances 

continue to execute succeeding flow after one of the instances is completed and (3) all 

instances continue to execute succeeding flow after all of the instances are completed. 

In case (1), the number of instances available for the succeeding flow of activity v  is 

the same as the number of v ’s instances. In case (2) and (3), there is only one 

instance available for the succeeding flow. Thus, the number of the instances which 

will be available for the continuing flow is determined by the way adopted. The 

specific attributes of multi-instance loop are defined in Definition 3.15. 

Definition 3.14. (Attributes of Standard Loop Activity)                      

Given an activity v , when =vLT Standard , v  has some additional attributes 

listed followings:  

1. vBooleanExp  is the set of routing conditions of which each is evaluated 

before or after the execution of v ,  

2. vCounter  is an integer used at run time to record the number of iterations 

executed, 

3. vMaximum  is an finite integer by which the number of loops executed is 

bounded, v vMaximum Counter≥ ,  

4. ( )=vEvTime Before | After  attribute denotes that vBooleanExp  is evaluated 

before or after the execution of v .  
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Definition 3.15. (Attributes of Multi Instance Loop Activity)                 

Given an activity v , when =vLT MultiInstance , v  has some additional 

attributes listed followings:  

1. vNumExp  is a numeric expression to decide the number of instances of v .  

2. ( )=vOrder Sequential | Parallel  attribute denotes the instances of v are 

performed sequentially or in parallel.  

3. vCounter  is an integer and only applied for v  whose instances are 

performed sequentially. The integer is used at run time to record the number 

of iterations executed. 

4. ( )=vFlowCond None |One | All  attribute sets the way of controlling the 

instances of v  executed in parallel. 

(1). When =vFlowCond None , all instances of v  continue to execute 

succeeding flow when that instance is completed.  

(2). When =vFlowCond One , all instances of v  continue to execute 

succeeding flow after one of the instances is completed 

(3). When =vFlowCond All , all instances of v  continue to execute 

succeeding flow after all of the instances are completed 

Notations for loop activity in BPMN are adopted and shown in  Figure 3.8. 

 
 Figure 3.8 Notations for loop activities.  
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3.2.3 Control Nodes 

In a process, an action v  typed with ControlNode  is associated with a 

mechanism which is used to control how the activities interact as they converge and 

diverge within a process. A formal definition of control node is given in Definition 

3.16. 

Definition 3.16.  (Control Node)                                       

Given a process P  whose control flow is ( )ControlFlow P  presented by 

graph =G (V ,CF ) , the control notes in set i ( ){ }= ∈ =C v V |V v ControlNode  

have the attributes listed as followings:  

1. vCT  is an attribute to present the control mechanism of v  which is defined 

by j →CT : C T , a type function maps each activity in C  into one of the 

four types of control mechanism in T , where 

{ }=T Exclusive,Inclusive,Complex,Parallel . 

2. vIA  is a set identifying all the artifacts required to be accessed by v . 

A group of actions can be bounded by a pair of control nodes. Each pair and the 

actions bounded by them are called control block. Given a process built by basic 

construction mechanism, the structure of the process is sequential, when no control 

node is included. Otherwise, there may be control blocks in the process. When any 

two of control blocks in the process,  1B   and 2B , are nested but not overlap, 

( ) ( )1 2 2 1⊂ ∨ ⊂B B B B , the level of an action belonging to either blocks, applied for the 

followings, can be defined as the definitions given in Definition 3.17 and Definition 

3.18. 
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Definition 3.17. (Ancestor Blocks and Level of an Action)                   

v V∀ ∈ , let .v Block  denote the parent control block containing v . 

AncestorBlock  comprises the set of all control blocks that contain v . 

( ) { | . ( ( . . )}= = ∨ ∈AncestorBlock v b b v Block b AncestorBlock v Block splitNode  

In addition, the cardinality of ( )AncestorBlock v  identifies the nested level of 

v. 

                                               

               

( ) if 

( . ) if  represents a control block

 
( )

 

∈
⎧= ⎨
⎩

AncestorBlock v v V

AncestorBlock v splitNode v
Level v    

 

Definition 3.18. (Common Ancestor Blocks and Nearest Common Ancestor 

Blocks)                                            

Given a set of vertices, 1, , nv v… , iB   is a common ancestor block 

of 1, , nv v…  if and only if the following holds: 

 
1

( )
n

i i
i

B AncestorBlock v
=

∈∩ , denoted by 1( , , )i nB CAB v v∈ … . 

iB  is the Nearest common ancestor of 1, , nv v…  if and only if the following 

holds: 1( , , ) : ( ) ( )j j i in jB CAB v v B B Level B Level B∀ ∈ ∧ ≠… , denoted by 

1( , , ) inNCAB v v B=… . 

When a control node v  is constructed with one incoming edge and more than 

one outgoing edge, ( ) ( )1 1= ∧ >InDegree v OutDegree v , v  is named as split node. 

Otherwise, v  is called join node, constructed with more than one incoming edge and 

one outgoing edge, ( ) ( )1 1> ∧ =InDegree v OutDegree v . There are four different 

mechanisms, Exclusive , Inclusive , Complex  and Parallel , defined in our model. 

Except the Complex  mechanism, the remains can be pairwise applied on split and 
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join nodes. The Complex  mechanism can be applied on join node only. Upon the 

ways of adopting mechanism(s), we divide the control blocks developed into two 

groups: fundamental and complex. In the fundamental group, the control blocks, 

exclusive, inclusive, and parallel, are bounded with split and join nodes designed with 

the same mechanism. Formulations of these four types of blocks are given in 

Definition 3.19, Definition 3.20, and Definition 3.21, respectively.  

Definition 3.19.  (Exclusive Control Block)                              

Given a process P  whose control flow is ( )ControlFlow P  presented by 

graph ( )=G V ,CF , there is a exclusive control block ( )v,k  in P , such that 

i ( ) i ( )( ) ( ) ( )( )∈ = = ∧ =v,k V : V v V k ControlNode Level v Level k  and 

( ) ( )= ∧ =v.CT ExclusiveSplit k.CT ExclusiveJoin . 

During an execution, v  takes one of its outgoing flows to continue upon one 

of the two sources: data-based and event-based. 

 v  is a DataBasedExclusiveSplit  node if and only if v  is associated 

with an expression ChoiceExp  which is evaluated by using the data 

propagated from direct data-flow predecessor(s). Besides, φ≠v.IA .  

 v  is an EventBasedExclusiveSplit  node if and only if  

i ( )( )
( )

|
. : . .

φ ⎞⎛ = ∧ ≠ ∨
⎟⎜∀ ∈

⎜ ⎟∈ ≠ ∨ ≠⎝ ⎠

uIsSuccessor
v

A u Task IM
u V

u P InterSet u Timer None u InMessage None
 

and the outflow selected to run is the one whose event occurs first. 

Besides, φ=v.IA . 

The outgoing flows of either DataBasedExclusiveSplit  or 

EventBasedExclusiveSplit  node are merged at DataBasedExclusiveJoin  node 
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k . The following process is continued through the execution reaches 

DataBasedExclusiveJoin  node. 

 
Figure 3.9 Samples of exclusive control block. 

Definition 3.20. (Inclusive Control Block)                                

Given a process P  whose control flow is ( )ControlFlow P  presented by 

graph =G (V ,CF ) , there is an inclusive control block ( )v,k  in P , such that 

i ( ) i ( )( ) ( ) ( )( )∈ = = ∧ =v,k V : V v V k ControlNode Level v Level k  and  

( ) ( )= ∧ =v.CT InclusiveSplit k.CT InclusiveJoin . 

For v , an InclusiveSplit  node, one to all of its outgoing flows are selected 

to run. The number of executive outflows is determined by the expression 

ChoiceExp  associated with v , which is evaluated by the data propagated from 

direct predecessor(s), φ≠v.IA , connected by data flow(s).  

For k , an InclusiveJoin  node, is used to synchronize all the executive 

branches before continuing to the next action. 
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Figure 3.10 A sample of inclusive control block. 
 

Definition 3.21. (Parallel Control Block)                                 

Given a process P  whose control flow is ( )ControlFlow P  presented by 

graph =G (V ,CF ) , there is a parallel control block ( )v,k  in P , such that  

i ( ) i ( ) ( ) ( )∈ = = ∧ =v,k V :V v V k ControlNode Level v Level k  and 

( ) ( )= ∧ =v.CT ParallelSplit k.CT ParallelJoin . 

For v , a ParallelSplit  node, all its outgoing flows are selected to run and 

k , an ParallelJoin  node, is used to synchronize all these executive flows before 

continuing to the next action. 

 

Figure 3.11 A sample of parallel control block. 

A loop is bounded by two DataBasedExclusive  nodes as the samples shown in 
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Figure 3.12. The actions bounded within the two nodes can be executed repeatedly 

based on a given boolean condition. The pair of control nodes and these repeated 

actions bounded by them are called loop control block, defined in Definition 3.22. 

Definition 3.22.  (Loop Control Block)                                   

Given a process P  whose control flow is ( )ControlFlow P  presented by graph 

=G (V ,CF ) , there is an loop control block ( )v,k  in P , such that 

 when v  is associated with a boolean expression BooleanExp , which is 

evaluated before each iteration, the control block is called WhileLoop  

control block. 

i ( ) i ( )( ) ( ) ( )( )∈ = = ∧ =v,k V : V v V k ControlNode Level v Level k

( ) ( ) ( )( )2 2= ∧ = ∧ =v.CT Exclusive InDegree v OutDegree v

( ) ( ) ( )( )2 2= ∧ = ∧ =k.CT Exclusive InDegree v OutDegree v . 

 when k  is associated with a boolean expression BooleanExp , which is 

evaluated after each iteration, the structure is called RepeatUntilLoop  

control block. 

     i ( ) i ( ) ( ) ( )∈ = = ∧ =v,k V :V v V k ControlNode Level v Level k  

( ) ( ) ( )( )2 1= ∧ = ∧ =v.CT Exclusive InDegree v OutDegree v

( ) ( ) ( )( )1 2= ∧ = ∧ =k.CT Exclusive InDegree v OutDegree v . 
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Figure 3.12 Samples of loop control block. 

In addition to the fundamental blocks, the complex blocks, bounded with two 

control nodes associated with different mechanisms, are included in our model. In 

such block, the flows are split from either InclusiveSplit  or ParallelSplit  node and 

joined at a ComplexJoin  node. There are three advanced join mechanisms, 

discriminator , Multiple Merge and N out of M join proposed in [36], which can be 

implemented with the ComplexJoin  node. The details of these advanced 

mechanisms are described as followings:  

1. Discriminator  

The ComplexJoin  node continues to execute the following flow when one of 

its inflows is completed. The remaining inflows are excluded, even they are 

completed later. 

2. Multiple Merge  

Each inflow of the ComplexJoin  node continues to execute succeeding flow 

when that flow is completed.  

3. N  out of M  join 

The ComplexJoin  node associated with an expression which is evaluated to 

synchronize the first M  incoming flows from N  executive inflows, ≥N M .  



 

58 
 

Figure 3.13 The samples of complex blocks. 

The twelve control blocks concerned in this thesis are listed in Table 3.1. We 

assume that the specific correlations between the two control nodes of these blocks 

are maintained.  

Table 3.1 Control blocks 

Control Block  Split Control Node  Join Control Node 

DataExclusive  DataBasedExclusiveSplit DataBasedExclusiveJoin  

EventExclusive  EventBasedExclusiveSplit DataBasedExclusiveJoin  

Inclusive  InclusiveSplit   InclusiveJoin  

Parallel  ParallelSplit   ParallelJoin  

WhileLoop  DataBasedExclusive   DataBasedExclusive  

RepeatUntilLoop  DataBasedExclusive   DataBasedExclusive  

ParallelDiscriminator  ParallelSplit   ComplexJoin ( Discriminator) 

InclusiveDiscriminator  InclusiveSplit   ComplexJoin ( Discriminator) 

ParallelMultiMerge  ParallelSplit   ComplexJoin ( Multiple Merge)

InclusiveMultiMerge  InclusiveSplit   ComplexJoin ( Multiple Merge)
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ParallelNtoM  ParallelSplit   ComplexJoin (N out ofM join) 

InclusiveNtoM  InclusiveSplit   ComplexJoin (N out ofM join) 

3.2.4 A Control Flow Example: a Process of Resolving Issues through E-mail 

Votes 

The message flows in Figure 3.2 indicates that e-mail voting process voteBP  is 

divided into three private processes, workingGroupP , managerP  and voterP . Our control flow 

model is then adopted to construct the details of these private processes from a view 

point of process control, i.e., the actions assigned to the three involving roles, working 

group, manager and voter, are defined and shown in Figure 3.14.  

voteBP  has turn cycle of a week. Private process workingGroupP  is instantiated at 9 in 

the morning on each Monday. First of all, the working group involved checks its 

status. If the status of the group is inactive, the process instance is terminated. 

Otherwise, the issues raised in the group are listed and a manager is notified. Process 

managerP , instantiated with the notification and the manager, responsible for the process 

instance, reviews these issues proposed. The review results are announced to voting 

members, respectively. Each announcement instantiates a voterP  process with one 

voting member and the process has to complete its activity before Friday. 

Manager collects votes through executing sub-process 21.SP  whose detail flow is  

shown in Figure 3.15, where there are three control blocks, ( )211 211Parallel PS . . ,PJ . . , 

( )211 211DataExclusive DaES . . ,EJ . .  and ( )211 211WhileLoop EvE . . ,DaE . . . The latter two 

control blocks are located in two different branches of the control block 

( )211 211Parallel PS . . ,PJ . . .  
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Figure 3.14 The control flow of the business process for resolving issues. 
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Figure 3.15 The expansion of Collect Vote sub-process. 

The manager reports the voting results to voting members when the timing event 

involved in 21.SP  occurs, i.e., the supplement flow of 21.SP  is executed. When the 

number of votes is more than the number specified on the condition of 2 2.DaES , and 

all the issues listed are done by working group, the instance of managerP  terminates. 

Otherwise, such as insufficient votes, the manager re-announces the vote with 

warning to the voting member(s) who has not vote in the restricted interval. For the 

unsolved issues, the manager reduces the number of choices to two and re-announces 

the vote to the voting members. These two cases are respectively handled by the 

actions bounded within two pair of control nodes, ( )2 4 21DaES . ,DaE .  and 

( )2 3 21DaES . ,DaE . . The above actions execute repeatedly until the conditions 

associated with 2 4DaES .  and 2 3DaES .  are satisfied.   

3.3. Data Flow Specification 
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3.3.1. Artifacts and Artifact Operations 

Artifacts are the information entities involved in a process, including the input 

data to the process, the intermediate data produced within the process, and the (final) 

output data from the process. An artifact is an atomic data item (e.g. a number, a 

character string, or an image) or a collection of atomic data items (e.g. a document). 

Intuitively, all artifacts participating in a workflow execution must be pre-defined in a 

process specification. Each artifact contains a set of legal operations for its internal 

data. A data-based action designed to manipulate certain artifact can work only with 

the legal operation(s) for the artifact. From the data storage point of view, each 

artifact operation can be regarded as one of the following operations, regardless of its 

semantic meaning: 

1. Initialize: an operation that instantiates artifact(s) within a process. 

2. Read/Update/Destroy: an operation that refers/modifies/deletes the artifact 

instance(s) propagated from predecessor(s) or contained in input data only. 

In general, an Initialize operation is used to create an artifact instance in a process. 

Read and Update operations are then used to access the instance. Finally, a Destroy 

operation is used to delete the artifact instance. Destroy operations are applied for 

temporary artifacts created during the workflow execution, but may not be strict for 

all artifacts.  

Figure 3.16 shows the state transition diagram of an artifact with the above four 

kinds of operations. ‘Uninitialized’ represents the initial state of an artifact. 

“Initialized”, “Updated”, and “Read” represent states after an Initialize, Update, and 

Read operation is performed respectively. In addition, the artifact state is set to 

“Uninitialized” after a Destroy operation. 
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Figure 3.16 The state transition diagram of an artifact. 

3.3.2. Artifact Usages 

Based on Definition 3.11, a usage relation between a data-based action and an 

artifact can be defined as follows:  

Definition 3.23. (Consumer, Producer, Updator, and Destroyer Actions of an 

Artifact) 

For a given artifact d, the memberships between artifact d and vI , vO+ , and 

vO−  can be applied for identifying the usage of artifact d at action v. All the 

possible usages are categorized as follows: 

 if  and 
+

−

⎧ ∉⎪∈ ⎨
∉⎪⎩

v
v

v

d OA
d IA

d OA
, v is called a Reader(Action) of artifact d. 

 if  and +∈ ∈v vd IA d OA , v is called an Updator(Action) of artifact d. 

 if  and −∈ ∈v vd IA d OA , v is called a Destroyer(Action) of artifact d. 

 if  and −∉ ∈v vd IA d OA , v is called a Illegal Destroyer5( Action) of artifact d. 

 if  and +∉ ∈v vd IA d OA , v is called a Producer(Action) of artifact d. 

                                                       
5 The illegal destroyer is not concerned in our model because the activity destroy artifact arbitrarily. Any useful 

artifact could be destroyed by the activity during the workflow execution.  
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 if  and 
+

−

⎧ ∉⎪∉ ⎨
∉⎪⎩

v
v

v

d OA
d IA

d OA
, v is called an Irrelevantor(Action) of artifact d. 

In addition, if ∈ vd IA , v is generally called a Consumer(Action) of artifact d 

and if +∈ vd OA , v is generally called a Writer(Action) of artifact d.  

 

Definition 3.24. (Consumer, Writer, Updator, Destroyer, Producer and Reader 

Action Sets of an Artifact). 

 { | }= ∈ ∈IsConsumer
vdV v V d IA  is called the Consumer Action Set of artifact d. 

 { | }+= ∈ ∈IsWriter
d vV v V d OA  is called the Writer Action Set of artifact d. 

 { |  and }+= ∈ ∈ ∈IsUpdator
vd vV v V d IA d OA  is called the Updator Action Set of 

artifact d. 

 { |  and }−= ∈ ∈ ∈IsDestroyer
d v vV v V d IA d OA  is called the Destroyer Action Set 

of artifact d. 

 { |  and }+= ∈ ∉ ∈IsProducer
vd vV v V d IA d OA  is called the Producer Action Set of 

artifact d. 

 Re { | ,  and }+ −= ∈ ∈ ∉ ∉Is ader
vd v vV v V d IA d OA d OA is called the Reader Action 

Set of artifact d. 

3.3.3. Definition of Data Flow 

There are three artifact transmission models identified by Aalst in [37], which are: 

(1) global data store, (2) integrated control and data channels, and (3) distinct control 

and data channels. The model implemented with distinct control and data channels is 
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an easier way to represent the transmission of authorized artifacts [44]. Artifacts are 

transmitted from a data-based action to its following action(s). The transmissions are 

represented with data flows, defined in Definition 3.25. 

Definition 3.25.  (Data Flow Specification) 

For a given business process BP , one of its private process P  is associated 

with ( ) i( )=ControlFlow P G,V ,A,M,I,O  where ( )=G V ,CF .  

The data flow associated with P  is specified with  

( ) ( ) ( ) ( )= ∪ ∪DataFlow P InDataFlow P InterDataFlow P OutDataFlow P , where  

 ( ) ( ){ }= ∈ × ∈ IsConsumer
dInDataFlow P d,v IA V |v V  is a set of incoming 

data flows where an element ( )d,v  denotes the inputted artifact d , 

d I∈ , consumed by v . 

 ( ) ( )( ) ( ){ }= ∈ × × ∈ ∩IsSuccessor IsConsumer
u dInterDataFlow P u,v ,d V V A|v V V  

is a set of intermediate data flows where an element ( )( )u,v ,d  

presented by a directed edge to indicate artifact d  sent from u  to 

consumer v , a successor of u .  

When there is no incoming data flow of u  indicating artifact d  sent 

from preceding action or included in process artifact inputs, u  is a 

producer of artifact d . Otherwise, u  consumes artifact d  before 

sending and delegating the access right of d  to v . 

 ( ) ( ){ }= ∈ × ∈ IsWriter
dOutDataFlow P v,d V OA|v V  is a set of outgoing 

data flows where an element ( )v,d  denotes process output d  

contributed from v .  
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For incoming data flow ( )d,v , the artifact input d  can be read, updated or 

destroyed by activity v . The three cases of incoming data flows are presented as that 

shown in Figure 3.17 (a), (b) and (c), respectively.  

 
(a) Activity  v   reads artifact 

input  d  

 

(b) Activity  v   updates artifact 

input  d  

(c) Activity  v   destroys 

artifact input  d  

Figure 3.17 Three cases of incoming data flows. 

For intermediate data flow ( )( )u,v ,d , the artifact d  is either produced by or 

transmitted from action u , such as the two examples shown in Figure 3.18 (a) and (b), 

to consumer v . v  could read, destroy or update artifact d  propagated from u . 

The graphical presentations of the three consuming operations are shown in Figure 

3.18 (b), (c) and (d), respectively. In addition, outgoing data flow ( )v,d  can be 

presented as the examples shown in Figure 3.18 (a), where process output d  is 

contributed from v . 

 

(a) Activity  u   produces artifact  d . 
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(b) Activity  v   reads artifact  d   transmitted from  u . 

 

(c) Activity  v   destroys artifact  d   transmitted from  u . 

 
(d) Activity  v   updates artifact  d   transmitted from  u . 

Figure 3.18 The four cases of intermediate data flows. 

3.3.4. A Data Flow Example: a Process of Resolving Issues through E-mail 

Votes 

Our data flow model is applied on the control flows of e-mail voting process 

voteBP , shown in Figure 3.14, to illustrate the steps to present the data transformations 

within voteBP . Figure 3.19 shows the result of representing business process voteBP  

with both control and data flows. The artifacts in voteBP  are stated with details in 

Table 3.2. The artifact usages in the actions are listed in Table 3.3. 
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Table 3.2 Artifacts in the E-mail Voting Process 
Artifacts 

d1  Issue List 

d2  Vote 

d3  Calendar 

 

d4  Voting Tally 

d5  Voting Results 

 

 

Figure 3.19 The control and data flows of BPvote.  
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Table 3.3 Artifacts Usages in the E-mail Voting Process 

Action  d1 d2 d3  d4  d5

T1.1 Check Status of Working Group           

T1.2 Send Current Issue List  P         

T2.1 Receive Issue List  D         

T2.2 Review Issue List  R         

T2.3 Announce Issues  R         

T2.4 Prepare Results    D    R  U 

T2.5 Post Results on Websites          R 

T2.6 Email Results of Vote          R 

T2.7 Reduce Number of Voting Members and Recalculate Vote           

T2.8 Re‐announce Vote with Warning to Voting Members           

T2.9 Reduce to Two Solutions  U         

SP2.1 Collect Votes    R  R  U   

T2.1.1 Check Calendar for Conference Call      R     

T2.1.2 Moderate Conference Call Discussion           

T2.1.3 Moderate Email Discussion           

T2.1.4 Email Vote Deadline Warning           

T2.1.5 Receive Vote    R       

T2.1.6 Increment Tally    R    U   

T3.1 Vote    P       

T3.2 Receive Vote Results          R 

R Reader    U Updater    P Producer    D Destroyer 

 

For the expansion of sub-process 21SP .  “Collect Votes”, shown in Figure 3.20, 

there are two incoming data flows, ( )3, 2.1.1d T  and ( )2, 2.1.5d T , one intermediate 

data flow ( )( )2.1.5, 2.1.6 , 2T T d  and one outgoing data flow ( )21 6 4T . . ,d . For the 

incoming data flow ( )3, 2.1.1d T , manager executes task 2.1.1T  by referring the 

input calendar 3d  to make a conference call. Except incoming data flow 
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( )3, 2.1.1d T , the remaining data flows are bounded within WhileLoop  control block 

( )211 211EvE . . ,DaE . . . Manager refers the voting data 2d  received to update the vote 

tally 4d  recursively till the time limitation denoted is arrived. The final version of 

4d  contributes to process output. 

 

Figure 3.20 The expansion of “Collect Votes” sub-process. 

3.3.5. Instance of Data Flow 

Given a process instance of P , its input data can be presented with a multi-set 

of PIA , denoted as l PIA . In order to maintain the process feasibility, for artifact d  

in PIA , the number of instances of d  inputted, i.e., the coefficient ( )ms d  of d  

in l PIA , should be equal to or greater than the number of incoming data flows 

transmitting d , i.e., ( ) ≥ms d n  where ( ) ( ){ }, | ,= ∈ ×dInDataFlow d v d v d V  and 

= dn InDataFlow . When ( ) =ms d n , all the input instances of artifact d  are 

consumed. When ( ) >ms d n , the actions consume n  instances of d  selected 
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from lIA . 

Given two intermediate data flows ( )( )1 1u,v ,d  and ( )( )2 2u,v ,d , the 

propagations of artifacts between two actions can be classified into three cases:   

 if 1 2=v v  and 1 2≠d d , the instances of artifact 1d  and 2d  are 

submitted from u  to v  concurrently.  

 if 1 2≠v v  and 1 2=d d , the two instances of 1d  are submitted from u  

to 1v  and 2v , respectively.  

 if 1 2≠v v  and 1 2≠d d , the instance of artifact 1 2d / d  is submitted to 

1 2v / v . 

For an activity v , if v is a consumer of artifact d , when 

( )( ) ( ) ( ) ( ), , ,u v d InterDataFlow P d v InDataFlow P∃ ∈ →∃ ∈  and vice versa. For all 

data outflows of P , ( ) ( )v,d OutDataFlow P∀ ∈ , d  belongs to process outputs , 

denoted by mOA , a multi-set of OA . 

For the sub-process 21SP .  “Collect Votes”, a process instance 21SP .Ins  is 

generated. When l 21 2SP .IA Calendar= , manager accesses either calendar inputted to 

continue the following execution. We assume that ( )211 21 2EvE . . ,DaE . .  WhileLoop  

ends at the fifth iterations, such that there are five votes sent from voters. An iteration 

results in receiving a vote from a voter. The five iterations recurse to create a fully 

integrated vote tally, contributing to the process output. The set of data l 21SP .A  used in 

21SP .Ins  can be presented with a multi-set of { }21SP .A Calendar ,Vote,VoteTally= , 

l 21 2 4 1SP .A 'Calendar 'Vote 'VoteTally= + + .  
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Chapter 4. The Formulations of Well-Formed and Unstructured 

Control Flows 

During process execution, the two issues might occur: (1) deadlock and (2) 

undesirable instances. The issues could be caused by ill-structured control flow, data 

flow or message flow. In the following subsections, we discuss these two issues of 

control flow. The well-formed and unstructured control flows are defined.  

4.1. Well-Formed Control Flow 

With typed actions and their precedence relation, various kinds of control 

structures can be constituted. In this thesis, the four primitive control structures, 

sequential, parallel, conditional and iterative, defined in [11] are concerned. These 

structures can be implemented by basic construction mechanism and defined within 

blocks. The details are listed as the followings: 

1. Sequential Structure: is a sequence of actions constructed by basic construction 

mechanism without control nodes. For each action in the sequence, it is fired 

while the preceding activity is completed. The sequence is included in a 

sequential block.  

2. Parallel Structure: is a structure implemented in Parallel control block. The 

expressive power of the block is enriched by associating with a join node which 

is implemented with Discriminator , MultiMerge  or NtoMJoin  mechanism.  

3. Conditional Structure: is a structure implemented in DataExclusive  and 

EventExclusive  control blocks which take one of its branches to execute when 

upon its incoming data and event, respectively.  
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4. Iterative Structure: is a structure implemented in WhileLoop  and 

RepeatUntilLoop  control blocks. 

An Inclusive  control block can be implemented by a combination of 

DataExclusive  and Parallel  control blocks [11]. Similarly, the extensions of 

Inclusive  control block, InclusiveDiscriminator , InclusiveMultiMerge  and 

InclusiveNtoMJoin , can be represented by DataExclusive  and 

ParallelDisCriminator / ParallelMultiMerge / ParallelNtoM  control blocks also. In 

order to simplify our discussion, we concern merely the four primary categories of 

control blocks, where the blocks have no substitutions.  

Within a control flow, the divergence and convergence of actions are presented 

by control nodes. Except control nodes, a flow diverged from an activity can be 

presented by a supplement arc only. Without concerning supplement arcs, a control 

flow is well-formed if the constraints defined in Definition 4.1 hold.  

Definition 4.1. (Well-Formed Control Flow). 

Given a control flow ( )=G V ,CF of no supplement arc, i.e., 

( ) ( ), : ,∀ ∈ ≠u v CF isExtended u v true , G  is well-formed if and only if G  is 

constructed based on the events, tasks and control blocks, defined in our control 

flow model, and any two control blocks within the flow can be nested but not 

overlapped. 

When the control blocks in a well-formed control flow are represented 

recursively with the notation for sub-process in BPMN, the flow can be reduced to a 

composite action presented by sub-process. Whether the control flow leads to 

deadlocks and/or generate accidental instances, that will never be accessed and 

destroyed, is easier to indicate [29][32][33][34].  
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The same perspective can also be applied to a control flow including supplement 

arc(s), if the sub-flows connected by supplement arc(s) are well-formed. Such control 

flow is well-formed also. Otherwise, the process is unstructured. Without concerning 

data and message flow, every well-formed process is well-behaved [45], as Definition 

4.2. 

Definition 4.2. (Well-Behaved Control Flow). 

Given a control flow ( )=G V ,CF , G  is well-behaved if and only if G  neither 

leads to deadlock nor generates undesirable instances. 

4.2. Unstructured Control Flow 

A control flow is unstructured when one or more restrictions for well-formed 

property, pairwise restrictions and nesting structure, is violated. The unstructured 

control flows violating the pairwise restrictions can be classified into two cases: 

1. Mismatched Structure: a control block is bounded with a mismatched pair of 

control nodes, e.g., ParallelSplit  and ExclusiveJoin . 

2. Unpaired Structure: a split/join node is included in a control flow without a 

corresponding join/split node. 

In addition, an improper nesting structure in a process, defined in Definition 4.3, 

is constructed when the one-to-one corresponding relation of control node, is not 

followed. 

Definition 4.3. (Improper Nesting Structure). 

Given two control block ( )1 1 1,=B u v  and ( )2 2 2,=B u v  in an control flow 

( ),=G V CF , 1B  is improperly nested with 2B , if and only if the following holds: 
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( ) ( )1 1 1 12 2∈ ∩ ∧ ∉ ∩IsSuccessor IsPredecessor IsSuccessor IsPredecessor
u v u vu V V v V V  or 

 ( ) ( )1 1 1 12 2
IsSuccessor IsPredecessor IsSuccessor IsPredecessor
u v u vu V V v V V∉ ∩ ∧ ∈ ∩  

In other word, ( )1 1, :∃Path u v 6 Both 2u  and 2v  are in the path.  

Either mismatched control pairs or improper nesting structures may cause 

behavioural anomalies in a process execution, but not all. There are two typical 

behaviour anomalies concerned: deadlocks and unexpected instances. 

 

Figure 4.1 An example of overlapped structure. 

Given an overlapped example, shown in Figure 4.1, to explain the two behaviour 

anomalies:  

1. Deadlock Case: In mismatched control block ( )1, 1ES PJ , ParallelJoin  node 1PJ  

is deadlocked because of one or more of its incoming flows is unexecuted.  

2. Unexpected Instance Case: In mismatched control block ( )2, 2PS EJ , the activities 

of the two branches diverged from ParallelSplit  node 2PS , e.g., activity 2 and 4 

or 3, are remained in workflow engine unexpectedly if another one arrives 

ExclusiveJoin  node 2EJ  earlier.  

                                                       
6 Path(u,v) denotes a path from u to v , a sequence of vertices in a control flow G=(V,CF), such that each node is 

connected to the next vertex in the sequence.  
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Chapter 5. The Methods for Transforming BPMN Process into 

T
CH PNET 

In order to analyze a business process j �=BP (PP,A,M,MF,MF,PF ,P)  where 

{ }1 1iPP P | i ..n,n= = ≥ , each private process iP  in BP  is transformed into a T
CH PNet 

iHNet . All these T
CH PNets generated are stored in set { }1 1iNet HNet | i ..n,n= = ≥ . 

The control, message and data flows of process are transformed into T
CH PNet 

modules by their corresponding methods. These transformation methods are discussed 

in the followings. 

5.1. State Transitions of Process Instance with PNet 

A process instance is operated by a set of legal operations. The action executed 

by WfMS for manipulating a process instance executes the legal operation(s) only. 

Each atomic operation of a process instance can be regarded as one of the followings, 

regardless of its semantic meaning:  

1. Initialize: an operation that instantiates a private process within a business 

process.  

2. Destroy: an operation that deletes a process instance within a WfMS.  

 

(a) A state transition diagram of a process instance 

 
(b) A PNet presenting the state 

transitions of a process instance
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Figure 5.1 Two different presentations of the state transitions of a process instance. 

Figure 5.1 (a) shows the state transition diagram of a process instance. There are 

two possible states, “UnInitialized” and “Initialized”, of an instance as Initialize or 

Destroy operation occurs. “UnInitialized” state represents the initial state of a process. 

“Initialized” represents the state after an Initialize operation is performed. The state of 

an instance is transformed from “Initialized” to “UnInitialized” when Destroy 

operation is executed. 

Figure 5.1 (b) depicts the corresponding PNet ( )0inPNet P,T ,F ,m=  of the 

diagram shown in Figure 5.1 (a). The two places of inPNet  present “UnInitialized” 

and “Initialized” states, respectively. The Initialize and Destroy operations are 

transformed into the Initialize and Destroy transitions. The input and output arcs of 

these transitions connect the places and transitions. The initial state of a process is 

“UnInitialized”, i.e., the initial marking 0M  of inPNet  is ( )1 0,  while the place 

array is ( )U,I . 

5.2. Transformation Method for Control Flows – CFMethod  

Let private process iP  in BP  be transformed into T
CH PNet iHNet . A global 

clock, whose cycle is z  time units, is introduced in iHNet . Initially, iHNet  is 

empty. The elements in iP  are transformed to their corresponding T
CH PNet modules 

one by one. The T
CH PNet modules generated are added into iHNet . The link of two 

different T
CH PNet modules is denoted with dotted link. The firing interval of 

transition t  added into iHNet  is [ ]0,z  when t ’s corresponding activity has no 

time limitation. iHNet  has a timed token at least, typed with two attributes inPNet  
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and time, to denote iP ’s execution status, i.e., the execution order of the actions in iP  

is represented by a series of movements of the token(s). Such a token is called control 

token here. All the transitions in iHNet  cannot be fired without the token.  

5.2.1. Rules for Transforming Basic Elements 

Our process model is designed based on the elements listed in Table 5.1. In this 

table, the element whose counterpart in the rightmost column is ◎ is a basic element, 

the element whose counterpart in the rightmost column is ○ is an advanced element, 

and the rest whose counterpart is empty are not concerned.  

Most process models, e.g., [11][24][29][32][33][34][48], are designed based on 

the basic elements. These basic elements can be transformed into T
CH PNet modules 

with Rule 1 to 7, respectively. The T
CH PNet modules are depicted in Figure 5.2 and 

Figure 5.4 where the place(s) denoted with dotted line is used to link T
CH PNet 

modules of two connecting BPMN actions. Such a place can be identified by a pair 

( )p a,b  where a  and b  are the names of two connected actions.  

During the transformation, when a basic element n  is reached, n  can be 

transformed with the following rules: 

Rule1. If n  represents a none start event, i.e., n.EC Start=  and n.ET None= , 
and n  has only one direct successor y , a place denoted with np  and an 

atomic transition denoted with nt  are added into iHNet . A direct arc ( )n np ,t  

connecting the two elements is created. 

1-1. The color domain of place np  is ( ) { }n inC p PNet=  and the token elements 

of place np  are ( )( )( )1 0inPNet , , ,@r  and ( )( )( )0 1inPNet , , ,@r .  
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 When there is a token tk  with value ( )( )( )1 0inPNet , , ,@r  in np , a 

request of creating an instance of iP  is made by a participant at time 

r .  

 When there is a token tk  with value ( )( )( )0 1inPNet , , ,@r  in np , a 

process instance of iP  is created by iP ’s WfMS at time r . 

 When the value of tk  is changed from ( )( )( )11 0inPNet , , ,@r  to 

( )( )( )20 1inPNet , , ,@r , 1 2r r< , the process instantiation request given at 

1r  is accomplished at 2r , i.e., the participant is able to execute the 

actions in iP  after 2r . 

1-2. The variable domain of transition nt  contains the variables typed with 

inPNet  only, i.e., ( )( )( ) ( )( )( ) { }n n n inType Var G t Type Var p ,t PNet= = . 

 The guard expression ( )nG t  is Var ( )0 1in ,==  and the arc 

expression ( )n nA p ,t  is Var in .  

 nt  is fired immediately, when a token tk  associated with value 

( )( )( )1 0inPNet , , ,@r  is added into np . 

Rule2. If n  represents a none end event, i.e., n.EC End=  and n.ET None= , and 
the direct predecessor of n  is x , a place denoted with np  and an atomic 

transition denoted with nt  are added into iHNet . A direct arc ( )n nt ,p  

connecting the two elements is created.  

2-1. The definition of color domain of place np  is the same as in Rule 1-1.  

 When there is a token tk  with value ( )( )( )0 1inPNet , , ,@r  in np , a 

request of terminating iP  is made by a participant at time r .  
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 When there is a token tk  with value ( )( )( )1 0inPNet , , ,@r  in np , the 

process instance is terminated by iP ’s WfMS at time r . 

 When the value of tk  is changed from ( )( )( )10 1inPNet , , ,@r  to 

( )( )( )21 0inPNet , , ,@r , 1 2r r< , the process termination request given at 

1r  is accomplished at 2r . 

2-2. The definition of the variable domain of transition nt  is the same as in 

Rule1-2.  

The guard and (input and output) arc expressions of the transition(s) added by 

applying Rules 3, 4, 5, 6 or 7 are identical to those of nt , defined in the T
CH PNet 

module of start event. 

Rule3. If n  represents a task/sub-process created by the basic construction 

mechanism without input and output artifacts, i.e., =n.AT Task / SubProcess , 

v vI IA φ= =  and v vO OA φ= = , and the direct predecessor and successor of n  

are x  and y  respectively, an atomic/compound transition denoted with 

Tnt / Pnt  is added into iHNet . Tnt / Pnt  has one input and output arcs. 

 

 

 

 

(a) A none start event. 
(b) The  T

CH PNets module of none start event. 

 

(c) A none end event. 

V
ar

 i
n 

=
=

 (
0,

1)

 

(d) The  T
CH PNets module of none end event. 

y

x 
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(e) A task    (f) The  T
CH PNets module of task. 

 

(g) A sub‐process  (g) The  T
CH PNets module of sub‐process. 

Figure 5.2 The mapping of the elements addressed in [29]. 

When n  is a sub-process, iHNet  connects the T
CH PNet of n ’s expansion with 

two additional transition ( )t x,call n  and ( )t return n,y . The two transitions are 

used to model the invocation of sub-process n  and return the control back to iHNet  

when n  is completed. The details are shown in Figure 5.3. 

V
ar

 i
n 

=
=

 (
0,

1)

V
ar

 i
n 

=
=

 (
1,

0)

 
Figure 5.3 Combining the expansion of a sub-process and parent net. 

Rule4. If n  is a data-based ExclusiveSplit  control node and the direct 

successors of n  are Activity  1  to m , 2m≥ , for each succeeding Activity  

i , an atomic transition, denoted as ( )it n,A , 2 i m≤ ≤ , is added into iHNet . 

Transition ( )it n,A  has one input and output arc. The input arcs of the 

transitions added starts from place ( )p x,n . 
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Rule5. If n  is a data-based ExclusiveJoin  control node and the direct 
predecessors of n  are Activity  1  to m , 2m≥ , for each preceding  

Activity  i , an atomic transition, denoted as ( )it n,A , 2 i m≤ ≤ , is added into 

iHNet . The number of ( )it n,A ’s input and output arcs are one. The output arcs 

of the transitions added are joined at place ( )p n,y . 

Rule6. If n  is a ParallelSplit  control node and the direct successors of n  are 

Activity  1  to Activity m , 2m≥ , an atomic transition nt  is added into 

iHNet . Transition nt  has one input arc and m  output arcs.  

Rule7. If n  is a ParallelJoin  control node and the direct predecessors of n  are 
Activity  1  to Activity m , 2m≥ , an atomic transition nt  is added into 

iHNet . The nt  has m  input arcs and one output arc. 

 

Control Node  T
CH PNets module  Control Node  T

CH PNets module 

x

(a) Exclusive Split  (b) 

y

 

(c) Exclusive Join 

p(A1,n)

p(Am,n)

...

p(n,y)

t(Am,n)

t(A1,n)

(d) 

x

 

(e) Parallel Split 

 

(f) 

y

  (g) Parallel Join 

p(A1,n)

p(Am,n)

...

tn
p(n,y)

 

(h) 

Figure 5.4 The mapping of the control nodes addressed in [29]. 
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Table 5.1 The notations available in our process model. 
BPMN Our Process Model 

Fl
ow

 O
bj

ec
ts

 

Activities 

Task 

Plain ◎ 

Loop ○ 

Multi-Instance ○ 

Ad-Hoc  

Compensation  

Sub-process 

Plain ◎ 

Loop ○ 

Multi-Instance ○ 

Compensation  

Gateways 

Event-based Exclusive ○ 

Data-based 

Exclusive ◎ 

Inclusive ◎ 

Parallel ◎ 

Complex ○ 

Events 

(Start, Intermediate, End) 

Plain Start and End ◎ 

Message  ○ 

Timer  ○ 

Error   

Cancel   

Compensation   

Signal   

Multiple   

Link   

Terminate   

C
on

ne
ct

in
g 

O
bj

ec
t 

Sequence Flow   ◎ 

Message Flow   ○ 

Association    

Sw
im

la
ne

s Pool   
○ 

Lanes    

A
rti

fa
ct

s Data Object   ◎ 

Text Annotation    

Group    

Notation: Basic elements ◎    Advanced elements ○ 
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5.2.2. Transformation Rules for Advanced Elements 

The advanced elements can be transformed into T
CH PNet modules with Rules 8 to 

22, respectively. The rules are defined upon the sequence: (1) advanced activity and 

event, (2) activity involving event and (3) complex control node. In these rules, the 

direct predecessor and successor of the intermediate actions (activity and event) are 

set as x  and y , respectively. The direct predecessor/successor of end/start event is 

set as x / y  also. 

(1) Advanced Activity and Event 

 During the transformation, when an activity (task or sub-process) n  with 

While / RepeatUntil  loop structure is reached, n  can be transformed with Rule 

8 or 9.  

Rule8. If n  is a loop task, i.e., n.LT Standard= , n.EvTime Before / After= , and 

the associated evaluation expression / maximum execution times = BooleanExp / 

Maximum , n ’s T
CH PNet module is shown in Figure 5.5 (b)/(c).  

Rule9. If n  is a loop sub-process whose LT , EvTime  and evaluation expression 

/ maximum execution times are the same as Rule 8, n ’s T
CH PNet module is 

shown in Figure 5.5 (b)/(c) and each atomic transition named Tnt  is replaced 

with a compound transition representing the sub-process.  

 During the transformation, when an activity (task or sub-process) n  with 

multi-instance loop structure is reached, n  can be transformed with Rule 10 or 

11. Let the evaluation result of NumExp  associated with n  be k , i.e., the 

number of instances of n  is k . 
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Rule10. If n  is a task whose instances are performed sequentially, i.e., 

n.LT MultiInstance= and n.Order Sequential= , n ’s T
CH PNet module is shown 

in Figure 5.6 (b). 

 

(a) A loop task  n .   

1'
(i

nt
, m

ax
)

 

(b) The  T
CH PNets module of While loop task  n . 

(c) The  T
CH PNets module of RepeatUntil loop task  n . 

Figure 5.5 Two different T
CH PNets modules of a task with loop structure. 

Rule11. If n  is a task whose instances are performed in parallel, i.e., 

n.LT MultiInstance= and n.Order Parallel= :  

 When FlowCond None= , n ’s T
CH PNet module is in Figure 5.6 (c). 
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 When FlowCond One= , n ’s T
CH PNet module is in Figure 5.6 (c), but 

transition [ ]0Tnt ,z , place ( )p n,y  and arc ( )( )TnA t ,p n,y  are replaced 

with the net shown in Figure 5.6 (d). 

 When FlowCond All= , n ’s T
CH PNet module is in Figure 5.6 (c) but 

transition [ ]0Tnt ,z , place ( )p n,y  and arc ( )( )TnA t ,p n,y  are replaced 

with the net shown in Figure 5.6 (e).  

 

(a) A task  n   with 

multi‐instance loop 

structure.   

(b) The  T
CH PNets module of task  n  which is performed sequentially

V
ar

 i
n 

=
=

 (
0,

1)

V
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n 

=
=

 (
0,

1)
 

(c) The  T
CH PNets module of task  n  which is performed in parallel. 

 

(d) The  T
CH PNets module of task  n  which is performed in parallel. 
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(e) The  T
CH PNets module of task  n  which is performed in parallel. 

Figure 5.6 Four different T
CH PNets modules of a task with multi-instance loop 

structure. 

Rule12. If n  is an intermediate event, i.e., n.EC Intermediate= , a transition 
denoted with nt  is added into iHNet . 

 

(a) An none intermediate 

event. 
(b) The  T

CH PNets module of none intermediate event. 

Figure 5.7 The T
CH PNets module of intermediate event. 

 During the transformation, when an event n  with time limitation or message 

receiver/dispatcher is reached, n  can be transformed with the following rules.  

Rule13. If n  is a start/intermediate event and n  is timed, i.e., n.ET Time= , and 

the value of n ’s timer attribute is [ ]1 2r ,r , 1 20 r r z≤ ≤ ≤ , Rule1/Rule12 is 

applied respectively. Then, the firing interval of nt  is changed from [ ]0,z  to 

[ ]1 2r ,r .  

Rule14. If n  is a start/intermediate event and n  is a message receiver, i.e., 
n.ET Message=  and n.InMessage meg= , Rule1/Rule12 is applied respectively. 
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Then, a place denoted with megp  is added into the net, generated by 

Rule1/Rule12, and arc ( )meg nA p ,t  and ( )n megA t ,p  are created.  

14-1. The color domain of place megp  is ( ) { }megC p Meg=  and the token 

elements of place megp  are ( )Meg ,'read'  and ( )Meg ,'unread' . 

 When there is a token tk  with value ( )Meg ,unread  in megp , a 

message is sent from other participant and not consumed by the 

participant yet. 

  When there is a token tk  with value ( )Meg ,read  in megp , the 

message sent from other participant is consumed. 

14-2. The variable domain of transition nt  contains the variables typed with 

inPNet  and Meg  only, i.e., 

( )( )( ) ( )( )( ) { }n n n inType Var G t Type Var p ,t PNet ,Meg= = . 

 The guard expression ( )nG t  is Var ( )0 1in , Var== ∧ m unread== . 

The arc expressions of input arcs, ( )n nA p ,t  and ( )meg nA p ,t , are 

Var in  and Var m , respectively. The arc expressions of output arcs, 

( )( )n n,xA t ,p  and ( )n megA t ,p , are Var in  and ( )1' read , respectively. 

 nt  is fired immediately, when there are two tokens with value 

( )( )( )1 0inPNet , , ,@r  and ( )Meg ,unread  in np  and megp , 

respectively. 

The T
CH PNet module generated by applying Rule1 and Rule14 on message start 

event n  is shown in Figure 5.8 (b). 
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(a) A message 

start event. 
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(b) A  T
CH PNets module of message start event 

Figure 5.8 Two different presentations of message start event. 

Rule15. If n  is an intermediate/end event and n  is a message dispatcher, i.e., 
n.ET Message=  and n.OutMessage meg= , Rule12/Rule2 is applied 

respectively. Then, a place denoted with megp  is added into the net generated by 

Rule12/Rule2 and the arc ( )n megA t ,p  is created. 

When nt  is fired, a token with value ( )( )( )0 1inPNet , , ,@r  in place ( )x ,np  is 

removed and the tokens with value ( )Meg ,unread  and ( )( )( )0 1inPNet , , ,@r  are 

added into megp  and ( )n,yp , respectively. The T
CH PNet module generated by 

applying Rule12 and Rule15 on intermediate message dispatcher n  is shown in 

Figure 5.9 (b). 

 

 

 

 

(a) A message dispatcher. 

 

(b) A  T
CH PNets module of message dispatcher 

  y x 

x 
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Figure 5.9 Two different presentations of intermediate message dispatcher. 

(2) Activity Involving Event 

 During the transformation, when an activity (task or sub-process) n  involving 

an event e  is reached, n  can be transformed by Rule 16, 17, 18, 19 or 20. 

Here, event e  is associated with a time limitation or a message 

receiver/dispatcher. Let n ’s direct successors be 1y  and 2y . 2y  is connected 

by a supplement arc.  

Rule16. If n  is a task and the value of timer attribute of n ’s timing event e  is 

[ ]1 2r ,r , 1 20 r r z≤ ≤ ≤ , n ’s T
CH PNet module is designed in Figure 5.10 (b). Let 

the time stamp associated with control token be stamp .  

 

 

(a) Task involving a 

timing event. 
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<
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Var in

(b) A  T
CH PNets module of a task involving a timing event. 

Figure 5.10 Two different presentations of a task involving a timing event. 

Rule17. If n  is a sub-process and the value of timer attribute of n ’s timing event 

e  is [ ]1 2r ,r , 1 20 r r z≤ ≤ ≤ , n ’s T
CH PNet module is in Figure 5.10 (b) while nt  

is represented with a compound transition. 

Rule18. If n  is a task associated with a message receiver e , n ’s T
CH PNet module 

is in Figure 5.11 (b) where transition nt  is the body of n . 
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(a) Task involving a 

message receiver. 
  (b)    A  T

CH PNets module of a task involving a message receiver. 

Figure 5.11 Two different presentations of a task involving a message receiver. 

Rule19. If n  is a sub-process associated with a message receiver e , n ’s T
CH PNet 

module is in Figure 5.12 (b) where the subnet in block is the body of n . 

 

(a) Sub‐process 

involving a message 

receiver. 

1'
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(b)    A  T
CH PNets module of a sub‐process involving a message receiver.

Figure 5.12 Two different presentations of a sub-process involving a message 
receiver. 

Rule20. If n  is a task and associated with a message dispatcher e , n ’s T
CH PNet 

module is in Figure 5.13 (b). 
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(a) Task involving a 

message dispatcher. 

1'(Meg, unread)

pmeg

V
ar

 i
n 

=
=

 (
0,

1)

p(n,y)
tn[0,z]

p(x,n)

Var in 1'(PNetin,(1,0))

 

(a) A  T
CH PNets module of a task involving a message dispatcher. 

Figure 5.13 Two different presentations of a task involving a message dispatcher. 

(3) Complex Control Node 

 During the transformation, when a complex control node n  implemented with 

advanced join mechanism is reached, n  can be transformed by Rule 21 or 22.  

Rule21. If complex control node n  is implemented with Discriminator or “N out M 

join” mechanism, n ’s T
CH PNet module is in Figure 5.14 (b). 

When n  is implemented with Discriminator mechanism, variable i  used in the 

module generated is set with 1. Otherwise, i  is set with M .  

Rule22. If complex control node n  is implemented with “Multiple Merge” 

mechanism, n ’s T
CH PNet module is in Figure 5.14 (c). 
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y

 

(a) Branch 1 to m 

are joined at a 

complex 

control node n.

in

(b) A  T
CH PNets module of a control node implemented with 

Discriminator/”N out of M join”. 

 

(c) A  T
CH PNets module of a control node implemented with “Multiple 

Merge”. 

Figure 5.14 Different presentations of a complex control node implemented with 
different mechanisms. 

5.3. Transformation Method for Message Flows – MFMethod  

A business process in BPMN may contain the following types of message flows: 

(1) task to task, (2) task to start event, (3) task to intermediate event , (4) intermediate 

event to task, (5) intermediate event to start event, (6) intermediate event to 

intermediate event, (7) end event to task and (8) end event to start event. These 

message flows can be transformed into T
CH PNets modules with Rule23 to Rule30, 

respectively. In these rules, the message flows are started from action 1n  to action 

2n . Each rule adopts several rules in previous section where the rules applied to the 

same object are executed according to the description order.  
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Rule23. If message flow ( )1 2n ,n  is created between task 1n  involving a message 

dispatcher and task 2n  involving a message receiver, ( )1 2n ,n ’s T
CH PNet 

module is in Figure 5.15 (b) created by combining the two T
CH PNets modules, 

generated by Rule20 and Rule18, with the places denoted with megp . 

 

(a) A message flow between two tasks.   

  

(b) A  T
CH PNets module of a message flow between two tasks. 

Figure 5.15 Two different presentations of a message flow between two tasks. 

Rule24. If message flow ( )1 2n ,n  is created between task 1n  involving a message 

dispatcher and start event 2n  with a message receiver, ( )1 2n ,n ’s T
CH PNet 
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module is in Figure 5.16 (b) created by combining the two T
CH PNets modules, 

generated by Rule3, Rule20 and Rule1, Rule14, with the places denoted with 

megp . 

(a) A message flow between a task 

and a start event. 
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(b) A  T
CH PNets module of a message flow between a 

task and a start event. 

Figure 5.16 Two different presentations of a message flow between a task and a 
start event. 

Rule25. If message flow ( )1 2n ,n  is created between task 1n  involving a message 

dispatcher and intermediate event 2n  with a message receiver, ( )1 2n ,n ’s 

T
CH PNet module is in Figure 5.17 (b) created by combining the two T

CH PNets 

modules, generated by Rule20 and Rule14, with the places denoted with megp .  
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  (a) A message flow between a task 
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(b) A  T
CH PNets module of a message flow between a task 

and an intermediate event. 
Figure 5.17 Two different presentations of a message flow between a task and an 

intermediate event. 

Rule26. If message flow ( )1 2n ,n  is created between intermediate event 1n  with a 

message dispatcher and task 2n  with a message receiver, ( )1 2n ,n ’s T
CH PNet 

module is in Figure 5.15 (b) created by combining the two T
CH PNets modules, 

generated by Rule12, Rule15 and Rule18, with the places denoted with megp .  

 
Figure 5.18 A message flow between an intermediate event and a task. 
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Rule27. If message flow ( )1 2n ,n  is created between intermediate event 1n  with a 

message dispatcher and start event 2n  with a message receiver, ( )1 2n ,n ’s 

T
CH PNet module is in Figure 5.16 (b) created by combining the two T

CH PNets 

modules, generated by Rule12, Rule15 and Rule14, with the places denoted with 

megp .  

 

Figure 5.19 A message flow between intermediate and start events. 

Rule28. If message flow ( )1 2n ,n  is created between intermediate event 1n  with a 

message dispatcher and intermediate event 2n  with a message receiver, 

( )1 2n ,n ’s T
CH PNet module is in Figure 5.17 (b) created by combining the two 

T
CH PNets modules, generated by Rule12, Rule15 and Rule14, with the places 

denoted with megp .  

y1x1

y2
x2

 

Figure 5.20 A message flow between two intermediate events. 
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Rule29. If message flow ( )1 2n ,n  is created between end event 1n  with a message 

dispatcher and task 2n  with a message receiver, ( )1 2n ,n ’s T
CH PNet module is 

in Figure 5.21 (b) created by combining the two T
CH PNets modules generated by 

Rule12, Rule15 and Rule18 with the places denoted with megp . 

x1

x2
y2‐1

y2‐2
 

(a) A message flow between an end event and a task. 

(b) A  T
CH PNets module of a message flow between an end event and a task. 

Figure 5.21 Two different presentations of a message flow between an end event 
and a task. 
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Rule30. If message flow ( )1 2n ,n  is created between end event 1n  with a message 

dispatcher and start event 2n  with a message receiver, ( )1 2n ,n ’s T
CH PNet 

module is in Figure 5.22 (b) created by combining the two T
CH PNets modules, 

generated by Rule12, Rule15 and Rule1, Rule13, with the places denoted with 

megp .  

 

(a) A message flow between an end 

event and a start event. 

 

(b) A  T
CH PNets module of a message flow between an end 

event and a start event. 

Figure 5.22 Two different presentations of a message flow between an end event 
and a start event. 



 

100 
 

 

5.4. Transformation Method for Data Flows – DFMethod  

In a business process, the state of an artifact is transformed among the four 

states, “Uninitialized”, “Initialized”, “Read” and “Updated”, by the four operations, 

Initialize, Update, Read and Destroy. Figure 5.23 (a) shows the state transition 

diagram of an artifact with the four kinds of operations. The diagram can be 

represented with a PNet as Figure 5.23 (b). The initial state of an artifact can be 

represented with ( )1 0 0 0, , ,  while the place array of the artifact PNet is ( )U,I,R,W . 

When an artifact is initialized, the state of the artifact is transformed from ( )1 0 0 0, , ,  

to ( )0 1 0 0, , , . 

For incoming data flow ( )d,v , the artifact input d  can be read, updated or 

destroyed by activity v . The three cases of incoming data flows are presented as 

Figure 3.17 (a), (b) and (c), respectively. The three cases can be transformed into the 

T
CH PNets modules shown in Figure 5.24 when the arc expression of arc ( )v dt ,p  is set 

with ( )1 0 0 1 0' , , , , ( )1 0 0 0 1' , , ,  and ( )1 1 0 0 0' , , , , respectively. After transition vt  is 

fired, the value of a token representing artifact d  is changed to the assigned value 

described on the arc expression and the token is added into place dP .  

Rule31. If v  is a reader/updater/destroyer of artifact d , data flow ( )d,v ’s 

T
CH PNet module is in Figure 5.24 and ( ) ( )1 0 0 1 0v dA t ,p ' , , ,= / 

( ) ( )1 0 0 0 1v dA t ,p ' , , ,= / ( ) ( )1 1 0 0 0v dA t ,p ' , , ,= . 
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(a) The state transition diagram of an artifact. 

 

(b) A PNet of the state transition diagram of an artifact.   

Figure 5.23 Two different presentations of the state transition of an artifact. 
 

 

Figure 5.24 A T
CH PNets module of incoming data flows. 
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The transformation rules for the intermediate data flow ( )( )u,v ,d  discussed in 

Section 3.3.3 are shown in the followings. 

 When the artifact d  is produced by action u  and consumed by action v ,  

place dp  for d  and arc ( )u dt ,p , ( )d vp ,t  and ( )v dt ,p  for presenting the 

interaction of control and data flow are added into the T
CH PNets modules.  

Rule32. If v  is a reader of d , ( )( )u,v ,d ’s T
CH PNet module is in Figure 5.25 

where ( ) ( )1 0 1 0 0u dA t ,p ' , , ,= , ( )d vA p ,t Var= artifact , ( ) ( )1 0 0 1 0v dA t ,p ' , , ,=  

and ( )vG t Var= ( )0 1in , &&Var==  ( )0 1 0 0artifact , , ,== . 

Rule33. If v  is a destroyer of d , ( )( )u,v ,d ’s T
CH PNet module is in Figure 5.25 

where ( )d vA p ,t Var= artifact , ( ) ( )1 1 0 0 0v dA t ,p ' , , ,=  and 

( )vG t Var= ( )0 1in , &&Var==  ( )0 1 0 0artifact , , ,== . 

Rule34. If v  is an updater of d , ( )( )u,v ,d ’s T
CH PNet module is in Figure 5.25 

where ( ) ( )1 0 1 0 0u dA t ,p ' , , ,= , ( )d vA p ,t Var= artifact , ( ) ( )1 0 0 0 1v dA t ,p ' , , ,=  

and ( )vG t Var= ( )0 1in , &&Var==  ( )0 1 0 0artifact , , ,== . 

1'(
0,1

,0,
0)

Var artifact

1'(
0,0

,1,
0)



 

103 
 

Figure 5.25 A T
CH PNets module of intermediate data flows. 

 When both action u  and v  are consumers of the artifact d , place dp  and arc 

( )u dt ,p , ( )d up ,t , ( )d vp ,t  and ( )v dt ,p  are added into the T
CH PNets modules. 

Rule35. If both u  and v  are readers of d , ( )( )u,v ,d ’s T
CH PNet module is in 

Figure 5.26 where ( ) ( )1 0 0 1 0u dA t ,p ' , , ,= , ( )d vA p ,t Var= artifact , 

( ) ( )1 0 0 1 0v dA t ,p ' , , ,= and  

( ) ( )u vG t G t Var= = ( )0 1in , &&Var==  ( )1 0 0 0artifact! , , ,= . 

Rule36. If u  is a reader and v  is a destroyer of d , ( )( )u,v ,d ’s T
CH PNet module 

is in Figure 5.26 where ( )d uA p ,t Var= artifact , ( ) ( )1 0 0 1 0u dA t ,p ' , , ,= , 

( )d vA p ,t Var= artifact , ( ) ( )1 1 0 0 0v dA t ,p ' , , ,=  and ( ) ( )u vG t G t Var= =  

( )0 1in , &&Var== ( )1 0 0 0artifact! , , ,= . 

Rule37. If u  is a reader and v  is an updater of d , ( )( )u,v ,d ’s T
CH PNet module 

is in Figure 5.26 where ( )d uA p ,t Var= artifact , ( ) ( )1 0 0 1 0u dA t ,p ' , , ,= , 

( )d vA p ,t Var= artifact , ( ) ( )1 0 0 0 1v dA t ,p ' , , ,=  and ( ) ( )u vG t G t Var= =  

( )0 1in , &&Var== ( )1 0 0 0artifact! , , ,= . 

Rule38. If u  is a destroyer and v  is a reader of d , ( )( )u,v ,d ’s T
CH PNet module 

is in Figure 5.26 where ( )d uA p ,t Var= artifact , ( ) ( )1 1 0 0 0u dA t ,p ' , , ,= , 
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( )d vA p ,t Var= artifact , ( ) ( )1 0 0 1 0v dA t ,p ' , , ,=  and ( ) ( )u vG t G t Var= =  

( )0 1in , &&Var== ( )1 0 0 0artifact! , , ,= . 

Rule39. If u  is a destroyer and v  is a destroyer of d , ( )( )u,v ,d ’s T
CH PNet 

module is in Figure 5.26 where ( )d uA p ,t Var= artifact , ( ) ( )1 1 0 0 0u dA t ,p ' , , ,= , 

( )d vA p ,t Var= artifact , ( ) ( )1 1 0 0 0v dA t ,p ' , , ,=  and ( ) ( )u vG t G t Var= =  

( )0 1in , &&Var== ( )1 0 0 0artifact! , , ,= . 

Rule40. If u  is a destroyer and v  is a updater of d , ( )( )u,v ,d ’s T
CH PNet 

module is in Figure 5.26 where ( )d uA p ,t Var= artifact , ( ) ( )1 1 0 0 0u dA t ,p ' , , ,= , 

( )d vA p ,t Var= artifact , ( ) ( )1 0 0 0 1v dA t ,p ' , , ,=  and ( ) ( )u vG t G t Var= =  

( )0 1in , &&Var== ( )1 0 0 0artifact! , , ,= . 

Rule41. If u  is a updater and v  is a reader of d , ( )( )u,v ,d ’s T
CH PNet module 

is in Figure 5.26 where ( )d uA p ,t Var= artifact , ( ) ( )1 0 0 0 1u dA t ,p ' , , ,= , 

( )d vA p ,t Var= artifact , ( ) ( )1 0 0 1 0v dA t ,p ' , , ,=  and ( ) ( )u vG t G t Var= =  

( )0 1in , &&Var== ( )1 0 0 0artifact! , , ,= . 

Rule42. If u  is a updater and v  is a destroyer of d , ( )( )u,v ,d ’s T
CH PNet 

module is in Figure 5.26 where ( )d uA p ,t Var= artifact , ( ) ( )1 0 0 0 1u dA t ,p ' , , ,= , 

( )d vA p ,t Var= artifact , ( ) ( )1 1 0 0 0v dA t ,p ' , , ,=  and ( ) ( )u vG t G t Var= =  

( )0 1in , &&Var== ( )1 0 0 0artifact! , , ,= . 
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Rule43. If u  is a updater and v  is an updater of d , ( )( )u,v ,d ’s T
CH PNet 

module is in Figure 5.26 where ( )d uA p ,t Var= artifact , ( ) ( )1 0 0 0 1u dA t ,p ' , , ,= , 

( )d vA p ,t Var= artifact , ( ) ( )1 0 0 0 1v dA t ,p ' , , ,=  and ( ) ( )u vG t G t Var= =  

( )0 1in , &&Var== ( )1 0 0 0artifact! , , ,= . 

1'(
0,1

,0,
0)

Var artifact

1'(
0,0

,1,
0)

Figure 5.26 A T
CH PNets module of intermediate data flows. 

5.5. Process Transformation 

Let a business process j �=BP (PP,A,M,MF,MF,PF ,P)  be transformed into a 

T
CH PNet ( )Net TNet,TrSet,TkSet,TrFun,TkFun= . Each kind of artifacts/messages in 

A / M  is designed with a PNet. BP  is composed of private processes, 

1P , 2P ,.., nP , 1n≥ . For private process iP , 1 i n≤ ≤ , the control flow of iP  is 

( ) i( )i i i i i i iControlFlow P G ,V ,A ,M ,I ,O=  where ( )i i iG V ,CF=  started from any start 

event in iStartSet  and ended at any end event in iEndSet . The data flows of iP  are 

in ( )iDataFlow P .  

The transformation is designed to convert the private processes in a business 

process one by one. An empty T
CH PNet is declared for the business process in the 
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beginning. During the transformation, a sub- T
CH PNet is created for each private 

process visited. The transformation of private process can be divided into two steps:  

(1) Firstly, the rules defined in CFMethod  are applied to the actions visited with 

Breadth-first search [49]. The T
CH PNet modules generated are appended to the  

sub- T
CH PNet sequentially.  

(2) Then, the rules defined in DFMethod  are applied to the data flows to generate 

the corresponding modules which are appended to the sub- T
CH PNet generated in 

the first step.  

Such a recursive operation continues until all private processes are processed. 

Then, the message flows between each pair of private processes are transformed by 

merging the corresponding sub- T
CH PNets upon the rules defined in MFMethod . The 

transformation completes when all the sub- T
CH PNets are merged. The details of 

transforming a business process are shown in PseudoCode1. 

PseudoCode1 TransformBusinessProcess(PP) { 
// Input: PP : a set of private processes 
// Output: resultNet: a hierarchical Timed Coloured Petri Net 
    Stack currentNetStack = new Stack(); 
    For each private process p in PP {   
            currentNet = TransformControlFlow(G , StartSet);   

// G is p’s control flow and StartSet is a set of p’s start events 
 
currentNet = TransformDataFlow(currentNet, DataFlow);   
// DataFlow is a set of data flows of p 
 
currentNetStack.add(currentNet); 

    } 
 
    currentNet = currentNetStack .pop;   
    For each net net1 in currentNetStack {   
            currentNet = TransformMessageFlow(currentNet , net1); 
    }       
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    resultNet = currentNet;   
    Return resultNet;   
} 
     

 

PseudoCode2 TransformControlFlow(G , StartSet) { 
// Input: G=(V,CF) : a directed connected graph 
//            StartSet: the traverse is started from start events in StartSet. 
// Output: resultNet: a hierarchical Timed Coloured Petri Net 
 
    FIFO queue = new FIFO(); 
 
    For each vertex v in V ‐ StartSet {   
            status[v] = ‘waiting’;   
            level[v] = null;   
            parent[v] = null;   
    }               
 
    For each vertex s in StartSet { // all start events are initialized; 
            status[s] = ‘operating’;   
            level[s] = 0;   
            parent[s] = null;   
            queue.add(s);   
    }               
 
    while (queue != null) { 
      currentVertex= queue.first; 
      subNet = MethodCF(currentVertex); 
        currentNet.append(subNet);   
      // subNet is appended to currentNet with links, the places denoted with dotted 
      // line 
 
      For each edge (currentVertex, u) in CF { 
              If (u.status == ‘waiting’) { 
                      status[u] = ‘operating’;   
                      level[u] = level[currentVertex] + 1;   
                      parent[u] = currentVertex;   
                      queue.add(u);   
                } 
              } 
            status[currentVertex] = ‘done’;   
                    } 
    resultNet = currentNet;   
                    Return resultNet; 
} 
 

 

PseudoCode3 TransformDataFlow(net , dataFlow) { 
// Input: net : a result net of TransformControlFlow(G , s) of private process P 
//            dataFlow : a set of data flows of P 
// Output: resultNet: a hierarchical Timed Coloured Petri Net 
 
    currentNet = net; 
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    For each df in dataFlow {   
            subNet = MethodDF(df); 
            currentNet.append(subNet);   
    }               
    resultNet = currentNet;   
    Return resultNet;   
} 
     

 

PseudoCode4 TransformMessageFlow(net1 , net2) { 
// Input: net1 and net2 : the results of TransformDataFlow(G1 , s1) and (G2 , s2) 
//              V1 and V2: the sets of vertices of Net1 and Net2. 
// Output: resultNet: a hierarchical Timed Coloured Petri Net 
 
    currentNet = net1 + net2; 
    For each vertex u in V1 {   
            For each vertex v in V2 {   
                    If ( u == v)    currentNet .merge(u, v); 
            }   
    }               
    resultNet = currentNet;   
    Return resultNet;   
} 
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Chapter 6. A Case Study 

To demonstrate the methods, CFMethod , MFMethod  and DFMethod , proposed 

in Chapter 5, the process voteBP  of resolving issues through e-mail votes introduced 

in section 3.2.4 and 3.3.4 is adopted as an example in this section. Process voteBP  is 

composed of three private processes, workingGroupP , managerP  and voterP . voteBP  has turn 

cycle of a week. The methods presented are applied on this example to illustrate the 

steps to generate the corresponding T
CH PNets. The control, message and data flows of 

the example are shown in Figure 3.14 and Figure 3.19, respectively. The artifacts are 

stated with details in Table 3.2. The artifact usages of actions are listed in Table 3.3.  

Figure 6.1 (b) shows the T
CH PNet of private process workingGroupP  and managerP  , 

shown in Figure 6.1 (a), which is generated according to the action taken order of the 

two processes by the three transformation methods. Because process voteBP  is 

executed weekly, in our design, a global clock counting with hours is introduced into 

the T
CH PNet and the clock is reset weekly. An execution of either task 11T .  or 2 2T .  

takes 24 hours. There is no specific execution limitation for the four tasks shown in 

Figure 6.1 (a).  

We assume that process voteBP  is started to execute at 9 am on Monday. The 

initial marking of the T
CH PNet is shown in the first column in Table 6.1. Let the firing 

sequence is  

[ [ ( ) [0 1 11 2 11 3 4 1 2 511 1 2sys SE . T . T .DaES . ,T .M t M t M t M t M t M⎡⎡⎣ ⎣; ; ; ; ;  and 

[ [6 7 21 8 21 9sys SE . T .M t M t M t M⎡⎣ ; ; ; . 
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Table 6.1 The firing sequence of process voteBP  
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In marking 9M , the value of artifact 1d  is transformed from ( )0 0 1 0, , ,  to 

( )1 0 0 0, , ,  by firing transition 21T .t , i.e., artifact 1d  is destroyed. The direct 

succeeding task 2 2.T  cannot the artifact. In other word, transition 2 2T .t  is unable to 

be fired because the evaluation result of 2 2T .t ’s guard expression is false. A deadlock 

happens. A missing production anomaly caused by early destruction, defined in our 

previous work [11], is detected.  

 

(a) The control and data flow of email voting example. 

 

(b) The  T
CH PNet of the example shown in (a). 

Figure 6.1 Two presentations of the email voting example. 
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Chapter 7. Comparisons 

7.1. Comparison of BPMN-based Process Models 

A formal process model proposed in this paper is based on the control, message 

and data flows defined in BPMN. In the model, each notation for BPMN can be 

referred to one in [24] and [29]. The notation mappings between ours and [24] and [29] 

are shown in Table 7.1, Table 7.2 and Table 7.3, respectively. 

Table 7.1 The mappings of the elements in message flow addressed. 

Message Flow Our process 

model 

Remco et al. 

[24] 

 Y.D. Lin et al. 

[29] 

Role Participant and Flow Engine Supported N/A N/A 

Task to Task  Supported Supported N/A 

Task to Start Event Supported Supported N/A 

Task to Intermediate Event  Supported N/A N/A 

Intermediate Event to Task Supported N/A N/A 

Intermediate Event to Start Event Supported N/A N/A 

Intermediate Event to Intermediate Event Supported N/A N/A 

End Event to Task Supported Supported N/A 

End Event to Start Event Supported Supported N/A 
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Table 7.2 The mappings of the elements of control flow addressed. 
Control flow Our 

process 

model 

Remco et 

al. [24] 

Y.D. Lin et al. 

[29] 

Event Timing/Messag

e Event 

Start Supported Partially 

Supported 
N/A 

Intermediate Supported Partially 

Supported 
N/A 

End Supported Partially 

Supported 
N/A 

Activity Task Supported Supported Supported 

Sub-Process Supported Supported Supported 

Task/ 

Sub-Process 

Activity Involving 

Event 

Supported Supported 
N/A 

Standard Loop 

Activity 

Supported Supported 
N/A 

Multi-Instance 

Loop Activity 

Supported
N/A N/A 

Control Node Data-Based 

(Well-Formed) 

Exclusive Supported Supported Supported 

Inclusive Supported Supported Supported 

Parallel Supported Supported Supported 

Complex Supported N/A N/A 

Iterative Supported Supported Supported 

Event-Based Exclusive Supported N/A N/A 

Unstructured Mismatched Structure Supported N/A N/A 

Unpaired Structure Supported N/A N/A 

Improper Nesting Structure Supported N/A N/A 

There are many ways for the artifacts to be defined and utilised in process. In 

BPMN, the visibility and usability of an artifact is determined by the scope of process 

or task. In our process model, the artifact(s) associated with a process or task is 

defined as the ‘input’ and ‘output’ attribute(s) of the latter. It is easier to use data 

channels, distinct from control channels, to analyze the artifact interactions. An 
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artifact of multiple instances is partially supported: Our process model does not 

support assigning specific artifact instances to different task instances.  

Table 7.3 The mapping of the elements of data flow addressed. 

Data flow 
Our process 

model 
Y.D. Lin et al. [29] 

Remco et 

al. [24] 

Visibility 

Task Data Supported 

 

Input attribute 

 

 

Distinct control 

and data 

channels 

 

Unsupported 

 

 

 

 

Integrated control and 

data channels 

(Global data ) 

 

N/A 

(Sub)Process Data 

Multiple Artifact Instance

Artifact 

Interaction 

Task to Task 

Task to Sub-process 

Sub-process to Task 

Sub-process to 

Sub-process 

 

7.2. Advantages of T
CH PNets  

When a process is modeled with a PNet, CPNet or Timed CPNet, the behavior of 

the WfMS, on which the process executes, may not be included. Thus, the behavior 

simulated upon the nets may not indicate the behavior of real WfMS. And, the 

analysis results gained upon the nets might be useless. The problems can be solved 

partially with T
CH PNets. For example, many correlations between the artifact/process 

and its operations cannot be found in above nets, but in T
CH PNets. 

In addition, T
CH PNets can represent a BPMN-based process with a sub-process 

which is associated with a lower-level net, especially for Standard  and 

MultiInstance  loop sub-process. The refinement function is not supported by PNet, 

CPNet and Timed CPNet. 
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Table 7.4 Advantages of T
CH PNets 

T
CH PNets PNets\ CPNets\ Timed CPNets 

Hierarchical 

Token 

(Net within Net) 

Interactions between WfMS and participants are not captured All  

High difficulty of maintaining correlations between an artifact 

state transition and its operations 

All 

Hierarchical 

Transition 
Un-introduce element refinement mechanism 

All 

Time Semantic Time Condition Omission  PNets\ CPNets

Data Semantic Weak Data Presentation PNets 
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Chapter 8. Conclusion and Future Works    

Current analysis techniques based on PNets, CPNets, and timed CPNets are not 

well for workflow modeled with BPMN. The main contribution of this thesis is to 

introduce a BPMN-based process model which provides an easier way to extract 

knowledge from the role, control flow, data flow and message flow of a workflow. 

Such a BPMN-based can be transformed into a T
CH PNets, which is an extended timed 

CPnets with hierarchical token, for analysis. 

The BPMN process may include: 1) an interaction between participants, 2) a 

multi-instance (loop) activity, 3) an event-triggered (supplement) process, 4) a join 

node designed by one of the three advanced join mechanisms, discriminator, multiple 

merge and N out of M join, and 5) a data flow described with explicit channel. The 

analysis for T
CH PNets works for BPMN workflow of well-formed or unstructured 

control flows.  

We currently continue our research in several directions. First, we plan to implement 

our model and methods on existing workflow management systems, such as Microsoft 

Visio [25] or BizAgi BPM [26], in order to apply our research result in real-world 

applications. The second is to continue the research of analysis on activities (task and 

sub-process) or process instances with more complex events. Thirdly, we plan to integrate 

our resource constrains analysis techniques to develop a design methodology for 

constructing workflows or web services.  
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