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Applying Timed CPNets with Hierarchy to Analyze a

Workflow in BPMN

Student : Ching-Huey Wang Advisor : Dr. Feng-Jian Wang

Institute of Computer Science and Engineering
National Chiao Tung University

Abstract

Although many business process models have been proposed, most of them do
not apply all the following arguments: control, message and data flows and role
assignments, defined completely ~in; BPMN.. Besides, they do not provide the
multi-instance activity, event-triggered activity or the control node with complex
mechanisms as in BPMN. On the other hand, these features allow a process to be
defined with richer semantics but increase the difficulty of correcting an error or
inaccurate process in workflow design.

This thesis proposes a formal process model to help describing a BPMN-based

process. To simplify the analysis, we also provided Hierarchical Timed Coloured

Petri Nets (H. PNets), which is extended from Time Coloured Petri Nets with

hierarchy and allows some analysis with existing techniques. Once a workflow based
on our BPMN model is specified, a series of mapping rules can be used to transform
the workflow into a H; PNets for analysis. An example is applied to demonstrate the
transformation and the corresponding deadlock detection. Furthermore, the artifact
usage anomaly detection mechanisms within either a well-formed or unstructured



process are discussed. Finally, a comparison among related works and ours and the

future works are presented.

Keyword: BPMN, workflow, business process, analysis, control flow, data flow,

message flow, CPNets, Time CPNets and hierarchical PNets.
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Chapter 1. Introduction

Workflow can be viewed as a set of interrelated tasks that are systematized to
achieve certain business goals by completing the tasks in a particular order under
automatic control [1]. The Business Process Modeling Notation (BPMN) [2] is a
standard for capturing workflow in the early phases of system development. Existing
researches focus on 1) parts of the concepts included in BPMN only, e.qg., control flow
analysis [3][48] or 2) how to transform from control and message flow in BPMN into
BPEL code [4][5][6].

A BPMN-based workflow is described with four entities: 1) role: describing the
performers of task instantiated, 2): control flow: defining what, when and how tasks a
workflow performs, 3) data flow: .specifying what information entities are
produced/manipulated/passed in -corresponding activities and 4) message flow:
representing the interaction between processes through messages. An analysis based
on the correlations among these four entities can help check or maintain consistency
between execution order and data transition [7][8][9]/10], as well as prevents exceptions
due to contradiction between data flow, control and message interaction.

There are five additional features introduced in BPMN, but not included in
traditional process modeling languages. These features allow defining: 1) an
interaction between participants, 2) a multi-instance (loop) activity 3) an
event-triggered (supplement) process, 4) a join node designed by one of the three
advanced join mechanisms, discriminator, multiple merge and N out of M join, and 5)
a data flow described with explicit channel. In addition, time event-triggered
behaviors can be described in a BPMN-based workflow, i.e., time constrains are

embedded. These features allow defining a process with richer semantics, but increase



the difficulty of identifying the problems such as inaccuracy in a process specification
at design time.

Here, we provide an easier way to extract knowledge from the four entities of a
workflow. Based on our previous work [11], a method for describing a BPMN-based

process is proposed. Then, we propose a model, Hierarchical Timed Coloured Petri

Nets (H; PNets), extended from Timed Coloured Petri Nets (TCPNets) with hierarchy

[13][14] for analysis. There are a series of mapping rules defined to transform a

BPMN-based process into H] PNets, in which a set of analysis techniques works [14].

With our methodology, the artifact usage anomalies in our previous work are
refined. An analysis method of control, data, and message flow is derived. An example is
used to indicate our contribution of process development and anomaly detections. Finally,
a comparison among ours and related works s presented.

The remainder of this paper ‘is organized as follows. Chapter 2 introduces the

Petri Nets and its extensions, Coloured Petri- Nets (CPNets), and TCPNets. It also

compares existing flow specification model and BPMN. Besides, H. PNets is

proposed for the problems identified. Chapter 3 presents our business process model,

including the control flow, data flow and message flow. In Chapter 4, we present a

set of rules transforming a process in BPMN into H] PNets. In Chapter 5, the

well-behaved unstructured processes are identified and formulated. In Chapter 6, we
present a case to demonstrate our methodologies including development and analysis.
A comparison between our approach and related works on BPMN is given in
Chapter 7. Finally, a conclusion and some recommendations of future works are

given in Chapter 8.



Chapter 2. Petri Nets — PNets

PNets, Petri Nets, is a formal model with graphical representations. The original
PNets was developed by Petri [27], and various extensions have been developed with
their own constructs. Some of these extensions are associated with easier modeling
mechanism and keep the same expressiveness as classical PNets [28] and some
provide more expressional power [22][23]. PNets has been applied to many areas,
including workflow applications [29][30][31]. In this chapter, we discuss the
problems rising when applying PNets or its extensions, Coloured Petri Nets and Time
Petri Nets, to analyze business processes represented with BPMN. Before the

discussion, definitions of PNets and the. two extensions are given.
2.1. Definition of Classical Petri-Nets

A PNet, defined in Definition 2.1;.is a directed graph with two kinds of nodes,
named place and transition. In general, a place is presented with a circle while a
transition is presented with a rectangle. There are no arcs connecting two places or
two transitions. An example of PNet is shown in Figure 2.1 where there are three

places, two transitions and one token.

Definition 2.1 (Classical Petri Nets — PNets)

A Petri net is a 4-tuple PNet=(P,T,F,m,) where

1. Pisafinite set of places,

2. Tis a finite set of transitions such that PNT=¢,

3. Fisafinite set of directed arcs,F < (PUT)x(PUT), satisfying




FA(PxP)=FN(TxT)=9¢,

4. m, isthe initial marking function, m,:P—>N where N={1,2,...}.

Onn®nin®

Figure 2.1 An example of a PNet.

Definition 2.2 (Marking)

1. A marking M of a set of places P is a mapping m:P—>N where

N={0,1,2,...}.

2. A marking M of a Petri net PNet=(P,T,F,m,) is a marking of P. Initial

marking M, of PNet is generated by function m,.

In Definition 2.2, function m is defined from a place to a nonnegative integer

which means the number of tokens on the place. A PNet is also equipped with an

initial marking M,, i.e., an initial state of the PNet is associated with one or more
token in some place(s). All the states of this net succeed to M, , generated by function

m,. Marking M, of an example PNet shown in Figure 2.1 can be expressed as an

array based on the order (p,,p,,p,) With nonnegative integers (1,0,0).

Definition 2.3 (Input/Output Set)

Let PNet=(P,T,F,m,) be aPetrinet, for an element xePUT




1. itsinputset “x isdefinedas “x={yePuUT]|(y,x)eF}| and

2. itsoutputset x isdefinedas x"={yePUT|(x,y)eF}.

Definition 2.3 defines the notations about the input and output sets of a node
(place or transition) in a PNet. Note that both sets of a place contain transitions only

and both sets of a transition contain places only.

Definition 2.4 (Fire a Transition Enabled)

A transition t is able to be fired (named as enabled) if Vpe't, m(p)>1.

Firing t transforms marking M into marking M' and the transformation can be
defined from place p by function m and m' as
m(p)-1 if pe't—t}

m'(p)=ym(p)+1 if pet=1t
m(p) otherwise.

When t is enabled in M, t may fire to change marking M to another
marking M'. The new marking M' is obtained by removing one token from each of

its input places °t and by putting one token to each of its output places t'. M' is

also called directly reachable from M with firing of t, denotedas M[t>M'.
A finite occurrence (of firing) sequence is /\/ll[t1 >M2[t2 > My...M, [t =M,

where M[t,>~M,, , 1<i<n.Marking M, is called start marking of the occurrence

sequence, while M_ is called the end marking. The non-negative integer n—1 is

called the number of steps in the occurrence sequence.




Definition 2.5 (Reachable)

A marking M, is reachable from a marking M, iff there is a finite
occurrence sequence whose start/end markings are M,/ M, correspondingly
M|t = My [ t, = Moo M, [t ;= M,
M, is reachable from M, in n-1 steps. The set of markings which are reachable

from M, is denoted by [M, >.

2.1.1. Advantages of PNets Adoption

Many researches [29][30][31][32][33][34][39] proposed workflow modeling and
analysis paradigms based on PNets, e.g.,. control/data flow modeling [31][32][33],
workflow pattern composition [351/36}{87]146], and automatic control of workflow
process [38]. Aalst and ter Hofstede [39] proposed a WorkFlow net (WF-net) based
on PNets to model a workflow: Transitions" represent activities, places represent
conditions, tokens represent cases (process instances), and directed arcs connecting
transitions and places. Concluding by Aalst [40], the advantages of adopting PNets to
analyze process are : (1) presenting a process with formal expression keeps the
verifiability of PNets, (2) utilizing its own state-based modeling power to present
process state transitions is straight forward and (3) the abundance of analysis
techniques associated with PNets are available. Furthermore, Advantage (1) indicates
that a process specification presented mathematically holds the explicitness and
generality, i.e., the process can be verified by but not depends on particular tools.
Advantage (2) means that with PNets, the state transitions of the elements, task and
sub-process, within workflow are expressible. In other words, PNets allows to (a)

identify tasks which are enable or executing, (b) present resource competition during
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an execution and (c) present a cancellation of process instance by removing tokens.
Advantage (3) the available analysis techniques in control flow dimension are
focused on correctness issues of control structure in a workflow. The techniques of
detecting common control-flow anomalies, including deadlock, livelock (infinite
loop), lack of synchronization, and dangling reference [28], are available.

Although, the three advantages reduce the difficulty of modeling and analyzing
workflow application, PNets is not good enough to handle a business process
presented by BPMN [34]. The expression limitations of PNets are discussed in
Chapter 2. Moreover, these problems were seldom addressed in the past and were not
concerned in the designs of commercial tools, e.g., Microsoft office visio [25] and

BPM Virtual Modeling Tool [26].

2.1.2. Business Process Modeling:Notation - BPMN

In this thesis, our process model is designed based on the core elements set
specified in BPMN specification v1.2 [2], released in 2009. A business process
diagram, composed of the BPMN elements, is referred to as a BPD in the following
sections.

The core elements are classified into four categories, flow objects, connecting
objects, artifacts and swimlanes, where
B Flow Objects: are the elements used to define the behaviour of a business

process. There are three flow objects: events, activities, and gateways. This thesis,

extended our previous work [11], presents a process model for describing the
processes presented with BPMN. The term “Control node” is adopted in our
previous work to present gateways. In order to keep the consistency of

terminology, “gateway” is called “control node” in this thesis also.



Connecting Objects: define the ways of connecting flow objects. There are three
connecting objects: sequence flow, message flow and association. The execution
of a BPMN-based process is controlled not only by sequence flow, the order of
activities, but also by message flow, e.g., a message arriving to trigger the
execution of the target flow object, as well as by the resources required to enable
activities. Upon the same reason mentioned above, the term “sequence flow” is
called “control flow” and artifact “association relationship” is denoted with “data
flow” here.

Acrtifacts: depict the information involved in a process. Within a process, what
artifact is required/generated before/after an execution of activity are depicted in
data flow.

Swimlanes: The specific processes designed for a participating business role (e.g.,
a buyer, seller, or manufacturer) or entity (e.g., a company) can be grouped with

swimlane. The process contained in‘a swimlane is called private process.

2.1.3. Problems of Modeling Processes with PNets

A workflow management system (WfMS) does not execute tasks but merely

coordinates the execution of these tasks by participants or involved software systems.

In a process instance, each task needs to be enabled before execution, but an enabled

task does not have to execute. The execution of a task is triggered by the participants

or the software systems and not by the WfMS. In the other word, a WfMS does not

control the environment but reacts to events generated from the environment, e.g.,

instantiate a process or terminate a scheduled task, by creating certain effects, such as

“a process is instantiated” or “a scheduled task is terminated”. A reactive system is

usually modeled using event-condition-action rules, stating the actions with which the

system responds to events. A reactive system must respond to events in the
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environment with the actions specified in its rules.

Unfortunately, PNets and its higher-level extensions can model a closed active
system under token-game semantics well only, but a WfMS, a reactive system, is
actually open [40]. In other word, the information about the interactions between
participants and their WfMS is not transformed into PNets. The omissions are

summarized in Problem 1.

Problem 1.  (Interaction Omission)
The interaction between a workflow management system and involved
participants or systems is not captured by PNets.
1-1. The behavior of WfMS is not modeled by PNets.
1-2. An event generated from participants to enable a transition of WfMS must be
fired immediately; otherwise, the system fails to respond the event.
1-3. The tasks enabled by WfMS are executed by participants or systems. But, these

executions are not necessary.

When a process is modeled with a PNet, the behavior of the WfMS, on which the
process executes, may not be included. Thus, the behavior simulated upon the PNet
could be different from the corresponding executed at run time. The analysis results
gained upon the net might be unavailable. Besides, a reactive net [41] has been
proposed by extending PNets with reactive semantics; however, the indirect data
presentation problem, discussed in the next two paragraphs, inherited from PNets was
not addressed.

Modeling a complex business process with a PNet, holding identical tokens,
could generate a large-sized PNet. During modeling, a large net could increase the
difficulty of handling its complexity as well as analyzing its net structure [29][32].

For example, let a process contain many similar parts, but not identical. Using PNets,
9




these parts must be represented by disjoint subnets of a nearly identical structure. The
total PNet becomes very large. Besides, a property such as the similarities among the
subnets would be very difficult to find.

All the places in a PNet are identifiable. Distinguishing the tokens based on the
places cannot present data types directly, especially for an application such as
workflow whose data flow is modeled with explicit channels. Comparing with
Colourd Petri Nets [22], a PNet can only use more places and transitions to present
data transmissions or variations. In order to indicate what and how typed data are
handled in a process without complicating the net structure, there are many researches
[42] using CPNets to model workflow application.

Based on our previous work [11], the artifacts involved in a process are defined
to be operated by a set of legal operations, initialize, read, update and destroy. After
an operation, an artifact state is transformed among the followings: Unlnitialized,
Initialized, Updated and Read. The carrelations, existing between the operations and
state transitions, can be constructed by guard and arc expressions and maintained
during execution within CPNets. However, when the number of data types increases,
the possible operations and their correlative state transitions are added
correspondingly. Thus, constructing and maintaining the correlations with CPNets is
more difficult. For example, let a process involve many different data types. Using
CPNets, the correlations between the possible operations and the state transitions of
all typed data need to be described in guard and arc expressions. These expressions
are distributed over the CPNet. For a data type, the corresponding state transitions of
its instance(s) are hard to extract. Therefore, verifying the correctness of the state

transitions is difficult.
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Problem 2. (High Difficulty of Maintaining Correlations)

The correlations between the artifact state transitions and legal operations
within a process are not easy to be described with PNets or CPNets, because the
restrictions of artifact state transitions listed in the followings are difficult to
express with the two nets.

3-1. A legal operation definitely triggers an artifact state transition; even the former
and latter states are identical.

3-2. Except Unlnitialized state, for each state, there is one or more sequence of
operations to transform the artifact from Uninitialized state to the state.

3-3. No matter which state an artifact is at, the artifact can be transformed into

Unlnitialized state with one operation.

In addition, when a process is ' modeled with BPMN, there are four different
cases to introduce time conditions-into the process. The four cases are: (1) inserting a
timing start event to indicate the belonging process is started when a specific time
condition occurs, (2) inserting a timing intermediate event into a sequential control
flow to create a delay, (3) attaching a timing intermediate event to the boundary of an
activity to create a deadline or time-out condition and (4) using a timing intermediate
event as part of an event-based gateway. These time conditions could denote a
specific or recurring time. Unfortunately, PNets and CPNets can model a process
without taking time condition into account only. In other word, the information about
the time conditions of a process with BPMN cannot transformed into PNets or

CPNets. The omissions are summarized in Problem 3.

Problem 3.  (Time Condition Omission)

The time condition(s) associated with timing start or intermediate event is not
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captured by PNets or CPNets.
3-1. Case (1) and (2) indicate that their implementations start to execute/continue
when their corresponding time conditions are satisfied.
3-2. Case (3) indicates that the activity involved a timing intermediate event needs
to accomplish before the time condition denoted.
3-3. Case (4) indicates that the outflow of an event-based exclusive gateway, started

with a timing intermediate event, is selected to run when the event occurs first.

The activities in a process modeled with BPMN are either atomic or compound.
A compound activity, is known as a sub-process, can be broken down into a finer
level. BPMN can be used to create a process with different degrees of details.
However, the Petri Nets do not provide a function of structuring a complex net by
replacing an element (place or transition).at a higher-level of abstraction with a

lower-level, more detailed, subnet:

Problem 4.  (Un-introduce element refinement mechanism)
The PNets and CPNets weakly support representing a process with BPMN
constructed with a sub-process which is associated with a lower-level net,

especially for Standardand Multilnstance loop sub-processes.

2.2. Coloured Petri Nets — CPNets

A CPNet [22][23] allows modeling the identity of individual tokens by attaching
values (or colour) to tokens. The data value may be of a primitive or a complex type
as a record in PASCAL. The coloured tokens enable the modeling complicated of
objects in the net. The number of the coloured token operated by a transition is
assignable. The value of token(s) and its numbers in a place may be changed upon the

design when one of its preceding and succeeding transition(s) is fired, i.e., the
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transition is defined with more elaborate operation.

This section applies the CPNet (named as net and shown in Figure 2.2 ),
designed with four places, two transitions and four tokens, to explain how a CPNet
works. The value of a U-type token located in place p, is x and the value of I-type

tokens located in place p, is 0 and 1 andinplace p, is 1. The value fields of U

and | data type are {x,y} and {0,1,2}, respectively.

pe U = {x,y} 3
eI=1{0,1.2};

Figure 2:2 An example of CPNet.

Definition 2.6 (Coloured Petri Nets— CPNets)

A Coloured Petri Net is a 9-tuple CNet=(P,T,F,%,C,V,A,G,m,) where
1. P isafinite set of places,

2. T isafinite set of transitions,

3. Fisafinite set of directed arcs, F<(PUT)x(PUT), satisfying
FA(PxP)=FN(TxT)=¢,

4. % isa finite set of non-empty types, called color sets,

5. C is a color function, C:P— 2%, defined from P into the power set of
Zl
6. V isa finite set of variables declared by the typesin 2,

7. A isan arc expression function, A:F—exp such that
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VfeF:[Var(A(f))gZAType(Var(A(f)))gc(p(f))} 1
8. G isaguard function, G:T—>exp suchthat VteT

(1) Type(G(t))=Boolean *

(2) var(G(t))cX,

(3) Var(G(t))=JVvar(A(p,t)) and

pe’t
(4) Vp,p, € °t,Var(A(p1,t))mVar(A(pZ,t)): b .
9. m, is an initialization function, m,:P—exp, i.e., YpeP, my(p) can
be represented with a multi-set® over VE,, defined below. By taking a

type ceC(p), a value element associated with p is a pair (c,val)

where val is one of the .colors in color set c¢. The set of all value

elements of p is denoted by VE, ={(c,val)|ceC(p)Avalec].

The data types associated with a place p are defined as a place color domain,

denoted as C(p). The place color domains of net are C(p,)={U}, C(p,)={U,1},
C(p,)={Uu,1} and C(p,)={1}. All place color domains of a CPNet are included in

Y. The tokens defined with given types included in C(p) are the tokens allowing to

access p only. A transition t in a CPNet is considered as a procedure with a

' The place connected by arc f is denoted as p(f) .

2 The data type of the value returned by evaluating an expression exp Is denoted as Type(exp)- The set of
variables in exp is denoted by Var(exp). The set of variable types used in the expression is denoted by
Type(Var(exp)) :

3 Amulti-set m, over a non-empty set S, is afunction m:S—> N . The integer m(s)eN is the number of

appearances of the element S in the multi-set m.
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pre-condition, declared by a guard expression, denoted as G(t). The variables
associated with the expression of t are defined in its transition variable domain,
denoted as Var(G(t)). In net, the transition variable domains of t, and t, are
{u,j} and {i}, respectively. In addition, each variable in Var(G(t)) is adopted once
in one of t’s input arc expressions, e.g., in net, the variable u isusedin t;’s input

arc expression, A(p,,t,)=var u, only. For a variable v adopted in an arc

expression A(p,t), Type(v) needstoincludein C(p).

Assigning the variables of a transition t with values is called transition binding,

defined in Definition 2.7. All bindings satisfying t’s guard expression are stored in

B(t) . The form of binding,, b can be represented as

I

b=(v,=val,v,=val,,..,v,=val,)- ‘where v, is assigned with value val ,
var(G(t))={v,|1<i<n} . In net’, there-are two bindings b,=(i=3) and

b,=(i=5) in B(t,).

Definition 2.7 (Transition Binding)

A binding of a transition t is a function b:Var(G(t))—>M , M is defined
in Definition 2.8, where Vv e Var(G(t))
1. b(v)=1(p,(c,val)), ie. the value val of the c-typed token in p is
assigned to variable v in A(p,t) andreplaces v of G(t), and

2. Type(v)=c, i.e., the type of variable v is the same as that of the selected

token.
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A token element is a pair (p,(c,val)) where peP and (c,val)eVE,, while a

binding element is a pair (t,b) where teT and beB(t). The set of all token

elements of a CPNet is denoted by TE while the set of all binding elements is
denoted by BE. In net, the color sets associated with p, and p, are U and |

while p, and p, are associated with U and I, respectively. The TE of net is

composed of the token elements in the two sets,

{(p,(UX))(p,(UY))IP=(ps s p,)} and

{(P:(1,0),(p,(11)),(P,(1,2)) [ = (P11 P, | P5)} -
The BE are (t,,b,), (t,b,) and (t,b,) where by=(u=x,j=1), b,=(i=0)

and b,=(i=1).

Definition 2.8 (Marking)

A marking M is a multi-set over 'TE "while a step Y is a non-empty and

finite multi-set over BE. The initial marking M, is obtained by initialization

function mj:

V(p,(c,val)) eTE: M, (p,(c,val)) = (m0 (p))(c,val).

The set of all markings and steps are denoted by M and Y, respectively.

Definition 2.9 (Step Enabled)
Astep Y isenabled in a marking M, obtained by a marking function m, if

and only if the following property is satisfied:

vpeP: Y A(p,t)(b)cm(p)

(t,b)eY
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Let (t,b)eY. The tokens in A(p,t)(b), a multi-set over VE, yielded by the
arc expression A(p,t) upon b, are removed from p when t is fired with

binding b. By taking all binding elements (t,b)eY, the tokens in the union of

multi-sets generated by these binding elements are removed from the input places

concurrently when Y occurs. Each binding element (t,b) in Y must be able to get

the tokens specified by A(p,t)(b), without having to share these tokens with other

binding elements of Y.

Let step Y be enabled in the marking M. When (t,b)eY, t isenabledin M
with the binding b. If (t,b,),(t,,b,)eY and (t,#t,)a(b,#b,), (t,b;) and
(t,b,) are enabled concurrently in marking M. If |v(t)>2 , ie, 3i;

(t,b,.),(t,bl.)eY and i may be j; t«isenabled more than one time concurrently.

Definition 2.10 (Fire a Step)

When a step Y is enabled in a marking M,, generated by marking function
m,, marking function m, generating the next marking M, from M, can be

defined as:

t,b)eY

VpeP:m, (p):(ml(p)— Z A(p,t)<b>J+(

(t,b)ey

) A(t,p)(b)

Multi-set >  A(p,t)(b) represents the tokens removed from p, while

(t,b)eY

Y A(t,p)(b) denotes the tokens added to p. M, is directly reachable from

(t,b)eY

M, by the occurrence of the step Y, denoted as M,[Y >M, .
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The initial marking M, , generated by m, , of net is

1'(po,(U,x))+1'(p.,(1,0))+1'(p,,(1,1)) +1'(ps,(1,1)) - Let two sequential steps Y, and
Y, be {(t,,b,)} and {(t,b,),(t,,b,)}. Before executing Y, the values of the tokens,
1'(po,(U,x)) and 1'(p,,(1,1)) , are assigned to variable u and j upon

b,=(u=x,j=1) for evaluation, i.e., u is assigned with x of the token in place p,,

while j is assigned with value 1 of the token in place p,. In this case, the
evaluation result is true, hence Y, isenabled in M, and it may be fired. When Y, is

fired, one U-type token with value x and one I-type token with value 1 are
removed from p, and p,, respectively, and two U-type tokens with value x are

added into p, . The result is shown in Figure 2.3.

In Y,, transition t, is enabled twice concurrently by binding bl:<i:0> and
b,=(i=1) , i.e, the two binding .elements in Y, are able to remove the
corresponding  tokens,  expressed  as  1'(p,(U,x))+1'(p,(1,0))  and

1'(p,,(U,x))+1'(py,(1,1)) respectively, from p, at the same time.

Type U = (x, v} ;|
Type I=1{0,1,2};
Varu:U; |
Vari, j:1;

x &&

Var u

Do 2(x)

o
_/\
>—;

Var j

;

D2

Figure 2.3 The result net of firing step ;.
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The definition of occurrence sequence of CPNets, omitted here, is similar to that

of PNets, given in Definition 2.5.
2.3. Time Coloured Petri Nets — TCPNets

CPNets with timing constraints can be classified according to the ways of
specifying timing constraints, a timing interval [16][17][23] or a specific time [18], or
the elements of the net, place [19] , transition [16][18] and arc [15][20], these
constraints are associated with. When timing constraints are associated with a
transition, the constraint can be interpreted as (1) a delay time [18] [23], i.e., when the
transition is fired, its input tokens are removed, but the output tokens is created until
the delay time associated with the transition has elapsed, (2) a holding duration [21],
i.e., when the transition is fired, its input and output tokens are removed and added
concurrently, but the succeeding transition-is. enabled when the token created time
within the holding duration denoted and (3) an-firing interval [16][23], i.e., the
transition can be fired in its firing interval.only. For such transition, the mechanism of
removing and adding tokens is the same as that of a transition associated with a delay
time.

A common approach [23] is to associate a time stamp, denoted as @r, reR,
with token, and attach a restricted firing interval, denoted as [minmax] ,
min,max € R, with transition. The transition output arc(s) can associate with a time
requirement At to denote how many time units an execution of the transition takes.

When a token is associated with a time stamp, the token is timed. If the time
stamp is @r, the token is available to consume after r, i.e., r is the earliest time at
which the token can be used. Otherwise, the token is untimed and always ready to be
used. For a timed transition t, there is a restricted firing interval [minmax]

associated with t which is a pair of real numbers referred to the minimum and
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maximum firing time, respectively, i.e., t can be fired between min and max
only. In addition, an execution of t takes At time units which is equal to or more
than 0. At is specified in t’s output arc expression(s). An untimed transition,
defined without restricted firing interval, can be fired when it is enabled. The firing
mechanism of untimed transition is the same as that defined in CPNets.

In a TCPNet, timed CPNet, a global clock is introduced. Let an activity,
associated with a restricted firing interval [min,max], be presented with a transition
t inthenetand t be firedat 7, min<z<max. An execution of t takes At time
units. The value of the time stamp(s) associated with the token(s), which will be
removed from t’s input place(s) when t is fired, needs to be less than z. When t

is fired, t creates atime stamp z+At for its output token(s).

Definition 2.11  (Timed Coloured Petri Nets)
ATimed Coloured Petri Net'is a 5-tuple . TNet =(CNet,,,l,,R,r;) Where
1. CNet=(P,T,F,%,V,C,G,A,m,) isa CPNetwhere
(1) £=X,UZ,, i.e., the colour sets (types) in X can be divided into two
disjoint sets, £, and X,. The elements in X, are untimed and the

elementsin X, aretimed, i.e., a token typed with ce X, is associated

with a time stamp,

(2) VfeF, the variables Var(A(f)) usedinarc f aretimed/untimed over
the timed/untimed subset of C(p(f)) and

(3) VpeP , mo(p) generates a timed/untimed multi-set over the
timed/untimed subset of C(p). The details are given in Definition 2.12.

2. I, is an interval function I, :T—INT where INT={[x,y]e RxR|x<y}.
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For a transition t, teT, the function assigns a firing interval [min,max].

3. I, is a time function I,:F—>R where R={AteR|At>0}. For an arc
(t,p), (t,p)eF, the function assigns the time units consumed by executing

t on (tp).

4. R, RcRR, isaset of time values, called time stamps.

5. r,, r,eR,isthe start time.

The definitions of the set of transition bindings B(t), token elements TE,

binding elements BE and step Y are the same as those of CPNets.

This section applies the TCPNet net (shown in Figure 2.4), designed with four
timed tokens and two timed transitions, to.explain how a TCPNet works. We declare
that R includes time stamps 100,:200 and 220. There are four tokens typed with the
colour setsin £, X=X . The U-typed token, which is assigned with value x and
located in place p,, is available after time 100. The three [-typed tokens, which are
assigned with value 0, 1, 1 and located in place p,, p,, p,, are available at 100,
respectively. Transition t, and t, are associated with restricted firing intervals

[180,220] and [200,250], respectively. An execution of t,/t, takes 20/30 time units.

' Type U= {x,y} timed; | _
L'(po,(U.x),@100) Type I = {0,1.2) timed:

Varu:U;

Vari,j:1; o T
2(x) @+2va; i+1(x) p Var i+1(x) @HOO

b b2
to[180,220] (o1 (1.0). @ 100)+ 11200,250]
1'(p1,(L,1),@100)

ps  1'(ps3(L,1),@100)

L]
3
]

S
A
K

h=l
S

Varu

Figure 2.4 Introducing time constraints into the CPNet shown in Figure 2.1.
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Definition 2.12  (Timed Multi-set)

A timed multi-set tm, over VE, of a place p in CNet, is a function

tm:VE,xR—N, such that

1. tm(c’va,)=2tm((c,val),r), an non-negative integer, denotes the number of

reR

c -typed tokens associated with val in p,

2. the time stamps associated with these c-typed tokens are listed in
tm[(c,val)] =["Me’---'rw"’rtm(c,m,)J

where the time value r, for tm((c,val),;)#0, 1<i<tm_,,, are listed.

appears tm((c,val),r) times in the list and tm[(c,val)] is sorted, ie.,

r<r 1<i<tm

=il (cval) *

Aformal presentation of tm of pis > “tm_ ., '(c,val)@tm[(c,val) ].

(c,val)eVE,

In net, formal presentations of the tokens located in place p,, p,, p, are

1'(U,x)@[100], 1'(1,0)@[100]+1'(1,1)@[100] and 1'(1,1)@][100], respectively.

Definition 2.13  (Timed Marking)

Given a Timed CPNet TNet=(CNet,l,,I,,R ), a timed marking (state) of

sl sl

TNet can be denoted by a pair (M,r), the untimed marking M is a multi-set

over TE of CNet and generated by marking function m attime r such that
V(p,(c,val)) eTE:I\/I(p,(c,val))r :(m(p)r)(c,val) .

The initial timed marking can be denoted by a pair (M,,r,). The sets of all

untimed and timed markings are denoted by My and Mr, respectively.
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Upon Definition 2.13, the initial timed marking (M,,r,) of net is
((Pos(U,x))+2'(py,(1,0)) +1'( Py, (1,1))+1 (5, (1,1)),@100)  where

My =1'(po, (U, x))+1'(py,(1,0))+1'(py,(1,1))+1'(ps,(1,1)) and r,=100.

Definition 2.14  (Step Enabled)

Given a Timed CPNet TNet=(CNet,l,l,,R,r;), a step Y of TNet is

enabled in a timed marking (M,,r,) at time r, if and only if the following

properties are satisfied:

(1) VpeP: ), A(p,t)<b>r2 cm,(p),

(t,b)eY

(2) n<r,

(3) r, isthesmallest value of ‘R whichsatisfies (1) and (2).

Let step Y of TNet be enabled in"(M,r) at the smallest time r, in R,
r,<r, . For each binding element (t,b)eY, the tokens in A(p,t)(b), a multi-set over

VE, vyielded by the arc expression A(p,t) upon b attime r,, are associated with
time stamps whose values are equal to or smaller than r,.

The set of time stamps of net, marked with (M,r,) where r,=100, is
R={100,200,220} . Let two sequential steps Y, and Y, of net be {(t,b,)} and

{(t,b,),(t,,b,)}. The two steps are enabled at r, and r,, respectively. The restricted

firing intervals of transition t, and t, are [180,220] and [200,250]. In Section O,

the two sequential steps can be fired sequentially without concerning time constrains.

Here, we concern the firing intervals of transition t, and t,.

23



For the case of Y;, Y, isenabled when r,=200 only, because ‘200’ is the only
time stamp in R between firing boundary 180 and 220 of t,. If Y, is fired at 7,

200<7,<220, one U-type token with value x and one I-type token with value 1

are removed from p, and p,, respectively, and two U-type tokens with value x
are added into p,. Atime stamp @7,+20 is created for the two added tokens. The

timed marking of the result net, shown in Figure 25, is

1'(p,,(1,0))@100+1'(p,,(1,1))@100+2'(p,,(U,x))@7,+20. After firing v, ¥, can
be enabled at r,=220, if 7,+20<220. For the case of Y,, Y, can be enabled
when 7,=200 only. If Y, is fired at z,=220, the two binding elements (t,,b,)

and (tl,bz) in Y, are able to remove the.corresponding tokens, expressed as

1'(py,(U,x))@220+1'(p,,(1,0))@100 | and  1'(p,,(U,x))@220+1'(p,,(1,1)) @100
respectively, from p, at the same time; A time stamp @220+30 is created for the

four tokens generated by t, and added into p,.

Type U = {x,y} timed; |
! Type I = {0,1,2) timed;
§ Varu:U;
Vari,j: I,

,,,,,,,,,,,,,,

el
<
=<

Var u
Do

Varj

Varu

D2
to[180,220] t1[200,250]

b3

Figure 2.5 The result net of firing step ;.
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Definition 2.15  (Fire a Step)
When a step Y is enabled in a timed marking (M,r,) attime r,, generated
by marking function m,, marking function m, generating the next marking

(M,,r,) from (M,r,) can be defined as:

VpeP:mz(p):(ml(p)— > A(p,t)<b>er+(z A(t;P)<b>r2

(t,b)ey t,b)ey

Multi-set >  A(p,t)(b) represents the tokens removed from p , while

(t,b)eY

2. A(t,p)(b) denotes the tokens added to p. (M,,r,) is directly reachable

(t,b)eY

from (M,r,) by the occurrence of the step Y, denoted as (M,,1,)[ Y,r, >(M,,r,).

2.4. Timed CPNets with Hierarchy =H. PNets

A H[PNet defined in Definition 2.16is'a Timed CPNet with hierarchy, which is

defined as the followings:

1. Hierarchical Transition: A transition t in a H.PNet can denote a collapsed
sub-process whose expansion is another H. PNet. The pre-condition associated
with t has to be met before the execution of t’s corresponding net.

2. Hierarchical Token: Each token in a H] PNet is typed with a Petri net PNet,

called PNet type, accompanied an initiation marking M,. The set of markings

[M, >, reachable from M, is the color set of PNet type.
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Type PNet = {(0,1),(1,0)} timed;
Varin : PNet ; 3
Global clock : 100 time units/cycle
((PNet,(1,0))@10)
Var in- i —1'(0,1) @+20) 1'0,1)y=p —1'0,1)
=
Po b1 P2
t0[0,30] t1[50,100]
(@) An example of H. PNet.
10-1[10,30]
I M
N ¥ el \1((),1)@+2(
) J =
N ! L N Var i /\(0,\)@+20 .
1
b L
B ' 0200,10]
(b) The design of PNet. (c) The H.PNet net' of compound
transitiont,.

Figure 2.6/An example of H. PNet.
This section applies the H.PNet net, shown in Figure 2.6 (a), designed with
three places and two transitions, to explain how a H.PNet works. Let the initial

marking of net be 1'(p0,(PNet,(1,0)))@[1O] and transition t, be compound. A
PNet -type token is putted in place p, of net attime 10. The token is marked with
(1,0) while the place array of PNet is (p,,p,). The compound transition t, can

be expanded to net', shown in Figure 2.6 (c).

Definition 2.16 (Hierarchical Timed Petri Nets — H. PNets)

A Hierarchical Timed Petri Net IS a 5-tuple
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HNet =(TNet, TrSet, TkSet, TrFun,TkFun) where

1. TNet=(CNet,l,,,l;,R,r,) isa Timed CPNet, where the set of transitions T in
CNet=(P,T,F,X%,C,V,A,G,m,) can be divided into two disjoint sets, T, and
T.. The transitions in T, are atomic and the transitions in T. are
compound.

2. TrSet is a finite set of H. PNets each of which represents the expansion of a
compound transition in T.

3. TkSet is a finite set of PNets each of which represents the design of a data
typein 2.
4. TrFun is a compound transition mapping function, TrFun:T.— TrSet,

defined from T. to TrSet, TNet#TrSet. The number of nets in set TrSet

is equal to the number of compound transitions in set T, i.e., |TrSet|=|T|
and |TC|20. Each compound: transition“in T. is mapped into one of the

H. PNets in TrSet. Function TrFun is 1-1and onto.

5. TkFun is a type mapping function, TkFun:2 — TkSet, defined from X

into TkSet. The number of nets in set TkSet is equal to the number of

types in X, i.e., |TkSet|=|X| and |X|>0. Each type (color set) in X is

mapped into one of the PNets in TkSet. Function TkFun is 1-1 and onto.

Definition 2.17  (Weakly Connected Net)
A net, PNet or its extension, is called weakly connected if and only if replacing
all of its directed arcs with undirected ones produces a connected net, i.e., there is a

path between any pair of distinct nodes in the net at least.
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Definition 2.18  (H. PNet of Compound Transition)
Given two weakly connected HPNets, HNet and HNet', HNet=HNet', a

compound transition t of HNet is associated with HNet', TrFun(t)=HNet', if
and only if the following conditions hold. Let CNet' of HNet' be composed of
(P, T",F 2V, C",G'\,A'\m,).

1. The input and output places of t are transferred into P' ,

(In(t)wout(t))=P', ie., HNet' is started from the places in In(t) and

terminated at the places in Out(t) . There is a path between any pair of start
and terminated nodes at least,
2. |T'|>1, the number of transitions in- 7*~is-more than 1,

3. U C(p)gZ’, the types. (color sets) associated with the places in

peln(t)uout(t)

In(t)wout(t) areincludedin X' and

4. Vpe(in(t)uout(t)), C'(p)=C(p), ie. the types associated with p in

HNet are the same as that in HNet'.

Definition 2.19  (PNet of Color Set)

Givena H;PNet HNet and a weekly connected Petri Net PNet=(P,T,F,m,),
a type (color set) tp involved in HNet is designed with PNet , i.e.,
TkFun(tp)=PNet, if and only if the following conditions hold:

1. |P|>1, i.e., there is one or more place in P,
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2. VteT, |°t|Ht

=1,1.e., t hasexact one input and output places,

3. The initial marking function m,:P—{0,1} and > my(p)=1, i.e., an initial

peP

marking M, of PNet, generated by function m,, includes one token only.
From M, , all reachable markings include one token also,

VM, €[M,>:> m,(p)=1, 0<i<n and n=‘[/\/|0>‘

peP

The number of colors in color set tp is less than or equal to the number of

places in PNet. These colors are presented with the states in [M0 -

For simplicity, and without losing generality, we assume that each H. PNet has

two levels in its hierarchy only. When a H.PNet is designed with more than two
levels, the compound transitions located in-higher levels, 2 or more than 2, can be
recursively replaced by its finer nets. In addition, any H. PNet, restricted to start and

end with places, is weakly connected, i.e., there'is a path between any pair of distinct

nodes (places and transitions) in the net at least.
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Chapter 3. Business Process Modeling

In general, a business process is implemented with one or more private processes
(also called “process” in this thesis for short) for a business purpose. Each process is
designed for a distinct business role (e.g., a buyer, seller, or manufacturer) or entity
(e.g., a rule checking machine or banking system) involved. The participants acting
the appointed roles cooperate according to the processes assigned to produce a
product or service for a particular customer or market. Message sending is the only
way to create a communication between processes. We define messaging as the
(usually asynchronous) sending of a data item from a business role(s)/entity to other
role/entity(ies). A message flow is used:to:present the transmission of messages. A
business process specification, in-Definition 3.1; defines the interactions between
processes with message flow while the details of these processes are specified in their
own specifications. The core modeling elements in BPMN are adopted and shown in

Figure 3.1.

Definition 3.1.  (Business Process Specification)
A business process specification is a 7-tuple BP = (PP,A,M,/\/IF,/W—',PF,ﬁ) , Where
1. PP isasetof private processes, as defined in Definition 3.2,

2. A denotes the set of artifacts used in BP,

3. M denotes the set of messages used in BP,

4.  MF c(PPxPP) is a set of directed edges, called message flow, indicating the

sender-receiver relations,
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5. MF:MF—>M isa message function that maps each message flow into one of

the messages in M,

6. PF defines the set of resources that perform or are responsible for BP

7. P:PP—PF is a resource (onto) function that maps each process into one of

the resources in PF .

Cogtrol Flow
Control Data Flow D

Node Artifact

O E\[‘-_/_Iigssage Flow

Event

Process
(swimlanes)

Figure 3.1 The core modeling elements in BPMN.

A business process for resolving problem through e-mail votes is applied in this
thesis for demonstrating the usage of our formal model. The example is illustrated
from broad to narrow.

There are three roles, working group, manager and voter, responsible for the

voting business process, BP,,.. The assignments of the three roles, process P, ;.

P and P are described within their own swimlanes. The control and data

manager voter !

flows of the three processes are introduced in Section 3.2.4 and 3.3.4, respectively.

The participants acting working group, manager or voter execute P P or

workingG * " manager

P execution, message

voter

to solve an intended problem. In the beginning of BP,
31
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“issue list” is sent from a working group to its manager. And then, the messages in set

M, are transmitted between the manager and voters as the message flow shown in

vote

the business process diagram, displayed in Figure 3.2,

IssueAnnouncement,Vote,DeadlineWarning,
" | VoteResults,ChangeMessage '

These message flows can be presented formally as

IW—'(P P ) =IssueAnnouncement.

manager 7" voter

Working
Group

if-.-11.].: Issue List

)
5
=2]
1]
=
[
=
! ¥ ! ! T
s _l I o J l i'-_-f«“ﬁﬁ'rhm e Vote hMessage
" M21: Issues Announcement | M2 Dea‘iﬂmewa”"ng ’ i i iaaiaieass
| sy ; H !
i hM2.2: "JD‘E| M?\.i‘}: Vote Results |
i ; dr - b
w
oh
23
£
Q
35
=

Figure 3.2 E-mail voting process

3.1. Private Process Specification

Within business process BP, a process P, associated with performer 15(P),

consists of a network of actions designed to achieve part of work in BP. The
specification of process P contains a control flow and data flow.

A control flow defines a set of connected (parallel and/or sequential) actions and
indicates the start and end event(s) of the process. In addition, the intermediate events
occurring between the start and the end are described for the execution flow of
process, not for its start or end. For example, when a process instance catches a time

event, it can switch the execution from normal flow to some handling process.
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The control flow construction mechanism proposed in this thesis contains two
parts: basic and supplement. The basic construction mechanism, defined in Definition
3.3, is used to build an action network without including an activity involving event(s).
Otherwise, the supplement mechanism, defined in Definition 3.12, is adopted.

A process is specified with an explicit data flow in the thesis. A data, called
artifact, is passed from one action to another via explicit channels which are distinct
from the control arc between these actions. Each action takes a subset of the process
input or the output of its previous action(s) connected by the data flow and transforms
them into data for next action(s) or as process outputs. The details are described in
Section 3.3.

Here, we give a formal definition of private process in Definition 3.2.

Definition 3.2.  (Private Process Specification)

For a given business process BP, a process P- belonging to BP is specified

with a tuple P =(ControlFlow,DataFlow), where
1. ControlFlow represents a control flow specification of process P,

2. DataFlow represents a data flow specification of process P.

3.2. Control Flow Specification

Definition 3.3.  (Control Flow Specification)

Given a process P, the control flow associated with P is specified with a

6-tuple ControlFlow(P)= (G,V,A,M,I,O) , Where
1. G=(V,CF) represents the control flow of P with a directed graph, where

V is a set of vertices of which each represents an action and CFcV x V
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is a set of directed edges indicating the precedence relation between two

actions,

. V:V—T is type function that maps each action into one of the action

typesin T,where T={Event,Activity,ControlNode},

. A isasetofartifactsusedin P and AcCA,,,

. I=IAUIM s a set of process inputs, where IA, IAcC A, denotes the set of
artifact inputs and IM denotes the set of messages (sent from other

processes in BP) can be caughtat P,

. O=0AUOM is a set of process output, where OA, OAc A, denotes the
set of artifact outputs and OM denotes the set of messages threw out from

P,

. M is aset of messages used-in. P, McM,,- and M=IMUOM.

Definition 3.4. (Predecessors and Successors).

1. vv!sPredecessor ={U cV | (U,V) c CF}

vvlsPredecessor — {t cV | te VvlsPredecessor v (E'U c VvlsPredecessor te VulsPredecessor )}

2. Vet —fyeV|(v,u) e CF}

3. VvlsSuccessor ={t c V | t c VvlsSuccessor v (EIU c VvlsSuccessor : t c VuIsSuccessor )}

VisPredecessor comprises the set of vertices which are the source of an edge with

destination vertex veV . Each element u in V"**" js called a direct

predecessor of the vertex and is denoted by u—v. V" denotes the
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transitive closure of V! redeeser yy g yifredeceser s reachable from u. Each

IsPredecessor j

element u inV is called a predecessor of v and is denoted by u—»v.

v

Vssuccessor - and its transitive closure V**““**"are defined similarly.

3.2.1 Events

In a process, an event, defined in Definition 3.5, is an action that is handled by an
activity inside the process. An event affects the execution of a process; a process
changes its flow in response to events. Based on the time the events affect a process,
the events can be classified into three categories: start, intermediate, and end, defined

in Definition 3.6.

Definition 3.5.  (Event)

Given a process P whereG=(V;CF), eacheventin set E= {v eV|V(v)= Event}

can be described with the attributes listed followings:

1. EC, attribute represents the category of v, which is defined by E:E>C,
a classification function to map each event in E into one category in C,
where C={Start,End,Intermediate}.

2. ET, attribute represents the type of v, which is defined by E:E>T, a

type function to map each event in E into one type in T, where

T ={None,Message, Time}.

3. Timer, is an attribute to represent the timer set on v . The default value of

Timer, iS None.

4. InMessage,, InMessage, €IM,, is an attribute to represent the message
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expected to receive on v . The default value of InMessage, is None.

5. OutMessage, , OutMessage, €OM, , is an attribute to represent the

message dispatched on v . The default value of OutMessage, is None.

W Start Event

An event is a start event if only if when the trigger for the event occurs, a process
belonged is instantiated and a token is generated with identification for that instance.
B Intermediate Event

An event is an intermediate event if only if the event happens between the start
and end of a process. The event affects the flow of process, but does not start or
terminate the process. It can be used to show where messages are expected/sent or
where action delays are defined.
B EndEvent

An event is an end event if only if the event ends the process by consuming the

token generated from a start event.

Definition 3.6.  (Categories of Event)

Given a process P defined by control flow G=(V,CF), the events

belonging to P are in E:{veV|\7(v):Event}. E can be divided into three
disjoint sets, StartSet, EndSet, and InterSet, such that

W StartSet= {v €E|EC, =Start A(InDegree(v)=0A OutDegree(v)> O)} 4

B EndSet= {v €E|EC, =End A(InDegree(v)>0A OutDegree(v) = O)} ,

* Function lnDegree and OutDegree are used to denote the number of incoming and outgoing control

flows of action.
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B InterSet= {v €E|EC, =Intermediate A (lnDegree(v) =1AOutDegree(v)= 1)}

The number of events in StartSet and EndSet is more than 0.

There are many cases which could be considered as an event, e.g., the start of an
activity, the state change of a document or the end of a process. To simplify the
discussion, we restrict the use of events to include only those message or timing
events that affect the sequence or timing of activities of a process. The event types
concerned in our model are: none, message and time. How these events are executed
in a process is described in the followings:

B None event

When a process execution reaches an event node which is denoted with none, the
event occurs immediately. A formal definition of none event is given in Definition 3.7.
In general, this kind of event is a:start or end. event, because an intermediate event
denoted with none is omissible. “Thus, if a process modelled with none start or
intermediate event, the process can ‘be instantiated right away or terminated
immediately when reaching the end. The notations for none event in BPMN are

adopted and shown in Figure 3.3.

Definition 3.7.  (None Event)
Given a process P, a StartEvent of P instantiates the process without

waiting for a trigger if only if the following condition holds:

dStartEvent e P.StartSet : StartEvent.Timer = None A
StartEvent.InMessage = None A StartEvent.OutMessage =None

An EndEvent of P terminates an instance when reaching the end if only if

the following condition holds:
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JEndEvent € P.EndSet : EndEvent.Timer = None A
EndEvent.InMessage = None A EndEvent.OutMessage =None

Q O

Start Interm End
Event ediate Event
Event

Figure 3.3 The notations for none events.

B Message Event

When a process execution reaches an event node which is denoted with message,
the process continues upon when the message is received or submitted. If the event
node is a message start event, the process starts to wait for an inserting message.
When the message trigger for the event occurs, a new process instance is generated. If
the event node is a message intermediate event, there are two possible scenarios.
Firstly, the process is blocked till an-expected message is received. Secondly, a
described message is dispatched. The notations of a message intermediate event
associated with receiver and dispatcher-are presented in Figure 3.4(a) and (b),
respectively. If the event node is a message end event, the process dispatches a
message at the end of process. A formal definition of message event is given in
Definition 3.8. Notations for the message events in BPMN are adopted and shown in

Figure 3.4.

Definition 3.8.  (Message Event)
Given a business process BP composed of the processes in PP, there is a

process P in PP, a StartEvent of P, is associated with a message
receiver, receiving the expected message meg , if only if the following

conditions hold:

dStartEvent e P, .StartSet : StartEvent.Timer = None A

StartEvent.InMessage = meg A StartEvent.OutMessage = None
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M 3P cPP:MF P,P J=meg , the StartEventof P, receives meg sent
y y’x g X g

from P, P #P,.

An EndEvent of P_ is associated with a message dispatcher, submitting

message meg , if only if the following conditions hold:

JEndEvent € P,.EndSet : EndEvent.Timer =None A
EndEvent.InMessage = None AEndEvent.OutMessage = meg

M 3P cPP:MF(P,P,)=meg, the EndEvent of P submits meg to P,
y Xy g X g y

P #P, .

y
An InterEvent of P, can be associated with a message receiver or
dispatcher. When InterEvent is associated with a message receiver, the

following conditions hold:

dinterEvent e P, .InterSet rInterEvent.Timer = None A
InterEvent.InMessage = meg AlnterEvent.OutMessage = None

M 3P, ePP:MF(P,,P,)=meg, the'InterEvent of P, receives meg sent
from P, P =P

When InterEvent is associated with a dispatcher, the following conditions

hold:

- dinterEvent e P,.InterSet : InterEvent.Timer = None A

InterEvent.InMessage = None A InterEvent.OutMessage = Meg

u HPyePP:IW-'(PX,Py):meg, the InterEvent of P, submits meg to

P, P,%P,.

©@ @ @ @

Start Interm Interm End

Event ediate ediate Event
Event Event
(a) (b)

Figure 3.4 The notations for message events.
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B Timing Event

When a process execution reaches an event node which is associated with timer,
the process is blocked till the time set on the timer. In general, this kind of event is a
start or intermediate event, because a process blocked at the end could occupy a
resource which other processes are waiting for. Thus, the case is not concerned in our
model. When a process is modelled with a timing start event, the process can be
instantiated at the time (interval) specified. If a process is modelled with a timing
intermediate event, its execution could be blocked till the time specified or continue
within the interval specified. A formal definition of timing event is given in Definition

3.9. Notations for the timing events in BPMN are adopted and shown in Figure 3.5.

Definition 3.9.  (Timing Event)
Given a process P, a StartEvent of.P..isassociated with timer if and only

if the following condition holds:

dStartEvent e P.StartSet: StartEvent.Timer # None A
StartEvent.InMessage = None A StartEvent.OutMessage = None

An InterEvent of P is associated with timer if and only if the following

condition holds:

dinterEvent e P.InterSet : InterEvent.Timer = None A
InterEvent.InMessage = None A InterEvent.OutMessage = None

@

Start Interm
Event ediate
Event

Figure 3.5 The notations for the timing events.

In order to describe Timer attribute, we define a time set and a time interval, in

a similar formulation as [43]. A time set is a set of all non-negative reals:
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Time={x€eREAL|x>0} . A time interval from x to y is denoted as [x,y],
[x,y]eTimexTime. If zeTime, then ze[x,y] iff x<z<y. Also, ze[x,x] iff

x=z. The set of time interval is defined as Interval={[x,y]e TimexTime|x<y}. A

formal definition of Timer attribute is given in Definition 3.10.

Definition 3.10. (Timer attribute of Timing Event)

Given a set E, let the timing events of process P be contained in E. The
Timer attribute of event in E is defined by Time:E—>Interval, a timing
function maps each timing event to a static interval [min,max], which
specifies the earliest start time and the latest end time of event, min<max. A

dynamic interval [ﬁ,max} is used to:denote the active interval of event

during an execution.

Given two timing events, u and v, u isadirect predecessor of v and v is

set with a static trigger interval [min,max]. Let u be triggered at z(u) time. The
dynamic interval | min,max | of v is shifted by 7(u): min=Max{0,min-z(u)|
and max:Max{O,max—r(u)}. v is allowed to trigger after min units of time and

should be triggered before max .

3.2.2 Activities

In a process, an action typed with Activity is a unit of work which makes some
function progress. The activity might be atomic or compound. An atomic activity,
named as a task, is an indecomposable unit of work, while a compound activity
contains a group of activities within a process. To be compatible with BPMN, the
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tasks contained in another task are called the sub-processes latter. The set of attributes

common to both task and sub-process is defined in Definition 3.11.

Definition 3.11. (Activity)

Given a process P whose control flow is presented by graph G =(v,<:F ) the

activities in set Az{v eV| \7(v)=Activity} have the attributes listed as

followings:

1. AT, is an attribute to represent the type of v, which is defined by
A:A—T, a grain function, maps an activity in A into one of the two
types inT, where T={Task,SubProcess}.

2. Pre, and Pos, are the sets of logical expressions which are evaluated by

a workflow engine.

(1) Pre,is the pre-conditions of which each is evaluated to decide whether

activity v withina P instance can be started.

(2) Pos, is the post-conditions of which each is evaluated to decide
whether activity v is completed.

3. I,=IA,UIE, UIM, is a set of inputs, where IA, identifies all the artifacts

required to be accessed by activity v, IE, is a set of intermediate events

could be generated by direct predecessors (activities) for starting an

execution of v, and IM,, IM,cIM,, is a set of messages could be

received for starting an execution of the corresponding event-driven flow

splitting from v or continuing following execution. IE, and IM, are

defined for constructing event-driven flows.

4. 0,=0A,UOE, UOM, is a set of outputs, where OA, identifies all the
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artifacts produced, updated or destroyed by v, OE, contains the events
which can be threw out to direct successor from v and OM, ,
OM, c OM,, is composed of the messages which can be transmitted to other

process(es) from v . OE, and OM, are defined for constructing

v

event-driven flows.
B OA =0A]UOA, , where OA; and OA, are disjoint. OA,

represents the set of artifacts produced or updated by v and OA,

represents the set of artifacts destroyed by v .

. ST,(None|Ready | Active| Aborted | Completed) represents a state of v

during execution. The details are given in Definition 3.13.

. PF, defines the resource that performs or.is responsible for v, PF, =P(P).

. LT, =(None|Standard | Multinstance) defines the loop type of activity

v . By default, activity v is executed once and the value of LT, is None.

Standard and Multilnstance activities are defined in Definition 3.14

and Definition 3.15, respectively.

A process P, created by the basic construction mechanism, contains the

activities whose inputs and outputs are artifacts only, i.e., if activity v belongs P,

Il,=IA, and O,=0A,. When an activity involving event(s) is concerned, the

supplement construction mechanism in Definition 3.12 is applied.

Definition 3.12. (Supplement Construction Mechanism).

Given a control flow G=(V,CF), built by the basic construction
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mechanism, G can be divided into two weakly connected components,

G, =(V,,CF,) and G,=(V,,CF,), where V,nV,=¢ and CF,NCF,=¢. Let
activity u and v belongingto G, and G, respectively and (u,v)eCF and
InDegree(v)=0. When (|OE, NIE,[=1)A(IA, =4), supplement arc (u,v) can
be added into G. isExtended(u,v) isa boolean function to represent if arc
(u,v) isaddedinto G.
W isExtended(u,v)=true=>(InDegree(v)=1)A(|OE, NIE,|=1)A(IA, = ¢).
isExtended(u,v)=true indicates thatarc (u,v) isadded and activity v

is executed when the event et, ete(OE,NIE,), involved in u is triggered.
et.ET =Message or et.ET=Time can be represented with BPMN as the
diagrams shown in Figure 3.6 (&) or. (b)

If IM,=¢, VmegelM,, there is a message inflow (P,,P) of P, denoted
as MF(P,,P)=meg, P, #P.Mapping function IM.:IM, - OE,, a one-to-one
function, maps each message in IM, into one of the outgoing events in OE,,,

|OE,

>|IM, |.
® When |OE|=|M,|,
OF, = {et |et.ET = Message A (Elmeg eIM, : IMu(meg) = et)} :

® When |OE,|>|IM,|,
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OE, = {et €OE, |et.ET =Message /\(Hmeg elM, : IM, (meg)= et)}u

{eteOE, |et.ET =Time}
If (IM,=¢)A(OE,#¢), OF,={et|et.ET=Time}.

In addition, if OM,#¢ as the case shown in Figure 3.7, VYmeg eOM,,

there is a message outflow (P,P,), denoted as MF(P,P,)=meg, P#P,.

...........................................................

] 1
1 1
1 1
i ]
: i
' Activity u i
i '
i : i
| s

Activity u

i
supplement arc

1

|

i

)

i

)

i

)

.- H
Activity v E
i

)

a) An Activity with a Timing Event  (b) An Activity with a Message Receiver

Figure 3.6 The cases of supplement arcs.

———————————————————————————

®

Figure 3.7 An activity with a message dispatcher.

B Activity States

An activity may change its state when it runs in a workflow engine. In general,
there are five process states for an activity inside a process.
1. None: an activity has not been admitted to entry the execution pool of
workflow engine.

2. Ready: an activity does not wait for anything and is prepared to run if it is
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selected by workflow engine.

3. Active: an activity that is currently being executed.

4.  Aborted: an activity that cannot be completed because a specified event
occurs during its execution.

5. Completed: an activity that has been released by workflow engine after a
normal termination.

A formal definition of these states is given in Definition 3.13.

Definition 3.13.  (States of Activity).

For a given activity v, the state ST of an instance of v can be defined
by its incoming and outgoing data (artifacts, events and messages) and the
input and output set specified, I, =IA, UIE, UIM, and O,=0A, UOE, UOM, .

The default value of ST, is None.

ST, =(None|Ready | Active| Aborted | Completed)

Let I, =IA, UIE, UIM, be a setiof inputs received by v at run time,
where A, contains the artifacts propagated from the predecessor(s) directly
connected by data flow(s), IE, contains the events received from the

preceding activity connected by supplement arc(s) and IM, contains the

messages received from the preceding action(s) connected by message flows.

Let O,=0A, UOE, UOM, be a set of outputs submitted from v at run
time, where OA. contains the artifacts propagated to the successor(s) directly
connected by data flow(s), OE, contains the events submitted to the

succeeding activity connected by supplement arc(s) and OM, contains the

messages submitted to the succeeding activity(ies) and/or intermediate message

event(s) connected by message flows. In addition, 6,\4V:67L\;u6,\4¢, where
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OA, and OA, represents the sets of artifacts produced/updated and

destroyed, respectively. All the possible states of v are defined as follows:

When [, =IA, and O,=0A,,

B If (IA, =¢)A(OA, #¢), the default state of v is Ready .

m |f OAV\6I\AV=¢,the state of v is Completed .

B If (IA #4)A(OA, =¢), the default state of v is None.

® Once IAV\I/AAV:¢, ST, is transferred from None to Ready.

B If (IA, #¢)A(OA, #¢), the default state of v is None.

® Once (lAv\bAé\vzqﬁ)/\(OAv\d\Av:OAv), ST, is transferred from
None to Ready.

® Once (IAV\ﬁv:¢)A(OAV\5AchAV), the state of v is
Active.

® Once (IAV\LAAV=¢)A(OAV\OAAV:¢), the state of v is
Completed .

If OM, = ¢, the messages defined in OM, are submitted when the state of

vis Completed. In addition, if there is an activity u, a direct predecessor of v

connected by supplement arc, |OE, NIE,[=1, ST,=Active and ST, =Ready.
B When IM,=¢,

® if ((OEumlEv)\éfu:qﬁ), ST, is transferred from Active to

Aborted and ST, is transferred from Ready to Active.
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B When IM,#¢ and 3megelM, : IM.(meg)e(OE, NIE,),

® if (3ImegeiM.:IMi(meg)e(OE, NIE,))A((OE, NIE, ) OE. =¢) ,
g g u v u v

ST, is transferred from Active to Aborted and ST, is

transferred from Ready to Active.

B When IM,#¢ and SmegeIM,:IMu(meg)e(OE,NIE,),

o |f ((OEumlEv)\OAEu:¢), ST, is transferred from Active to

Aborted and ST, istransferred from Ready to Active.

B Loop Activity

There are three different loops of activity, None, Standardand Multilnstance.
None-loop activities are executed-once only. Except such activities, the execution
times of activities implemented :with the remaining two types are decided by the
expression evaluation results.

There are two standard loop for activities: While and RepeatUntil . The
expressions associated with these loops return with boolean value. A While loop
evaluates the expression before the activity is performed. A RepeatUntil loop
evaluates the expression after the activity has been performed. Obviously, the least
time of RepeatUntil (R)/ While (W) execution is 1/0. During an execution, the
number of iterations is bounded and recorded. These specific attributes of standard
loop activity are defined in Definition 3.14.

The numeric expression for an activity, designed with Multilnstance loop, is
evaluated once only before the activity is performed. The evaluation result is an
integer that specifies the number of times that the activity will be repeated. There are
two variations of the multi-instance loop where the instances are either performed
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sequentially or in parallel. When a multi-instance loop is performed in parallel, the
execution of these instances can be categorized into three cases: (1) all instances
continue to execute succeeding flow when that instance is completed, (2) all instances
continue to execute succeeding flow after one of the instances is completed and (3) all
instances continue to execute succeeding flow after all of the instances are completed.
In case (1), the number of instances available for the succeeding flow of activity v is
the same as the number of v’s instances. In case (2) and (3), there is only one
instance available for the succeeding flow. Thus, the number of the instances which
will be available for the continuing flow is determined by the way adopted. The

specific attributes of multi-instance loop are defined in Definition 3.15.

Definition 3.14. (Attributes of Standard Loop Activity)

Given an activity v,when LT =Standard, v has some additional attributes

listed followings:

1. BooleanExp, is the set of routing conditions of which each is evaluated

before or after the execution of v,

2. Counter, is an integer used at run time to record the number of iterations

executed,

3. Maximum, is an finite integer by which the number of loops executed is
bounded, Maximum, >Counter, ,

4. EvTime, =(Before| After) attribute denotes that BooleanExp, is evaluated

before or after the execution of v .

49



Definition 3.15. (Attributes of Multi Instance Loop Activity)

Given an activity v,when LT =Multilnstance, v has some additional

attributes listed followings:
1. NumeExp, isanumeric expression to decide the number of instances of v .

2. Order, =(Sequential | Parallel) attribute denotes the instances of v are
performed sequentially or in parallel.

3. Counter, is an integer and only applied for v whose instances are
performed sequentially. The integer is used at run time to record the number
of iterations executed.

4. FlowCond, =(None|One| All) .attribute. sets the way of controlling the
instances of v executed in parallel.

(1). When FlowCond, =None’;all instances of v continue to execute

succeeding flow when that instance is completed.

(2). When FlowCond,=One , all instances of v continue to execute

succeeding flow after one of the instances is completed

(3). When FlowCond, =All , all instances of v continue to execute

succeeding flow after all of the instances are completed

Notations for loop activity in BPMN are adopted and shown in  Figure 3.8.

[+]

Sub-process

(o] o)
Standard Multi-
Lagp Instance o) 1]

Standard Loop  Multi-Instancel oop

Figure 3.8 Notations for loop activities.
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3.2.3 Control Nodes

In a process, an action v typed with ControlNode is associated with a
mechanism which is used to control how the activities interact as they converge and
diverge within a process. A formal definition of control node is given in Definition

3.16.

Definition 3.16.  (Control Node)

Given a process P whose control flow is ControlFlow(P) presented by

graph G=(V,CF), the control notes in set C:{vev|\7(v):ControlNode}

have the attributes listed as followings:

1. CT, is an attribute to present the control mechanism of v which is defined

by (T:C—>T,a type function-maps each activity in C into one of the

four types of control mechanism in- T, where
T= {Exclusive,lnclusive,Complex,ParaHeI} .

2. IA, isasetidentifying all the artifacts required to be accessed by v .

A group of actions can be bounded by a pair of control nodes. Each pair and the
actions bounded by them are called control block. Given a process built by basic
construction mechanism, the structure of the process is sequential, when no control

node is included. Otherwise, there may be control blocks in the process. When any

two of control blocks in the process, B, and B,, are nested but not overlap,

(B,=B,)Vv (B, =B,), the level of an action belonging to either blocks, applied for the

followings, can be defined as the definitions given in Definition 3.17 and Definition

3.18.
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Definition 3.17. (Ancestor Blocks and Level of an Action)

VveV, let v.Block denote the parent control block containing v .

AncestorBlock comprises the set of all control blocks that contain v,

AncestorBlock(v) ={b |b = v.Block v (b € AncestorBlock(v.Block.splitNode)}

In addition, the cardinality of AncestorBlock(v) identifies the nested level of

V.

‘ AncestorBlock(v) ‘ if vev

Level(v) = {

‘ AncestorBlock(v.splitNode) ‘ if v represents a control block

Definition 3.18. (Common Ancestor Blocks and Nearest Common Ancestor
Blocks)

Given a set of vertices,-v,,...,v,, -Bi IS a common ancestor block

1V

ofv,,...,v, ifand only if the following holds:

n

Bie ﬂAncestorBlock(vi) , denoted by Bi € CAB(v,,...,v,) .

i=1

Bi is the Nearest common ancestor ofv,,...,v, if and only if the following

n

holds:  VBje CAB(v,...,v,) ABj#Bi:Level(B) <Level(B;) , denoted by

NCAB(v,,...,v,) =Bi.

When a control node v is constructed with one incoming edge and more than

one outgoing edge, InDegree(v)=1A0OutDegree(v)>1, v is named as split node.

Otherwise, v is called join node, constructed with more than one incoming edge and

one outgoing edge, InDegree(v)>1AOutDegree(v)=1. There are four different

mechanisms, Exclusive, Inclusive, Complex and Parallel, defined in our model.

Except the Complex mechanism, the remains can be pairwise applied on split and
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join nodes. The Complex mechanism can be applied on join node only. Upon the
ways of adopting mechanism(s), we divide the control blocks developed into two
groups: fundamental and complex. In the fundamental group, the control blocks,
exclusive, inclusive, and parallel, are bounded with split and join nodes designed with
the same mechanism. Formulations of these four types of blocks are given in

Definition 3.19, Definition 3.20, and Definition 3.21, respectively.

Definition 3.19.  (Exclusive Control Block)

Given a process P whose control flow is ControlFlow(P) presented by

graph G=(V,CF), there is a exclusive control block (v,k) in P, such that

v,keV: (\7(v) =V(k)= ControINode)/\ (Level(v) = Level(k)) and
(v.CT =ExclusiveSplit) A (k.CT = ExclusiveJoin).

During an execution, v takes one of its outgoing flows to continue upon one
of the two sources: data-based and event-based.
B v isa DataBasedExclusiveSplit node if and only if v is associated
with an expression ChoiceExp which is evaluated by using the data

propagated from direct data-flow predecessor(s). Besides, v.IA=¢g.

B v isan EventBasedExclusiveSplit node if and only if
(A(u)=Task A 1M, # ) v

VU c VvlsSuccessor |
(ueP.nterSet: u.Timer # None v u.InMessage # None)

and the outflow selected to run is the one whose event occurs first.
Besides, v.iA=¢.
The outgoing  flows of  either DataBasedExclusiveSplit or

EventBasedExclusiveSplit node are merged at DataBasedExclusiveJoin node
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k . The following process is continued through the execution reaches

DataBasedExclusiveJoin node.

————————————————————————————————————————————

- —{@7
Y Y

= -l - 2
~ ~

Event 2
} @
) . Eventn
(a) Data-based Exclusive Control Block (b) Event-based Exclusive Confrol Block

Figure 3.9 Samples of exclusive control block.

Definition 3.20. (Inclusive Control Block)

Given a process P whose control flow is. ControlFlow(P) presented by
graph G=(V,CF), there is an inclusive control block (v,k) in P, such that
v,keV:(\7(v):\7(k):ControINode)/\(Level(v):Level(k)) and

(v.CT =InclusiveSplit) A(k.CT = InclusiveJoin) .

For v, an InclusiveSplit node, one to all of its outgoing flows are selected
to run. The number of executive outflows is determined by the expression
ChoiceExp associated with v, which is evaluated by the data propagated from
direct predecessor(s), v.IA= ¢, connected by data flow(s).

For k, an InclusiveJoin node, is used to synchronize all the executive

branches before continuing to the next action.
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Figure 3.10 A sample of inclusive control block.

Definition 3.21. (Parallel Control Block)

Given a process P whose control flow is ControlFlow(P) presented by
graph G=(V,CF), there is a parallel control block (v,k) in P, such that
v,keV:V(v)=V(k)=ControlNodeLevel(v)=Level(k) and

(v.CT =ParallelSplit) A (k.CT = ParallelJoin)-

For v, a ParallelSplit node, all its outgoing flows are selected to run and

k,an ParallelJoin node, is used to synchronize all these executive flows before

continuing to the next action.

Y
_y _y
~

Figure 3.11 A sample of parallel control block.

A loop is bounded by two DataBasedExclusive nodes as the samples shown in
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Figure 3.12. The actions bounded within the two nodes can be executed repeatedly
based on a given boolean condition. The pair of control nodes and these repeated

actions bounded by them are called loop control block, defined in Definition 3.22.

Definition 3.22.  (Loop Control Block)

Given a process P whose control flow is ControlFlow(P) presented by graph

G=(V,CF), there is an loop control block (v,k) in P, such that

B when v is associated with a boolean expression BooleanExp, which is
evaluated before each iteration, the control block is called WhileLoop

control block.

v,keV: (\7(v) =V (k)= ControINode) A (Level(v) = Level(k))
(v.CT =Exclusive) A (InDegree(v) =2 OutDegree(v)=2)

(k.CT =Exclusive) A (InDegree(v) = 2 xOutDegree(v)=2).

B when k isassociated with a boolean expression BooleanExp, which is
evaluated after each iteration, the structure is called RepeatUntilLoop

control block.

v,keV: \7(v) = \7(k) = ControlNode A Level(v)=Level(k)
(v.CT =Exclusive) A (lnDegree(v) =2 AOutDegree(v) :1)

(k.CT =Exclusive) A (InDegree(v) =1AOutDegree(v)= 2) :
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(a) While Loop (b) RepeatUntil Loop

Figure 3.12 Samples of loop control block.

In addition to the fundamental blocks, the complex blocks, bounded with two
control nodes associated with different mechanisms, are included in our model. In
such block, the flows are split from either InclusiveSplit or ParallelSplit node and
joined at a ComplexJoin node. There are three advanced join mechanisms,
discriminator , Multiple Merge and N out of M join proposed in [36], which can be
implemented with the ComplexJoin node. The details of these advanced
mechanisms are described as followings:

1. Discriminator

The ComplexJoin node continues to execute the following flow when one of
its inflows is completed. The remaining inflows are excluded, even they are
completed later.

2. Multiple Merge

Each inflow of the ComplexJoin node continues to execute succeeding flow

when that flow is completed.
3. N outof M join
The ComplexJoin node associated with an expression which is evaluated to

synchronize the first M incoming flows from N executive inflows, N>M.
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(a) A complex control block built with a inclusive split node. (b} A complex control block built with a parallel split node.

Figure 3.13 The samples of complex blocks.

The twelve control blocks concerned in this thesis are listed in Table 3.1. We
assume that the specific correlations between the two control nodes of these blocks

are maintained.

Table3:1 Control blocks

Control Block Split Control Node Join Control Node
DataExclusive DataBasedExclusiveSplit DataBasedExclusiveJoin
EventExclusive EventBasedExclusiveSplit DataBasedExclusiveJoin
Inclusive InclusiveSplit InclusiveJoin
Parallel ParallelSplit ParallelJoin
WhileLoop DataBasedExclusive DataBasedExclusive
RepeatUntilLoop DataBasedExclusive DataBasedExclusive
ParallelDiscriminator ParallelSplit ComplexJoin ( Discriminator)
InclusiveDiscriminator InclusiveSplit ComplexJoin ( Discriminator)
ParallelMultiMerge ParallelSplit ComplexJoin ( Multiple Merge)
InclusiveMultiMerge InclusiveSplit ComplexJoin ( Multiple Merge)
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ParalleINtoM ParallelSplit ComplexJoin (N out of M join)

InclusiveNtoM InclusiveSplit ComplexJoin (N out of M join)

3.24 A Control Flow Example: a Process of Resolving Issues through E-mail

\Votes

The message flows in Figure 3.2 indicates that e-mail voting process BP, . is

vote

divided into three private processes, P P and P Our control flow

workingGroup ! manager voter *

model is then adopted to construct the details of these private processes from a view
point of process control, i.e., the actions assigned to the three involving roles, working

group, manager and voter, are defined and shown in Figure 3.14.

BP

vote

has turn cycle of a week. Private process P is instantiated at 9 in

workingGroup
the morning on each Monday. First of all, the working group involved checks its

status. If the status of the group-is.inactive, the process instance is terminated.

Otherwise, the issues raised in the group are listed and a manager is notified. Process

P instantiated with the notification and the manager, responsible for the process

manager !
instance, reviews these issues proposed. The review results are announced to voting

members, respectively. Each announcement instantiates a P

voter

process with one

voting member and the process has to complete its activity before Friday.

Manager collects votes through executing sub-process SP,, whose detail flow is

shown in Figure 3.15, where there are three control blocks, Parallel(PS211,PJ211),

DataExclusive(DaES211,EJ211) and WhileLoop(EvE211,DaE211). The latter two

control blocks are located in two different branches of the control block

Parallel(PS211,PJ211).
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Figure 3.14 The control flow of the business process for resolving issues.
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Figure 3.15 The expansion of Collect Vote sub-process.

The manager reports the voting results to voting members when the timing event
involved in SP,; occurs, i.e., the supplement flow of SP,, is executed. When the

number of votes is more than the number specified on the condition of DaES,,, and

all the issues listed are done by working group, the instance of P_ terminates.

anager

Otherwise, such as insufficient votes, the manager re-announces the vote with
warning to the voting member(s) who has not vote in the restricted interval. For the
unsolved issues, the manager reduces the number of choices to two and re-announces

the vote to the voting members. These two cases are respectively handled by the

actions bounded within two pair of control nodes, (DaE52.4,DaE2:L) and

(DaES2.3,DaE21) . The above actions execute repeatedly until the conditions

associated with DaES2.4 and DaES2.3 are satisfied.

3.3. Data Flow Specification
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3.3.1.  Artifacts and Artifact Operations

Artifacts are the information entities involved in a process, including the input
data to the process, the intermediate data produced within the process, and the (final)
output data from the process. An artifact is an atomic data item (e.g. a number, a
character string, or an image) or a collection of atomic data items (e.g. a document).
Intuitively, all artifacts participating in a workflow execution must be pre-defined in a
process specification. Each artifact contains a set of legal operations for its internal
data. A data-based action designed to manipulate certain artifact can work only with
the legal operation(s) for the artifact. From the data storage point of view, each
artifact operation can be regarded as one of the following operations, regardless of its
semantic meaning:

1. Initialize: an operation that instantiates artifact(s) within a process.
2. Read/Update/Destroy: an operation that refers/modifies/deletes the artifact

instance(s) propagated from predecessor(s) or contained in input data only.

In general, an Initialize operation is used to create an artifact instance in a process.
Read and Update operations are then used to access the instance. Finally, a Destroy
operation is used to delete the artifact instance. Destroy operations are applied for
temporary artifacts created during the workflow execution, but may not be strict for

all artifacts.

Figure 3.16 shows the state transition diagram of an artifact with the above four
kinds of operations. ‘Uninitialized” represents the initial state of an artifact.
“Initialized”, “Updated”, and “Read” represent states after an Initialize, Update, and
Read operation is performed respectively. In addition, the artifact state is set to

“Uninitialized” after a Destroy operation.
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Initialize Update  pp:ialize

Figure 3.16 The state transition diagram of an artifact.

3.3.2.  Artifact Usages

Based on Definition 3.11, a usage relation between a data-based action and an

artifact can be defined as follows:

Definition 3.23. (Consumer, Producer, Updator, and Destroyer Actions of an

Artifact)

For a given artifact d, the memberships between artifactd and I, O], and

O, can be applied for identifying the usage of artifact d at action v. All the

possible usages are categorized as follows:

+

. d¢ OA . . .
W if delA and {d ", vis called a Reader(Action) of artifact d.
¢ OA,

B if delAvand deOA;, vis called an Updator(Action) of artifact d.
B if delA, and deOA,, vis called a Destroyer(Action) of artifact d.
B if delA, anddeOA_, vis called a lllegal Destroyer>( Action) of artifact d.

B if dglA and deOA;, vis called a Producer(Action) of artifact d.

® The illegal destroyer is not concerned in our model because the activity destroy artifact arbitrarily. Any useful

artifact could be destroyed by the activity during the workflow execution.
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+

_ deOA _ .
W if delAsand {d , v is called an Irrelevantor(Action) of artifact d.
g OA,

In addition, ifd €IAv, v is generally called a Consumer(Action) of artifact d

and ifd € OA_ , v is generally called a Writer(Action) of artifact d.

Definition 3.24. (Consumer, Writer, Updator, Destroyer, Producer and Reader

Action Sets of an Artifact).

B VO™ =fyeV|delA} is called the Consumer Action Set of artifact d.
B V' ={veV|deOA'} iscalled the Writer Action Set of artifact d.

W VP =Ly eV |delAv and d €OA '} isccalled the Updator Action Set of

artifact d.

B Ve =fveV|delA, and d €0A;} s called the Destroyer Action Set

of artifact d.

B Vel —fy eV |dglAsand d e OA’} s called the Producer Action Set of

artifact d.

B V% =Ly eV|delA, dg OA’ and d ¢ OA }is called the Reader Action

Set of artifact d.

3.3.3. Definition of Data Flow
There are three artifact transmission models identified by Aalst in [37], which are:
(1) global data store, (2) integrated control and data channels, and (3) distinct control

and data channels. The model implemented with distinct control and data channels is
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an easier way to represent the transmission of authorized artifacts [44]. Artifacts are
transmitted from a data-based action to its following action(s). The transmissions are

represented with data flows, defined in Definition 3.25.

Definition 3.25.  (Data Flow Specification)

For a given business process BP, one of its private process P is associated
with cOntrolFlow(P):(G,V,A,M,t,o) where G=(V,CF).
The data flow  associated  with P is  specified  with

DataFlow (P)=InDataFlow (P)UInterDataFlow (P)uOutDataFlow(P) , where
| InDataFlow(P)z{(d,v)eleV|vevfc"”s”'"e'} is a set of incoming

data flows where an element (d,v) denotes the inputted artifact d,

del, consumed by v.

m  interDataFlow(P)={( (v ),d)&{VaxV)x A|ve VS mypermme |

is a set of intermediate data flows where an element ((u,v),d)

presented by a directed edge to indicate artifact d sent from u to
consumer v, a successor of u.

When there is no incoming data flow of u indicating artifact d sent
from preceding action or included in process artifact inputs, u is a
producer of artifact d. Otherwise, u consumes artifact d before

sending and delegating the access right of d to v.

] OutDataFlow(P):{(v,d)erOA[verW”ter} is a set of outgoing

data flows where an element (v,d) denotes process output d

contributed from v.
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For incoming data flow (d,v), the artifact input d can be read, updated or

destroyed by activity v. The three cases of incoming data flows are presented as that

shown in Figure 3.17 (a), (b) and (c), respectively.

[ — B r

d & d

- d : :
L» q ‘ |
----------- _)‘ N

(a) Activity Vv reads artifact (c) Activity vV destroys

input d (b) Activity vV updates artifact artifact input d

input d

Figure 3.17 Three cases of incoming data flows.

For intermediate data flow ((u,v),d), the artifact d is either produced by or

transmitted from action u, such as the two examples shown in Figure 3.18 (a) and (b),
to consumer v. v could read, destroy or update artifact d propagated from u.

The graphical presentations of the three consuming operations are shown in Figure

3.18 (b), (c) and (d), respectively. In addition, outgoing data flow (v,d) can be

presented as the examples shown in Figure 3.18 (a), where process output d is

contributed from v.

d

"
u

d

(a) Activity u produces artifact d.
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........... Destroyer
i v
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1 ”Dm

(c) Activity v destroys artifact d transmitted from u.

<
ﬂ{u} ...........

.3

d

(d) Activity v updates artifact d transmitted from u.

Figure 3.18 The four cases of intermediate data flows.

3.3.4. A Data Flow Example: a Process of Resolving Issues through E-mail
\Votes
Our data flow model is applied on the control flows of e-mail voting process

BP

vote !

shown in Figure 3.14, to illustrate the steps to present the data transformations

within BP

vote *

Figure 3.19 shows the result of representing business process BP

vote

with both control and data flows. The artifacts in BP are stated with details in

vote

Table 3.2. The artifact usages in the actions are listed in Table 3.3.
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Table 3.2 Artifacts in the E-mail Voting Process

Artifacts

Voting Tally

d,

Issue List

d;

Voting Results

ds

Vote

d;

Calendar

ds

s
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<
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Figure 3.19 The control and data flows of BPyt.
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Table 3.3 Artifacts Usages in the E-mail Voting Process

Action

dl

d2

d3

d4

d5

T1.1 Check Status of Working Group

T1.2 Send Current Issue List

T2.1 Receive Issue List

T2.2 Review Issue List

T2.3 Announce Issues

o | ™| O | ©

T2.4 Prepare Results

T2.5 Post Results on Websites

T2.6 Email Results of Vote

T2.7 Reduce Number of Voting Members and Recalculate Vote

T2.8 Re-announce Vote with Warning to Voting Members

T2.9 Reduce to Two Solutions

SP2.1 Collect Votes

T2.1.1 Check Calendar for Conference Call

T2.1.2 Moderate Conference Call Discussion

T2.1.3 Moderate Email Discussion

T2.1.4 Email Vote Deadline Warning

T2.1.5 Receive Vote

T2.1.6 Increment Tally

T3.1 Vote

T3.2 Receive Vote Results

R Reader U Updater P Producer D Destroyer

For the expansion of sub-process SP2.1 “Collect Votes”, shown in Figure 3.20,

there are two incoming data flows, (d3,72.1.1) and (d2,T2.1.5), one intermediate

data flow ((72.1.5,72.1.6),d2) and one outgoing data flow (T21.6,d4). For the

incoming data flow (d3,T2.1.1), manager executes task T2.1.1 by referring the

input calendar d3 to make a conference call. Except incoming data flow
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(d3,T2.1.1), the remaining data flows are bounded within WhileLoop control block

(EvE211,DaE211). Manager refers the voting data d2 received to update the vote

tally d4 recursively till the time limitation denoted is arrived. The final version of

d4 contributes to process output.

Y
~—’
SE2.1.1

PS21.

T2.1.1: Check

W

Calendar for
Conference Call

d3:

A Calendar

T2.1.3: Moderate
Email Discussion

Lt

DakS2.1.1:

Yes T21.2: Moderate

Conferenc i
ecallin
Voting
Week?

IE2.1.1:
Wait
untl

['Wed
2pm]

Conference Call

Discussion

J A
PJZ‘ 11
T2.1.4 Email Vote
Deadline Wamu/q
.MJ/

[Wed. R
lpml d2: Vote
X ”‘ T215: T216:
Yest :’ Receive VOtE Increment Tally
FVF?]] Mo DaEle
‘Vote?
Tlmed
out R sz ........ ,,

[Thur. dz: vole ‘
11pm] dd:Vote

Tally

Figure 3.20 The expansion of “Collect Votes” sub-process.

3.3.5. Instance of Data Flow

Given a process instance of P, its input data can be presented with a multi-set

of IA,, denoted as IAs. In order to maintain the process feasibility, for artifact d
in IA,, the number of instances of d inputted, i.e., the coefficient ms(d) of d

in IA», should be equal to or greater than the number of incoming data flows

transmitting d, i.e., ms(d)>n where InDataFlow, ={(d,v)|(d,v)edxV} and
n=|inDataFlow,|. When ms(d)=n, all the input instances of artifact d are

consumed. When ms(d)>n, the actions consume n instances of d selected
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from IA.
Given two intermediate data flows ((u,v,),d,) and ((uv,),d,) , the
propagations of artifacts between two actions can be classified into three cases:
B if vy=v, and d #d,, the instances of artifact d, and d, are
submitted from u to v concurrently.
B if v,#v, and d,=d,, the two instances of d, are submitted from u
to v, and v,, respectively.
B if vy#2v, and d, #d,, the instance of artifact d,/d, is submitted to
v, /v,.
For an activity v , if v is a consumer of artifact d , when

S((u,v),d)eInterDataFlow(P)—)EI(d,v)elnDataFIow(P) and vice versa. For all

data outflows of P,V(v,d)eOutDataflow(P), d belongs to process outputs ,

denoted by OA , a multi-set of OA,

For the sub-process SP21 “Collect’ Votes”, a process instance Insg,,, IS

generated. When [Asp21 = 2Calendar , manager accesses either calendar inputted to

continue the following execution. We assume that (EvE211,DaE21.2) WhileLoop

ends at the fifth iterations, such that there are five votes sent from voters. An iteration

results in receiving a vote from a voter. The five iterations recurse to create a fully
integrated vote tally, contributing to the process output. The set of data Ase2r used in

Insg,,, can be presented with a multi-set of A,,, ={Calendar,Vote,VoteTally},

Aspa1 = 2'Calendar +4'Vote +1'VoteTally .
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Chapter 4. The Formulations of Well-Formed and Unstructured

Control Flows

During process execution, the two issues might occur: (1) deadlock and (2)
undesirable instances. The issues could be caused by ill-structured control flow, data
flow or message flow. In the following subsections, we discuss these two issues of

control flow. The well-formed and unstructured control flows are defined.
4.1. Well-Formed Control Flow

With typed actions and their precedence relation, various kinds of control
structures can be constituted. In this thesis, the four primitive control structures,
sequential, parallel, conditional and iterative, defined in [11] are concerned. These
structures can be implemented by:-basic construction mechanism and defined within
blocks. The details are listed as the followings:

1. Sequential Structure: is a sequence of actions constructed by basic construction
mechanism without control nodes. For each action in the sequence, it is fired
while the preceding activity is completed. The sequence is included in a
sequential block.

2. Parallel Structure: is a structure implemented in Parallel control block. The
expressive power of the block is enriched by associating with a join node which
is implemented with Discriminator, MultiMerge or NtoMJoin mechanism.

3. Conditional Structure: is a structure implemented in DataExclusive and
EventExclusive control blocks which take one of its branches to execute when

upon its incoming data and event, respectively.

72



4. lterative Structure: is a structure implemented in WhileLoop and

RepeatUntilLoop control blocks.

An Inclusive control block can be implemented by a combination of
DataExclusive and Parallel control blocks [11]. Similarly, the extensions of
Inclusive  control block, InclusiveDiscriminator , InclusiveMultiMerge and
InclusiveNtoMJoin ~, can  be  represented by DataExclusive and
ParallelDisCriminator / ParalleIMultiMerge / ParalleINtoM control blocks also. In
order to simplify our discussion, we concern merely the four primary categories of
control blocks, where the blocks have no substitutions.

Within a control flow, the divergence and convergence of actions are presented
by control nodes. Except control nodes, a flow diverged from an activity can be
presented by a supplement arc only. Without concerning supplement arcs, a control

flow is well-formed if the constraints defined in Definition 4.1 hold.

Definition 4.1.  (Well-Formed Control Flow).
Given a control flow G:(V,CF) of no supplement arc, i.e.,
V(u,v)eCF :isExtended(u,v) = true , G is well-formed if and only if G is

constructed based on the events, tasks and control blocks, defined in our control

flow model, and any two control blocks within the flow can be nested but not

overlapped.

When the control blocks in a well-formed control flow are represented
recursively with the notation for sub-process in BPMN, the flow can be reduced to a
composite action presented by sub-process. Whether the control flow leads to
deadlocks and/or generate accidental instances, that will never be accessed and

destroyed, is easier to indicate [29][32][33][34].
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The same perspective can also be applied to a control flow including supplement
arc(s), if the sub-flows connected by supplement arc(s) are well-formed. Such control
flow is well-formed also. Otherwise, the process is unstructured. Without concerning
data and message flow, every well-formed process is well-behaved [45], as Definition

4.2.

Definition 4.2.  (Well-Behaved Control Flow).

Given a control flow G=(V,CF), G is well-behaved if and only if G neither

leads to deadlock nor generates undesirable instances.

4.2. Unstructured Control Flow

A control flow is unstructured when one or more restrictions for well-formed
property, pairwise restrictions and.nesting structure, is violated. The unstructured
control flows violating the pairwise restrictions can be classified into two cases:

1. Mismatched Structure: a control block is-bounded with a mismatched pair of
control nodes, e.g., ParallelSplit and ExclusiveJoin.

2. Unpaired Structure: a split/join node is included in a control flow without a
corresponding join/split node.

In addition, an improper nesting structure in a process, defined in Definition 4.3,
is constructed when the one-to-one corresponding relation of control node, is not

followed.

Definition 4.3.  (Improper Nesting Structure).

Given two control block B,=(u,v,) and B,=(u,v,) in an control flow

G= (V,CF) , B, isimproperly nested with B, , if and only if the following holds:
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Uy Uy V1

U2 c (VlsSuccessor A VvllsPredecessor) A V2 ¢ (VlsSuccessor A VlsPredecessor) or

IsSuccessor IsPredecessor IsSuccessor IsPredecessor
Uy & (VI A, Jav, € (Vi A v )

Uy V1 Uy

In other word, SPath(u,,v,):° Both u, and v, are in the path.

Either mismatched control pairs or improper nesting structures may cause
behavioural anomalies in a process execution, but not all. There are two typical

behaviour anomalies concerned: deadlocks and unexpected instances.

Activity 3

PJ1

PSs2

<2,

EJ2

Figure 4.1 An example of overlapped structure.

Given an overlapped example, shown in Figure 4.1, to explain the two behaviour

anomalies:

1. Deadlock Case: In mismatched control block (ESLPJ1), ParallelJoin node PJ1
is deadlocked because of one or more of its incoming flows is unexecuted.
2. Unexpected Instance Case: In mismatched control block (PSZ,EJZ), the activities

of the two branches diverged from ParallelSplit node PS2, e.g., activity 2 and 4
or 3, are remained in workflow engine unexpectedly if another one arrives

ExclusiveJoin node EJ2 earlier.

® Path(u,v) denotes a path from u to v, a sequence of vertices in a control flow G=(V,CF), such that each node is

connected to the next vertex in the sequence.
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Chapter 5. The Methods for Transforming BPMN Process into

HIPNET

In order to analyze a business process BP:(PP,A,M,MF,W,PF,ﬁ) where

PP={P|i=1.n,n>1}, each private process P, in BP is transformed into a H; PNet

I

HNet,. All these H{PNets generated are stored in set Net={HNet, |i=1.n,n>1}.

The control, message and data flows of process are transformed into H; PNet

modules by their corresponding methods. These transformation methods are discussed

in the followings.
5.1. State Transitions of Process Instance with PNet

A process instance is operated by a set of legal operations. The action executed
by WfMS for manipulating a process instance executes the legal operation(s) only.
Each atomic operation of a process instance can be regarded as one of the followings,
regardless of its semantic meaning:

1. Initialize: an operation that instantiates a private process within a business
process.

2. Destroy: an operation that deletes a process instance within a WfMS.

Initialize

UnlInitialized Initialized

Destroy

(a) A state transition diagram of a process instance (b) A PNet presenting the state

transitions of a process instance
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Figure 5.1 Two different presentations of the state transitions of a process instance.

Figure 5.1 (a) shows the state transition diagram of a process instance. There are
two possible states, “Unlinitialized” and “Initialized”, of an instance as Initialize or
Destroy operation occurs. “Unlnitialized” state represents the initial state of a process.
“Initialized” represents the state after an Initialize operation is performed. The state of
an instance is transformed from “Initialized” to “Unlinitialized” when Destroy

operation is executed.
Figure 5.1 (b) depicts the corresponding PNet PNet,=(P,T,F,m,) of the

diagram shown in Figure 5.1 (a). The two places of PNet, present “Uninitialized”
and “Initialized” states, respectively. The Initialize and Destroy operations are
transformed into the Initialize and Destroy transitions. The input and output arcs of

these transitions connect the places and transitions. The initial state of a process is

“Unlnitialized”, i.e., the initial marking M, of -PNet, is (1,0) while the place

array is (U,1).

5.2. Transformation Method for Control Flows — Method,,

Let private process P, in BP be transformed into HPNet HNet,. A global
clock, whose cycle is z time units, is introduced in HNet,. Initially, HNet, is

empty. The elements in P, are transformed to their corresponding H. PNet modules
one by one. The H;PNet modules generated are added into HNet,. The link of two
different H. PNet modules is denoted with dotted link. The firing interval of

transition t added into HNet, is [0,2] when t’s corresponding activity has no

time limitation. HNet, has a timed token at least, typed with two attributes PNet,
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and time, to denote P ’s execution status, i.e., the execution order of the actionsin P

i i

is represented by a series of movements of the token(s). Such a token is called control

token here. All the transitions in HNet, cannot be fired without the token.
5.2.1. Rules for Transforming Basic Elements

Our process model is designed based on the elements listed in Table 5.1. In this
table, the element whose counterpart in the rightmost column is © is a basic element,
the element whose counterpart in the rightmost column is O is an advanced element,
and the rest whose counterpart is empty are not concerned.

Most process models, e.g., [11][24][29][32][33][34][48], are designed based on

the basic elements. These basic elements can be transformed into H] PNet modules
with Rule 1 to 7, respectively. The -H] PNet modules are depicted in Figure 5.2 and

Figure 5.4 where the place(s) denoted with dotted line is used to link H. PNet

modules of two connecting BPMN actions. 'Such a place can be identified by a pair

p(a,b) where a and b are the names of two connected actions.

During the transformation, when a basic element n is reached, n can be

transformed with the following rules:

Rulel. If n represents a none start event, i.e., n.EC=Start and n.ET=None,
and n has only one direct successor y, a place denoted with p, and an

atomic transition denoted with t, are added into HNet,. A direct arc (p,,t,)

connecting the two elements is created.

1-1. The color domain of place p, is C(p,)={PNet,} and the token elements

of place p, are ((PNet,,(1,0)),@r) and ((PNet,,(0,1)),@r).
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€ When there is a token tk with value ((PNet,.n,(l,O)),@r) in p.,a

request of creating an instance of P is made by a participant at time

r.
€ When there is a token tk with value ((PNet,.n,(O,l)),@r) in p.,a

process instance of P, is created by P’s WfMS at time r.

I

€ When the value of tk is changed from ((PNet,.n,(l,O)),@rl) to

((PNet,.n,(O,l)),@rz), r,<r,, the process instantiation request given at

r, is accomplished at r,, i.e., the participant is able to execute the

actionsin P after r,.

1

1-2. The variable domain of transition t contains the variables typed with
PNet._ only, i.e., Type(Var(G(tn))):Type(Var((pn,tn)))z{PNetm}.
€ The guard expression  G(t,) jis Var in==(0,1) and the arc

expression A(p,,t,) is Varin.

€ t s fired immediately, when a token tk associated with value

n

((PNet.

in?

(1,0)),@r) is added into p,.

Rule2. If n represents a none end event, i.e., n.EC=End and n.ET=None, and
the direct predecessor of n is x, a place denoted with p, and an atomic

transition denoted with t, are added into HNet . A direct arc (t,,p,)

connecting the two elements is created.
2-1. The definition of color domain of place p, isthe same as in Rule 1-1.

@ When there is a token tk with value ((PNet,,(0,1)),@r) in p,, a

request of terminating P, is made by a participant at time r.
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€ When there is atoken tk with value ((PNet,.n,(l,O)),@r) in p_,the
process instance is terminated by P,’s WfMS at time r.

€ When the value of tk is changed from ((PNet,.n,(O,l)),@rl) to

((PNet,.n,(l,O)),@rz), r,<r,, the process termination request given at

r, isaccomplished at r, .
2-2. The definition of the variable domain of transition t, is the same as in

Rulel-2.

The guard and (input and output) arc expressions of the transition(s) added by
applying Rules 3, 4, 5, 6 or 7 are identical to those of t_, defined in the H.PNet

module of start event.

Rule3. If n represents a task/sub-process created by the basic construction
mechanism without input and output artifacts, i.e., n.AT =Task /SubProcess,
I,=IA,=¢ and O,=0A, =¢, and the-direct predecessor and successor of n
are x and y respectively, an atomic/compound transition denoted with

t. /t, isaddedinto HNet . t, /t, hasone inputand output arcs.

| Type PNeti = ((1LO), (0,1)) timed;

. [ Var in : PNety, ;
1'(PNetin, (0, 1) P | in'3
' \\\ J C(pn) = {PNetm}

r/ ﬁ-)—* y Q
N .
m Var in

~
a
<
S
I
1l
g
8
>

" |Global Clock: z time unitsfeycle
p(n,y)

Pn
tn[07z]
a) A none start event. T
(a) (b) The HC PNets module of none start event.
=) Type PNet;, = {(1,0), (0,1)} timed;
I , ] Var in : PNeti,
X 4’0 = [ [N OD) Con) = (PNt
L - Global Clock: z time units/cycle
p(x,n) Dn

t[0,2]
(c) A none end event.

(d) The HZ PNets module of none end event.
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Type PNet;, = {(1,0), (0,1)} timed;
\ | Varin : PNet;, ;

X
y

1'(PNeti (0,1)»
Global Clock: z time units/cycle

p(n,y)
tTn [Osz]

(e) Atask (f) The Hz PNets module of task.

.| Type PNeti, = {(1,0), (0,1)} timed;
N [Varin: PNetiy ;

e,

Sub-process n

I'(PNetin (0.1) 3
" | Global Clock: z time units/cycle

~
S
S
I
il
=
8
>

p(n,y)
tPn[O,Z]

(g) A sub-process (g) The HZ PNets module of sub-process.

Figure 5.2 The mapping of the elements addressed in [29].

When n is a sub-process, HNet, connects the H] PNet of n’s expansion with

two additional transition t(x,call:n)rand t(return n,y). The two transitions are

used to model the invocation of sub-process -n, and return the control back to HNet,

when n is completed. The details are shown in Figure 5.3.

—Varin

1'(PNetis, (0,19

p(x,n) p(n,y)
t(x, call n) t(return n, y)

Figure 5.3 Combining the expansion of a sub-process and parent net.

Rule4. If n is a data-based ExclusiveSplit control node and the direct

successors of n are Activity 1 to m, m>2, for each succeeding Activity

i, an atomic transition, denoted as t(n,A ),2<i<m, is added into HNet,.
Transition t(n,A)) has one input and output arc. The input arcs of the
transitions added starts from place p(x,n).
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Rule5. If n is a data-based ExclusiveJoin control node and the direct
predecessors of n are Activity 1 to m, m>2, for each preceding

Activity i, an atomic transition, denoted as t(n,A ),2<i<m, is added into

HNet, . The number of t(n,A,)’s input and output arcs are one. The output arcs

of the transitions added are joined at place p(n,y).

Rule6. If n is a ParallelSplit control node and the direct successors of n are
Activity 1 to Activity m, m>2, an atomic transition t is added into
HNet, . Transition t_ hasone inputarc and m output arcs.

Rule7. If n isa ParallelJoin control node and the direct predecessors of n are
Activity 1 to Activity m, m>2, an atomic transition t  is added into
HNet.. The t, has m inputarcs and one output arc.

T T
Control Node H. PNets module Control Node H. PNets module
t(n,Ay) t(Ag,n)
/ pAD ™~y p(A1n) —
X—» Activity 2 Activity 2 — {

D(X-,ll)\

...................... 1 / p(n.y)

o Activity m S
e .
(Am,n)

(a) Exclusive Split (b) (c) Exclusive Join (d)

‘ p(,A1) p(Arn)
X —
> Activ

n 3 p(n,y)
’ p(nAw P(An)
.‘.(“l'.'l'}u m

(e) Parallel Split (f) (g) Parallel Join (h)

p(x,n)

ity 2

i

Figure 5.4 The mapping of the control nodes addressed in [29].
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Table 5.1 The notations available in our process model.

BPMN Our Process Model
Plain ©
Loop O
Task Multi-Instance O
Ad-Hoc
Activities Compensation
Plain ©
Loop O
Sub-process
Multi-Instance O
Compensation
Event-based Exclusive O
@ Exclusive ©
% Gateways Inclusive ©
(@) Data-based
= Parallel ©
= Complex O
Plain Start and End ©
Message O
Timer O
Error
Events Cancel
(Start, Intermediate, End) | Compensation
Signal
Multiple
Link
Terminate
=2 Sequence Flow ©
g g. Message Flow O
§ © Association
% Pool O
£
(% Lanes
«» | Data Object ©
:g Text Annotation
< Group

Notation: Basic elements ©

Advanced elements O
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5.2.2. Transformation Rules for Advanced Elements

The advanced elements can be transformed into H. PNet modules with Rules 8 to

22, respectively. The rules are defined upon the sequence: (1) advanced activity and
event, (2) activity involving event and (3) complex control node. In these rules, the
direct predecessor and successor of the intermediate actions (activity and event) are
setas x and y, respectively. The direct predecessor/successor of end/start event is

setas x/y also.

(1) Advanced Activity and Event

B During the transformation, when an activity (task or sub-process) n with

While / RepeatUntil loop structure is reached, n can be transformed with Rule
8 or9.

Rule8. If n isa loop task, i.e.,” n.LT=Standard, n.EvTime=Before/After, and
the associated evaluation expression/ maximum execution times = BooleanExp/

Maximum, n’s H; PNet module is shown in Figure 5.5 (b)/(c).

Rule9. If n isaloop sub-process whose LT, EvTime and evaluation expression
/ maximum execution times are the same as Rule 8, n’s HPNet module is
shown in Figure 5.5 (b)/(c) and each atomic transition named t, is replaced
with a compound transition representing the sub-process.

B During the transformation, when an activity (task or sub-process) n with

multi-instance loop structure is reached, n can be transformed with Rule 10 or

11. Let the evaluation result of NumExp associated with n be k, i.e., the

number of instances of n is k.
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Rulel0. If n is a task whose instances are performed sequentially,

ie.,

n.LT = Multilnstance and n.Order = Sequential, n’s H; PNet module is shown

in Figure 5.6 (b).

(a) Alooptask Nn.

p(x,n)

1'(PNetin,(0,1))

e a
NS

K‘(““” o 7/ \
[q1'(int, M0 | //

\\ /
—Var inm- WO e 1PNty (O.)

Varin == (0,1) &&
Var max > 0
|
=)
"

BooleanExp == true &&

x<=0)

/ /

- 1'(PNets,(0,1))—»

Varin == (0,1) &&

( BooleanExp != true |l

>

p(n,y)

tn [O»Z]

(b)«The HZ PNets module of While loop task n.

l—l '(PNetin,(0,1))

D

=

IPNetnO.)» . —1'(PNetn(0.1)

Var max >0

Var in == (0,
BooleanExp == true &&

tTn [O’Z]

(c) The HZ PNets module of RepeatUntil loop task n.

&
‘0
Y 5
57 ,,
£ 2 —1'(PNet;r,(0,1)) 9
\ Gt maR) "5‘ c
- = =

p(ny)

Figure 5.5 Two different H. PNets modules of a task with loop structure.

Rulell. If n is a task whose instances are performed

n.LT = Multilnstance and n.Order = Parallel :

® When FlowCond=None, n’s H; PNet module is in Figure 5.6 (c).
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® \When FlowCond=0ne, n’s H] PNet module is in Figure 5.6 (c), but

transition t, [0,z], place p(n,y) and arc A(t,,,p(n,y)) are replaced

with the net shown in Figure 5.6 (d).

® When FlowCond=All, n’s H] PNet module is in Figure 5.6 (c) but

transition t, [0,z], place p(n,y) and arc A(t,,p(n,y)) are replaced

with the net shown in Figure 5.6 (e).

(a) Atask n with
multi-instance loop

structure.

p0sn)
) tral0,2]

= 7Y H N

i K'(PNetin,(0,1)—  p. | —1'(PNet;y,(0,1)) i P K (PNetis,(0,1))

= N/ = %

= N
NumExp =k o
S

\ @
I’

p(n,y)

(b) The HZ PNets module of task N which is performed sequentially

'
K(PNetip 0.1 p. —1'(PNet;n(0,1))
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(c) The Hz PNets module of task N which is performed in parallel.
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(d) The HZ PNets module of task N which is performed in parallel.
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(e) The HZ PNets module of task n which is performed in parallel.

Figure 5.6 Four different H PNets modules of a task with multi-instance loop

structure.

Rulel2. If n is an intermediate event, i.e., n.EC=Intermediate , a transition
denoted with t, is added into HNet,.

« | Type PNetiy = {(1,0), (0,1)} timed;
“ | Varin: PNet;, ;

=N
2

x— >y

P

1'(pNClm,(0,1))*\:
’|Global Clock: z time units/cycle

~
=
(=)
=
I
1}
=1
==

p(x,n) p(n,y)

[0.z]
(a) An none intermediate

(b) _The HZ PNets module of none intermediate event.
event.

Figure 5.7 The H. PNets module of intermediate event.
B During the transformation, when an event n with time limitation or message
receiver/dispatcher is reached, n can be transformed with the following rules.

Rule13. If n is a start/intermediate event and n is timed, i.e., n.ET =Time, and

the value of n’s timer attribute is [r,r,], 0<r,<r,<z, Rulel/Rulel2 is
applied respectively. Then, the firing interval of t_ is changed from [O,z] to

[rn].

Rulel4. If n is a start/intermediate event and n is a message receiver, i.e.,
n.ET =Message and n.InMessage=meg , Rulel/Rulel2 is applied respectively.
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Then, a place denoted with p, . is added into the net, generated by

Rulel/Rulel2, and arc A(pmeg,tn) and A(tn,pmeg) are created.

14-1. The color domain of place p,,, is C(pmeg):{Meg} and the token
elements of place p,, . are (Meg,'read') and (Meg,'unread').

€ When there is a token tk with value (Meg,unread) in p,., a

message is sent from other participant and not consumed by the

participant yet.

¢ When there is a token tk with value (Meg,read) in p,.., the

message sent from other participant is consumed.
14-2. The variable domain of transition, t contains the variables typed with

PNet, and Meg only, ie.,
Type(Var(G(tn ))) = Type(Var((pn,tn))) ={PNet, ,Meg} .
€ The guard expression G(t,) is Var in==(0,1)AVar m==unread .

The arc expressions of input arcs, A(p,,t,) and A(p,.t,). are
Var in and Var m, respectively. The arc expressions of output arcs,
A(tn,p(w)) and A(tn,pmeg),are Var in and 1'(read), respectively.
& t is fired immediately, when there are two tokens with value

((PNet,.n,(l,O)),@r) and (Meg,unread) in p,  and p,. .

respectively.

The H]PNet module generated by applying Rulel and Rule1l4 on message start

event n is shown in Figure 5.8 (b).
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B *fl'(]\r’[cg.read)—‘
\b g Type PNetis = {(1,0), (0,1)} timed;
— : @ = & Type Meg = {read, unread}
(= X KW =R / e ' I
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< |85 \\
Q¥ '>c€ > o C(p») = {PNetiy }
p(n,x) Clpmeg) = {Meg)
£.[0,7] Global Clock: z time units/cycle
I &
DPn
(@) A message
start event. (b) A HZ PNets module of message start event

Figure 5.8 Two different presentations of message start event.

Rulel5. If n is an intermediate/end event and n is a message dispatcher, i.e.,
n.ET=Message and n.OutMessage=meg , Rulel2/Rule2 is applied

respectively. Then, a place denoted with p,_ . is added into the net generated by

Rulel2/Rule2 and the arc A(tn,pmeg) is created.

When t_ is fired, a token with valuge ((PNetm,(O,l)),@r) in place p,, is
removed and the tokens with value (Meg,unread) and ((PNet,.n,(O,l)),@r) are

added into p,.. and [ respectively. The H] PNet module generated by

n,y

applying Rulel2 and Rulel5 on intermediate message dispatcher n is shown in

Figure 5.9 (b).
Prmeg
I'(Meg, unread) Type PNet;, = {(1,0), (0,1)} timed;
Type Meg = {read, unread}
Var in : PNetj, ;
Varm: Meg ;

.-,/;:Q\ y \\\‘\ c C I
X —/>& > Y 1'(PNeti(10) B ) i = (e

—Varin

-~
S
S
1
il
g
5
=

Global Clock: z time units/cycle

p(x) o(n.y)
t.[0,z]

(a) A message dispatcher.
(b) A HZ PNets module of message dispatcher
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Figure 5.9 Two different presentations of intermediate message dispatcher.
(2) Activity Involving Event

B During the transformation, when an activity (task or sub-process) n involving
an event e is reached, n can be transformed by Rule 16, 17, 18, 19 or 20.
Here, event e is associated with a time limitation or a message

receiver/dispatcher. Let n’s direct successors be y, and y,. y, is connected

by a supplement arc.

Rulel6. If n is a task and the value of timer attribute of n’s timing event e is
[r,r,], 0<r<r,<z, n’s H{PNet module is designed in Figure 5.10 (b). Let

the time stamp associated with control token be stamp.

VR

)
arin == (0,D&&

stamp <=1

|1 (PNet (10w

F]vl[’,\:l,.zl.(\;wH>|(Fm"“.m), o /\H’m il
)

X — pa—
px,n,
—»yl

A
‘ v

pnyl)

—1'(PNet;,.(1,0)

myz)
(a) Task involving a (b) A HZ PNets module of a task involving a timing event.

timing event.

Figure 5.10 Two different presentations of a task involving a timing event.

Rulel7. If n is a sub-process and the value of timer attribute of n’s timing event
e is [r,n,], 0<r<r,<z, n’s H{PNet module is in Figure 5.10 (b) while t,

IS represented with a compound transition.

Rulel8. If n is a task associated with a message receiver e, n’s H; PNet module

is in Figure 5.11 (b) where transition t_ is the body of n.
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(a) Taskinvolving a

message receiver.

VR

\ ,"/
1 PNet (L0 by I PNet, (10 1PNt (L0)m
o N

—1(PNet(1,0) 1'(PNeti (10)®{  p. |—Varin
J \\\777

p(x,n)

\ T p(n,yl)
L —
| 1 eNet L0)m]

& pley2)
5

(b) A HZ PNets module of a task involving a message receiver.

Figure 5.11 Two different presentations of a task involving a message receiver.

Rulel9. If n is a sub-process associated with a message receiver e, n’s H] PNet

module is in Figure 5.12 (b) where the subnet in block is the body of n.

X o)
y1

S. b-process n
L, y2

(a) Sub-process
involving a message

receiver.

Sub-process n

p(n, nok) p(n, y2)

(b) A HZ PNets module of a sub-process involving a message receiver.

Figure 5.12 Two different presentations of a sub-process involving a message

receiver.

Rule20. If n is a task and associated with a message dispatcher e, n’s H] PNet

module is in Figure 5.13 (b).
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(a) Task involving a

. (a) A HZ PNets module of a task involving a message dispatcher.
message dispatcher.

Figure 5.13 Two different presentations of a task involving a message dispatcher.

(3) Complex Control Node

B During the transformation, when a complex control node n implemented with

advanced join mechanism is reached, n can be transformed by Rule 21 or 22.
Rule21. If complex control node n is-implemented with Discriminator or “N out M
join”” mechanism, n’s H; PNet module is in Figure 5.14 (b).
When n is implemented with Discriminator mechanism, variable i used in the

module generated is set with 1. Otherwise, i isset with M.

Rule22. If complex control node n is implemented with “Multiple Merge”

mechanism, n’s H PNet module is in Figure 5.14 (c).
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Activity m
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(a) Branchl1tom /
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(c) A HZ PNets module of a control node implemented with “Multiple

Merge”.

Figure 5.14 Different presentations‘of'a'‘complex control node implemented with
different mechanisms.

5.3. Transformation Method for Message Flows — Method,,,

A business process in BPMN may contain the following types of message flows:
(1) task to task, (2) task to start event, (3) task to intermediate event , (4) intermediate
event to task, (5) intermediate event to start event, (6) intermediate event to

intermediate event, (7) end event to task and (8) end event to start event. These
message flows can be transformed into H; PNets modules with Rule23 to Rule30,
respectively. In these rules, the message flows are started from action n, to action

n,. Each rule adopts several rules in previous section where the rules applied to the

same object are executed according to the description order.
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Rule23. If message flow (n,,n,) is created between task n, involving a message
dispatcher and task n, involving a message receiver, (n,,n,)’s H; PNet

module is in Figure 5.15 (b) created by combining the two H; PNets modules,

generated by Rule20 and Rule18, with the places denoted with p,_. .

Role 1

x1
Task nl1
=)
‘\\E,-/ yl
x2 Task n2
y2-1

L,y

Role 2

(a) A message flow between two tasks.

tm[0,z]

Rolel

S
W
i

kS

1'(PNetip (1,0))

p(x1,n1) p(ny,y1)

T'(Meg, unread)
{ Dn

\

‘ —

| a
\ \ \ = /

I PNet(1L0) (PNt (100 i I (PNetiy (10)B  [—1'(PNetini(1,0)) M

\

Var in

p(x2,112) — p(n2,¥2-1)
Role2 1(PNetin(1.0)I{

o pley2a)

&
&
&

(b) A HZ PNets module of a message flow between two tasks.

Figure 5.15 Two different presentations of a message flow between two tasks.

Rule24. If message flow (n;,n,) is created between task n, involving a message

dispatcher and start event n, with a message receiver, (n,n,)’s H; PNet

94



module is in Figure 5.16 (b) created by combining the two H; PNets modules,

generated by Rule3, Rule20 and Rulel, Rulel4, with the places denoted with
pmeg'

tn1[0,z]

Rolel 1PNty (10)»

Var in == (0,1)

p(ns,y1)

T
1'(Meg, unread)

Role 1

yl

x1
Task nl
g

Role 2

n2 y2

ad

(a) A message flow between a task

unrea

Role2
and a start event.

3
<3
i
.S
8
=

Var m

p(n2,y2)

t:0[0,2]

(b) A H(T_. PNets module of a message flow between a

task and a start event.
Figure 5.16 Two different presentations of a message flow between a task and a
start event.

Rule25. If message flow (n,,n,) is created between task n, involving a message

dispatcher and intermediate event n, with a message receiver, (n,n,)’s

H. PNet module is in Figure 5.17 (b) created by combining the two H. PNets

modules, generated by Rule20 and Rulel4, with the places denoted with p, ..
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I
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Varm == (0,1) &&

p(x2,12) p(n,y2)

and an intermediate event.

L]Z[OJJ

(b) A HZ PNets module of a message flow between a task

and an intermediate event.

Figure 5.17 Two different presentations of a message flow between a task and an
intermediate event.

Rule26. If message flow (n,,n,) is created between intermediate event n, with a
message dispatcher and task n, with a message receiver, (n,,n,)’s H.PNet

module is in Figure 5.15 (b) created by combining the two H; PNets modules,

generated by Rule12, Rule15 and Rule18, with the places denoted with p, ..

o | X,
g raﬁ—wl
X H
v D-1
y -
= L y22

Figure 5.18 A message flow between an intermediate event and a task.
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Rule27. If message flow (n,,n,) is created between intermediate event n, with a
message dispatcher and start event n, with a message receiver, (n;,n,)’s

H; PNet module is in Figure 5.16 (b) created by combining the two H; PNets

modules, generated by Rulel2, Rulel5 and Rulel4, with the places denoted with

pmeg '

Role 1
4

~<

[N

Role 2
j?ﬂ
<

N

Figure 5.19 A message flow between intermediate and start events.

Rule28. If message flow (n,,n, ) is created between intermediate event n, with a
message dispatcher and intermediateevent n, with a message receiver,
(n,n,)’s HZPNet module is in Figure 5.17 (b) created by combining the two
H. PNets modules, generated by Rulel2, Rulel5 and Rulel4, with the places

denoted with p__..

-

L

& leg Lyl
i1

N X2 v

o | A

no: n2 y2

Figure 5.20 A message flow between two intermediate events.
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Rule29. If message flow (n,,n,) is created between end event n, with a message
dispatcher and task n, with a message receiver, (n;,n,)’s H; PNet module is

in Figure 5.21 (b) created by combining the two H; PNets modules generated by

Rule12, Rulel5 and Rule18 with the places denoted with p, ..

1'(Meg, rea

-
2 ﬁ
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S | x1 N
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°
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(a) A message flow between an end event and a task.
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\ ] &
\ = &
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(b) A HZ PNets module of a message flow between an end event and a task.

Figure 5.21 Two different presentations of a message flow between an end event
and a task.
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Rule30. If message flow (n,,n,) is created between end event n, with a message

dispatcher and start event n, with a message receiver, (n,n,)’s H; PNet

module is in Figure 5.22 (b) created by combining the two H; PNets modules,

generated by Rulel2, Rulel5 and Rulel, Rulel3, with the places denoted with

pmeg '

Role 1
>
ig

Role 2
E?'
<

N

(a) A message flow between an end

event and a start event.

ta1 [O,Z]
Rolel

1'(PNetin(1 .O))G
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Var in == (0,1)
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1'(Meg, unread)

S e,
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Varin== (0,]) &&

n
I
>

p(n2,y2)

I‘vZ[OJ]

(b) A HZ PNets module of a message flow between an end

event and a start event.

Figure 5.22 Two different presentations of a message flow between an end event

and a start event.
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5.4. Transformation Method for Data Flows — Method,,

In a business process, the state of an artifact is transformed among the four
states, “Uninitialized”, “Initialized”, “Read” and “Updated”, by the four operations,
Initialize, Update, Read and Destroy. Figure 5.23 (a) shows the state transition
diagram of an artifact with the four kinds of operations. The diagram can be

represented with a PNet as Figure 5.23 (b). The initial state of an artifact can be

represented with (1,0,0,0) while the place array of the artifact PNet is (U,I,R,W).
When an artifact is initialized, the state of the artifact is transformed from (1,0,0,0)
to (0,1,0,0).

For incoming data flow (d,v), the artifact input d can be read, updated or

destroyed by activity v. The three cases of -incoming data flows are presented as

Figure 3.17 (a), (b) and (c), respectively. The three cases can be transformed into the

H{ PNets modules shown in Figure 5.24 when the arc expression of arc (t,,p,) is set

with 1'(0,0,1,0), 1'(0,0,0,1) and 1'(1,0,0,0), respectively. After transition t, is

fired, the value of a token representing artifact d is changed to the assigned value

described on the arc expression and the token is added into place P,.

Rule3l. If v is a reader/updater/destroyer of artifact d, data flow (d,v) ’s
H{ PNet module is in Figure 524 and A(t,,p,)=1(0,010) /

A(tv’pd):1'(0’0’0’1)/A(tv’pd):1'(110;010) '
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(b) A PNet of the state transition diagram of an artifact.

Figure 5.23 Two different presentations of the state transition of an artifact.

Py

Var in == (0,1) &&
artifact == (0,1,0,0)

Figure 5.24 A H. PNets module of incoming data flows.
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The transformation rules for the intermediate data flow ((u,v),d) discussed in

Section 3.3.3 are shown in the followings.

B When the artifact d is produced by action u and consumed by action v,

place p, for d and arc (t,,p,), (pst,) and (t,,p,) for presenting the

interaction of control and data flow are added into the H; PNets modules.

Rule32. If v is a reader of d, ((u,v),d) ’s H. PNet module is in Figure 5.25
where A(t,,p,)=1'(0,1,0,0), A(p,,t,)=Var artifact, A(t,,p,)=1'(0,0,1,0)

and G(t,)=Var in==(0,1)&&Var artifact==(0,1,0,0).

Rule33. If v is a destroyer of d, ((u¥),d)’s H; PNet module is in Figure 5.25
where  A(p,,t,)=Var  “artifact A(t,,p4)=1'(1,0,0,0) and

G(t,)=Var in==(0,1)&&Var artifact==(0,1,0,0).

Rule34. If v is an updater of d, ((u,v),d)’s HIPNet module is in Figure 5.25
where A(t,,p,)=1'(0,1,0,0) , A(p,,t,)=Var artifact , A(t,,p,)=1'(0,0,0,1)

and G(t,)=Var in==(0,1)&&Var artifact==(0,1,0,0).

P(x, u) /
RN
/ \ \
b —D‘» @ ,—Varin u 1—1'(0.])—> oo
\ / /
~_~-

Var in == (0,1) Varin == (0,1) &&
artifact == (0,1,0,0)
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Figure 5.25 A H. PNets module of intermediate data flows.

B When both action u and v are consumers of the artifact d, place p, and arc

(t,ps), (Part,), (pgrt,) and (t,,p,) areadded intothe HZPNets modules.

Rule35. If both u and v are readers of d, ((u,v),d)’s H PNet module is in
Figure 526 where A(t,,p,)=1'(0,0,1,0) , A(p,t,)=Var artifact
A(t,,ps)=1'(0,0,1,0) and

G(t,)=G(t,)=Var in==(0,1)&&Var artifact!=(1,0,0,0).

Rule36. If u isareaderand v isa destroyer of d, ((u,v),d)’s H{PNetmodule
is in Figure 5.26 where A(p,,t,)=Var artifact , A(t,,p,)=1'(0,0,1,0) ,
A(py,t,)=Var artifact , “A(t,p;)=1(40,0,0) and G(t,)=G(t,)=Var

in==(0,1)&&Var artifact!=(1,0,0,0).

Rule37. If u isareaderand v isan updater of d, ((u,v),d)’s H{PNet module
is in Figure 5.26 where A(p,,t,)=Var artifact , A(t,,p,)=1'(0,0,1,0) ,
A(py,t,)=Var artifact , A(t,,p,)=1'(0,0,0,1) and G(t,)=G(t,)=Var

in==(0,1)&&Var artifact!=(1,0,0,0).

Rule38. If u isadestroyerand v isa readerof d, ((uv),d)’s H{PNetmodule

is in Figure 5.26 where A(p,,t,)=Var artifact , A(t,,p,)=1(1,0,0,0) ,
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A(pg,t,)=Var artifact , A(t,,p,)=1'(0,0,4,0) and G(t,)=G(t,)=Var

in==(0,1)&&Var artifact!=(1,0,0,0).

Rule39. If u is a destroyer and v is a destroyer of d, ((u,v),d)’s H PNet
module is in Figure 5.26 where A(p,,t,)=Var artifact, A(t,,p,)=1'(10,0,0),
A(pg,t,)=Var artifact , A(t,,ps)=1'(3,0,0,0) and G(t,)=G(t,)=Var

in==(0,1)&&Var artifact!=(1,0,0,0).

Rule40. If u is a destroyer and v is a updater of d, ((u,v),d)’s H; PNet
module is in Figure 5.26 where A(p,,t,)=Var artifact, A(t,,p,)=1'(10,0,0),
A(pg,t,)=Var artifact , A(t,,ps)=2(0,0,0,1) and G(t,)=G(t,)=Var

in==(0,1)&&Var artifact!=(1,0,0,0).

Rule4l. If u is a updater and v is a reader of d, ((u,v),d)’s H{ PNet module
is in Figure 5.26 where A(p,,t,)=Var artifact , A(t,,p,)=1'(0,0,0,1) ,
A(pg,t,)=Var artifact , A(t,,p,)=1'(0,0,4,0) and G(t,)=G(t,)=Var

in==(0,1)&&Var artifact!=(1,0,0,0).

Rule42. If u is a updater and v is a destroyer of d, ((u,v),d)’s H; PNet
module is in Figure 5.26 where A(p,,t,)=Var artifact, A(t,,p,)=1'(0,0,0,1),
A(pg,t,)=Var artifact , A(t,,ps)=1'(3,0,0,0) and G(t,)=G(t,)=Var

in==(0,1)&&Var artifact!=(1,0,0,0).
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Rule43. If u is a updater and v is an updater of d, ((u,v),d)’s H{ PNet
module is in Figure 5.26 where A(p,,t,)=Var artifact, A(t,,p,)=1'(0,0,0,1),
A(pg,t,)=Var artifact , A(t,,p,)=1'(0,0,0,1) and G(t,)=G(t,)=Var

in==(0,1)&&Var artifact!=(1,0,0,0).

1O —

Var in == (0,1) Varin == (0,1) &&
artifact == (0,1,0,0)

Figure 5.26 A H_ PNets module of intermediate data flows.

5.5. Process Transformation

Let a business process BP=(PP,A,M,MF,IVITf,PF,ﬁ) be transformed into a

H: PNet Net=(TNet,TrSet,TkSet, TrFun,TkFun). Each kind of artifacts/messages in

A/ M is designed with a PNet. BP is composed of private processes,

P,P,,..P,,nx1. For private process P ,1<i<n, the control flow of P is
ControlFlow(P,.):(G,.,\Z,A,.,/\/I,.,li,o,.) where G =(V,,CF) started from any start

event in StartSet, and ended at any end event in EndSet,. The data flows of P, are

in DataFlow(P).

The transformation is designed to convert the private processes in a business

process one by one. An empty H.PNet is declared for the business process in the
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beginning. During the transformation, a sub-H; PNet is created for each private

process visited. The transformation of private process can be divided into two steps:

(1) Firstly, the rules defined in Method,. are applied to the actions visited with

Breadth-first search [49]. The H;PNet modules generated are appended to the

sub-H; PNet sequentially.

(2) Then, the rules defined in Method,. are applied to the data flows to generate
the corresponding modules which are appended to the sub-H; PNet generated in
the first step.

Such a recursive operation continues until all private processes are processed.

Then, the message flows between .each pair of private processes are transformed by

merging the corresponding sub- H:PNets upon the rules defined in Method,,.. The

transformation completes when all the sub-H; PNets are merged. The details of

transforming a business process are shown in PseudoCodel.

PseudoCode1 TransformBusinessProcess(PP) {

[/ Input: PP : a set of private processes
/| Output: resultNet: a hierarchical Timed Coloured Petri Net
Stack currentNetStack = new Stack();
For each private process p in PP {
currentNet = TransformControlFlow(G , StartSet);
/| Gis p’s control flow and StartSet is a set of p’s start events

currentNet = TransformDataFlow(currentNet, DataFlow);
/| DataFlow is a set of data flows of p

currentNetStack.add(currentNet);

}

currentNet = currentNetStack .pop;
For each net net1 in currentNetStack {

currentNet = TransformMessageFlow(currentNet , net1);
}
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resultNet = currentNet;
Return resultNet;

PseudoCode2 TransformControlFlow(G , StartSet) {
[/ Input: G=(V,CF) : a directed connected graph

// StartSet: the traverse is started from start events in StartSet.
/| Output: resultNet: a hierarchical Timed Coloured Petri Net

FIFO queue = new FIFO();

For each vertex vinV - StartSet {
status[v] = ‘waiting’;
level[v] = null;
parent[v] = null;

}

For each vertex s in StartSet { // all start events are initialized;
status[s] = ‘operating’;
level[s] = o;
parent[s] = null;
queue.add(s);
}

while (queue != null) {
currentVertex= queue.first;
subNet = Methodcg(currentVertex);
currentNet.append(subNet);
/| subNet is appended to currentNet with links, the places denoted with dotted
/[ line

For each edge (currentVertex, u) in CF {
If (u.status == ‘waiting’) {
status[u] = ‘operating’;
level[u] = level[currentVertex] + 1;
parent[u] = currentVertex;
queue.add(u);
}
}
status[currentVertex] = ‘done’;
}

resultNet = currentNet;
Return resultNet;

PseudoCode3 TransformDataFlow(net , dataFlow) {

[/ Input: net : a result net of TransformControlFlow(G , s) of private process P
Il dataFlow : a set of data flows of P
/| Output: resultNet: a hierarchical Timed Coloured Petri Net

currentNet = net;
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For each df in dataFlow {
subNet = Methodpe(df);
currentNet.append(subNet);
}
resultNet = currentNet;
Return resultNet;

PseudoCode4 TransformMessageFlow(net1, net2) {

[ Input: net1 and net2 : the results of TransformDataFlow(G1, s1) and (G2, s2)
/l V1 and V2: the sets of vertices of Net1 and Net2.
/| Output: resultNet: a hierarchical Timed Coloured Petri Net

currentNet = net1 + net2;
For each vertex uin Vi1 {
For each vertex vin V2 {
If (u==v) currentNet.merge(u, v);
}
}

resultNet = currentNet;
Return resultNet;
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Chapter 6. A Case Study

To demonstrate the methods, Method., Method,. and Method,., proposed

in Chapter 5, the process BP,,. of resolving issues through e-mail votes introduced

ote

in section 3.2.4 and 3.3.4 is adopted as an example in this section. Process BP,,, is
composed of three private processes, P, ingcrowp s Prangger @8N0 Proter - BP.oe NS turn

cycle of a week. The methods presented are applied on this example to illustrate the

steps to generate the corresponding H] PNets. The control, message and data flows of

the example are shown in Figure 3.14 and Figure 3.19, respectively. The artifacts are

stated with details in Table 3.2. The artifact usages of actions are listed in Table 3.3.

and P

manager !

Figure 6.1 (b) shows the H.PNet of private process P

workingGroup

shown in Figure 6.1 (a), which is generated according to the action taken order of the

two processes by the three transformation-methods. Because process BP, . is

ote

executed weekly, in our design, a global clock counting with hours is introduced into

the H; PNet and the clock is reset weekly. An execution of either task T11 or T2.2

takes 24 hours. There is no specific execution limitation for the four tasks shown in

Figure 6.1 (a).

We assume that process BP,,. is started to execute at 9 am on Monday. The

ote

initial marking of the H. PNet is shown in the first column in Table 6.1. Let the firing

sequence is

M, [tsys = My [tsers = M, [t > My [t(DaEsmm) >M,[t;, >M; and

Mg toys = My [toeps = My [tryy = M, .

sys
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Table 6.1 The firing sequence of process BP,.,.
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In marking M,, the value of artifact d, is transformed from (0,0,1,0) to

(1,0,0,0) by firing transition t.,,, i.e., artifact d, is destroyed. The direct
succeeding task T,, cannot the artifact. In other word, transition t,,, is unable to
be fired because the evaluation result of t.,,’s guard expression is false. A deadlock
happens. A missing production anomaly caused by early destruction, defined in our

previous work [11], is detected.

P ............... i
di
‘:" i T1.2 Send .
< P TL1: Check Stann JV Currentlssue List
Q| T ot working Group ! e EEL2
E | sl DAESLL g ]
'g Mon. working L 5 O
; at Dam group still i
active? ! EELL
i M1.1: Issue List
5 1
& = T21: Receive
£ o s List
L. SE21 3
RD
i
|
di m )

I —ree .u.ow@»vm in

p(DaESI.1,T1.2)

- PEE12
1'(Pretin,(1,0))+@24hr- (DaES1.1,T1.2)

i !‘tT’Nr\m.ll.OnO\ ar o] i

p(SELLTLL)

Working Var in
Group

DSELI

D(TL1DaESL1) %,

tse1,1[Mon9,Mon9]

1'(PNet;x(1,00)

Manager _—
p(SE2.1,T2.1) -

1 (Prctin(1,0)+ @24h—w{

p(T2.1,T2.2) p(T2.2,DaES2.1)

2.1

(b) The HZ PNet of the example shown in (a).

Figure 6.1 Two presentations of the email voting example.
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Chapter 7. Comparisons
7.1. Comparison of BPMN-based Process Models

A formal process model proposed in this paper is based on the control, message
and data flows defined in BPMN. In the model, each notation for BPMN can be
referred to one in [24] and [29]. The notation mappings between ours and [24] and [29]

are shown in Table 7.1, Table 7.2 and Table 7.3, respectively.

Table 7.1 The mappings of the elements in message flow addressed.

Message Flow Our process Remco et al. Y.D. Linetal.

model [24] [29]
Role Participant and Flow Engine Supported N/A N/A
Task to Task Supported Supported N/A
Task to Start Event Supported Supported N/A
Task to Intermediate Event Supported N/A N/A
Intermediate Event to Task Supported N/A N/A
Intermediate Event to Start Event Supported N/A N/A
Intermediate Event to Intermediate Event Supported N/A N/A
End Event to Task Supported Supported N/A
End Event to Start Event Supported Supported N/A
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Table 7.2 The mappings of the elements of control flow addressed.

Control flow Our Remco et Y.D. Linetal.
process al. [24] [29]
model
Event Timing/Messag | Start Supported Partially
e Event Supported NiA
Intermediate Supported Partiall
" Support:d NiA
End Supported Partiall
" Support:d NiA
Activity Task Supported | Supported Supported
Sub-Process Supported | Supported Supported
Task/ Activity Involving | Supported | Supported /A
Sub-Process Event
Standard Loop | Supported | Supported
Activity NiA
Multi-Instance Supported
Loop Activity /A /A
Control Node | Data-Based Exclusive Supported | Supported Supported
(Well-Formed) Inclusive Supported | Supported Supported
Parallel Supported | Supported Supported
Complex Supported N/A N/A
Iterative Supported | Supported Supported
Event-Based Exclusive Supported N/A N/A
Unstructured | Mismatched Structure Supported N/A N/A
Unpaired Structure Supported N/A N/A
Improper Nesting Structure Supported N/A N/A

There are many ways for the artifacts to be defined and utilised in process. In
BPMN, the visibility and usability of an artifact is determined by the scope of process
or task. In our process model, the artifact(s) associated with a process or task is
defined as the ‘input’ and ‘output’ attribute(s) of the latter. It is easier to use data

channels, distinct from control channels, to analyze the artifact interactions. An
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artifact of multiple instances is partially supported: Our process model does not

support assigning specific artifact instances to different task instances.

Table 7.3 The mapping of the elements of data flow addressed.

Our process Remco et
Data flow Y.D. Linetal. [29]
model al. [24]
Task Data Supported Unsupported

Visibility (Sub)Process Data

Multiple Artifact Instance | Input attribute

Task to Task

Task to Sub-process N/A
Avrtifact Sub-process to Task Distinct control | Integrated control and
Interaction and data data channels

Sub-process to channels (Global data)

Sub-process

7.2. Advantages of H] PNets

When a process is modeled with.a PNet, CPNet or Timed CPNet, the behavior of
the WFMS, on which the process executes, may not be included. Thus, the behavior
simulated upon the nets may not indicate the behavior of real WfMS. And, the

analysis results gained upon the nets might be useless. The problems can be solved

partially with H] PNets. For example, many correlations between the artifact/process
and its operations cannot be found in above nets, but in H] PNets.

In addition, H] PNets can represent a BPMN-based process with a sub-process

which is associated with a lower-level net, especially for Standard and
Multilnstance loop sub-process. The refinement function is not supported by PNet,

CPNet and Timed CPNet.
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Table 7.4 Advantages of H; PNets

He PNets PNets\ CPNets\ Timed CPNets
Hierarchical Interactions between WfMS and participants are not captured | All
Token High difficulty of maintaining correlations between an artifact | All
(Net within Net) | state transition and its operations
Hierarchical All
o Un-introduce element refinement mechanism
Transition
Time Semantic Time Condition Omission PNets\ CPNets
Data Semantic Weak Data Presentation PNets
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Chapter 8. Conclusion and Future Works

Current analysis techniques based on PNets, CPNets, and timed CPNets are not
well for workflow modeled with BPMN. The main contribution of this thesis is to
introduce a BPMN-based process model which provides an easier way to extract

knowledge from the role, control flow, data flow and message flow of a workflow.

Such a BPMN-based can be transformed into a H] PNets, which is an extended timed

CPnets with hierarchical token, for analysis.

The BPMN process may include: 1) an interaction between participants, 2) a
multi-instance (loop) activity, 3) an event-triggered (supplement) process, 4) a join
node designed by one of the three advanced:join mechanisms, discriminator, multiple

merge and N out of M join, and 5) a data flow described with explicit channel. The

analysis for H PNets works for BPMN workflow of well-formed or unstructured

control flows.

We currently continue our research in several directions. First, we plan to implement
our model and methods on existing workflow management systems, such as Microsoft
Visio [25] or BizAgi BPM [26], in order to apply our research result in real-world
applications. The second is to continue the research of analysis on activities (task and
sub-process) or process instances with more complex events. Thirdly, we plan to integrate
our resource constrains analysis techniques to develop a design methodology for

constructing workflows or web services.
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