

國 立 交 通 大 學

資訊科學與工程研究所

博 士 論 文

運用一具 Hierarchy 特性的 Timed CPNets 技

術來分析 BPMN 工作流程

Applying Timed CPNets with Hierarchy to Analyze a

Workflow in BPMN

研 究 生：王靜慧

指導教授：王豐堅 教授

中 華 民 國 九 十 八 年 七 月

運用一具 Hierarchy 特性的 Timed CPNets 技術來分析

BPMN 工作流程

Applying Timed CPNets with Hierarchy to Analyze a

Workflow in BPMN

研 究 生：王靜慧 Student：Ching-Huey Wang

指導教授：王豐堅 Advisor：Feng-Jian Wang

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

博 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science

National Chiao Tung University
 in partial Fulfillment of the Requirements

for the Degree of
Doctor

in
Computer Science

July 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年七月

I

運用一具 Hierarchy 特性的 Time CPNets 技術來分析

BPMN 工作流程

學生：王靜慧 指導教授：王豐堅 博士

國立交通大學資訊工程與科學研究所 博士班

摘 要

相對於 BPMN 而言，現存的商業流程之研究或商業軟體大多只提供或使用

其中的部分。BPMN 主要的組成元素包括:控制流程、訊息流程、資料流程以及

角色分配。它也提供多實體 activity、事件觸發 activity 及進階控制機制。雖然這

些元素讓 BPMN 具更大的流程表達能力，但也增加了設計階段其所表達之流程

的分析困難度。本論文提出一個正規流程模型來協助根據 BPMN 四種組成元素

所描述的商業流程。同時，也提供一具階層特質之時間顏色派翠網模型。並建立

一套流程與此網的轉換規則，以便將上述 BPMN 商業流程轉換成相對之時間顏

色派翠網，來運用既有之分析方法做靜態分析—如 deadlock 檢查。在本論文中，

我們更進一步探討 well-formed 和 unstructured 相當普遍的流程之分析。此外，我

們將以一個實際的例子做示範，利用時間顏色派翠網 deadlock 分析方法，再根

據其結果推斷可能會影響流程執行的異常 artifact 之使用。最後，我們也將比較

刻下技術與我們之研究成果。

關鍵字: 商業流程模型符號，工作流程，商業流程，分析，控制流程，資料流程，

訊息流程、顏色派翠網、時間顏色派翠網、階層式派翠網

II

Applying Timed CPNets with Hierarchy to Analyze a

Workflow in BPMN

Student：Ching-Huey Wang Advisor：Dr. Feng-Jian Wang

Institute of Computer Science and Engineering
National Chiao Tung University

Abstract

Although many business process models have been proposed, most of them do

not apply all the following arguments: control, message and data flows and role

assignments, defined completely in BPMN. Besides, they do not provide the

multi-instance activity, event-triggered activity or the control node with complex

mechanisms as in BPMN. On the other hand, these features allow a process to be

defined with richer semantics but increase the difficulty of correcting an error or

inaccurate process in workflow design.

This thesis proposes a formal process model to help describing a BPMN-based

process. To simplify the analysis, we also provided Hierarchical Timed Coloured

Petri Nets (T
CH PNets), which is extended from Time Coloured Petri Nets with

hierarchy and allows some analysis with existing techniques. Once a workflow based

on our BPMN model is specified, a series of mapping rules can be used to transform

the workflow into a T
CH PNets for analysis. An example is applied to demonstrate the

transformation and the corresponding deadlock detection. Furthermore, the artifact

usage anomaly detection mechanisms within either a well-formed or unstructured

III

process are discussed. Finally, a comparison among related works and ours and the

future works are presented.

Keyword: BPMN, workflow, business process, analysis, control flow, data flow,

message flow, CPNets, Time CPNets and hierarchical PNets.

IV

誌 謝

 本篇論文的完成，首先要萬分感謝指導教授王豐堅博士，王教授在我求學期

間持續不斷的指導與鼓勵，讓我不僅在論文研究方面學習到相當寶貴的經驗，在

做人處事方面也獲益良多。如今學生若有些微的成就，王教授的指導實在功不可

沒。

 其次要感謝吳毅成教授，陳耀宗教授，朱治平教授，黃冠寰教授，焦惠津教

授，梅興教授，與楊鎮華教授，在百忙之中首肯擔任我博士論文的口試委員，並

且提供了許多寶貴的意見，補足我論文裡不足的部分。其中吳、陳兩位教授亦是

我的論文計畫書口試委員，在論文報告的方式上也給了我相當多的指導。此外，

對於一起研究討論與互相鼓勵的實驗室學長與學弟們，包括楊基載、黃國展、王

建偉、許嘉麟、許懷中、黃培書等等，在此一併加以感謝。

 最後，我要與我的家人、同學、朋友共同分享完成論文的喜悅，由於有您們

的支持與關懷，陪伴我走過這漫長的求學過程。僅將此論文獻給我最敬愛的父母

親與支持我的親友們。

V

Table of Contents

摘 要 .. I

ABSTRACT .. II

誌 謝 .. IV

TABLE OF CONTENTS ... V

LIST OF FIGURES AND TABLES ... VII

CHAPTER 1. INTRODUCTION .. 1

CHAPTER 2. PETRI NETS – PNETS .. 3

2.1. DEFINITION OF CLASSICAL PETRI NETS ... 3

2.1.1. Advantages of PNets Adoption .. 6

2.1.2. Business Process Modeling Notation – BPMN ... 7

2.1.3. Problems of Modeling Processes with PNets .. 8

CHAPTER 3. BUSINESS PROCESS MODELING ... 30

3.1. PRIVATE PROCESS SPECIFICATION ... 32

3.2. CONTROL FLOW SPECIFICATION ... 33

3.3.1. Artifacts and Artifact Operations .. 62

3.3.2. Artifact Usages .. 63

3.3.3. Definition of Data Flow .. 64

3.3.4. A Data Flow Example: a Process of Resolving Issues through E-mail Votes 67

3.3.5. Instance of Data Flow ... 70

CHAPTER 4. THE FORMULATIONS OF WELL‐FORMED AND UNSTRUCTURED CONTROL FLOWS 72

4.1. WELL‐FORMED CONTROL FLOW .. 72

4.2. UNSTRUCTURED CONTROL FLOW ... 74

CHAPTER 5. THE METHODS FOR TRANSFORMING BPMN PROCESS INTO T
CH PNET 76

5.1. STATE TRANSITIONS OF PROCESS INSTANCE WITH PNET ... 76

5.2. TRANSFORMATION METHOD FOR CONTROL FLOWS – CFMethod .. 77

5.2.1. Rules for Transforming Basic Elements .. 78

5.2.2. Transformation Rules for Advanced Elements ... 84

5.3. TRANSFORMATION METHOD FOR MESSAGE FLOWS – MFMethod 93

5.4. TRANSFORMATION METHOD FOR DATA FLOWS – DFMethod ... 100

VI

5.5. PROCESS TRANSFORMATION ... 105

CHAPTER 6. A CASE STUDY ... 109

CHAPTER 7. COMPARISONS ... 112

7.1. COMPARISON OF BPMN‐BASED PROCESS MODELS .. 112

7.2. ADVANTAGES OF T
CH PNETS .. 114

CHAPTER 8. CONCLUSION AND FUTURE WORKS ... 116

REFERENCE .. 117

VII

List of Figures and Tables

FIGURE 2.1 AN EXAMPLE OF A PNET. .. 4

FIGURE 2.2 AN EXAMPLE OF CPNET. ... 13

FIGURE 2.3 THE RESULT NET OF FIRING STEP 1Y . .. 18

FIGURE 2.4 INTRODUCING TIME CONSTRAINTS INTO THE CPNET SHOWN IN FIGURE 2.1. ... 21

FIGURE 2.5 THE RESULT NET OF FIRING STEP 1Y . .. 24

FIGURE 2.6 AN EXAMPLE OF
T
CH PNET. .. 26

FIGURE 3.1 THE CORE MODELING ELEMENTS IN BPMN. ... 31

FIGURE 3.2 E‐MAIL VOTING PROCESS .. 32

FIGURE 3.3 THE NOTATIONS FOR NONE EVENTS. .. 38

FIGURE 3.4 THE NOTATIONS FOR MESSAGE EVENTS. ... 39

FIGURE 3.5 THE NOTATIONS FOR THE TIMING EVENTS. .. 40

FIGURE 3.6 THE CASES OF SUPPLEMENT ARCS. .. 45

FIGURE 3.7 AN ACTIVITY WITH A MESSAGE DISPATCHER. ... 45

FIGURE 3.8 NOTATIONS FOR LOOP ACTIVITIES. ... 50

FIGURE 3.9 SAMPLES OF EXCLUSIVE CONTROL BLOCK. ... 54

FIGURE 3.10 A SAMPLE OF INCLUSIVE CONTROL BLOCK. .. 55

FIGURE 3.11 A SAMPLE OF PARALLEL CONTROL BLOCK. ... 55

FIGURE 3.12 SAMPLES OF LOOP CONTROL BLOCK. .. 57

FIGURE 3.13 THE SAMPLES OF COMPLEX BLOCKS. .. 58

FIGURE 3.14 THE CONTROL FLOW OF THE BUSINESS PROCESS FOR RESOLVING ISSUES. ... 60

FIGURE 3.15 THE EXPANSION OF COLLECT VOTE SUB‐PROCESS. .. 61

FIGURE 3.16 THE STATE TRANSITION DIAGRAM OF AN ARTIFACT. ... 63

FIGURE 3.17 THREE CASES OF INCOMING DATA FLOWS. ... 66

FIGURE 3.18 THE FOUR CASES OF INTERMEDIATE DATA FLOWS. ... 67

FIGURE 3.19 THE CONTROL AND DATA FLOWS OF BPVOTE. ... 68

FIGURE 3.20 THE EXPANSION OF “COLLECT VOTES” SUB‐PROCESS. ... 70

FIGURE 4.1 AN EXAMPLE OF OVERLAPPED STRUCTURE. ... 75

VIII

FIGURE 5.1 TWO DIFFERENT PRESENTATIONS OF THE STATE TRANSITIONS OF A PROCESS INSTANCE. 77

FIGURE 5.2 THE MAPPING OF THE ELEMENTS ADDRESSED IN [29]. .. 81

FIGURE 5.3 COMBINING THE EXPANSION OF A SUB‐PROCESS AND PARENT NET. .. 81

FIGURE 5.4 THE MAPPING OF THE CONTROL NODES ADDRESSED IN [29]. .. 82

FIGURE 5.5 TWO DIFFERENT
T
CH PNETS MODULES OF A TASK WITH LOOP STRUCTURE. ... 85

FIGURE 5.6 FOUR DIFFERENT T
CH PNETS MODULES OF A TASK WITH MULTI‐INSTANCE LOOP STRUCTURE. 87

FIGURE 5.7 THE T
CH PNETS MODULE OF INTERMEDIATE EVENT. ... 87

FIGURE 5.8 TWO DIFFERENT PRESENTATIONS OF MESSAGE START EVENT. .. 89

FIGURE 5.9 TWO DIFFERENT PRESENTATIONS OF INTERMEDIATE MESSAGE DISPATCHER. ... 90

FIGURE 5.10 TWO DIFFERENT PRESENTATIONS OF A TASK INVOLVING A TIMING EVENT. .. 90

FIGURE 5.11 TWO DIFFERENT PRESENTATIONS OF A TASK INVOLVING A MESSAGE RECEIVER. 91

FIGURE 5.12 TWO DIFFERENT PRESENTATIONS OF A SUB‐PROCESS INVOLVING A MESSAGE RECEIVER. 91

FIGURE 5.13 TWO DIFFERENT PRESENTATIONS OF A TASK INVOLVING A MESSAGE DISPATCHER. 92

FIGURE 5.14 DIFFERENT PRESENTATIONS OF A COMPLEX CONTROL NODE IMPLEMENTED WITH DIFFERENT MECHANISMS. . 93

FIGURE 5.15 TWO DIFFERENT PRESENTATIONS OF A MESSAGE FLOW BETWEEN TWO TASKS. .. 94

FIGURE 5.16 TWO DIFFERENT PRESENTATIONS OF A MESSAGE FLOW BETWEEN A TASK AND A START EVENT. 95

FIGURE 5.17 TWO DIFFERENT PRESENTATIONS OF A MESSAGE FLOW BETWEEN A TASK AND AN INTERMEDIATE EVENT. 96

FIGURE 5.18 A MESSAGE FLOW BETWEEN AN INTERMEDIATE EVENT AND A TASK. ... 96

FIGURE 5.19 A MESSAGE FLOW BETWEEN INTERMEDIATE AND START EVENTS. ... 97

FIGURE 5.20 A MESSAGE FLOW BETWEEN TWO INTERMEDIATE EVENTS. ... 97

FIGURE 5.21 TWO DIFFERENT PRESENTATIONS OF A MESSAGE FLOW BETWEEN AN END EVENT AND A TASK. 98

FIGURE 5.22 TWO DIFFERENT PRESENTATIONS OF A MESSAGE FLOW BETWEEN AN END EVENT AND A START EVENT. 99

FIGURE 5.23 TWO DIFFERENT PRESENTATIONS OF THE STATE TRANSITION OF AN ARTIFACT. 101

FIGURE 5.24 A T
CH PNETS MODULE OF INCOMING DATA FLOWS. ... 101

FIGURE 5.25 A T
CH PNETS MODULE OF INTERMEDIATE DATA FLOWS... 103

FIGURE 5.26 A T
CH PNETS MODULE OF INTERMEDIATE DATA FLOWS. .. 105

FIGURE 6.1 TWO PRESENTATIONS OF THE EMAIL VOTING EXAMPLE. ... 111

TABLE 3.1 CONTROL BLOCKS .. 58

TABLE 3.2 ARTIFACTS IN THE E‐MAIL VOTING PROCESS ... 68

TABLE 3.3 ARTIFACTS USAGES IN THE E‐MAIL VOTING PROCESS .. 69

IX

TABLE 5.1 THE NOTATIONS AVAILABLE IN PROCESS MODEL [29]. ... 83

TABLE 6.1 THE FIRING SEQUENCE OF PROCESS voteBP .. 110

TABLE 7.1 THE MAPPINGS OF THE ELEMENTS IN MESSAGE FLOW ADDRESSED. .. 112

TABLE 7.2 THE MAPPINGS OF THE ELEMENTS OF CONTROL FLOW ADDRESSED. .. 113

TABLE 7.3 THE MAPPING OF THE ELEMENTS OF DATA FLOW ADDRESSED. ... 114

TABLE 7.4 ADVANTAGES OF T
CH PNETS .. 115

1

Chapter 1. Introduction

Workflow can be viewed as a set of interrelated tasks that are systematized to

achieve certain business goals by completing the tasks in a particular order under

automatic control [1]. The Business Process Modeling Notation (BPMN) [2] is a

standard for capturing workflow in the early phases of system development. Existing

researches focus on 1) parts of the concepts included in BPMN only, e.g., control flow

analysis [3][48] or 2) how to transform from control and message flow in BPMN into

BPEL code [4][5][6].

A BPMN-based workflow is described with four entities: 1) role: describing the

performers of task instantiated, 2): control flow: defining what, when and how tasks a

workflow performs, 3) data flow: specifying what information entities are

produced/manipulated/passed in corresponding activities and 4) message flow:

representing the interaction between processes through messages. An analysis based

on the correlations among these four entities can help check or maintain consistency

between execution order and data transition [7][8][9][10], as well as prevents exceptions

due to contradiction between data flow, control and message interaction.

There are five additional features introduced in BPMN, but not included in

traditional process modeling languages. These features allow defining: 1) an

interaction between participants, 2) a multi-instance (loop) activity 3) an

event-triggered (supplement) process, 4) a join node designed by one of the three

advanced join mechanisms, discriminator, multiple merge and N out of M join, and 5)

a data flow described with explicit channel. In addition, time event-triggered

behaviors can be described in a BPMN-based workflow, i.e., time constrains are

embedded. These features allow defining a process with richer semantics, but increase

2

the difficulty of identifying the problems such as inaccuracy in a process specification

at design time.

Here, we provide an easier way to extract knowledge from the four entities of a

workflow. Based on our previous work [11], a method for describing a BPMN-based

process is proposed. Then, we propose a model, Hierarchical Timed Coloured Petri

Nets (T
CH PNets), extended from Timed Coloured Petri Nets (TCPNets) with hierarchy

[13][14] for analysis. There are a series of mapping rules defined to transform a

BPMN-based process into T
CH PNets, in which a set of analysis techniques works [14].

With our methodology, the artifact usage anomalies in our previous work are

refined. An analysis method of control, data, and message flow is derived. An example is

used to indicate our contribution of process development and anomaly detections. Finally,

a comparison among ours and related works is presented.

The remainder of this paper is organized as follows. Chapter 2 introduces the

Petri Nets and its extensions, Coloured Petri Nets (CPNets), and TCPNets. It also

compares existing flow specification model and BPMN. Besides, T
CH PNets is

proposed for the problems identified. Chapter 3 presents our business process model,

including the control flow, data flow and message flow. In Chapter 4, we present a

set of rules transforming a process in BPMN into T
CH PNets. In Chapter 5, the

well-behaved unstructured processes are identified and formulated. In Chapter 6, we

present a case to demonstrate our methodologies including development and analysis.

A comparison between our approach and related works on BPMN is given in

Chapter 7. Finally, a conclusion and some recommendations of future works are

given in Chapter 8.

3

Chapter 2. Petri Nets – PNets

PNets, Petri Nets, is a formal model with graphical representations. The original

PNets was developed by Petri [27], and various extensions have been developed with

their own constructs. Some of these extensions are associated with easier modeling

mechanism and keep the same expressiveness as classical PNets [28] and some

provide more expressional power [22][23]. PNets has been applied to many areas,

including workflow applications [29][30][31]. In this chapter, we discuss the

problems rising when applying PNets or its extensions, Coloured Petri Nets and Time

Petri Nets, to analyze business processes represented with BPMN. Before the

discussion, definitions of PNets and the two extensions are given.

2.1. Definition of Classical Petri Nets

A PNet, defined in Definition 2.1, is a directed graph with two kinds of nodes,

named place and transition. In general, a place is presented with a circle while a

transition is presented with a rectangle. There are no arcs connecting two places or

two transitions. An example of PNet is shown in Figure 2.1 where there are three

places, two transitions and one token.

Definition 2.1 (Classical Petri Nets – PNets)

A Petri net is a 4-tuple ()0=PNet P,T ,F ,m where

1. P is a finite set of places,

2. T is a finite set of transitions such that φ∩ =P T ,

3. F is a finite set of directed arcs, () ()⊆ ∪ × ∪F P T P T , satisfying

4

() () φ∩ × = ∩ × =F P P F T T ,

4. 0m is the initial marking function, 0 →`m :P where { }1 2=` , ,... .

Figure 2.1 An example of a PNet.

Definition 2.2 (Marking)

1. A marking M of a set of places P is a mapping →`m:P where

{ }0 1 2, , ,...=` .

2. A marking M of a Petri net ()0=PNet P,T ,F ,m is a marking of P . Initial

marking 0M of PNet is generated by function 0m .

In Definition 2.2, function m is defined from a place to a nonnegative integer

which means the number of tokens on the place. A PNet is also equipped with an

initial marking 0M , i.e., an initial state of the PNet is associated with one or more

token in some place(s). All the states of this net succeed to 0M , generated by function

0m . Marking 0M of an example PNet shown in Figure 2.1 can be expressed as an

array based on the order ()0 1 2p ,p ,p with nonnegative integers ()1 0 0, , .

Definition 2.3 (Input/Output Set)

Let ()0=PNet P,T ,F ,m be a Petri net, for an element ∈ ∪x P T

5

1. its input set
•x is defined as (){ }• = ∈ ∪ ∈x y P T | y,x F and

2. its output set
•x is defined as (){ }• = ∈ ∪ ∈x y P T | x,y F .

Definition 2.3 defines the notations about the input and output sets of a node

(place or transition) in a PNet. Note that both sets of a place contain transitions only

and both sets of a transition contain places only.

Definition 2.4 (Fire a Transition Enabled)

A transition t is able to be fired (named as enabled) if •∀ ∈p t , () 1≥m p .

Firing t transforms marking M into marking M' and the transformation can be

defined from place p by function m and m' as

()
()
()

1
1

− ∈ −⎧
⎪= + ∈ −⎨
⎪
⎩

• •

• •

m p if p t t ,
m' p m p if p t t,

m(p) otherwise.

When t is enabled in M , t may fire to change marking M to another

marking M' . The new marking M' is obtained by removing one token from each of

its input places •t and by putting one token to each of its output places •t . M' is

also called directly reachable from M with firing of t , denoted as [;M t M' .

A finite occurrence (of firing) sequence is [1 1 2 2 3 1 1− −⎡ ⎡⎣⎣ ; ; ;n n nM t M t M ...M t M

where 1+;i i iM t M[, 1 i n≤ ≤ . Marking 1M is called start marking of the occurrence

sequence, while nM is called the end marking. The non-negative integer 1−n is

called the number of steps in the occurrence sequence.

6

Definition 2.5 (Reachable)

A marking nM is reachable from a marking 1M iff there is a finite

occurrence sequence whose start/end markings are 1M / nM correspondingly

[1 1 2 2 3 1 1− −⎡ ⎡⎣⎣ ; ; ;n n nM t M t M ...M t M

nM is reachable from 1M in 1−n steps. The set of markings which are reachable

from 1M is denoted by [1 ;M .

2.1.1. Advantages of PNets Adoption

Many researches [29][30][31][32][33][34][39] proposed workflow modeling and

analysis paradigms based on PNets, e.g., control/data flow modeling [31][32][33],

workflow pattern composition [35][36][37][46], and automatic control of workflow

process [38]. Aalst and ter Hofstede [39] proposed a WorkFlow net (WF-net) based

on PNets to model a workflow: Transitions represent activities, places represent

conditions, tokens represent cases (process instances), and directed arcs connecting

transitions and places. Concluding by Aalst [40], the advantages of adopting PNets to

analyze process are : (1) presenting a process with formal expression keeps the

verifiability of PNets, (2) utilizing its own state-based modeling power to present

process state transitions is straight forward and (3) the abundance of analysis

techniques associated with PNets are available. Furthermore, Advantage (1) indicates

that a process specification presented mathematically holds the explicitness and

generality, i.e., the process can be verified by but not depends on particular tools.

Advantage (2) means that with PNets, the state transitions of the elements, task and

sub-process, within workflow are expressible. In other words, PNets allows to (a)

identify tasks which are enable or executing, (b) present resource competition during

7

an execution and (c) present a cancellation of process instance by removing tokens.

Advantage (3) the available analysis techniques in control flow dimension are

focused on correctness issues of control structure in a workflow. The techniques of

detecting common control-flow anomalies, including deadlock, livelock (infinite

loop), lack of synchronization, and dangling reference [28], are available.

Although, the three advantages reduce the difficulty of modeling and analyzing

workflow application, PNets is not good enough to handle a business process

presented by BPMN [34]. The expression limitations of PNets are discussed in

Chapter 2. Moreover, these problems were seldom addressed in the past and were not

concerned in the designs of commercial tools, e.g., Microsoft office visio [25] and

BPM Virtual Modeling Tool [26].

2.1.2. Business Process Modeling Notation – BPMN

In this thesis, our process model is designed based on the core elements set

specified in BPMN specification v1.2 [2], released in 2009. A business process

diagram, composed of the BPMN elements, is referred to as a BPD in the following

sections.

The core elements are classified into four categories, flow objects, connecting

objects, artifacts and swimlanes, where

 Flow Objects: are the elements used to define the behaviour of a business

process. There are three flow objects: events, activities, and gateways. This thesis,

extended our previous work [11], presents a process model for describing the

processes presented with BPMN. The term “Control node” is adopted in our

previous work to present gateways. In order to keep the consistency of

terminology, “gateway” is called “control node” in this thesis also.

8

 Connecting Objects: define the ways of connecting flow objects. There are three

connecting objects: sequence flow, message flow and association. The execution

of a BPMN-based process is controlled not only by sequence flow, the order of

activities, but also by message flow, e.g., a message arriving to trigger the

execution of the target flow object, as well as by the resources required to enable

activities. Upon the same reason mentioned above, the term “sequence flow” is

called “control flow” and artifact “association relationship” is denoted with “data

flow” here.

 Artifacts: depict the information involved in a process. Within a process, what

artifact is required/generated before/after an execution of activity are depicted in

data flow.

 Swimlanes: The specific processes designed for a participating business role (e.g.,

a buyer, seller, or manufacturer) or entity (e.g., a company) can be grouped with

swimlane. The process contained in a swimlane is called private process.

2.1.3. Problems of Modeling Processes with PNets

A workflow management system (WfMS) does not execute tasks but merely

coordinates the execution of these tasks by participants or involved software systems.

In a process instance, each task needs to be enabled before execution, but an enabled

task does not have to execute. The execution of a task is triggered by the participants

or the software systems and not by the WfMS. In the other word, a WfMS does not

control the environment but reacts to events generated from the environment, e.g.,

instantiate a process or terminate a scheduled task, by creating certain effects, such as

“a process is instantiated” or “a scheduled task is terminated”. A reactive system is

usually modeled using event-condition-action rules, stating the actions with which the

system responds to events. A reactive system must respond to events in the

9

environment with the actions specified in its rules.

Unfortunately, PNets and its higher-level extensions can model a closed active

system under token-game semantics well only, but a WfMS, a reactive system, is

actually open [40]. In other word, the information about the interactions between

participants and their WfMS is not transformed into PNets. The omissions are

summarized in Problem 1.

Problem 1. (Interaction Omission)

The interaction between a workflow management system and involved

participants or systems is not captured by PNets.

1-1. The behavior of WfMS is not modeled by PNets.

1-2. An event generated from participants to enable a transition of WfMS must be

fired immediately; otherwise, the system fails to respond the event.

1-3. The tasks enabled by WfMS are executed by participants or systems. But, these

executions are not necessary.

When a process is modeled with a PNet, the behavior of the WfMS, on which the

process executes, may not be included. Thus, the behavior simulated upon the PNet

could be different from the corresponding executed at run time. The analysis results

gained upon the net might be unavailable. Besides, a reactive net [41] has been

proposed by extending PNets with reactive semantics; however, the indirect data

presentation problem, discussed in the next two paragraphs, inherited from PNets was

not addressed.

Modeling a complex business process with a PNet, holding identical tokens,

could generate a large-sized PNet. During modeling, a large net could increase the

difficulty of handling its complexity as well as analyzing its net structure [29][32].

For example, let a process contain many similar parts, but not identical. Using PNets,

10

these parts must be represented by disjoint subnets of a nearly identical structure. The

total PNet becomes very large. Besides, a property such as the similarities among the

subnets would be very difficult to find.

All the places in a PNet are identifiable. Distinguishing the tokens based on the

places cannot present data types directly, especially for an application such as

workflow whose data flow is modeled with explicit channels. Comparing with

Colourd Petri Nets [22], a PNet can only use more places and transitions to present

data transmissions or variations. In order to indicate what and how typed data are

handled in a process without complicating the net structure, there are many researches

[42] using CPNets to model workflow application.

Based on our previous work [11], the artifacts involved in a process are defined

to be operated by a set of legal operations, initialize, read, update and destroy. After

an operation, an artifact state is transformed among the followings: UnInitialized,

Initialized, Updated and Read. The correlations, existing between the operations and

state transitions, can be constructed by guard and arc expressions and maintained

during execution within CPNets. However, when the number of data types increases,

the possible operations and their correlative state transitions are added

correspondingly. Thus, constructing and maintaining the correlations with CPNets is

more difficult. For example, let a process involve many different data types. Using

CPNets, the correlations between the possible operations and the state transitions of

all typed data need to be described in guard and arc expressions. These expressions

are distributed over the CPNet. For a data type, the corresponding state transitions of

its instance(s) are hard to extract. Therefore, verifying the correctness of the state

transitions is difficult.

11

Problem 2. (High Difficulty of Maintaining Correlations)

The correlations between the artifact state transitions and legal operations

within a process are not easy to be described with PNets or CPNets, because the

restrictions of artifact state transitions listed in the followings are difficult to

express with the two nets.

3-1. A legal operation definitely triggers an artifact state transition; even the former

and latter states are identical.

3-2. Except UnInitialized state, for each state, there is one or more sequence of

operations to transform the artifact from UnInitialized state to the state.

3-3. No matter which state an artifact is at, the artifact can be transformed into

UnInitialized state with one operation.

In addition, when a process is modeled with BPMN, there are four different

cases to introduce time conditions into the process. The four cases are: (1) inserting a

timing start event to indicate the belonging process is started when a specific time

condition occurs, (2) inserting a timing intermediate event into a sequential control

flow to create a delay, (3) attaching a timing intermediate event to the boundary of an

activity to create a deadline or time-out condition and (4) using a timing intermediate

event as part of an event-based gateway. These time conditions could denote a

specific or recurring time. Unfortunately, PNets and CPNets can model a process

without taking time condition into account only. In other word, the information about

the time conditions of a process with BPMN cannot transformed into PNets or

CPNets. The omissions are summarized in Problem 3.

Problem 3. (Time Condition Omission)

The time condition(s) associated with timing start or intermediate event is not

12

captured by PNets or CPNets.

3-1. Case (1) and (2) indicate that their implementations start to execute/continue

when their corresponding time conditions are satisfied.

3-2. Case (3) indicates that the activity involved a timing intermediate event needs

to accomplish before the time condition denoted.

3-3. Case (4) indicates that the outflow of an event-based exclusive gateway, started

with a timing intermediate event, is selected to run when the event occurs first.

The activities in a process modeled with BPMN are either atomic or compound.

A compound activity, is known as a sub-process, can be broken down into a finer

level. BPMN can be used to create a process with different degrees of details.

However, the Petri Nets do not provide a function of structuring a complex net by

replacing an element (place or transition) at a higher-level of abstraction with a

lower-level, more detailed, subnet.

Problem 4. (Un-introduce element refinement mechanism)

The PNets and CPNets weakly support representing a process with BPMN

constructed with a sub-process which is associated with a lower-level net,

especially for Standard and MultiInstance loop sub-processes.

2.2. Coloured Petri Nets — CPNets

A CPNet [22][23] allows modeling the identity of individual tokens by attaching

values (or colour) to tokens. The data value may be of a primitive or a complex type

as a record in PASCAL. The coloured tokens enable the modeling complicated of

objects in the net. The number of the coloured token operated by a transition is

assignable. The value of token(s) and its numbers in a place may be changed upon the

design when one of its preceding and succeeding transition(s) is fired, i.e., the

13

transition is defined with more elaborate operation.

This section applies the CPNet (named as net and shown in Figure 2.2),

designed with four places, two transitions and four tokens, to explain how a CPNet

works. The value of a U-type token located in place 0p is x and the value of I-type

tokens located in place 1p is 0 and 1 and in place 3p is 1 . The value fields of U

and I data type are { },x y and { }0,1,2 , respectively.

Figure 2.2 An example of CPNet.

Definition 2.6 (Coloured Petri Nets – CPNets)

A Coloured Petri Net is a 9‐tuple 0(, , , , , , , ,)CNet P T F C V A G m= Σ where

1. P is a finite set of places,

2. T is a finite set of transitions,

3. F is a finite set of directed arcs, () ()F P T P T⊆ ∪ × ∪ , satisfying

() ()F P P F T T φ∩ × = ∩ × = ,

4. ∑ is a finite set of non-empty types, called color sets,

5. C is a color function, 2:C P ∑→ , defined from P into the power set of

∑ ,

6. V is a finite set of variables declared by the types in ∑ ,

7. A is an arc expression function, : expA F→ such that

14

()() ()()() (): ()f F Var A f Type Var A f C p f⎡ ⎤∀ ∈ ⊆∑∧ ⊆⎣ ⎦ 1.

8. G is a guard function, : expG T→ such that t T∀ ∈

(1) ()()Type G t Boolean= 2 ,

(2) ()()Var G t ⊆∑ ,

(3) ()() ()(),
p t

Var G t Var A p t
•∈

=∪ and

(4) ()() ()()1 2 1 2, , , ,p p t Var A p t Var A p t φ•∀ ∈ ∩ = .

9. 0m is an initialization function, 0 : expm P→ , i.e., p P∀ ∈ , ()0m p can

be represented with a multi-set3 over pVE , defined below. By taking a

type ()c C p∈ , a value element associated with p is a pair ()c,val

where val is one of the colors in color set c . The set of all value

elements of p is denoted by () (){ }pVE c,val | c C p val c= ∈ ∧ ∈ .

The data types associated with a place p are defined as a place color domain,

denoted as ()C p . The place color domains of net are () { }0C p U= , () { }1 ,C p U I= ,

() { }2 ,C p U I= and () { }3C p I= . All place color domains of a CPNet are included in

∑ . The tokens defined with given types included in ()C p are the tokens allowing to

access p only. A transition t in a CPNet is considered as a procedure with a

1 The place connected by arc f is denoted as ()p f .
2 The data type of the value returned by evaluating an expression exp is denoted as ()expType . The set of

variables in exp is denoted by ()expVar . The set of variable types used in the expression is denoted by

()()expType Var .
3 A multi-set m , over a non-empty set S , is a function m: S→` . The integer ()m s ∈` is the number of

appearances of the element s in the multi-set m .

15

pre-condition, declared by a guard expression, denoted as ()G t . The variables

associated with the expression of t are defined in its transition variable domain,

denoted as ()()Var G t . In net , the transition variable domains of 0t and 1t are

{ },u j and { }i , respectively. In addition, each variable in ()()Var G t is adopted once

in one of t ’s input arc expressions, e.g., in net , the variable u is used in 0t ’s input

arc expression, ()0 0, varA p t u= , only. For a variable v adopted in an arc

expression (),A p t , ()Type v needs to include in ()C p .

Assigning the variables of a transition t with values is called transition binding,

defined in Definition 2.7. All bindings satisfying t ’s guard expression are stored in

()B t . The form of binding b can be represented as

1 1 2 2 n nb v val ,v val ,...,v val= = = = where iv is assigned with value ival ,

()() { }1|iVar G t v i n= ≤ ≤ . In net , there are two bindings 1 3b i= = and

2 5b i= = in ()1B t .

Definition 2.7 (Transition Binding)

A binding of a transition t is a function ()():b Var G t M→ , M is defined

in Definition 2.8, where ()()v Var G t∀ ∈

1. () ()()1 , ,b v p c val= , i.e., the value val of the c -typed token in p is

assigned to variable v in ()A p,t and replaces v of ()G t , and

2. ()Type v c= , i.e., the type of variable v is the same as that of the selected

token.

16

A token element is a pair ()()p, c,val where p P∈ and () pc,val VE∈ , while a

binding element is a pair ()t,b where t T∈ and ()b B t∈ . The set of all token

elements of a CPNet is denoted by TE while the set of all binding elements is

denoted by BE . In net , the color sets associated with 1p and 2p are U and I

while 0p and 3p are associated with U and I , respectively. The TE of net is

composed of the token elements in the two sets,

()() ()() (){ }0 1 2p, U,x , p, U,y | p p | p | p= and

()() ()() ()() (){ }1 2 30 1 2p, I, , p, I, , p, I, | p p | p | p= .

The BE are ()0 0t ,b , ()1 1t ,b and ()1 2t ,b where 0 1b u x,j= = = , 1 0b i= =

and 2 1b i= = .

Definition 2.8 (Marking)

A marking M is a multi-set over TE while a step Y is a non-empty and

finite multi-set over BE . The initial marking 0M is obtained by initialization

function 0m :

()() ()() ()()()0 0p, c,val TE :M p, c,val m p c,val .∀ ∈ =

The set of all markings and steps are denoted by M� and Y� , respectively.

Definition 2.9 (Step Enabled)

A step Y is enabled in a marking M , obtained by a marking function m , if

and only if the following property is satisfied:

()
()

()
t ,b Y

p P : A p,t b m p
∈

∀ ∈ ⊆∑

17

Let ()t,b Y∈ . The tokens in ()A p,t b , a multi-set over pVE yielded by the

arc expression ()A p,t upon b , are removed from p when t is fired with

binding b . By taking all binding elements ()t,b Y∈ , the tokens in the union of

multi-sets generated by these binding elements are removed from the input places

concurrently when Y occurs. Each binding element ()t,b in Y must be able to get

the tokens specified by ()A p,t b , without having to share these tokens with other

binding elements of Y .

Let step Y be enabled in the marking M . When ()t,b Y∈ , t is enabled in M

with the binding b . If () ()1 1 2 2t ,b , t ,b Y∈ and () ()1 2 1 2t t b b≠ ∧ ≠ , ()1 1t ,b and

()2 2t ,b are enabled concurrently in marking M . If () 2Y t ≥ , i.e., i , j∃

() ()i jt,b , t,b Y∈ and i may be j , t is enabled more than one time concurrently.

Definition 2.10 (Fire a Step)

When a step Y is enabled in a marking 1M , generated by marking function

1m , marking function 2m generating the next marking 2M from 1M can be

defined as:

() () ()
()

()
()

2 1
t ,b Y t ,b Y

p P :m p m p A p,t b A t,p b
∈ ∈

⎞⎛
∀ ∈ = − +⎟⎜⎜ ⎟

⎝ ⎠
∑ ∑

Multi-set ()
()t ,b Y

A p,t b
∈
∑ represents the tokens removed from p , while

()
()t ,b Y

A t,p b
∈
∑ denotes the tokens added to p . 2M is directly reachable from

1M by the occurrence of the step Y , denoted as [1 2M Y M> .

18

The initial marking 0M , generated by 0m , of net is

()() ()() ()() ()()0 1 1 31 1 0 1 1 1 1' p , U,x ' p , I, ' p , I, ' p , I,+ + + . Let two sequential steps 1Y and

2Y be (){ }0 0t ,b and () (){ }1 1 1 2t ,b , t ,b . Before executing 1Y , the values of the tokens,

()()01' p , U,x and ()()31 1' p , I, , are assigned to variable u and j upon

0 1b u x,j= = = for evaluation, i.e., u is assigned with x of the token in place 0p ,

while j is assigned with value 1 of the token in place 3p . In this case, the

evaluation result is true, hence 1Y is enabled in 0M and it may be fired. When 1Y is

fired, one U-type token with value x and one I-type token with value 1 are

removed from 0p and 3p , respectively, and two U-type tokens with value x are

added into 1p . The result is shown in Figure 2.3.

In 2Y , transition 1t is enabled twice concurrently by binding 1 0b i= = and

2 1b i= = , i.e., the two binding elements in 2Y are able to remove the

corresponding tokens, expressed as ()() ()()1 11 1 0' p , U,x ' p , I,+ and

()() ()()1 11 1 1' p , U,x ' p , I,+ respectively, from 1p at the same time.

Figure 2.3 The result net of firing step 1Y .

Var u
2(x) Var i+1(x) Var i+1(x)p0

p1 p2
t0 t1

Type U = {x, y} ;
Type I = {0,1,2};
Var u : U ;
Var i, j : I ;

x

0

1

p3

Var j
x

19

The definition of occurrence sequence of CPNets, omitted here, is similar to that

of PNets, given in Definition 2.5.

2.3. Time Coloured Petri Nets — TCPNets

CPNets with timing constraints can be classified according to the ways of

specifying timing constraints, a timing interval [16][17][23] or a specific time [18], or

the elements of the net, place [19] , transition [16][18] and arc [15][20], these

constraints are associated with. When timing constraints are associated with a

transition, the constraint can be interpreted as (1) a delay time [18] [23], i.e., when the

transition is fired, its input tokens are removed, but the output tokens is created until

the delay time associated with the transition has elapsed, (2) a holding duration [21],

i.e., when the transition is fired, its input and output tokens are removed and added

concurrently, but the succeeding transition is enabled when the token created time

within the holding duration denoted and (3) an firing interval [16][23], i.e., the

transition can be fired in its firing interval only. For such transition, the mechanism of

removing and adding tokens is the same as that of a transition associated with a delay

time.

A common approach [23] is to associate a time stamp, denoted as @r , r∈\ ,

with token, and attach a restricted firing interval, denoted as []min,max ,

min,max∈\ , with transition. The transition output arc(s) can associate with a time

requirement tΔ to denote how many time units an execution of the transition takes.

When a token is associated with a time stamp, the token is timed. If the time

stamp is @r , the token is available to consume after r , i.e., r is the earliest time at

which the token can be used. Otherwise, the token is untimed and always ready to be

used. For a timed transition t , there is a restricted firing interval []min,max

associated with t which is a pair of real numbers referred to the minimum and

20

maximum firing time, respectively, i.e., t can be fired between min and max

only. In addition, an execution of t takes tΔ time units which is equal to or more

than 0 . tΔ is specified in t ’s output arc expression(s). An untimed transition,

defined without restricted firing interval, can be fired when it is enabled. The firing

mechanism of untimed transition is the same as that defined in CPNets.

In a TCPNet, timed CPNet, a global clock is introduced. Let an activity,

associated with a restricted firing interval []min,max , be presented with a transition

t in the net and t be fired at τ , min maxτ≤ ≤ . An execution of t takes tΔ time

units. The value of the time stamp(s) associated with the token(s), which will be

removed from t ’s input place(s) when t is fired, needs to be less than τ . When t

is fired, t creates a time stamp tτ +Δ for its output token(s).

Definition 2.11 (Timed Coloured Petri Nets)

A Timed Coloured Petri Net is a 5-tuple ()0INT RTNet CNet,I ,I ,R,r= where

1. 0(, , , , , , , ,)CNet P T F V C G A m= Σ is a CPNet where

(1) U TΣ = Σ ∪Σ , i.e., the colour sets (types) in Σ can be divided into two

disjoint sets, UΣ and TΣ . The elements in UΣ are untimed and the

elements in TΣ are timed, i.e., a token typed with Tc∈Σ is associated

with a time stamp,

(2) f F∀ ∈ , the variables ()()Var A f used in arc f are timed/untimed over

the timed/untimed subset of ()()C p f and

(3) p P∀ ∈ , ()0m p generates a timed/untimed multi-set over the

timed/untimed subset of ()C p . The details are given in Definition 2.12.

2. INTI is an interval function :INTI T INT→ where { }[,] |INT x y x y= ∈ × ≤\ \ .

21

For a transition t , t T∈ , the function assigns a firing interval []min,max .

3. RI is a time function :RI F R→ where { }0|R t t= Δ ∈ Δ ≥\ . For an arc

()t,p , ()t,p F∈ , the function assigns the time units consumed by executing

t on ()t,p .

4. R , R⊂\ , is a set of time values, called time stamps.

5. 0r , 0r R∈ , is the start time.

The definitions of the set of transition bindings ()B t , token elements TE ,

binding elements BE and step Y are the same as those of CPNets.

This section applies the TCPNet net (shown in Figure 2.4), designed with four

timed tokens and two timed transitions, to explain how a TCPNet works. We declare

that R includes time stamps 100, 200 and 220. There are four tokens typed with the

colour sets in Σ , TΣ = Σ . The U -typed token, which is assigned with value x and

located in place 0p , is available after time 100. The three I -typed tokens, which are

assigned with value 0, 1, 1 and located in place 1p , 1p , 3p , are available at 100,

respectively. Transition 0t and 1t are associated with restricted firing intervals

[]180 220, and []200 250, , respectively. An execution of 0t / 1t takes 20/30 time units.

Figure 2.4 Introducing time constraints into the CPNet shown in Figure 2.1.

22

Definition 2.12 (Timed Multi-set)

A timed multi-set tm , over pVE of a place p in CNet , is a function

ptm:VE R× →` , such that

1. () ()()c ,val
r R

tm tm c,val ,r
∈

=∑ , an non-negative integer, denotes the number of

c -typed tokens associated with val in p ,

2. the time stamps associated with these c -typed tokens are listed in

()
()1 2 c ,vali tmtm c,val r ,r ,...,r ,...,r⎡ ⎤=⎡ ⎤⎣ ⎦ ⎣ ⎦

where the time value ir for ()() 0itm c,val ,r ≠ , ()1 c ,vali tm≤ ≤ , are listed. ir

appears ()()itm c,val ,r times in the list and ()tm c,val⎡ ⎤⎣ ⎦ is sorted, i.e.,

1i ir r+≤ , ()1 c ,vali tm≤ ≤ .

A formal presentation of tm of p is () ()
()

()
p

c ,val
c ,val VE

tm ' c,val @tm c,val
∈

⎡ ⎤⎣ ⎦∑ .

In net , formal presentations of the tokens located in place 0p , 1p , 3p are

() []1 100' U,x @ , () [] () []1 0 100 1 1 100' I, @ ' I, @+ and () []1 1 100' I, @ , respectively.

Definition 2.13 (Timed Marking)

Given a Timed CPNet ()0INT RTNet CNet,I ,I ,R,r= , a timed marking (state) of

TNet can be denoted by a pair ()M,r , the untimed marking M is a multi-set

over TE of CNet and generated by marking function m at time r such that

()() ()() ()()()rr
p, c,val TE :M p, c,val m p c,val∀ ∈ = .

The initial timed marking can be denoted by a pair ()0 0M ,r . The sets of all

untimed and timed markings are denoted by iUM and i TM , respectively.

23

Upon Definition 2.13, the initial timed marking ()0 0M ,r of net is

 ()() ()() ()() ()()()0 1 1 31 1 0 1 1 1 1 100' p , U,x ' p , I, ' p , I, ' p , I, ,@+ + + where

()() ()() ()() ()()0 0 1 1 31 1 0 1 1 1 1M ' p , U,x ' p , I, ' p , I, ' p , I,= + + + and 0 100r = .

Definition 2.14 (Step Enabled)

Given a Timed CPNet ()0INT RTNet CNet,I ,I ,R,r= , a step Y of TNet is

enabled in a timed marking ()1 1M ,r at time 2r if and only if the following

properties are satisfied:

(1) ()
()

()
2

1r
t ,b Y

p P : A p,t b m p
∈

∀ ∈ ⊆∑ ,

(2) 1 2r r≤ ,

(3) 2r is the smallest value of R which satisfies (1) and (2).

Let step Y of TNet be enabled in ()1 1M ,r at the smallest time 2r in R ,

1 2r r≤ . For each binding element ()t,b Y∈ , the tokens in ()A p,t b , a multi-set over

pVE yielded by the arc expression ()A p,t upon b at time 2r , are associated with

time stamps whose values are equal to or smaller than 1r .

The set of time stamps of net , marked with ()0 0M ,r where 0 100r = , is

{ }100 200 220R , ,= . Let two sequential steps 1Y and 2Y of net be (){ }0 0t ,b and

() (){ }1 1 1 2t ,b , t ,b . The two steps are enabled at 1r and 2r , respectively. The restricted

firing intervals of transition 0t and 1t are []180 220, and []200 250, . In Section 0,

the two sequential steps can be fired sequentially without concerning time constrains.

Here, we concern the firing intervals of transition 0t and 1t .

24

For the case of 1Y , 1Y is enabled when 1 200r = only, because ‘ 200 ’ is the only

time stamp in R between firing boundary 180 and 220 of 0t . If 1Y is fired at 1τ ,

1200 220τ≤ ≤ , one U-type token with value x and one I-type token with value 1

are removed from 0p and 3p , respectively, and two U-type tokens with value x

are added into 1p . A time stamp 1 20@τ + is created for the two added tokens. The

timed marking of the result net, shown in Figure 2.5, is

()() ()() ()()1 1 1 11 0 100 1 1 100 2 20' p , I, @ ' p , I, @ ' p , U,x @τ+ + + . After firing 1Y , 2Y can

be enabled at 2 220r = , if 1 20 220τ + ≤ . For the case of 2Y , 2Y can be enabled

when 1 200τ = only. If 2Y is fired at 2 220τ = , the two binding elements ()1 1t ,b

and ()1 2t ,b in 2Y are able to remove the corresponding tokens, expressed as

()() ()()1 11 220 1 0 100' p , U,x @ ' p , I, @+ and ()() ()()1 11 220 1 1 100' p , U,x @ ' p , I, @+

respectively, from 1p at the same time. A time stamp 220 30@ + is created for the

four tokens generated by 1t and added into 2p .

Figure 2.5 The result net of firing step 1Y .

25

Definition 2.15 (Fire a Step)

When a step Y is enabled in a timed marking ()1 1M ,r at time 2r , generated

by marking function 1m , marking function 2m generating the next marking

()2 2M ,r from ()1 1M ,r can be defined as:

() () ()
()

()
()

2 22 1 r r
t ,b Y t ,b Y

p P :m p m p A p,t b A t,p b
∈ ∈

⎞⎛
∀ ∈ = − +⎟⎜⎜ ⎟

⎝ ⎠
∑ ∑

Multi-set ()
()

2r
t ,b Y

A p,t b
∈
∑ represents the tokens removed from p , while

()
()

2r
t ,b Y

A t,p b
∈
∑ denotes the tokens added to p . ()2 2M ,r is directly reachable

from ()1 1M ,r by the occurrence of the step Y , denoted as () ()1 1 2 2 2M ,r Y,r M ,r>⎡⎣ .

2.4. Timed CPNets with Hierarchy – T
CH PNets

A T
CH PNet defined in Definition 2.16 is a Timed CPNet with hierarchy, which is

defined as the followings:

1. Hierarchical Transition: A transition t in a T
CH PNet can denote a collapsed

sub-process whose expansion is another T
CH PNet. The pre-condition associated

with t has to be met before the execution of t ’s corresponding net.

2. Hierarchical Token: Each token in a T
CH PNet is typed with a Petri net PNet ,

called PNet type, accompanied an initiation marking 0M . The set of markings

0[M ; , reachable from 0M , is the color set of PNet type.

26

V
ar

 i
n

=
=

 (
1,

0)

Var in 1'(0,1) @+20

p0 p1

t0[0,30]

Type PNet = {(0,1),(1,0)} timed;
Var in : PNet ;
Global clock : 100 time units/cycle

(1,0) 1'(0,1) 1'(0,1)

p2

t1[50,100]

((PNet,(1,0))@10)

(a) An example of T
CH PNet.

(b) The design of PNet .

(c) The T
CH PNet net' of compound

transition 0t .

Figure 2.6 An example of T
CH PNet.

This section applies the T
CH PNet net , shown in Figure 2.6 (a), designed with

three places and two transitions, to explain how a T
CH PNet works. Let the initial

marking of net be ()()() []01 1,0 10' p , PNet, @ and transition 0t be compound. A

PNet -type token is putted in place 0p of net at time 10. The token is marked with

()1,0 while the place array of PNet is ()a bp ,p . The compound transition 0t can

be expanded to net' , shown in Figure 2.6 (c).

Definition 2.16 (Hierarchical Timed Petri Nets – T
CH PNets)

A Hierarchical Timed Petri Net is a 5-tuple

27

()HNet TNet,TrSet,TkSet,TrFun,TkFun= where

1. ()0INT RTNet CNet,I ,I ,R,r= is a Timed CPNet, where the set of transitions T in

0(, , , , , , , ,)CNet P T F C V A G m= Σ can be divided into two disjoint sets, AT and

CT . The transitions in AT are atomic and the transitions in CT are

compound.

2. TrSet is a finite set of T
CH PNets each of which represents the expansion of a

compound transition in CT .

3. TkSet is a finite set of PNets each of which represents the design of a data

type in ∑ .

4. TrFun is a compound transition mapping function, : CTrFun T TrSet→ ,

defined from CT to TrSet , TNet TrSet∉ . The number of nets in set TrSet

is equal to the number of compound transitions in set CT , i.e., CTrSet T=

and 0CT ≥ . Each compound transition in CT is mapped into one of the

T
CH PNets in TrSet . Function TrFun is 1-1 and onto.

5. TkFun is a type mapping function, :TkFun TkSet∑→ , defined from ∑

into TkSet . The number of nets in set TkSet is equal to the number of

types in ∑ , i.e., TkSet = ∑ and 0∑ ≥ . Each type (color set) in ∑ is

mapped into one of the PNets in TkSet . Function TkFun is 1-1 and onto.

Definition 2.17 (Weakly Connected Net)

A net, PNet or its extension, is called weakly connected if and only if replacing

all of its directed arcs with undirected ones produces a connected net, i.e., there is a

path between any pair of distinct nodes in the net at least.

28

Definition 2.18 (T
CH PNet of Compound Transition)

Given two weakly connected T
CH PNets, HNet and HNet' , HNet HNet'≠ , a

compound transition t of HNet is associated with HNet' , () 'TrFun t HNet= , if

and only if the following conditions hold. Let 'CNet of HNet' be composed of

0
'(', ', ', ', ', ', ', ',)P T F V C G A mΣ .

1. The input and output places of t are transferred into 'P ,

() ()() 'In t Out t P∪ ⊂ , i.e., HNet' is started from the places in ()In t and

terminated at the places in ()Out t . There is a path between any pair of start

and terminated nodes at least,

2. 1'T > , the number of transitions in T' is more than 1,

3. ()
() ()

'
p In t Out t

C p
∈ ∪

⊆ ∑∪ , the types (color sets) associated with the places in

() ()In t Out t∪ are included in '∑ and

4. () ()()p In t Out t∀ ∈ ∪ , () ()'C p C p= , i.e., the types associated with p in

HNet are the same as that in HNet' .

Definition 2.19 (PNet of Color Set)

Given a T
CH PNet HNet and a weekly connected Petri Net ()0PNet P,T ,F ,m= ,

a type (color set) tp involved in HNet is designed with PNet , i.e.,

()TkFun tp PNet= , if and only if the following conditions hold:

1. 1| |P ≥ , i.e., there is one or more place in P ,

29

2. t T∀ ∈ , 1| | | |t t• •= = , i.e., t has exact one input and output places,

3. The initial marking function { }0 0 1m :P ,→ and ()0 1
p P

m p
∈

=∑ , i.e., an initial

marking 0M of PNet , generated by function 0m , includes one token only.

From 0M , all reachable markings include one token also,

[()0 1i i
p P

M M : m p
∈

∀ ∈ =∑; , 0 i n< ≤ and [0n M= ;

The number of colors in color set tp is less than or equal to the number of

places in PNet . These colors are presented with the states in [0M ; .

For simplicity, and without losing generality, we assume that each T
CH PNet has

two levels in its hierarchy only. When a T
CH PNet is designed with more than two

levels, the compound transitions located in higher levels, 2 or more than 2, can be

recursively replaced by its finer nets. In addition, any T
CH PNet, restricted to start and

end with places, is weakly connected, i.e., there is a path between any pair of distinct

nodes (places and transitions) in the net at least.

30

Chapter 3. Business Process Modeling

In general, a business process is implemented with one or more private processes

(also called “process” in this thesis for short) for a business purpose. Each process is

designed for a distinct business role (e.g., a buyer, seller, or manufacturer) or entity

(e.g., a rule checking machine or banking system) involved. The participants acting

the appointed roles cooperate according to the processes assigned to produce a

product or service for a particular customer or market. Message sending is the only

way to create a communication between processes. We define messaging as the

(usually asynchronous) sending of a data item from a business role(s)/entity to other

role/entity(ies). A message flow is used to present the transmission of messages. A

business process specification, in Definition 3.1, defines the interactions between

processes with message flow while the details of these processes are specified in their

own specifications. The core modeling elements in BPMN are adopted and shown in

Figure 3.1.

Definition 3.1. (Business Process Specification)

A business process specification is a 7-tuple j �=BP (PP,A,M,MF,MF,PF ,P) , where

1. PP is a set of private processes, as defined in Definition 3.2,

2. A denotes the set of artifacts used in BP ,

3. M denotes the set of messages used in BP ,

4. ()⊆ ×MF PP PP is a set of directed edges, called message flow, indicating the

sender-receiver relations,

31

5. j →MF :MF M is a message function that maps each message flow into one of

the messages in M ,

6. PF defines the set of resources that perform or are responsible for BP

7. � →P :PP PF is a resource (onto) function that maps each process into one of

the resources in PF .

Figure 3.1 The core modeling elements in BPMN.

A business process for resolving problem through e-mail votes is applied in this

thesis for demonstrating the usage of our formal model. The example is illustrated

from broad to narrow.

There are three roles, working group, manager and voter, responsible for the

voting business process, voteBP . The assignments of the three roles, process workingGP ,

managerP and voterP , are described within their own swimlanes. The control and data

flows of the three processes are introduced in Section 3.2.4 and 3.3.4, respectively.

The participants acting working group, manager or voter execute workingGP , managerP or

voterP to solve an intended problem. In the beginning of voteBP execution, message

32

“issue list” is sent from a working group to its manager. And then, the messages in set

voteM are transmitted between the manager and voters as the message flow shown in

the business process diagram, displayed in Figure 3.2,

vote

IssueAnnouncement,Vote,DeadlineWarning ,
M

VoteResults,ChangeMessage
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

.

These message flows can be presented formally as

j ()manager voterMF P ,P IssueAnnouncement= .

Figure 3.2 E-mail voting process

3.1. Private Process Specification

Within business process BP , a process P , associated with performer � ()P P ,

consists of a network of actions designed to achieve part of work in BP . The

specification of process P contains a control flow and data flow.

A control flow defines a set of connected (parallel and/or sequential) actions and

indicates the start and end event(s) of the process. In addition, the intermediate events

occurring between the start and the end are described for the execution flow of

process, not for its start or end. For example, when a process instance catches a time

event, it can switch the execution from normal flow to some handling process.

33

The control flow construction mechanism proposed in this thesis contains two

parts: basic and supplement. The basic construction mechanism, defined in Definition

3.3, is used to build an action network without including an activity involving event(s).

Otherwise, the supplement mechanism, defined in Definition 3.12, is adopted.

A process is specified with an explicit data flow in the thesis. A data, called

artifact, is passed from one action to another via explicit channels which are distinct

from the control arc between these actions. Each action takes a subset of the process

input or the output of its previous action(s) connected by the data flow and transforms

them into data for next action(s) or as process outputs. The details are described in

Section 3.3.

Here, we give a formal definition of private process in Definition 3.2.

Definition 3.2. (Private Process Specification)

For a given business process BP , a process P belonging to BP is specified

with a tuple ()=P ControlFlow,DataFlow , where

1. ControlFlow represents a control flow specification of process P ,

2. DataFlow represents a data flow specification of process P .

3.2. Control Flow Specification

Definition 3.3. (Control Flow Specification)

Given a process P , the control flow associated with P is specified with a

6-tuple () i()=ControlFlow P G,V ,A,M,I,O , where

1. ()G V ,CF= represents the control flow of P with a directed graph, where

V is a set of vertices of which each represents an action and ⊂CF V x V

34

is a set of directed edges indicating the precedence relation between two

actions,

2. i →V :V T is type function that maps each action into one of the action

types in T , where { }=T Event,Activity,ControlNode ,

3. A is a set of artifacts used in P and ⊆ BPA A ,

4. = ∪I IA IM is a set of process inputs, where IA , ⊆IA A , denotes the set of

artifact inputs and IM denotes the set of messages (sent from other

processes in BP) can be caught at P ,

5. = ∪O OA OM is a set of process output, where OA , ⊆OA A , denotes the

set of artifact outputs and OM denotes the set of messages threw out from

P ,

6. M is a set of messages used in P , ⊆ BPM M and = ∪M IM OM .

Definition 3.4. (Predecessors and Successors).

1. { | (,) }= ∈ ∈IsPredecessor
vV u V u v CF

{ | (:)}IsPredecessor IsPredecessor IsPredecessor IsPredecessor
v v v uV t V t V u V t V= ∈ ∈ ∨ ∃ ∈ ∈

2. { | (,) }= ∈ ∈IsSuccessor
vV u V v u CF

3. { | (:)}IsSuccessor IsSuccessor IsSuccessor IsSuccessor
v v v uV t V t V u V t V= ∈ ∈ ∨ ∃ ∈ ∈

IsPredecessor
vV comprises the set of vertices which are the source of an edge with

destination vertex v V∈ . Each element u in IsPredecessor
vV is called a direct

predecessor of the vertex and is denoted by u v→ . IsPredecessor
vV denotes the

35

transitive closure of IsPredecessor
vV . IsPredecessor

vu V∀ ∈ , v is reachable from u. Each

element u in IsPredecessor
vV is called a predecessor of v and is denoted by u v .

IsSuccessor
vV and its transitive closure IsSuccessor

vV are defined similarly.

3.2.1 Events

In a process, an event, defined in Definition 3.5, is an action that is handled by an

activity inside the process. An event affects the execution of a process; a process

changes its flow in response to events. Based on the time the events affect a process,

the events can be classified into three categories: start, intermediate, and end, defined

in Definition 3.6.

Definition 3.5. (Event)

Given a process P where ()=G V ,CF , each event in set i (){ }= ∈ =E v V |V v Event

can be described with the attributes listed followings:

1. vEC attribute represents the category of v , which is defined by →�E :E C ,

a classification function to map each event in E into one category in C ,

where { }=C Start,End,Intermediate .

2. vET attribute represents the type of v , which is defined by →�E :E T , a

type function to map each event in E into one type in T , where

{ }=T None,Message,Time .

3. vTimer is an attribute to represent the timer set on v . The default value of

vTimer is None .

4. vInMessage , ∈v PInMessage IM , is an attribute to represent the message

36

expected to receive on v . The default value of vInMessage is None .

5. vOutMessage , ∈v POutMessage OM , is an attribute to represent the

message dispatched on v . The default value of vOutMessage is None .

 Start Event

An event is a start event if only if when the trigger for the event occurs, a process

belonged is instantiated and a token is generated with identification for that instance.

 Intermediate Event

An event is an intermediate event if only if the event happens between the start

and end of a process. The event affects the flow of process, but does not start or

terminate the process. It can be used to show where messages are expected/sent or

where action delays are defined.

 End Event

An event is an end event if only if the event ends the process by consuming the

token generated from a start event.

Definition 3.6. (Categories of Event)

Given a process P defined by control flow ()G V ,CF= , the events

belonging to P are in i (){ }= ∈ =E v V |V v Event . E can be divided into three

disjoint sets, StartSet , EndSet , and InterSet , such that

 () ()(){ }0 0= ∈ = ∧ = ∧ >vStartSet v E |EC Start InDegree v OutDegree v 4,

 () ()(){ }0 0= ∈ = ∧ > ∧ =vEndSet v E |EC End InDegree v OutDegree v ,

4 Function InDegree and OutDegree are used to denote the number of incoming and outgoing control

flows of action.

37

 () ()(){ }1 1= ∈ = ∧ = ∧ =vInterSet v E |EC Intermediate InDegree v OutDegree v

The number of events in StartSet and EndSet is more than 0.

There are many cases which could be considered as an event, e.g., the start of an

activity, the state change of a document or the end of a process. To simplify the

discussion, we restrict the use of events to include only those message or timing

events that affect the sequence or timing of activities of a process. The event types

concerned in our model are: none, message and time. How these events are executed

in a process is described in the followings:

 None event

When a process execution reaches an event node which is denoted with none, the

event occurs immediately. A formal definition of none event is given in Definition 3.7.

In general, this kind of event is a start or end event, because an intermediate event

denoted with none is omissible. Thus, if a process modelled with none start or

intermediate event, the process can be instantiated right away or terminated

immediately when reaching the end. The notations for none event in BPMN are

adopted and shown in Figure 3.3.

Definition 3.7. (None Event)

Given a process P , a StartEvent of P instantiates the process without

waiting for a trigger if only if the following condition holds:

∃ ∈ = ∧

= ∧ =
StartEvent P.StartSet : StartEvent.Timer None

StartEvent.InMessage None StartEvent.OutMessage None
.

An EndEvent of P terminates an instance when reaching the end if only if

the following condition holds:

38

∃ ∈ = ∧

= ∧ =
EndEvent P.EndSet :EndEvent.Timer None

EndEvent.InMessage None EndEvent.OutMessage None
.

Figure 3.3 The notations for none events.

 Message Event

When a process execution reaches an event node which is denoted with message,

the process continues upon when the message is received or submitted. If the event

node is a message start event, the process starts to wait for an inserting message.

When the message trigger for the event occurs, a new process instance is generated. If

the event node is a message intermediate event, there are two possible scenarios.

Firstly, the process is blocked till an expected message is received. Secondly, a

described message is dispatched. The notations of a message intermediate event

associated with receiver and dispatcher are presented in Figure 3.4(a) and (b),

respectively. If the event node is a message end event, the process dispatches a

message at the end of process. A formal definition of message event is given in

Definition 3.8. Notations for the message events in BPMN are adopted and shown in

Figure 3.4.

Definition 3.8. (Message Event)

Given a business process BP composed of the processes in PP , there is a

process xP in PP , a StartEvent of xP is associated with a message

receiver, receiving the expected message meg , if only if the following

conditions hold:

∃ ∈ = ∧

= ∧ =
xStartEvent P .StartSet : StartEvent.Timer None

StartEvent.InMessage meg StartEvent.OutMessage None

39

 j ()∃ ∈ =y y xP PP :MF P ,P meg , the StartEvent of xP receives meg sent

from yP , ≠y xP P .

An EndEvent of xP is associated with a message dispatcher, submitting

message meg , if only if the following conditions hold:

∃ ∈ = ∧

= ∧ =
xEndEvent P .EndSet : EndEvent.Timer None

EndEvent.InMessage None EndEvent.OutMessage meg

 j ()∃ ∈ =y x yP PP :MF P ,P meg , the EndEvent of xP submits meg to yP ,

≠y xP P .

An InterEvent of xP can be associated with a message receiver or

dispatcher. When InterEvent is associated with a message receiver, the

following conditions hold:

∃ ∈ = ∧

= ∧ =
xInterEvent P .InterSet : InterEvent.Timer None

InterEvent.InMessage meg InterEvent.OutMessage None

 j ()∃ ∈ =y y xP PP :MF P ,P meg , the InterEvent of xP receives meg sent

from yP , ≠y xP P .

When InterEvent is associated with a dispatcher, the following conditions

hold:

∃ ∈ = ∧

= ∧ =
xInterEvent P .InterSet : InterEvent.Timer None

InterEvent.InMessage None InterEvent.OutMessage Meg

 j ()∃ ∈ =y x yP PP :MF P ,P meg , the InterEvent of xP submits meg to

yP , ≠y xP P .

Figure 3.4 The notations for message events.

40

 Timing Event

When a process execution reaches an event node which is associated with timer,

the process is blocked till the time set on the timer. In general, this kind of event is a

start or intermediate event, because a process blocked at the end could occupy a

resource which other processes are waiting for. Thus, the case is not concerned in our

model. When a process is modelled with a timing start event, the process can be

instantiated at the time (interval) specified. If a process is modelled with a timing

intermediate event, its execution could be blocked till the time specified or continue

within the interval specified. A formal definition of timing event is given in Definition

3.9. Notations for the timing events in BPMN are adopted and shown in Figure 3.5.

Definition 3.9. (Timing Event)

Given a process P , a StartEvent of P is associated with timer if and only

if the following condition holds:

∃ ∈ ≠ ∧

= ∧ =
StartEvent P.StartSet : StartEvent.Timer None

StartEvent.InMessage None StartEvent.OutMessage None
.

An InterEvent of P is associated with timer if and only if the following

condition holds:

∃ ∈ ≠ ∧

= ∧ =
InterEvent P.InterSet : InterEvent.Timer None

InterEvent.InMessage None InterEvent.OutMessage None
.

Figure 3.5 The notations for the timing events.

In order to describe Timer attribute, we define a time set and a time interval, in

a similar formulation as [43]. A time set is a set of all non-negative reals:

41

{ }0= ∈ ≥Time x REAL | x . A time interval from x to y is denoted as []x,y ,

[]∈ ×x,y Time Time . If ∈z Time , then []∈z x,y iff ≤ ≤x z y . Also, []∈z x,x iff

=x z . The set of time interval is defined as []{ }= ∈ × ≤Interval x,y Time Time | x y . A

formal definition of Timer attribute is given in Definition 3.10.

Definition 3.10. (Timer attribute of Timing Event)

Given a set E , let the timing events of process P be contained in E . The

Timer attribute of event in E is defined by k →Time :E Interval , a timing

function maps each timing event to a static interval []min,max , which

specifies the earliest start time and the latest end time of event, ≤min max . A

dynamic interval ⎡ ⎤⎣ ⎦min,max is used to denote the active interval of event

during an execution.

Given two timing events, u and v , u is a direct predecessor of v and v is

set with a static trigger interval []min,max . Let u be triggered at ()τ u time. The

dynamic interval ⎡ ⎤⎣ ⎦min,max of v is shifted by ()τ u : (){ }0 τ= −min Max ,min u

and (){ }0 τ= −max Max ,max u . v is allowed to trigger after min units of time and

should be triggered before max .

3.2.2 Activities

In a process, an action typed with Activity is a unit of work which makes some

function progress. The activity might be atomic or compound. An atomic activity,

named as a task, is an indecomposable unit of work, while a compound activity

contains a group of activities within a process. To be compatible with BPMN, the

42

tasks contained in another task are called the sub-processes latter. The set of attributes

common to both task and sub-process is defined in Definition 3.11.

Definition 3.11. (Activity)

Given a process P whose control flow is presented by graph ()=G V ,CF , the

activities in set i (){ }= ∈ =A v V |V v Activity have the attributes listed as

followings:

1. vAT is an attribute to represent the type of v , which is defined by

i →A : A T , a grain function, maps an activity in A into one of the two

types inT , where { }=T Task,SubProcess .

2. vPre and vPos are the sets of logical expressions which are evaluated by

a workflow engine.

(1) vPre is the pre-conditions of which each is evaluated to decide whether

activity v within a P instance can be started.

(2) vPos is the post-conditions of which each is evaluated to decide

whether activity v is completed.

3. = ∪ ∪v v v vI IA IE IM is a set of inputs, where vIA identifies all the artifacts

required to be accessed by activity v , vIE is a set of intermediate events

could be generated by direct predecessors (activities) for starting an

execution of v , and vIM , ⊆v PIM IM , is a set of messages could be

received for starting an execution of the corresponding event-driven flow

splitting from v or continuing following execution. vIE and vIM are

defined for constructing event-driven flows.

4. = ∪ ∪v v v vO OA OE OM is a set of outputs, where vOA identifies all the

43

artifacts produced, updated or destroyed by v , vOE contains the events

which can be threw out to direct successor from v and vOM ,

⊆v POM OM , is composed of the messages which can be transmitted to other

process(es) from v . vOE and vOM are defined for constructing

event-driven flows.

 + −= ∪v v vOA OA OA , where +
vOA and −

vOA are disjoint. +
vOA

represents the set of artifacts produced or updated by v and −
vOA

represents the set of artifacts destroyed by v .

5. ()vST None |Ready | Active | Aborted |Completed represents a state of v

during execution. The details are given in Definition 3.13.

6. vPF defines the resource that performs or is responsible for v , � ()=vPF P P .

7. ()=vLT None |Standard |MultiInstance defines the loop type of activity

v . By default, activity v is executed once and the value of vLT is None .

Standard and MultiInstance activities are defined in Definition 3.14

and Definition 3.15, respectively.

A process P , created by the basic construction mechanism, contains the

activities whose inputs and outputs are artifacts only, i.e., if activity v belongs P ,

=v vI IA and =v vO OA . When an activity involving event(s) is concerned, the

supplement construction mechanism in Definition 3.12 is applied.

Definition 3.12. (Supplement Construction Mechanism).

Given a control flow ()=G V ,CF , built by the basic construction

44

mechanism, G can be divided into two weakly connected components,

()=u u uG V ,CF and ()=v v vG V ,CF , where φ∩ =u vV V and φ∩ =u vCF CF . Let

activity u and v belonging to uG and vG respectively and ()∉u,v CF and

() 0=InDegree v . When () ()1 φ∩ = ∧ =u v vOE IE IA , supplement arc ()u,v can

be added into G . ()isExtended u,v is a boolean function to represent if arc

()u,v is added into G .

 () ()() () ()1 1 φ= ⇒ = ∧ ∩ = ∧ =u v visExtended u,v true InDegree v OE IE IA .

() =isExtended u,v true indicates that arc ()u,v is added and activity v

is executed when the event et , ()∈ ∩u vet OE IE , involved in u is triggered.

=et.ET Message or =et.ET Time can be represented with BPMN as the

diagrams shown in Figure 3.6 (a) or (b).

If φ≠uIM , ∀ ∈ umeg IM , there is a message inflow ()xP ,P of P , denoted

as j () =xMF P ,P meg , ≠xP P . Mapping function j →u u uIM : IM OE , a one-to-one

function, maps each message in uIM into one of the outgoing events in uOE ,

≥u uOE IM .

 When =u uOE IM ,

j ()(){ }= = ∧ ∃ ∈ =uu uOE et | et.ET Message meg IM : IM meg et .

 When >u uOE IM ,

45

j ()(){ }
{ }

= ∈ = ∧ ∃ ∈ = ∪

∈ =

uu u u

u

OE et OE |et.ET Message meg IM : IM meg et

et OE |et.ET Time
.

If () ()φ φ= ∧ ≠u uIM OE , { }= =uOE et | et.ET Time .

In addition, if φ≠uOM as the case shown in Figure 3.7, ∀ ∈ umeg OM ,

there is a message outflow ()yP,P , denoted as j () =yMF P,P meg , ≠ yP P .

Figure 3.6 The cases of supplement arcs.

Figure 3.7 An activity with a message dispatcher.

 Activity States

An activity may change its state when it runs in a workflow engine. In general,

there are five process states for an activity inside a process.

1. None: an activity has not been admitted to entry the execution pool of

workflow engine.

2. Ready: an activity does not wait for anything and is prepared to run if it is

46

selected by workflow engine.

3. Active: an activity that is currently being executed.

4. Aborted: an activity that cannot be completed because a specified event

occurs during its execution.

5. Completed: an activity that has been released by workflow engine after a

normal termination.

A formal definition of these states is given in Definition 3.13.

Definition 3.13. (States of Activity).

For a given activity v , the state ST of an instance of v can be defined

by its incoming and outgoing data (artifacts, events and messages) and the

input and output set specified, = ∪ ∪v v v vI IA IE IM and = ∪ ∪v v v vO OA OE OM .

The default value of vST is None .

()=vST None |Ready | Active | Aborted |Completed

Let l l l= ∪ ∪�
v v v vI IA IE IM be a set of inputs received by v at run time,

where l vIA contains the artifacts propagated from the predecessor(s) directly

connected by data flow(s), l
vIE contains the events received from the

preceding activity connected by supplement arc(s) and l vIM contains the

messages received from the preceding action(s) connected by message flows.

Let l m m m= ∪ ∪v v v vO OA OE OM be a set of outputs submitted from v at run

time, where m vOA contains the artifacts propagated to the successor(s) directly

connected by data flow(s), m
vOE contains the events submitted to the

succeeding activity connected by supplement arc(s) and m vOM contains the

messages submitted to the succeeding activity(ies) and/or intermediate message

event(s) connected by message flows. In addition, m m m− +
= ∪v v vOA OA OA , where

47

m +
vOA and m −

vOA represents the sets of artifacts produced/updated and

destroyed, respectively. All the possible states of v are defined as follows:

When =v vI IA and =v vO OA ,

 If () ()φ φ= ∧ ≠v vIA OA , the default state of v is Ready .

 If m φ=vvOA \OA , the state of v is Completed .

 If () ()φ φ≠ ∧ =v vIA OA , the default state of v is None .

 Once l φ=vvIA \ IA , vST is transferred from None to Ready .

 If () ()φ φ≠ ∧ ≠v vIA OA , the default state of v is None .

 Once l() m()φ= ∧ =v vv v vIA \ IA OA \OA OA , vST is transferred from

None to Ready .

 Once l() m()φ= ∧ ⊂v vv v vIA \ IA OA \OA OA , the state of v is

Active .

 Once l() m()φ φ= ∧ =v vv vIA \ IA OA \OA , the state of v is

Completed .

If φ≠vOM , the messages defined in vOM are submitted when the state of

v is Completed . In addition, if there is an activity u , a direct predecessor of v

connected by supplement arc, 1∩ =u vOE IE , =uST Active and =vST Ready .

 When φ=uIM ,

 if () m()φ∩ =uu vOE IE \OE , uST is transferred from Active to

Aborted and vST is transferred from Ready to Active .

48

 When φ≠uIM and j () ()∃ ∈ ∈ ∩uu u vmeg IM : IM meg OE IE ,

 if l j () ()() () m()φ∃ ∈ ∈ ∩ ∧ ∩ =u u uu v u vmeg IM : IM meg OE IE OE IE \OE ,

uST is transferred from Active to Aborted and vST is

transferred from Ready to Active .

 When φ≠uIM and j () ()∃ ∈ ∈ ∩uu u vmeg IM : IM meg OE IE ,

 if () m()φ∩ =uu vOE IE \OE , uST is transferred from Active to

Aborted and vST is transferred from Ready to Active .

 Loop Activity

There are three different loops of activity, None , Standard and MultiInstance .

None-loop activities are executed once only. Except such activities, the execution

times of activities implemented with the remaining two types are decided by the

expression evaluation results.

There are two standard loop for activities: While and RepeatUntil . The

expressions associated with these loops return with boolean value. A While loop

evaluates the expression before the activity is performed. A RepeatUntil loop

evaluates the expression after the activity has been performed. Obviously, the least

time of RepeatUntil (R)/ While (W) execution is 1/0. During an execution, the

number of iterations is bounded and recorded. These specific attributes of standard

loop activity are defined in Definition 3.14.

The numeric expression for an activity, designed with MultiInstance loop, is

evaluated once only before the activity is performed. The evaluation result is an

integer that specifies the number of times that the activity will be repeated. There are

two variations of the multi-instance loop where the instances are either performed

49

sequentially or in parallel. When a multi-instance loop is performed in parallel, the

execution of these instances can be categorized into three cases: (1) all instances

continue to execute succeeding flow when that instance is completed, (2) all instances

continue to execute succeeding flow after one of the instances is completed and (3) all

instances continue to execute succeeding flow after all of the instances are completed.

In case (1), the number of instances available for the succeeding flow of activity v is

the same as the number of v ’s instances. In case (2) and (3), there is only one

instance available for the succeeding flow. Thus, the number of the instances which

will be available for the continuing flow is determined by the way adopted. The

specific attributes of multi-instance loop are defined in Definition 3.15.

Definition 3.14. (Attributes of Standard Loop Activity)

Given an activity v , when =vLT Standard , v has some additional attributes

listed followings:

1. vBooleanExp is the set of routing conditions of which each is evaluated

before or after the execution of v ,

2. vCounter is an integer used at run time to record the number of iterations

executed,

3. vMaximum is an finite integer by which the number of loops executed is

bounded, v vMaximum Counter≥ ,

4. ()=vEvTime Before | After attribute denotes that vBooleanExp is evaluated

before or after the execution of v .

50

Definition 3.15. (Attributes of Multi Instance Loop Activity)

Given an activity v , when =vLT MultiInstance , v has some additional

attributes listed followings:

1. vNumExp is a numeric expression to decide the number of instances of v .

2. ()=vOrder Sequential | Parallel attribute denotes the instances of v are

performed sequentially or in parallel.

3. vCounter is an integer and only applied for v whose instances are

performed sequentially. The integer is used at run time to record the number

of iterations executed.

4. ()=vFlowCond None |One | All attribute sets the way of controlling the

instances of v executed in parallel.

(1). When =vFlowCond None , all instances of v continue to execute

succeeding flow when that instance is completed.

(2). When =vFlowCond One , all instances of v continue to execute

succeeding flow after one of the instances is completed

(3). When =vFlowCond All , all instances of v continue to execute

succeeding flow after all of the instances are completed

Notations for loop activity in BPMN are adopted and shown in Figure 3.8.

 Figure 3.8 Notations for loop activities.

51

3.2.3 Control Nodes

In a process, an action v typed with ControlNode is associated with a

mechanism which is used to control how the activities interact as they converge and

diverge within a process. A formal definition of control node is given in Definition

3.16.

Definition 3.16. (Control Node)

Given a process P whose control flow is ()ControlFlow P presented by

graph =G (V ,CF) , the control notes in set i (){ }= ∈ =C v V |V v ControlNode

have the attributes listed as followings:

1. vCT is an attribute to present the control mechanism of v which is defined

by j →CT : C T , a type function maps each activity in C into one of the

four types of control mechanism in T , where

{ }=T Exclusive,Inclusive,Complex,Parallel .

2. vIA is a set identifying all the artifacts required to be accessed by v .

A group of actions can be bounded by a pair of control nodes. Each pair and the

actions bounded by them are called control block. Given a process built by basic

construction mechanism, the structure of the process is sequential, when no control

node is included. Otherwise, there may be control blocks in the process. When any

two of control blocks in the process, 1B and 2B , are nested but not overlap,

() ()1 2 2 1⊂ ∨ ⊂B B B B , the level of an action belonging to either blocks, applied for the

followings, can be defined as the definitions given in Definition 3.17 and Definition

3.18.

52

Definition 3.17. (Ancestor Blocks and Level of an Action)

v V∀ ∈ , let .v Block denote the parent control block containing v .

AncestorBlock comprises the set of all control blocks that contain v .

() { | . ((. .)}= = ∨ ∈AncestorBlock v b b v Block b AncestorBlock v Block splitNode

In addition, the cardinality of ()AncestorBlock v identifies the nested level of

v.

() if

(.) if represents a control block

()

∈
⎧= ⎨
⎩

AncestorBlock v v V

AncestorBlock v splitNode v
Level v

Definition 3.18. (Common Ancestor Blocks and Nearest Common Ancestor

Blocks)

Given a set of vertices, 1, , nv v… , iB is a common ancestor block

of 1, , nv v… if and only if the following holds:

1

()
n

i i
i

B AncestorBlock v
=

∈∩ , denoted by 1(, ,)i nB CAB v v∈ … .

iB is the Nearest common ancestor of 1, , nv v… if and only if the following

holds: 1(, ,) : () ()j j i in jB CAB v v B B Level B Level B∀ ∈ ∧ ≠… , denoted by

1(, ,) inNCAB v v B=… .

When a control node v is constructed with one incoming edge and more than

one outgoing edge, () ()1 1= ∧ >InDegree v OutDegree v , v is named as split node.

Otherwise, v is called join node, constructed with more than one incoming edge and

one outgoing edge, () ()1 1> ∧ =InDegree v OutDegree v . There are four different

mechanisms, Exclusive , Inclusive , Complex and Parallel , defined in our model.

Except the Complex mechanism, the remains can be pairwise applied on split and

53

join nodes. The Complex mechanism can be applied on join node only. Upon the

ways of adopting mechanism(s), we divide the control blocks developed into two

groups: fundamental and complex. In the fundamental group, the control blocks,

exclusive, inclusive, and parallel, are bounded with split and join nodes designed with

the same mechanism. Formulations of these four types of blocks are given in

Definition 3.19, Definition 3.20, and Definition 3.21, respectively.

Definition 3.19. (Exclusive Control Block)

Given a process P whose control flow is ()ControlFlow P presented by

graph ()=G V ,CF , there is a exclusive control block ()v,k in P , such that

i () i ()() () ()()∈ = = ∧ =v,k V : V v V k ControlNode Level v Level k and

() ()= ∧ =v.CT ExclusiveSplit k.CT ExclusiveJoin .

During an execution, v takes one of its outgoing flows to continue upon one

of the two sources: data-based and event-based.

 v is a DataBasedExclusiveSplit node if and only if v is associated

with an expression ChoiceExp which is evaluated by using the data

propagated from direct data-flow predecessor(s). Besides, φ≠v.IA .

 v is an EventBasedExclusiveSplit node if and only if

i ()()
()

|
. : . .

φ ⎞⎛ = ∧ ≠ ∨
⎟⎜∀ ∈

⎜ ⎟∈ ≠ ∨ ≠⎝ ⎠

uIsSuccessor
v

A u Task IM
u V

u P InterSet u Timer None u InMessage None

and the outflow selected to run is the one whose event occurs first.

Besides, φ=v.IA .

The outgoing flows of either DataBasedExclusiveSplit or

EventBasedExclusiveSplit node are merged at DataBasedExclusiveJoin node

54

k . The following process is continued through the execution reaches

DataBasedExclusiveJoin node.

Figure 3.9 Samples of exclusive control block.

Definition 3.20. (Inclusive Control Block)

Given a process P whose control flow is ()ControlFlow P presented by

graph =G (V ,CF) , there is an inclusive control block ()v,k in P , such that

i () i ()() () ()()∈ = = ∧ =v,k V : V v V k ControlNode Level v Level k and

() ()= ∧ =v.CT InclusiveSplit k.CT InclusiveJoin .

For v , an InclusiveSplit node, one to all of its outgoing flows are selected

to run. The number of executive outflows is determined by the expression

ChoiceExp associated with v , which is evaluated by the data propagated from

direct predecessor(s), φ≠v.IA , connected by data flow(s).

For k , an InclusiveJoin node, is used to synchronize all the executive

branches before continuing to the next action.

55

Figure 3.10 A sample of inclusive control block.

Definition 3.21. (Parallel Control Block)

Given a process P whose control flow is ()ControlFlow P presented by

graph =G (V ,CF) , there is a parallel control block ()v,k in P , such that

i () i () () ()∈ = = ∧ =v,k V :V v V k ControlNode Level v Level k and

() ()= ∧ =v.CT ParallelSplit k.CT ParallelJoin .

For v , a ParallelSplit node, all its outgoing flows are selected to run and

k , an ParallelJoin node, is used to synchronize all these executive flows before

continuing to the next action.

Figure 3.11 A sample of parallel control block.

A loop is bounded by two DataBasedExclusive nodes as the samples shown in

56

Figure 3.12. The actions bounded within the two nodes can be executed repeatedly

based on a given boolean condition. The pair of control nodes and these repeated

actions bounded by them are called loop control block, defined in Definition 3.22.

Definition 3.22. (Loop Control Block)

Given a process P whose control flow is ()ControlFlow P presented by graph

=G (V ,CF) , there is an loop control block ()v,k in P , such that

 when v is associated with a boolean expression BooleanExp , which is

evaluated before each iteration, the control block is called WhileLoop

control block.

i () i ()() () ()()∈ = = ∧ =v,k V : V v V k ControlNode Level v Level k

() () ()()2 2= ∧ = ∧ =v.CT Exclusive InDegree v OutDegree v

() () ()()2 2= ∧ = ∧ =k.CT Exclusive InDegree v OutDegree v .

 when k is associated with a boolean expression BooleanExp , which is

evaluated after each iteration, the structure is called RepeatUntilLoop

control block.

 i () i () () ()∈ = = ∧ =v,k V :V v V k ControlNode Level v Level k

() () ()()2 1= ∧ = ∧ =v.CT Exclusive InDegree v OutDegree v

() () ()()1 2= ∧ = ∧ =k.CT Exclusive InDegree v OutDegree v .

57

Figure 3.12 Samples of loop control block.

In addition to the fundamental blocks, the complex blocks, bounded with two

control nodes associated with different mechanisms, are included in our model. In

such block, the flows are split from either InclusiveSplit or ParallelSplit node and

joined at a ComplexJoin node. There are three advanced join mechanisms,

discriminator , Multiple Merge and N out of M join proposed in [36], which can be

implemented with the ComplexJoin node. The details of these advanced

mechanisms are described as followings:

1. Discriminator

The ComplexJoin node continues to execute the following flow when one of

its inflows is completed. The remaining inflows are excluded, even they are

completed later.

2. Multiple Merge

Each inflow of the ComplexJoin node continues to execute succeeding flow

when that flow is completed.

3. N out of M join

The ComplexJoin node associated with an expression which is evaluated to

synchronize the first M incoming flows from N executive inflows, ≥N M .

58

Figure 3.13 The samples of complex blocks.

The twelve control blocks concerned in this thesis are listed in Table 3.1. We

assume that the specific correlations between the two control nodes of these blocks

are maintained.

Table 3.1 Control blocks

Control Block Split Control Node Join Control Node

DataExclusive DataBasedExclusiveSplit DataBasedExclusiveJoin

EventExclusive EventBasedExclusiveSplit DataBasedExclusiveJoin

Inclusive InclusiveSplit InclusiveJoin

Parallel ParallelSplit ParallelJoin

WhileLoop DataBasedExclusive DataBasedExclusive

RepeatUntilLoop DataBasedExclusive DataBasedExclusive

ParallelDiscriminator ParallelSplit ComplexJoin (Discriminator)

InclusiveDiscriminator InclusiveSplit ComplexJoin (Discriminator)

ParallelMultiMerge ParallelSplit ComplexJoin (Multiple Merge)

InclusiveMultiMerge InclusiveSplit ComplexJoin (Multiple Merge)

59

ParallelNtoM ParallelSplit ComplexJoin (N out ofM join)

InclusiveNtoM InclusiveSplit ComplexJoin (N out ofM join)

3.2.4 A Control Flow Example: a Process of Resolving Issues through E-mail

Votes

The message flows in Figure 3.2 indicates that e-mail voting process voteBP is

divided into three private processes, workingGroupP , managerP and voterP . Our control flow

model is then adopted to construct the details of these private processes from a view

point of process control, i.e., the actions assigned to the three involving roles, working

group, manager and voter, are defined and shown in Figure 3.14.

voteBP has turn cycle of a week. Private process workingGroupP is instantiated at 9 in

the morning on each Monday. First of all, the working group involved checks its

status. If the status of the group is inactive, the process instance is terminated.

Otherwise, the issues raised in the group are listed and a manager is notified. Process

managerP , instantiated with the notification and the manager, responsible for the process

instance, reviews these issues proposed. The review results are announced to voting

members, respectively. Each announcement instantiates a voterP process with one

voting member and the process has to complete its activity before Friday.

Manager collects votes through executing sub-process 21.SP whose detail flow is

shown in Figure 3.15, where there are three control blocks, ()211 211Parallel PS . . ,PJ . . ,

()211 211DataExclusive DaES . . ,EJ . . and ()211 211WhileLoop EvE . . ,DaE . . . The latter two

control blocks are located in two different branches of the control block

()211 211Parallel PS . . ,PJ . . .

60

Figure 3.14 The control flow of the business process for resolving issues.

61

Figure 3.15 The expansion of Collect Vote sub-process.

The manager reports the voting results to voting members when the timing event

involved in 21.SP occurs, i.e., the supplement flow of 21.SP is executed. When the

number of votes is more than the number specified on the condition of 2 2.DaES , and

all the issues listed are done by working group, the instance of managerP terminates.

Otherwise, such as insufficient votes, the manager re-announces the vote with

warning to the voting member(s) who has not vote in the restricted interval. For the

unsolved issues, the manager reduces the number of choices to two and re-announces

the vote to the voting members. These two cases are respectively handled by the

actions bounded within two pair of control nodes, ()2 4 21DaES . ,DaE . and

()2 3 21DaES . ,DaE . . The above actions execute repeatedly until the conditions

associated with 2 4DaES . and 2 3DaES . are satisfied.

3.3. Data Flow Specification

62

3.3.1. Artifacts and Artifact Operations

Artifacts are the information entities involved in a process, including the input

data to the process, the intermediate data produced within the process, and the (final)

output data from the process. An artifact is an atomic data item (e.g. a number, a

character string, or an image) or a collection of atomic data items (e.g. a document).

Intuitively, all artifacts participating in a workflow execution must be pre-defined in a

process specification. Each artifact contains a set of legal operations for its internal

data. A data-based action designed to manipulate certain artifact can work only with

the legal operation(s) for the artifact. From the data storage point of view, each

artifact operation can be regarded as one of the following operations, regardless of its

semantic meaning:

1. Initialize: an operation that instantiates artifact(s) within a process.

2. Read/Update/Destroy: an operation that refers/modifies/deletes the artifact

instance(s) propagated from predecessor(s) or contained in input data only.

In general, an Initialize operation is used to create an artifact instance in a process.

Read and Update operations are then used to access the instance. Finally, a Destroy

operation is used to delete the artifact instance. Destroy operations are applied for

temporary artifacts created during the workflow execution, but may not be strict for

all artifacts.

Figure 3.16 shows the state transition diagram of an artifact with the above four

kinds of operations. ‘Uninitialized’ represents the initial state of an artifact.

“Initialized”, “Updated”, and “Read” represent states after an Initialize, Update, and

Read operation is performed respectively. In addition, the artifact state is set to

“Uninitialized” after a Destroy operation.

63

Figure 3.16 The state transition diagram of an artifact.

3.3.2. Artifact Usages

Based on Definition 3.11, a usage relation between a data-based action and an

artifact can be defined as follows:

Definition 3.23. (Consumer, Producer, Updator, and Destroyer Actions of an

Artifact)

For a given artifact d, the memberships between artifact d and vI , vO+ , and

vO− can be applied for identifying the usage of artifact d at action v. All the

possible usages are categorized as follows:

 if and
+

−

⎧ ∉⎪∈ ⎨
∉⎪⎩

v
v

v

d OA
d IA

d OA
, v is called a Reader(Action) of artifact d.

 if and +∈ ∈v vd IA d OA , v is called an Updator(Action) of artifact d.

 if and −∈ ∈v vd IA d OA , v is called a Destroyer(Action) of artifact d.

 if and −∉ ∈v vd IA d OA , v is called a Illegal Destroyer5(Action) of artifact d.

 if and +∉ ∈v vd IA d OA , v is called a Producer(Action) of artifact d.

5 The illegal destroyer is not concerned in our model because the activity destroy artifact arbitrarily. Any useful

artifact could be destroyed by the activity during the workflow execution.

64

 if and
+

−

⎧ ∉⎪∉ ⎨
∉⎪⎩

v
v

v

d OA
d IA

d OA
, v is called an Irrelevantor(Action) of artifact d.

In addition, if ∈ vd IA , v is generally called a Consumer(Action) of artifact d

and if +∈ vd OA , v is generally called a Writer(Action) of artifact d.

Definition 3.24. (Consumer, Writer, Updator, Destroyer, Producer and Reader

Action Sets of an Artifact).

 { | }= ∈ ∈IsConsumer
vdV v V d IA is called the Consumer Action Set of artifact d.

 { | }+= ∈ ∈IsWriter
d vV v V d OA is called the Writer Action Set of artifact d.

 { | and }+= ∈ ∈ ∈IsUpdator
vd vV v V d IA d OA is called the Updator Action Set of

artifact d.

 { | and }−= ∈ ∈ ∈IsDestroyer
d v vV v V d IA d OA is called the Destroyer Action Set

of artifact d.

 { | and }+= ∈ ∉ ∈IsProducer
vd vV v V d IA d OA is called the Producer Action Set of

artifact d.

 Re { | , and }+ −= ∈ ∈ ∉ ∉Is ader
vd v vV v V d IA d OA d OA is called the Reader Action

Set of artifact d.

3.3.3. Definition of Data Flow

There are three artifact transmission models identified by Aalst in [37], which are:

(1) global data store, (2) integrated control and data channels, and (3) distinct control

and data channels. The model implemented with distinct control and data channels is

65

an easier way to represent the transmission of authorized artifacts [44]. Artifacts are

transmitted from a data-based action to its following action(s). The transmissions are

represented with data flows, defined in Definition 3.25.

Definition 3.25. (Data Flow Specification)

For a given business process BP , one of its private process P is associated

with () i()=ControlFlow P G,V ,A,M,I,O where ()=G V ,CF .

The data flow associated with P is specified with

() () () ()= ∪ ∪DataFlow P InDataFlow P InterDataFlow P OutDataFlow P , where

 () (){ }= ∈ × ∈ IsConsumer
dInDataFlow P d,v IA V |v V is a set of incoming

data flows where an element ()d,v denotes the inputted artifact d ,

d I∈ , consumed by v .

 () ()() (){ }= ∈ × × ∈ ∩IsSuccessor IsConsumer
u dInterDataFlow P u,v ,d V V A|v V V

is a set of intermediate data flows where an element ()()u,v ,d

presented by a directed edge to indicate artifact d sent from u to

consumer v , a successor of u .

When there is no incoming data flow of u indicating artifact d sent

from preceding action or included in process artifact inputs, u is a

producer of artifact d . Otherwise, u consumes artifact d before

sending and delegating the access right of d to v .

 () (){ }= ∈ × ∈ IsWriter
dOutDataFlow P v,d V OA|v V is a set of outgoing

data flows where an element ()v,d denotes process output d

contributed from v .

66

For incoming data flow ()d,v , the artifact input d can be read, updated or

destroyed by activity v . The three cases of incoming data flows are presented as that

shown in Figure 3.17 (a), (b) and (c), respectively.

(a) Activity v reads artifact

input d

(b) Activity v updates artifact

input d

(c) Activity v destroys

artifact input d

Figure 3.17 Three cases of incoming data flows.

For intermediate data flow ()()u,v ,d , the artifact d is either produced by or

transmitted from action u , such as the two examples shown in Figure 3.18 (a) and (b),

to consumer v . v could read, destroy or update artifact d propagated from u .

The graphical presentations of the three consuming operations are shown in Figure

3.18 (b), (c) and (d), respectively. In addition, outgoing data flow ()v,d can be

presented as the examples shown in Figure 3.18 (a), where process output d is

contributed from v .

(a) Activity u produces artifact d .

67

(b) Activity v reads artifact d transmitted from u .

(c) Activity v destroys artifact d transmitted from u .

(d) Activity v updates artifact d transmitted from u .

Figure 3.18 The four cases of intermediate data flows.

3.3.4. A Data Flow Example: a Process of Resolving Issues through E-mail

Votes

Our data flow model is applied on the control flows of e-mail voting process

voteBP , shown in Figure 3.14, to illustrate the steps to present the data transformations

within voteBP . Figure 3.19 shows the result of representing business process voteBP

with both control and data flows. The artifacts in voteBP are stated with details in

Table 3.2. The artifact usages in the actions are listed in Table 3.3.

68

Table 3.2 Artifacts in the E-mail Voting Process
Artifacts

d1 Issue List

d2 Vote

d3 Calendar

d4 Voting Tally

d5 Voting Results

Figure 3.19 The control and data flows of BPvote.

69

Table 3.3 Artifacts Usages in the E-mail Voting Process

Action d1 d2 d3 d4 d5

T1.1 Check Status of Working Group

T1.2 Send Current Issue List P

T2.1 Receive Issue List D

T2.2 Review Issue List R

T2.3 Announce Issues R

T2.4 Prepare Results D R U

T2.5 Post Results on Websites R

T2.6 Email Results of Vote R

T2.7 Reduce Number of Voting Members and Recalculate Vote

T2.8 Re‐announce Vote with Warning to Voting Members

T2.9 Reduce to Two Solutions U

SP2.1 Collect Votes R R U

T2.1.1 Check Calendar for Conference Call R

T2.1.2 Moderate Conference Call Discussion

T2.1.3 Moderate Email Discussion

T2.1.4 Email Vote Deadline Warning

T2.1.5 Receive Vote R

T2.1.6 Increment Tally R U

T3.1 Vote P

T3.2 Receive Vote Results R

R Reader U Updater P Producer D Destroyer

For the expansion of sub-process 21SP . “Collect Votes”, shown in Figure 3.20,

there are two incoming data flows, ()3, 2.1.1d T and ()2, 2.1.5d T , one intermediate

data flow ()()2.1.5, 2.1.6 , 2T T d and one outgoing data flow ()21 6 4T . . ,d . For the

incoming data flow ()3, 2.1.1d T , manager executes task 2.1.1T by referring the

input calendar 3d to make a conference call. Except incoming data flow

70

()3, 2.1.1d T , the remaining data flows are bounded within WhileLoop control block

()211 211EvE . . ,DaE . . . Manager refers the voting data 2d received to update the vote

tally 4d recursively till the time limitation denoted is arrived. The final version of

4d contributes to process output.

Figure 3.20 The expansion of “Collect Votes” sub-process.

3.3.5. Instance of Data Flow

Given a process instance of P , its input data can be presented with a multi-set

of PIA , denoted as l PIA . In order to maintain the process feasibility, for artifact d

in PIA , the number of instances of d inputted, i.e., the coefficient ()ms d of d

in l PIA , should be equal to or greater than the number of incoming data flows

transmitting d , i.e., () ≥ms d n where () (){ }, | ,= ∈ ×dInDataFlow d v d v d V and

= dn InDataFlow . When () =ms d n , all the input instances of artifact d are

consumed. When () >ms d n , the actions consume n instances of d selected

71

from lIA .

Given two intermediate data flows ()()1 1u,v ,d and ()()2 2u,v ,d , the

propagations of artifacts between two actions can be classified into three cases:

 if 1 2=v v and 1 2≠d d , the instances of artifact 1d and 2d are

submitted from u to v concurrently.

 if 1 2≠v v and 1 2=d d , the two instances of 1d are submitted from u

to 1v and 2v , respectively.

 if 1 2≠v v and 1 2≠d d , the instance of artifact 1 2d / d is submitted to

1 2v / v .

For an activity v , if v is a consumer of artifact d , when

()() () () (), , ,u v d InterDataFlow P d v InDataFlow P∃ ∈ →∃ ∈ and vice versa. For all

data outflows of P , () ()v,d OutDataFlow P∀ ∈ , d belongs to process outputs ,

denoted by mOA , a multi-set of OA .

For the sub-process 21SP . “Collect Votes”, a process instance 21SP .Ins is

generated. When l 21 2SP .IA Calendar= , manager accesses either calendar inputted to

continue the following execution. We assume that ()211 21 2EvE . . ,DaE . . WhileLoop

ends at the fifth iterations, such that there are five votes sent from voters. An iteration

results in receiving a vote from a voter. The five iterations recurse to create a fully

integrated vote tally, contributing to the process output. The set of data l 21SP .A used in

21SP .Ins can be presented with a multi-set of { }21SP .A Calendar ,Vote,VoteTally= ,

l 21 2 4 1SP .A 'Calendar 'Vote 'VoteTally= + + .

72

Chapter 4. The Formulations of Well-Formed and Unstructured

Control Flows

During process execution, the two issues might occur: (1) deadlock and (2)

undesirable instances. The issues could be caused by ill-structured control flow, data

flow or message flow. In the following subsections, we discuss these two issues of

control flow. The well-formed and unstructured control flows are defined.

4.1. Well-Formed Control Flow

With typed actions and their precedence relation, various kinds of control

structures can be constituted. In this thesis, the four primitive control structures,

sequential, parallel, conditional and iterative, defined in [11] are concerned. These

structures can be implemented by basic construction mechanism and defined within

blocks. The details are listed as the followings:

1. Sequential Structure: is a sequence of actions constructed by basic construction

mechanism without control nodes. For each action in the sequence, it is fired

while the preceding activity is completed. The sequence is included in a

sequential block.

2. Parallel Structure: is a structure implemented in Parallel control block. The

expressive power of the block is enriched by associating with a join node which

is implemented with Discriminator , MultiMerge or NtoMJoin mechanism.

3. Conditional Structure: is a structure implemented in DataExclusive and

EventExclusive control blocks which take one of its branches to execute when

upon its incoming data and event, respectively.

73

4. Iterative Structure: is a structure implemented in WhileLoop and

RepeatUntilLoop control blocks.

An Inclusive control block can be implemented by a combination of

DataExclusive and Parallel control blocks [11]. Similarly, the extensions of

Inclusive control block, InclusiveDiscriminator , InclusiveMultiMerge and

InclusiveNtoMJoin , can be represented by DataExclusive and

ParallelDisCriminator / ParallelMultiMerge / ParallelNtoM control blocks also. In

order to simplify our discussion, we concern merely the four primary categories of

control blocks, where the blocks have no substitutions.

Within a control flow, the divergence and convergence of actions are presented

by control nodes. Except control nodes, a flow diverged from an activity can be

presented by a supplement arc only. Without concerning supplement arcs, a control

flow is well-formed if the constraints defined in Definition 4.1 hold.

Definition 4.1. (Well-Formed Control Flow).

Given a control flow ()=G V ,CF of no supplement arc, i.e.,

() (), : ,∀ ∈ ≠u v CF isExtended u v true , G is well-formed if and only if G is

constructed based on the events, tasks and control blocks, defined in our control

flow model, and any two control blocks within the flow can be nested but not

overlapped.

When the control blocks in a well-formed control flow are represented

recursively with the notation for sub-process in BPMN, the flow can be reduced to a

composite action presented by sub-process. Whether the control flow leads to

deadlocks and/or generate accidental instances, that will never be accessed and

destroyed, is easier to indicate [29][32][33][34].

74

The same perspective can also be applied to a control flow including supplement

arc(s), if the sub-flows connected by supplement arc(s) are well-formed. Such control

flow is well-formed also. Otherwise, the process is unstructured. Without concerning

data and message flow, every well-formed process is well-behaved [45], as Definition

4.2.

Definition 4.2. (Well-Behaved Control Flow).

Given a control flow ()=G V ,CF , G is well-behaved if and only if G neither

leads to deadlock nor generates undesirable instances.

4.2. Unstructured Control Flow

A control flow is unstructured when one or more restrictions for well-formed

property, pairwise restrictions and nesting structure, is violated. The unstructured

control flows violating the pairwise restrictions can be classified into two cases:

1. Mismatched Structure: a control block is bounded with a mismatched pair of

control nodes, e.g., ParallelSplit and ExclusiveJoin .

2. Unpaired Structure: a split/join node is included in a control flow without a

corresponding join/split node.

In addition, an improper nesting structure in a process, defined in Definition 4.3,

is constructed when the one-to-one corresponding relation of control node, is not

followed.

Definition 4.3. (Improper Nesting Structure).

Given two control block ()1 1 1,=B u v and ()2 2 2,=B u v in an control flow

(),=G V CF , 1B is improperly nested with 2B , if and only if the following holds:

75

() ()1 1 1 12 2∈ ∩ ∧ ∉ ∩IsSuccessor IsPredecessor IsSuccessor IsPredecessor
u v u vu V V v V V or

 () ()1 1 1 12 2
IsSuccessor IsPredecessor IsSuccessor IsPredecessor
u v u vu V V v V V∉ ∩ ∧ ∈ ∩

In other word, ()1 1, :∃Path u v 6 Both 2u and 2v are in the path.

Either mismatched control pairs or improper nesting structures may cause

behavioural anomalies in a process execution, but not all. There are two typical

behaviour anomalies concerned: deadlocks and unexpected instances.

Figure 4.1 An example of overlapped structure.

Given an overlapped example, shown in Figure 4.1, to explain the two behaviour

anomalies:

1. Deadlock Case: In mismatched control block ()1, 1ES PJ , ParallelJoin node 1PJ

is deadlocked because of one or more of its incoming flows is unexecuted.

2. Unexpected Instance Case: In mismatched control block ()2, 2PS EJ , the activities

of the two branches diverged from ParallelSplit node 2PS , e.g., activity 2 and 4

or 3, are remained in workflow engine unexpectedly if another one arrives

ExclusiveJoin node 2EJ earlier.

6 Path(u,v) denotes a path from u to v , a sequence of vertices in a control flow G=(V,CF), such that each node is

connected to the next vertex in the sequence.

76

Chapter 5. The Methods for Transforming BPMN Process into

T
CH PNET

In order to analyze a business process j �=BP (PP,A,M,MF,MF,PF ,P) where

{ }1 1iPP P | i ..n,n= = ≥ , each private process iP in BP is transformed into a T
CH PNet

iHNet . All these T
CH PNets generated are stored in set { }1 1iNet HNet | i ..n,n= = ≥ .

The control, message and data flows of process are transformed into T
CH PNet

modules by their corresponding methods. These transformation methods are discussed

in the followings.

5.1. State Transitions of Process Instance with PNet

A process instance is operated by a set of legal operations. The action executed

by WfMS for manipulating a process instance executes the legal operation(s) only.

Each atomic operation of a process instance can be regarded as one of the followings,

regardless of its semantic meaning:

1. Initialize: an operation that instantiates a private process within a business

process.

2. Destroy: an operation that deletes a process instance within a WfMS.

(a) A state transition diagram of a process instance

(b) A PNet presenting the state

transitions of a process instance

77

Figure 5.1 Two different presentations of the state transitions of a process instance.

Figure 5.1 (a) shows the state transition diagram of a process instance. There are

two possible states, “UnInitialized” and “Initialized”, of an instance as Initialize or

Destroy operation occurs. “UnInitialized” state represents the initial state of a process.

“Initialized” represents the state after an Initialize operation is performed. The state of

an instance is transformed from “Initialized” to “UnInitialized” when Destroy

operation is executed.

Figure 5.1 (b) depicts the corresponding PNet ()0inPNet P,T ,F ,m= of the

diagram shown in Figure 5.1 (a). The two places of inPNet present “UnInitialized”

and “Initialized” states, respectively. The Initialize and Destroy operations are

transformed into the Initialize and Destroy transitions. The input and output arcs of

these transitions connect the places and transitions. The initial state of a process is

“UnInitialized”, i.e., the initial marking 0M of inPNet is ()1 0, while the place

array is ()U,I .

5.2. Transformation Method for Control Flows – CFMethod

Let private process iP in BP be transformed into T
CH PNet iHNet . A global

clock, whose cycle is z time units, is introduced in iHNet . Initially, iHNet is

empty. The elements in iP are transformed to their corresponding T
CH PNet modules

one by one. The T
CH PNet modules generated are added into iHNet . The link of two

different T
CH PNet modules is denoted with dotted link. The firing interval of

transition t added into iHNet is []0,z when t ’s corresponding activity has no

time limitation. iHNet has a timed token at least, typed with two attributes inPNet

78

and time, to denote iP ’s execution status, i.e., the execution order of the actions in iP

is represented by a series of movements of the token(s). Such a token is called control

token here. All the transitions in iHNet cannot be fired without the token.

5.2.1. Rules for Transforming Basic Elements

Our process model is designed based on the elements listed in Table 5.1. In this

table, the element whose counterpart in the rightmost column is ◎ is a basic element,

the element whose counterpart in the rightmost column is ○ is an advanced element,

and the rest whose counterpart is empty are not concerned.

Most process models, e.g., [11][24][29][32][33][34][48], are designed based on

the basic elements. These basic elements can be transformed into T
CH PNet modules

with Rule 1 to 7, respectively. The T
CH PNet modules are depicted in Figure 5.2 and

Figure 5.4 where the place(s) denoted with dotted line is used to link T
CH PNet

modules of two connecting BPMN actions. Such a place can be identified by a pair

()p a,b where a and b are the names of two connected actions.

During the transformation, when a basic element n is reached, n can be

transformed with the following rules:

Rule1. If n represents a none start event, i.e., n.EC Start= and n.ET None= ,
and n has only one direct successor y , a place denoted with np and an

atomic transition denoted with nt are added into iHNet . A direct arc ()n np ,t

connecting the two elements is created.

1-1. The color domain of place np is () { }n inC p PNet= and the token elements

of place np are ()()()1 0inPNet , , ,@r and ()()()0 1inPNet , , ,@r .

79

 When there is a token tk with value ()()()1 0inPNet , , ,@r in np , a

request of creating an instance of iP is made by a participant at time

r .

 When there is a token tk with value ()()()0 1inPNet , , ,@r in np , a

process instance of iP is created by iP ’s WfMS at time r .

 When the value of tk is changed from ()()()11 0inPNet , , ,@r to

()()()20 1inPNet , , ,@r , 1 2r r< , the process instantiation request given at

1r is accomplished at 2r , i.e., the participant is able to execute the

actions in iP after 2r .

1-2. The variable domain of transition nt contains the variables typed with

inPNet only, i.e., ()()() ()()() { }n n n inType Var G t Type Var p ,t PNet= = .

 The guard expression ()nG t is Var ()0 1in ,== and the arc

expression ()n nA p ,t is Var in .

 nt is fired immediately, when a token tk associated with value

()()()1 0inPNet , , ,@r is added into np .

Rule2. If n represents a none end event, i.e., n.EC End= and n.ET None= , and
the direct predecessor of n is x , a place denoted with np and an atomic

transition denoted with nt are added into iHNet . A direct arc ()n nt ,p

connecting the two elements is created.

2-1. The definition of color domain of place np is the same as in Rule 1-1.

 When there is a token tk with value ()()()0 1inPNet , , ,@r in np , a

request of terminating iP is made by a participant at time r .

80

 When there is a token tk with value ()()()1 0inPNet , , ,@r in np , the

process instance is terminated by iP ’s WfMS at time r .

 When the value of tk is changed from ()()()10 1inPNet , , ,@r to

()()()21 0inPNet , , ,@r , 1 2r r< , the process termination request given at

1r is accomplished at 2r .

2-2. The definition of the variable domain of transition nt is the same as in

Rule1-2.

The guard and (input and output) arc expressions of the transition(s) added by

applying Rules 3, 4, 5, 6 or 7 are identical to those of nt , defined in the T
CH PNet

module of start event.

Rule3. If n represents a task/sub-process created by the basic construction

mechanism without input and output artifacts, i.e., =n.AT Task / SubProcess ,

v vI IA φ= = and v vO OA φ= = , and the direct predecessor and successor of n

are x and y respectively, an atomic/compound transition denoted with

Tnt / Pnt is added into iHNet . Tnt / Pnt has one input and output arcs.

(a) A none start event.
(b) The T

CH PNets module of none start event.

(c) A none end event.

V
ar

 i
n

=
=

 (
0,

1)

(d) The T
CH PNets module of none end event.

y

x

81

(e) A task (f) The T
CH PNets module of task.

(g) A sub‐process (g) The T
CH PNets module of sub‐process.

Figure 5.2 The mapping of the elements addressed in [29].

When n is a sub-process, iHNet connects the T
CH PNet of n ’s expansion with

two additional transition ()t x,call n and ()t return n,y . The two transitions are

used to model the invocation of sub-process n and return the control back to iHNet

when n is completed. The details are shown in Figure 5.3.

V
ar

 i
n

=
=

 (
0,

1)

V
ar

 i
n

=
=

 (
1,

0)

Figure 5.3 Combining the expansion of a sub-process and parent net.

Rule4. If n is a data-based ExclusiveSplit control node and the direct

successors of n are Activity 1 to m , 2m≥ , for each succeeding Activity

i , an atomic transition, denoted as ()it n,A , 2 i m≤ ≤ , is added into iHNet .

Transition ()it n,A has one input and output arc. The input arcs of the

transitions added starts from place ()p x,n .

82

Rule5. If n is a data-based ExclusiveJoin control node and the direct
predecessors of n are Activity 1 to m , 2m≥ , for each preceding

Activity i , an atomic transition, denoted as ()it n,A , 2 i m≤ ≤ , is added into

iHNet . The number of ()it n,A ’s input and output arcs are one. The output arcs

of the transitions added are joined at place ()p n,y .

Rule6. If n is a ParallelSplit control node and the direct successors of n are

Activity 1 to Activity m , 2m≥ , an atomic transition nt is added into

iHNet . Transition nt has one input arc and m output arcs.

Rule7. If n is a ParallelJoin control node and the direct predecessors of n are
Activity 1 to Activity m , 2m≥ , an atomic transition nt is added into

iHNet . The nt has m input arcs and one output arc.

Control Node T
CH PNets module Control Node T

CH PNets module

x

(a) Exclusive Split (b)

y

(c) Exclusive Join

p(A1,n)

p(Am,n)

...

p(n,y)

t(Am,n)

t(A1,n)

(d)

x

(e) Parallel Split

(f)

y

 (g) Parallel Join

p(A1,n)

p(Am,n)

...

tn
p(n,y)

(h)

Figure 5.4 The mapping of the control nodes addressed in [29].

83

Table 5.1 The notations available in our process model.
BPMN Our Process Model

Fl
ow

 O
bj

ec
ts

Activities

Task

Plain ◎

Loop ○

Multi-Instance ○

Ad-Hoc

Compensation

Sub-process

Plain ◎

Loop ○

Multi-Instance ○

Compensation

Gateways

Event-based Exclusive ○

Data-based

Exclusive ◎

Inclusive ◎

Parallel ◎

Complex ○

Events

(Start, Intermediate, End)

Plain Start and End ◎

Message ○

Timer ○

Error

Cancel

Compensation

Signal

Multiple

Link

Terminate

C
on

ne
ct

in
g

O
bj

ec
t

Sequence Flow ◎

Message Flow ○

Association

Sw
im

la
ne

s Pool
○

Lanes

A
rti

fa
ct

s Data Object ◎

Text Annotation

Group

Notation: Basic elements ◎ Advanced elements ○

84

5.2.2. Transformation Rules for Advanced Elements

The advanced elements can be transformed into T
CH PNet modules with Rules 8 to

22, respectively. The rules are defined upon the sequence: (1) advanced activity and

event, (2) activity involving event and (3) complex control node. In these rules, the

direct predecessor and successor of the intermediate actions (activity and event) are

set as x and y , respectively. The direct predecessor/successor of end/start event is

set as x / y also.

(1) Advanced Activity and Event

 During the transformation, when an activity (task or sub-process) n with

While / RepeatUntil loop structure is reached, n can be transformed with Rule

8 or 9.

Rule8. If n is a loop task, i.e., n.LT Standard= , n.EvTime Before / After= , and

the associated evaluation expression / maximum execution times = BooleanExp /

Maximum , n ’s T
CH PNet module is shown in Figure 5.5 (b)/(c).

Rule9. If n is a loop sub-process whose LT , EvTime and evaluation expression

/ maximum execution times are the same as Rule 8, n ’s T
CH PNet module is

shown in Figure 5.5 (b)/(c) and each atomic transition named Tnt is replaced

with a compound transition representing the sub-process.

 During the transformation, when an activity (task or sub-process) n with

multi-instance loop structure is reached, n can be transformed with Rule 10 or

11. Let the evaluation result of NumExp associated with n be k , i.e., the

number of instances of n is k .

85

Rule10. If n is a task whose instances are performed sequentially, i.e.,

n.LT MultiInstance= and n.Order Sequential= , n ’s T
CH PNet module is shown

in Figure 5.6 (b).

(a) A loop task n .

1'
(i

nt
, m

ax
)

(b) The T
CH PNets module of While loop task n .

(c) The T
CH PNets module of RepeatUntil loop task n .

Figure 5.5 Two different T
CH PNets modules of a task with loop structure.

Rule11. If n is a task whose instances are performed in parallel, i.e.,

n.LT MultiInstance= and n.Order Parallel= :

 When FlowCond None= , n ’s T
CH PNet module is in Figure 5.6 (c).

86

 When FlowCond One= , n ’s T
CH PNet module is in Figure 5.6 (c), but

transition []0Tnt ,z , place ()p n,y and arc ()()TnA t ,p n,y are replaced

with the net shown in Figure 5.6 (d).

 When FlowCond All= , n ’s T
CH PNet module is in Figure 5.6 (c) but

transition []0Tnt ,z , place ()p n,y and arc ()()TnA t ,p n,y are replaced

with the net shown in Figure 5.6 (e).

(a) A task n with

multi‐instance loop

structure.

(b) The T
CH PNets module of task n which is performed sequentially

V
ar

 i
n

=
=

 (
0,

1)

V
ar

 i
n

=
=

 (
0,

1)

(c) The T
CH PNets module of task n which is performed in parallel.

(d) The T
CH PNets module of task n which is performed in parallel.

87

(e) The T
CH PNets module of task n which is performed in parallel.

Figure 5.6 Four different T
CH PNets modules of a task with multi-instance loop

structure.

Rule12. If n is an intermediate event, i.e., n.EC Intermediate= , a transition
denoted with nt is added into iHNet .

(a) An none intermediate

event.
(b) The T

CH PNets module of none intermediate event.

Figure 5.7 The T
CH PNets module of intermediate event.

 During the transformation, when an event n with time limitation or message

receiver/dispatcher is reached, n can be transformed with the following rules.

Rule13. If n is a start/intermediate event and n is timed, i.e., n.ET Time= , and

the value of n ’s timer attribute is []1 2r ,r , 1 20 r r z≤ ≤ ≤ , Rule1/Rule12 is

applied respectively. Then, the firing interval of nt is changed from []0,z to

[]1 2r ,r .

Rule14. If n is a start/intermediate event and n is a message receiver, i.e.,
n.ET Message= and n.InMessage meg= , Rule1/Rule12 is applied respectively.

88

Then, a place denoted with megp is added into the net, generated by

Rule1/Rule12, and arc ()meg nA p ,t and ()n megA t ,p are created.

14-1. The color domain of place megp is () { }megC p Meg= and the token

elements of place megp are ()Meg ,'read' and ()Meg ,'unread' .

 When there is a token tk with value ()Meg ,unread in megp , a

message is sent from other participant and not consumed by the

participant yet.

 When there is a token tk with value ()Meg ,read in megp , the

message sent from other participant is consumed.

14-2. The variable domain of transition nt contains the variables typed with

inPNet and Meg only, i.e.,

()()() ()()() { }n n n inType Var G t Type Var p ,t PNet ,Meg= = .

 The guard expression ()nG t is Var ()0 1in , Var== ∧ m unread== .

The arc expressions of input arcs, ()n nA p ,t and ()meg nA p ,t , are

Var in and Var m , respectively. The arc expressions of output arcs,

()()n n,xA t ,p and ()n megA t ,p , are Var in and ()1' read , respectively.

 nt is fired immediately, when there are two tokens with value

()()()1 0inPNet , , ,@r and ()Meg ,unread in np and megp ,

respectively.

The T
CH PNet module generated by applying Rule1 and Rule14 on message start

event n is shown in Figure 5.8 (b).

89

(a) A message

start event.

V
ar

 i
n

=
=

 (
0,

1)
 &

&

V
ar

 m
 =

=
 u

nr
ea

d

(b) A T
CH PNets module of message start event

Figure 5.8 Two different presentations of message start event.

Rule15. If n is an intermediate/end event and n is a message dispatcher, i.e.,
n.ET Message= and n.OutMessage meg= , Rule12/Rule2 is applied

respectively. Then, a place denoted with megp is added into the net generated by

Rule12/Rule2 and the arc ()n megA t ,p is created.

When nt is fired, a token with value ()()()0 1inPNet , , ,@r in place ()x ,np is

removed and the tokens with value ()Meg ,unread and ()()()0 1inPNet , , ,@r are

added into megp and ()n,yp , respectively. The T
CH PNet module generated by

applying Rule12 and Rule15 on intermediate message dispatcher n is shown in

Figure 5.9 (b).

(a) A message dispatcher.

(b) A T
CH PNets module of message dispatcher

 y x

x

90

Figure 5.9 Two different presentations of intermediate message dispatcher.

(2) Activity Involving Event

 During the transformation, when an activity (task or sub-process) n involving

an event e is reached, n can be transformed by Rule 16, 17, 18, 19 or 20.

Here, event e is associated with a time limitation or a message

receiver/dispatcher. Let n ’s direct successors be 1y and 2y . 2y is connected

by a supplement arc.

Rule16. If n is a task and the value of timer attribute of n ’s timing event e is

[]1 2r ,r , 1 20 r r z≤ ≤ ≤ , n ’s T
CH PNet module is designed in Figure 5.10 (b). Let

the time stamp associated with control token be stamp .

(a) Task involving a

timing event.

V
ar

 i
n

=
=

 (
0,

1)

V
ar

 i
n

=
=

 (
0,

1)
&

&

st
am

p
>

 r
V

ar
 i
n

=
=

 (
0,

1)
&

&

st
am

p
<

=
 r

Var in

(b) A T
CH PNets module of a task involving a timing event.

Figure 5.10 Two different presentations of a task involving a timing event.

Rule17. If n is a sub-process and the value of timer attribute of n ’s timing event

e is []1 2r ,r , 1 20 r r z≤ ≤ ≤ , n ’s T
CH PNet module is in Figure 5.10 (b) while nt

is represented with a compound transition.

Rule18. If n is a task associated with a message receiver e , n ’s T
CH PNet module

is in Figure 5.11 (b) where transition nt is the body of n .

91

(a) Task involving a

message receiver.
 (b) A T

CH PNets module of a task involving a message receiver.

Figure 5.11 Two different presentations of a task involving a message receiver.

Rule19. If n is a sub-process associated with a message receiver e , n ’s T
CH PNet

module is in Figure 5.12 (b) where the subnet in block is the body of n .

(a) Sub‐process

involving a message

receiver.

1'
(b

oo
le

an
, o

k)

1'(P
N

etin ,(1,0))

1'
(b

oo
le

an
, o

k)

1'(
bo

ol
ea

n,
no

k)

(b) A T
CH PNets module of a sub‐process involving a message receiver.

Figure 5.12 Two different presentations of a sub-process involving a message
receiver.

Rule20. If n is a task and associated with a message dispatcher e , n ’s T
CH PNet

module is in Figure 5.13 (b).

92

(a) Task involving a

message dispatcher.

1'(Meg, unread)

pmeg

V
ar

 i
n

=
=

 (
0,

1)

p(n,y)
tn[0,z]

p(x,n)

Var in 1'(PNetin,(1,0))

(a) A T
CH PNets module of a task involving a message dispatcher.

Figure 5.13 Two different presentations of a task involving a message dispatcher.

(3) Complex Control Node

 During the transformation, when a complex control node n implemented with

advanced join mechanism is reached, n can be transformed by Rule 21 or 22.

Rule21. If complex control node n is implemented with Discriminator or “N out M

join” mechanism, n ’s T
CH PNet module is in Figure 5.14 (b).

When n is implemented with Discriminator mechanism, variable i used in the

module generated is set with 1. Otherwise, i is set with M .

Rule22. If complex control node n is implemented with “Multiple Merge”

mechanism, n ’s T
CH PNet module is in Figure 5.14 (c).

93

y

(a) Branch 1 to m

are joined at a

complex

control node n.

in

(b) A T
CH PNets module of a control node implemented with

Discriminator/”N out of M join”.

(c) A T
CH PNets module of a control node implemented with “Multiple

Merge”.

Figure 5.14 Different presentations of a complex control node implemented with
different mechanisms.

5.3. Transformation Method for Message Flows – MFMethod

A business process in BPMN may contain the following types of message flows:

(1) task to task, (2) task to start event, (3) task to intermediate event , (4) intermediate

event to task, (5) intermediate event to start event, (6) intermediate event to

intermediate event, (7) end event to task and (8) end event to start event. These

message flows can be transformed into T
CH PNets modules with Rule23 to Rule30,

respectively. In these rules, the message flows are started from action 1n to action

2n . Each rule adopts several rules in previous section where the rules applied to the

same object are executed according to the description order.

94

Rule23. If message flow ()1 2n ,n is created between task 1n involving a message

dispatcher and task 2n involving a message receiver, ()1 2n ,n ’s T
CH PNet

module is in Figure 5.15 (b) created by combining the two T
CH PNets modules,

generated by Rule20 and Rule18, with the places denoted with megp .

(a) A message flow between two tasks.

(b) A T
CH PNets module of a message flow between two tasks.

Figure 5.15 Two different presentations of a message flow between two tasks.

Rule24. If message flow ()1 2n ,n is created between task 1n involving a message

dispatcher and start event 2n with a message receiver, ()1 2n ,n ’s T
CH PNet

95

module is in Figure 5.16 (b) created by combining the two T
CH PNets modules,

generated by Rule3, Rule20 and Rule1, Rule14, with the places denoted with

megp .

(a) A message flow between a task

and a start event.
V

ar
 i

n
=

=
 (

0,
1)

 &
&

V

ar
 m

 =
=

 u
nr

ea
d

V
ar

 i
n

=
=

 (
0,

1)

V
ar m

1'
(M

eg
,r

ea
d)

(b) A T
CH PNets module of a message flow between a

task and a start event.

Figure 5.16 Two different presentations of a message flow between a task and a
start event.

Rule25. If message flow ()1 2n ,n is created between task 1n involving a message

dispatcher and intermediate event 2n with a message receiver, ()1 2n ,n ’s

T
CH PNet module is in Figure 5.17 (b) created by combining the two T

CH PNets

modules, generated by Rule20 and Rule14, with the places denoted with megp .

96

 (a) A message flow between a task

and an intermediate event. V
ar

 i
n

=
=

 (
0,

1)
 &

&

V
ar

 m
 =

=
 u

nr
ea

d

tn2[0,z]

1'(PNetin,(1,0))

p(n2,y2)

pmeg

Var in

1'(Meg, unread)

V
ar

 i
n

=
=

 (
0,

1)

p(n1,y1)

tn1[0,z]

p(x1,n1)

Var in 1'(PNetin,(1,0))

V
ar m

1'
(M

eg
,r

ea
d)

p(x2,n2)

(b) A T
CH PNets module of a message flow between a task

and an intermediate event.
Figure 5.17 Two different presentations of a message flow between a task and an

intermediate event.

Rule26. If message flow ()1 2n ,n is created between intermediate event 1n with a

message dispatcher and task 2n with a message receiver, ()1 2n ,n ’s T
CH PNet

module is in Figure 5.15 (b) created by combining the two T
CH PNets modules,

generated by Rule12, Rule15 and Rule18, with the places denoted with megp .

Figure 5.18 A message flow between an intermediate event and a task.

97

Rule27. If message flow ()1 2n ,n is created between intermediate event 1n with a

message dispatcher and start event 2n with a message receiver, ()1 2n ,n ’s

T
CH PNet module is in Figure 5.16 (b) created by combining the two T

CH PNets

modules, generated by Rule12, Rule15 and Rule14, with the places denoted with

megp .

Figure 5.19 A message flow between intermediate and start events.

Rule28. If message flow ()1 2n ,n is created between intermediate event 1n with a

message dispatcher and intermediate event 2n with a message receiver,

()1 2n ,n ’s T
CH PNet module is in Figure 5.17 (b) created by combining the two

T
CH PNets modules, generated by Rule12, Rule15 and Rule14, with the places

denoted with megp .

y1x1

y2
x2

Figure 5.20 A message flow between two intermediate events.

98

Rule29. If message flow ()1 2n ,n is created between end event 1n with a message

dispatcher and task 2n with a message receiver, ()1 2n ,n ’s T
CH PNet module is

in Figure 5.21 (b) created by combining the two T
CH PNets modules generated by

Rule12, Rule15 and Rule18 with the places denoted with megp .

x1

x2
y2‐1

y2‐2

(a) A message flow between an end event and a task.

(b) A T
CH PNets module of a message flow between an end event and a task.

Figure 5.21 Two different presentations of a message flow between an end event
and a task.

99

Rule30. If message flow ()1 2n ,n is created between end event 1n with a message

dispatcher and start event 2n with a message receiver, ()1 2n ,n ’s T
CH PNet

module is in Figure 5.22 (b) created by combining the two T
CH PNets modules,

generated by Rule12, Rule15 and Rule1, Rule13, with the places denoted with

megp .

(a) A message flow between an end

event and a start event.

(b) A T
CH PNets module of a message flow between an end

event and a start event.

Figure 5.22 Two different presentations of a message flow between an end event
and a start event.

100

5.4. Transformation Method for Data Flows – DFMethod

In a business process, the state of an artifact is transformed among the four

states, “Uninitialized”, “Initialized”, “Read” and “Updated”, by the four operations,

Initialize, Update, Read and Destroy. Figure 5.23 (a) shows the state transition

diagram of an artifact with the four kinds of operations. The diagram can be

represented with a PNet as Figure 5.23 (b). The initial state of an artifact can be

represented with ()1 0 0 0, , , while the place array of the artifact PNet is ()U,I,R,W .

When an artifact is initialized, the state of the artifact is transformed from ()1 0 0 0, , ,

to ()0 1 0 0, , , .

For incoming data flow ()d,v , the artifact input d can be read, updated or

destroyed by activity v . The three cases of incoming data flows are presented as

Figure 3.17 (a), (b) and (c), respectively. The three cases can be transformed into the

T
CH PNets modules shown in Figure 5.24 when the arc expression of arc ()v dt ,p is set

with ()1 0 0 1 0' , , , , ()1 0 0 0 1' , , , and ()1 1 0 0 0' , , , , respectively. After transition vt is

fired, the value of a token representing artifact d is changed to the assigned value

described on the arc expression and the token is added into place dP .

Rule31. If v is a reader/updater/destroyer of artifact d , data flow ()d,v ’s

T
CH PNet module is in Figure 5.24 and () ()1 0 0 1 0v dA t ,p ' , , ,= /

() ()1 0 0 0 1v dA t ,p ' , , ,= / () ()1 1 0 0 0v dA t ,p ' , , ,= .

101

(a) The state transition diagram of an artifact.

(b) A PNet of the state transition diagram of an artifact.

Figure 5.23 Two different presentations of the state transition of an artifact.

Figure 5.24 A T
CH PNets module of incoming data flows.

102

The transformation rules for the intermediate data flow ()()u,v ,d discussed in

Section 3.3.3 are shown in the followings.

 When the artifact d is produced by action u and consumed by action v ,

place dp for d and arc ()u dt ,p , ()d vp ,t and ()v dt ,p for presenting the

interaction of control and data flow are added into the T
CH PNets modules.

Rule32. If v is a reader of d , ()()u,v ,d ’s T
CH PNet module is in Figure 5.25

where () ()1 0 1 0 0u dA t ,p ' , , ,= , ()d vA p ,t Var= artifact , () ()1 0 0 1 0v dA t ,p ' , , ,=

and ()vG t Var= ()0 1in , &&Var== ()0 1 0 0artifact , , ,== .

Rule33. If v is a destroyer of d , ()()u,v ,d ’s T
CH PNet module is in Figure 5.25

where ()d vA p ,t Var= artifact , () ()1 1 0 0 0v dA t ,p ' , , ,= and

()vG t Var= ()0 1in , &&Var== ()0 1 0 0artifact , , ,== .

Rule34. If v is an updater of d , ()()u,v ,d ’s T
CH PNet module is in Figure 5.25

where () ()1 0 1 0 0u dA t ,p ' , , ,= , ()d vA p ,t Var= artifact , () ()1 0 0 0 1v dA t ,p ' , , ,=

and ()vG t Var= ()0 1in , &&Var== ()0 1 0 0artifact , , ,== .

1'(
0,1

,0,
0)

Var artifact

1'(
0,0

,1,
0)

103

Figure 5.25 A T
CH PNets module of intermediate data flows.

 When both action u and v are consumers of the artifact d , place dp and arc

()u dt ,p , ()d up ,t , ()d vp ,t and ()v dt ,p are added into the T
CH PNets modules.

Rule35. If both u and v are readers of d , ()()u,v ,d ’s T
CH PNet module is in

Figure 5.26 where () ()1 0 0 1 0u dA t ,p ' , , ,= , ()d vA p ,t Var= artifact ,

() ()1 0 0 1 0v dA t ,p ' , , ,= and

() ()u vG t G t Var= = ()0 1in , &&Var== ()1 0 0 0artifact! , , ,= .

Rule36. If u is a reader and v is a destroyer of d , ()()u,v ,d ’s T
CH PNet module

is in Figure 5.26 where ()d uA p ,t Var= artifact , () ()1 0 0 1 0u dA t ,p ' , , ,= ,

()d vA p ,t Var= artifact , () ()1 1 0 0 0v dA t ,p ' , , ,= and () ()u vG t G t Var= =

()0 1in , &&Var== ()1 0 0 0artifact! , , ,= .

Rule37. If u is a reader and v is an updater of d , ()()u,v ,d ’s T
CH PNet module

is in Figure 5.26 where ()d uA p ,t Var= artifact , () ()1 0 0 1 0u dA t ,p ' , , ,= ,

()d vA p ,t Var= artifact , () ()1 0 0 0 1v dA t ,p ' , , ,= and () ()u vG t G t Var= =

()0 1in , &&Var== ()1 0 0 0artifact! , , ,= .

Rule38. If u is a destroyer and v is a reader of d , ()()u,v ,d ’s T
CH PNet module

is in Figure 5.26 where ()d uA p ,t Var= artifact , () ()1 1 0 0 0u dA t ,p ' , , ,= ,

104

()d vA p ,t Var= artifact , () ()1 0 0 1 0v dA t ,p ' , , ,= and () ()u vG t G t Var= =

()0 1in , &&Var== ()1 0 0 0artifact! , , ,= .

Rule39. If u is a destroyer and v is a destroyer of d , ()()u,v ,d ’s T
CH PNet

module is in Figure 5.26 where ()d uA p ,t Var= artifact , () ()1 1 0 0 0u dA t ,p ' , , ,= ,

()d vA p ,t Var= artifact , () ()1 1 0 0 0v dA t ,p ' , , ,= and () ()u vG t G t Var= =

()0 1in , &&Var== ()1 0 0 0artifact! , , ,= .

Rule40. If u is a destroyer and v is a updater of d , ()()u,v ,d ’s T
CH PNet

module is in Figure 5.26 where ()d uA p ,t Var= artifact , () ()1 1 0 0 0u dA t ,p ' , , ,= ,

()d vA p ,t Var= artifact , () ()1 0 0 0 1v dA t ,p ' , , ,= and () ()u vG t G t Var= =

()0 1in , &&Var== ()1 0 0 0artifact! , , ,= .

Rule41. If u is a updater and v is a reader of d , ()()u,v ,d ’s T
CH PNet module

is in Figure 5.26 where ()d uA p ,t Var= artifact , () ()1 0 0 0 1u dA t ,p ' , , ,= ,

()d vA p ,t Var= artifact , () ()1 0 0 1 0v dA t ,p ' , , ,= and () ()u vG t G t Var= =

()0 1in , &&Var== ()1 0 0 0artifact! , , ,= .

Rule42. If u is a updater and v is a destroyer of d , ()()u,v ,d ’s T
CH PNet

module is in Figure 5.26 where ()d uA p ,t Var= artifact , () ()1 0 0 0 1u dA t ,p ' , , ,= ,

()d vA p ,t Var= artifact , () ()1 1 0 0 0v dA t ,p ' , , ,= and () ()u vG t G t Var= =

()0 1in , &&Var== ()1 0 0 0artifact! , , ,= .

105

Rule43. If u is a updater and v is an updater of d , ()()u,v ,d ’s T
CH PNet

module is in Figure 5.26 where ()d uA p ,t Var= artifact , () ()1 0 0 0 1u dA t ,p ' , , ,= ,

()d vA p ,t Var= artifact , () ()1 0 0 0 1v dA t ,p ' , , ,= and () ()u vG t G t Var= =

()0 1in , &&Var== ()1 0 0 0artifact! , , ,= .

1'(
0,1

,0,
0)

Var artifact

1'(
0,0

,1,
0)

Figure 5.26 A T
CH PNets module of intermediate data flows.

5.5. Process Transformation

Let a business process j �=BP (PP,A,M,MF,MF,PF ,P) be transformed into a

T
CH PNet ()Net TNet,TrSet,TkSet,TrFun,TkFun= . Each kind of artifacts/messages in

A / M is designed with a PNet. BP is composed of private processes,

1P , 2P ,.., nP , 1n≥ . For private process iP , 1 i n≤ ≤ , the control flow of iP is

() i()i i i i i i iControlFlow P G ,V ,A ,M ,I ,O= where ()i i iG V ,CF= started from any start

event in iStartSet and ended at any end event in iEndSet . The data flows of iP are

in ()iDataFlow P .

The transformation is designed to convert the private processes in a business

process one by one. An empty T
CH PNet is declared for the business process in the

106

beginning. During the transformation, a sub- T
CH PNet is created for each private

process visited. The transformation of private process can be divided into two steps:

(1) Firstly, the rules defined in CFMethod are applied to the actions visited with

Breadth-first search [49]. The T
CH PNet modules generated are appended to the

sub- T
CH PNet sequentially.

(2) Then, the rules defined in DFMethod are applied to the data flows to generate

the corresponding modules which are appended to the sub- T
CH PNet generated in

the first step.

Such a recursive operation continues until all private processes are processed.

Then, the message flows between each pair of private processes are transformed by

merging the corresponding sub- T
CH PNets upon the rules defined in MFMethod . The

transformation completes when all the sub- T
CH PNets are merged. The details of

transforming a business process are shown in PseudoCode1.

PseudoCode1 TransformBusinessProcess(PP) {
// Input: PP : a set of private processes
// Output: resultNet: a hierarchical Timed Coloured Petri Net
 Stack currentNetStack = new Stack();
 For each private process p in PP {
 currentNet = TransformControlFlow(G , StartSet);

// G is p’s control flow and StartSet is a set of p’s start events

currentNet = TransformDataFlow(currentNet, DataFlow);
// DataFlow is a set of data flows of p

currentNetStack.add(currentNet);

 }

 currentNet = currentNetStack .pop;
 For each net net1 in currentNetStack {
 currentNet = TransformMessageFlow(currentNet , net1);
 }

107

 resultNet = currentNet;
 Return resultNet;
}

PseudoCode2 TransformControlFlow(G , StartSet) {
// Input: G=(V,CF) : a directed connected graph
// StartSet: the traverse is started from start events in StartSet.
// Output: resultNet: a hierarchical Timed Coloured Petri Net

 FIFO queue = new FIFO();

 For each vertex v in V ‐ StartSet {
 status[v] = ‘waiting’;
 level[v] = null;
 parent[v] = null;
 }

 For each vertex s in StartSet { // all start events are initialized;
 status[s] = ‘operating’;
 level[s] = 0;
 parent[s] = null;
 queue.add(s);
 }

 while (queue != null) {
 currentVertex= queue.first;
 subNet = MethodCF(currentVertex);
 currentNet.append(subNet);
 // subNet is appended to currentNet with links, the places denoted with dotted
 // line

 For each edge (currentVertex, u) in CF {
 If (u.status == ‘waiting’) {
 status[u] = ‘operating’;
 level[u] = level[currentVertex] + 1;
 parent[u] = currentVertex;
 queue.add(u);
 }
 }
 status[currentVertex] = ‘done’;
 }
 resultNet = currentNet;
 Return resultNet;
}

PseudoCode3 TransformDataFlow(net , dataFlow) {
// Input: net : a result net of TransformControlFlow(G , s) of private process P
// dataFlow : a set of data flows of P
// Output: resultNet: a hierarchical Timed Coloured Petri Net

 currentNet = net;

108

 For each df in dataFlow {
 subNet = MethodDF(df);
 currentNet.append(subNet);
 }
 resultNet = currentNet;
 Return resultNet;
}

PseudoCode4 TransformMessageFlow(net1 , net2) {
// Input: net1 and net2 : the results of TransformDataFlow(G1 , s1) and (G2 , s2)
// V1 and V2: the sets of vertices of Net1 and Net2.
// Output: resultNet: a hierarchical Timed Coloured Petri Net

 currentNet = net1 + net2;
 For each vertex u in V1 {
 For each vertex v in V2 {
 If (u == v) currentNet .merge(u, v);
 }
 }
 resultNet = currentNet;
 Return resultNet;
}

109

Chapter 6. A Case Study

To demonstrate the methods, CFMethod , MFMethod and DFMethod , proposed

in Chapter 5, the process voteBP of resolving issues through e-mail votes introduced

in section 3.2.4 and 3.3.4 is adopted as an example in this section. Process voteBP is

composed of three private processes, workingGroupP , managerP and voterP . voteBP has turn

cycle of a week. The methods presented are applied on this example to illustrate the

steps to generate the corresponding T
CH PNets. The control, message and data flows of

the example are shown in Figure 3.14 and Figure 3.19, respectively. The artifacts are

stated with details in Table 3.2. The artifact usages of actions are listed in Table 3.3.

Figure 6.1 (b) shows the T
CH PNet of private process workingGroupP and managerP ,

shown in Figure 6.1 (a), which is generated according to the action taken order of the

two processes by the three transformation methods. Because process voteBP is

executed weekly, in our design, a global clock counting with hours is introduced into

the T
CH PNet and the clock is reset weekly. An execution of either task 11T . or 2 2T .

takes 24 hours. There is no specific execution limitation for the four tasks shown in

Figure 6.1 (a).

We assume that process voteBP is started to execute at 9 am on Monday. The

initial marking of the T
CH PNet is shown in the first column in Table 6.1. Let the firing

sequence is

[[() [0 1 11 2 11 3 4 1 2 511 1 2sys SE . T . T .DaES . ,T .M t M t M t M t M t M⎡⎡⎣ ⎣; ; ; ; ; and

[[6 7 21 8 21 9sys SE . T .M t M t M t M⎡⎣ ; ; ; .

110

Table 6.1 The firing sequence of process voteBP

111

In marking 9M , the value of artifact 1d is transformed from ()0 0 1 0, , , to

()1 0 0 0, , , by firing transition 21T .t , i.e., artifact 1d is destroyed. The direct

succeeding task 2 2.T cannot the artifact. In other word, transition 2 2T .t is unable to

be fired because the evaluation result of 2 2T .t ’s guard expression is false. A deadlock

happens. A missing production anomaly caused by early destruction, defined in our

previous work [11], is detected.

(a) The control and data flow of email voting example.

(b) The T
CH PNet of the example shown in (a).

Figure 6.1 Two presentations of the email voting example.

112

Chapter 7. Comparisons

7.1. Comparison of BPMN-based Process Models

A formal process model proposed in this paper is based on the control, message

and data flows defined in BPMN. In the model, each notation for BPMN can be

referred to one in [24] and [29]. The notation mappings between ours and [24] and [29]

are shown in Table 7.1, Table 7.2 and Table 7.3, respectively.

Table 7.1 The mappings of the elements in message flow addressed.

Message Flow Our process

model

Remco et al.

[24]

 Y.D. Lin et al.

[29]

Role Participant and Flow Engine Supported N/A N/A

Task to Task Supported Supported N/A

Task to Start Event Supported Supported N/A

Task to Intermediate Event Supported N/A N/A

Intermediate Event to Task Supported N/A N/A

Intermediate Event to Start Event Supported N/A N/A

Intermediate Event to Intermediate Event Supported N/A N/A

End Event to Task Supported Supported N/A

End Event to Start Event Supported Supported N/A

113

Table 7.2 The mappings of the elements of control flow addressed.
Control flow Our

process

model

Remco et

al. [24]

Y.D. Lin et al.

[29]

Event Timing/Messag

e Event

Start Supported Partially

Supported
N/A

Intermediate Supported Partially

Supported
N/A

End Supported Partially

Supported
N/A

Activity Task Supported Supported Supported

Sub-Process Supported Supported Supported

Task/

Sub-Process

Activity Involving

Event

Supported Supported
N/A

Standard Loop

Activity

Supported Supported
N/A

Multi-Instance

Loop Activity

Supported
N/A N/A

Control Node Data-Based

(Well-Formed)

Exclusive Supported Supported Supported

Inclusive Supported Supported Supported

Parallel Supported Supported Supported

Complex Supported N/A N/A

Iterative Supported Supported Supported

Event-Based Exclusive Supported N/A N/A

Unstructured Mismatched Structure Supported N/A N/A

Unpaired Structure Supported N/A N/A

Improper Nesting Structure Supported N/A N/A

There are many ways for the artifacts to be defined and utilised in process. In

BPMN, the visibility and usability of an artifact is determined by the scope of process

or task. In our process model, the artifact(s) associated with a process or task is

defined as the ‘input’ and ‘output’ attribute(s) of the latter. It is easier to use data

channels, distinct from control channels, to analyze the artifact interactions. An

114

artifact of multiple instances is partially supported: Our process model does not

support assigning specific artifact instances to different task instances.

Table 7.3 The mapping of the elements of data flow addressed.

Data flow
Our process

model
Y.D. Lin et al. [29]

Remco et

al. [24]

Visibility

Task Data Supported

Input attribute

Distinct control

and data

channels

Unsupported

Integrated control and

data channels

(Global data)

N/A

(Sub)Process Data

Multiple Artifact Instance

Artifact

Interaction

Task to Task

Task to Sub-process

Sub-process to Task

Sub-process to

Sub-process

7.2. Advantages of T
CH PNets

When a process is modeled with a PNet, CPNet or Timed CPNet, the behavior of

the WfMS, on which the process executes, may not be included. Thus, the behavior

simulated upon the nets may not indicate the behavior of real WfMS. And, the

analysis results gained upon the nets might be useless. The problems can be solved

partially with T
CH PNets. For example, many correlations between the artifact/process

and its operations cannot be found in above nets, but in T
CH PNets.

In addition, T
CH PNets can represent a BPMN-based process with a sub-process

which is associated with a lower-level net, especially for Standard and

MultiInstance loop sub-process. The refinement function is not supported by PNet,

CPNet and Timed CPNet.

115

Table 7.4 Advantages of T
CH PNets

T
CH PNets PNets\ CPNets\ Timed CPNets

Hierarchical

Token

(Net within Net)

Interactions between WfMS and participants are not captured All

High difficulty of maintaining correlations between an artifact

state transition and its operations

All

Hierarchical

Transition
Un-introduce element refinement mechanism

All

Time Semantic Time Condition Omission PNets\ CPNets

Data Semantic Weak Data Presentation PNets

116

Chapter 8. Conclusion and Future Works

Current analysis techniques based on PNets, CPNets, and timed CPNets are not

well for workflow modeled with BPMN. The main contribution of this thesis is to

introduce a BPMN-based process model which provides an easier way to extract

knowledge from the role, control flow, data flow and message flow of a workflow.

Such a BPMN-based can be transformed into a T
CH PNets, which is an extended timed

CPnets with hierarchical token, for analysis.

The BPMN process may include: 1) an interaction between participants, 2) a

multi-instance (loop) activity, 3) an event-triggered (supplement) process, 4) a join

node designed by one of the three advanced join mechanisms, discriminator, multiple

merge and N out of M join, and 5) a data flow described with explicit channel. The

analysis for T
CH PNets works for BPMN workflow of well-formed or unstructured

control flows.

We currently continue our research in several directions. First, we plan to implement

our model and methods on existing workflow management systems, such as Microsoft

Visio [25] or BizAgi BPM [26], in order to apply our research result in real-world

applications. The second is to continue the research of analysis on activities (task and

sub-process) or process instances with more complex events. Thirdly, we plan to integrate

our resource constrains analysis techniques to develop a design methodology for

constructing workflows or web services.

117

Reference

[1] The Workflow Management Coalition, “The workflow reference model”,

Document Number TC00-1003, January 1995.

[2] Object Management Group. Business Process Modeling Notation (BPMN)

Version 1.2. OMG Final Adopted Specification. Object Management Group, 2009.

[3] R. Dijkman, M. Dumas, and C. Ouyang. “Semantics and Analysis of Business

Process Models in BPMN.”, Information and Software Technology, Vol.50, Issue

12, pp. 1281-1294, 2008.

[4] C. Ouyang, M. Dumas, A.H.M. ter Hofstede, W.M.P. van der Aalst,

“Pattern-based translation of BPMN process models to BPEL Web services.”,

Journal of Web Services Research, Vol.5, No. 1, pp. 42-62, 2007.

[5] C. Ouyang, M. Dumas, A.H.M. ter Hofstede, and W.M.P. van der Aalst, “From

BPMN process models to BPEL Web services.”, Proceedings of the 4th

International Conference on Web Services, pp. 285-292, Chicago, Illinois, USA,

Sep., 2006.

[6] S. White. Using BPMN to Model a BPEL Process. BPTrends, 3(3):1–18, March

2005.

[7] S. Sadiq, M.E. Orlowska, W. Sadiq, and C. Foulger, “Data flow and validation in

workflow modeling.”, Proceedings of the 15th Australasian database conference,

pp. 207-214, Dunedin, New Zealand, January 2004.

[8] S.X. Sun, and J.L. Zhao, “A data flow approach to workflow design.”,

Proceedings of the 14th Workshop on Information Technology and Systems, pp.

80-85, 2004.

[9] S.X. Sun, J.L. Zhao, and O.R. Sheng, “Data flow modeling and verification in

business process management.”, Proceedings of the AIS Americas Conference on

Information Systems, pp. 4064-4073, New York, August 5-8, 2004.

[10] S.X. Sun, J.L. Zhao, J.F. Nunamaker, and O.R.L. Sheng, “Formulating the data

118

flow perspective for business process management.”, Information Systems

Research, Vol. 17, No. 4, pp. 374-391, December 2006.

[11] C.H. Wang and F.J. Wang, “Detecting artifact anomalies in business process

specifications with a formal model.”, Journal System and Software, 2009.

[12] S. Ha, H.W. Suh, “A timed colored Petri nets modeling for dynamic workflow in

product development process.”, Computers in Industry, Vol.59, Issue 2-3, 2008.

[13] W. Shen et al., “Hierarchical Timed Colored Petri Nets Based Product

Development Process Modeling.”, CSCWD2004, LNCS 3168, pp. 378 – 387, 2005.

[14] K. Jensen, “Coloured Petri nets: Basic concepts, Analysis methods, and Practical

use”, volume 1-3, Springer-Verlag, 1992.

[15] P. Bouyer, S.Haddad and P.-A.Reynier, “Timed Petri nets and timed

automata: On the discriminating power of zeno sequences”, Information and

Computation, Vol. 206, Issue 1, Jan., 2008.

[16] P. Merlin and D. J. Farber, “Recoverability of communication protocols –

implication of a theoretical study.”, IEEE Trans. on Communications, Vol. 24,

Issue 9, pp. 1036-1043, 1976.

[17] B. Walter. “Timed Petri nets for modeling and analyzing protocols with real time

characteristics.”, Proceedings of the 3rd IFIP Workshop on Protocol specification,

Testing, and Verification, pp. 149-159. North Holland, 1983.

[18] C. Ramchandani, “Analysis of asynchronous concurrent systems by timed Petri

nets.”, Technical Report MAC-TR-120, Massachusetts Institute of Technology,

February 1974.

[19] J. Coolahan and N. Roussopoulos, “Timing requirements for time-driven systems

using augmented Petri nets.”, IEEE Trans. on Software Eng., Vol. SE-9, No. 5, pp.

603-616, 1983.

[20] P. A. Abdulla and A. Nylen, “Timed Petri nets and BQOs.”, Proceedings of the

22nd Int. Conf. on Applications and Theory of Petri Nets, Vol. 2075 of LNCS, pp.

53-70, Springer-Verlag, 2001.

[21] W. van der Aalst, “Interval timed coloured Petri nets and their analysis.”,

119

Proceedings of the 14th Int. Conf. on Applications and Theory of Petri Nets, Vol.

961 of LNCS, pp. 452-472, Springer-Verlag, 1993.

[22] K. Jensen, “Coloured Petri Nets Basic Concepts, Analysis Methods and Practical

Use.”, Vol. 1, Springer-Verlag, 1997.

[23] K. Jensen, “Coloured Petri Nets Basic Concepts, Analysis Methods and Practical

Use.”, Vol. 2, Springer-Verlag, 1997.

[24] R. M. Dijkman, M. Dumas and C. Ouyang, “Formal Semantics and Analysis of

BPMN Process Models.”, Information and Software Technology, 2009.

[25] Business Process Modeling mit Process Modeler for Microsoft Visio,

http://itp-commerce.com/?gclid=CLKNlIGTspsCFcktpAodBzNJNw.

[26] BizAgi BPM software, http://www.bizagi.com/.

[27] C. A. Petri, “Kommunikation mit Automaten,” PhD thesis, University of Bonn,

Bonn, Germany, 1962.

[28] C. Girault and R. Valk, “Petri Nets for Systems Engineering.”, Vol. 1,

Springer-Verlag, 1998.

[29] Ou-Yang and Y.D. Lin, “BPMN Based Business Process Model Feasibility

Analysis:a Petri Net Approach,” International Journal of Production Research,

Vol.46, No.14-15, July, 2008.

[30] W.M.P. van der Aalst, “The application of petri nets to workflow management”,

Journal of Circuits, Systems and Computers, Vol. 8, No. 1, pp. 21-66, 1998.

[31] W.M.P. van der Aalst and A.H.M. ter Hofstede, “Verification of workflow task

structures: a petri-net-based approach”, Information Systems, Vol. 25, No. 1, pp.

43-69, 2000.

[32] H.M.W. Verbeek and W.M.P. van der Aalst, “Woflan 2.0: a petri-net-based

workflow diagnosis tool”, Proceedings of the 21st International Conference of

Application and Theory of Petri Nets (ICATPN 2000), pp. 475-484, Aarhus,

Denmark, June 26-30, 2000.

[33] N.R. Adam, V. Atluri, and W.K. Huang, “Modeling and analysis of workflows

120

using petri nets”, Journal of Intelligent Information Systems, Vol. 10, No. 2, pp.

131-158, March/April 1998.

[34] R. M. Dijkman, M. Dumas, and C. Ouyang. Formal Semantics and Analysis of

BPMN Process Models using Petri Nets. Technical report, Faculty of Information

Technology, Queensland University of Technology, 2007.

[35] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros,

“Workflow patterns”, BETA Working Paper Series, WP 47, Eindhoven University

of Technology, Eindhoven, 2000.

[36] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros,

“Advanced workflow patterns”, Proceeding of 7th International Conference on

Cooperative Information Systems (CoopIS 2000), Vol. 1901 of Lecture Notes in

Computer Science, pp. 18-29. Springer-Verlag, Berlin, 2000.

[37] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst,

“Workflow data patterns”, QUT Technical report, FIT-TR-2004-01, Queensland

University of Technology, Brisbane, 2004.

[38] J. Bae, H. Bae, S.-H. Kang, and Y. Kim, “Automatic control of workflow

processes using ECA rules”, IEEE Transaction on Knowledge and Date

Engineering, Vol. 14, No. 8, pp. 1010-1023, IEEE Computer Society, August 2004

[39] Aalst van der, W. M. P., “Verification of WF-nets,” Application and Theory of

Petri Nets, Vol. 1248 of Lecture Notes in Computer Science, 1997.

[40] W.M.P. van der Aalst. “Three Good Reasons for Using a Petri-net-based

Workflow Management System.” Proceedings of the International Working

Conference on Information and Process Integration in Enterprises (IPIC'96),

pages 179-201, Camebridge, Massachusetts, Nov 1996.

[41] R. Eshuis and J. Dehnert., “Reactive Petri nets for Workflow Modeling,”

Application and Theory of Petri Nets 2003, Vol. 2679 of Lecture Notes in

Computer Science, pp. 295-314. Springer-Verlag, Berlin, 2003.

[42] S. Ha and H. Suh, A timed colored Petri nets modeling for dynamic workflow in

product development process, Computers in Industry 59 (2008), pp. 193-209.

121

[43] W. Penczek and A. Pólrola , "Advances in Verification of Time Petri Nets and

Timed Automata .", Springer-Verlag, 2006.

[44] H. J. Hsu and F. J. Wang, "Using Artifact Flow Diagrams to Model Artifact

Usage Anomalies.", 3rd IEEE International Workshop on Quality Oriented Reuse

of Software, 2009.

[45] R. Liu, and A. Kumar, “An Analysis and Taxonomy of Unstructured Workflows,”

BPM2005, pp. 268-284, Nancy, France, September 2005.

[46] PetiaWohed, Wil M.P. van der Aalst, Marlon Dumas, Arthur H.M. ter Hofstede,

and Nick Russell. Pattern-based Analysis of BPMN. Technical report, 2005.

http://www.bpm.fit.qut.edu.au/projects/babel/docs/BPM-05-26.pdf.

[47] B. Kiepuszewski , A. H. M. ter Hofstede , C. Bussler, “On Structured Workflow

Modelling.”, Proceedings of the 12th International Conference on Advanced

Information Systems Engineering, pp.431-445, June 05-09, 2000.

[48] Ivo Raedts, Marija Petkovic, Yaroslav S. Usenko, Jan Martijn E. M. van der

Werf, Jan Friso Groote, Lou J. Somers: “Transformation of BPMN Models for

Behaviour Analysis.”, MSVVEIS 2007: 126-137.

[49] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, “Introduction to

Algorithms,” Second Edition, The MIT Press, 2001.

