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Abstract in Chinese i

 
一個從長度為 n的所有 q元向量所成之集合，到 {1, 2, … , N} 所有可能排

列所成之集合(N ≥ n)的映射，若任二個向量所對應之排列彼此之間的漢明距離

(Hamming distance) 大於或等於原本向量之間的漢明距離，稱之為『保距映射』

(distance-preserving mapping)。有一種特殊的『保距映射』，會讓排列之間的漢

明距離絕對大於原本向量之間的漢明距離，除非在不可能的情況之下。這種映

射稱之為『增距映射』(distance-increasing mapping)。在本論文中，我們提出數

個建構方法，以建構從二元向量(binary vectors)至排列的『增距映射』。跟早期

發表的方法比起來，這些方法具有某些優點。另外，我們也會提出幾個建構方

法，以建構從三元向量(ternary vectors)至排列的『保距映射』與『增距映射』。

這是在文獻中，第一次有人提出源自三元向量的『保距映射』與『增距映射』

之建構方法。這些建構方法的一項貢獻是它們可以用來提升一個下限量 — 『排

列陣列』(permutation arrays)，又稱為『排列碼』(permutation codes) 的大小的

最大下限。在設計一個以電源線為媒介的通訊系統時，『排列碼』是一種很有用

的碼。 
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Abstract 
 

A mapping from the set of all q-ary vectors of length n to the set of all 

permutations of {1, 2, … , N} where N ≥ n is called a distance-preserving mapping 

(DPM) if every two vectors are mapped to permutations with the same or even larger 

Hamming distance than that of the vectors. A distance-increasing mapping (DIM) is a 

special DPM such that the distances of mapped permutations are strictly increased 

except when that is obviously not possible. In this dissertation, we propose several 

constructions of DIMs from binary vectors. These constructions possess some 

advantages over previous proposed constructions. In addition, we also propose 

constructions of DPMs and DIMs from ternary vectors. This is the first time that 

constructions of DPMs and DIMs from ternary vectors are proposed in the literature. 

A contribution of these constructions is their application to the improvement of the 

lower bounds on the maximal size of permutation arrays (or permutation codes), 

which are useful in the design of a power line communication system. 
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Chapter 1  

Introduction 
 

 

1.1 Research Motivations 

A distance-preserving mapping (DPM) is a function from the set of all q-ary 

vectors of length n to the set of all permutations of {1, 2, … , N} where N ≥ n such 

that every two vectors are mapped to permutations with the same or even larger 

Hamming distance than that of the vectors. The Hamming distance between two 

vectors, or two permutations, is the number of positions where they differ. The 

inspiration of researches on DPM is mainly from its application to the construction of 

permutation arrays (or permutation codes), a set of permutations of the same length 

in which the Hamming distance of every two distinct permutations is at least D 

where D ≥ 2. In 2000, Ferreira and Vinck used permutation codes to design a 

modulation/demodulation scheme which is able to make robust transmission over 

power lines [9]. The permutation codes they used were constructed via DPMs from 

binary vectors. They found a DPM from binary vectors of length 4 by computer 

search. From this mapping they constructed DPMs from binary vectors of length 

n = 5, 6, 7, and 8, using an ad hoc “prefix method.” In this paper it was not clear that 

if and how their method could be generalized to all n > 8. This raised a question: how 

to design a systematic method to construct DPMs from vectors to permutations for a 
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given length (if it is possible). Ever from this paper was published, many 

constructions of DPMs were proposed. Recently, the research interests in DPM have 

turned to a special type of DPM, called distance-increasing mapping (DIM). A 

mapping is called a DIM if every two distinct vectors are mapped to permutations 

such that the Hamming distance between them is strictly increased except when that 

is obviously not possible. In later chapters, we will describe the constructions of 

DPMs/DIMs proposed so far in the literature, including those that we proposed. 

 

1.2 Outline of the Dissertation 

The remaining part of this dissertation is organized as follows. In Chapter 2 an 

introduction to permutations, permutation arrays, and power line communications is 

given. The formal definitions and previous research results of DPMs and DIMs are 

also given in this chapter. In Chapter 3 we propose new simple constructions of 

distance-increasing mappings from binary vectors. These constructions possess some 

advantages over previously proposed constructions. In Chapter 4, we propose several 

constructions of DPMs and DIMs from ternary vectors. This is the first time that 

constructions of DPMs and DIMs from ternary vectors are proposed in the literature. 

Finally, conclusions and future works are given in Chapter 5. 
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Chapter 2 

Preliminaries 
 

 

2.1 Permutations 

A permutation of a set A is a one to one and onto function on A. For example, let 

A = {#, %, &}, the function φ given schematically as follows is a permutation of A. 

φ 
# →  % 
% →  & 
& →  # 

By renaming the elements of a set, any set with N elements can be mapped to 

the set FN = {1, 2, … , N}. Thus, a permutation of any set of length N can be 

redefined as a permutation of FN. A more standard notation of a permutation 

π : FN → FN  is represented by 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Nπππ
N

         
        2    1

21 L

L
π , 

where π1, π2, … , πN ∈ FN. This representation is called the standard form. Since π  is 

a function, we may denote π (i ) = πi. For simplicity, π  can also be represented by an 

n-tuple π  = (π1, π2, … , πN), which is called the vector form. 
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Example 2.1 The above set A can be mapped to F3 = {1, 2, 3}. With the new 

symbols, the above permutation φ  can be rewritten as 

φ’ =  or equivalently, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
132
321

φ’ = (2, 3, 1). 

Let SN denote the set of all N! permutations of FN. The function composition  

is a binary operation on S

o

N. We call this operation permutation multiplication, which 

is defined as follows. 

 

Definition 2.1 Let ρ and µ be two permutations of FN, the composition operation 

µρ o  is defined as  

)).(()( xx µρµρ =o  

 
Example 2.2 Suppose that 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1  5  4  2  3
5  4  3  2  1

ρ  and . ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

4  3  1  5  2
5  4  3  2  1

µ

Then 

.
5  4  3  1  2
5  4  3  2  1

4  3  1  5  2
5  4  3  2  1

1  5  4  2  3
5  4  3  2  1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= oo µρ  

 

For simplicity, sometimes we denote µρ o  by ρµ. It is clear that ρµ is also a 

permutation of FN. Note that permutation multiplication is associative but not 

commutative. It can be proven that SN is a group under permutation multiplication 

[20]. The identity of SN, (1, 2, … , N), is denoted by ι. For a permutation ρ of FN, we 

define ρ 0 =ι. 

For a permutation ρ, the inverse function, ρ–1, is the permutation such that 

ρρ–1 = ρ–1ρ =ι. ρ–1 can be obtained by setting ρ–1(i) = j for i = 1, 2, …, N where j is 

the integer such that ρ ( j) = i. 
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Example 2.3 Suppose that 

. Then . 

 

efinition 2.2 A set of permutations is called a commutative set if any two 

2.2 Permutation Arrays and Power Line 

A permutation array ) of length N and distance D, or an 

(N, D

H N j j

 

xample 2.4 The following set C is a (4, 4)-PA. 

), 

. 

 

Permutation arrays were somewhat studied in 1970s. Some representative 

pape

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1  5  4  2  3
5  4  3  2  1

ρ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

4  3  1  2  5
5  4  3  2  11ρ

D

permutations ρ and µ  in the set commute, that is, ρµ = µρ. 

 

Communications 

 (or permutation code

)-PA for short, is a subset of SN such that the Hamming distance between any 

two distinct permutations (in vector form) in the array is at least D. The Hamming 

distance dH (a, b) between two N-tuple a = (a1, a2, … , aN) and b = (b1, b2, … , bN) of 

elements of any kind is the number of positions where they differ. That is, 

d  (a, b) = |{ j ∈ F  : a  ≠ b  }|. 

E

C = { (1, 2, 3, 4

(4, 1, 2, 3), 

(3, 4, 1, 2), 

(2, 3, 4, 1) }

rs from that period are [12], [24], and [28]. Recently, an application of 

permutation arrays on data communication over power lines introduced by Vinck [2] 

has created renewed interest in permutation arrays [1], [3], [5], [6], [8], [9], [10], [32], 

[33], [36]. In addition, permutation arrays have also been applied in the design of 

block ciphers [7]. 
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Power line communications (PLC) are of recent interest because they are one of 

the possible solutions to the “last dirty 

. 

If each codeword in C has exactly ri occurrences of the symbol ai, then C is a 

e constant, an effective design of a 

PLC syste

 as 

 

mile” problem in communication systems. 

Although the primary function of power lines is to deliver electric power, the signal 

can be used as carrier to deliver messages. The frequency of the signal can be 

modulated, corresponding to a message transmitted, to produce a family of N “close” 

frequencies that are orthogonal. When the modulated signal reaches the receiver, 

these small variations in frequency can be decoded as symbols and then the message 

could be retrieved [26]. This modulation process must not interfere with the power 

transmission. For this reason, while minor variations in frequency (and 

commensurate minor variations in power) are acceptable, it is imperative that the 

power signal remains as constant as possible. One way to achieve this is to use a 

constant composition code in which each codeword represents a message, and each 

symbol in a codeword represents a frequency. More specifically, let C be a code of 

length L , L ≥ N, over alphabet A = {a1, a2, … , aN}, r1, r2, … , rN be integers such 

that  

∑
=

=
N

i
i Lr

1

constant composition code. Using C to encode each message and modulate the signal 

(each symbol ai corresponds to a frequency fi ), the power delivered in the 

transmission for any message is a constant. Furthermore, if L is close to N, then the 

power envelope remains very close to constant. 

In addition to keeping the power envelop

m must address the source of errors unique to power lines. There are three 

main types of noise which may cause errors in PLC as reported in [25] and [27]. 

 Permanent narrow-band noise caused by electrical equipments such

television sets and refrigerators. This type of noise is permanent and affects 

some frequencies over a long period of time;  

Impulse noise caused by all kinds of switching operations. Such a noise 
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affects the entire frequency band for a very short period of time (typically 

less than 100 µs); and 

White Gaussian noise ( background noise). 

e lines and satellite 

com

xample 2.5 Twelve messages are encoded as in Table 2.1. The codewords form a 

ay cause the demodulator 

to ou

In many traditional data transmission media (e.g., telephon

munications), white Gaussian noise is the most dominating type of noise 

affecting the communications, but in PLC the other two types of noise are more 

important. Narrow-band noise can be addressed by using many frequencies but not 

using any frequency too often. On the other hand, using many time slots is a good 

way to deal with impulse noise. In the tradeoff between these objectives and the 

requirement for constant power envelope, we choose r1 = r2 = … = rN = 1 and L = N, 

resulting in each type of noise not affecting a single symbol in a codeword more than 

one time, and in keeping the length as short as possible. Now considering the 

structure of a codeword, we found that each codeword is a permutation. In order to 

detect or correct errors caused by these noises, the codewords must be chosen 

elaborately such that the Hamming distance between any two distinct codewords in 

C is at least D and D is as large as possible. Such a code C is then an (N, D)-PA. This 

is the reason why permutation arrays are so important in power line communications. 

 

E

(4, 3)-PA. As an example, message 2 is encoded as (1, 3, 4, 2) and is transmitted in 

time as a sequence of frequencies f1, f3, f4, and f2. While the message is transmitting, 

if a narrow-band noise is present at the sub-channel of frequency f4, causing a 

sequence of frequencies (f1, f4), (f3, f4), f4, and (f2, f4) arrived in time at the receive 

end. With these frequencies received, the receive end could obtain a demodulated 

output ((1, 4), (3, 4), 4, (2, 4)). By maximum likelihood decoding, i.e., comparing 

this output with all codewords and choosing the one with the maximum number of 

agreements in all positions, the demodulator outputs the codeword (1, 3, 4, 2) and 

then the receiver obtains the correct message. 

Impulse noises can be viewed as “erasures” which m

tput the presence of all frequencies. Typically, the duration of impulse noise is 
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Table 2.1  Listing of 12 messages and the corresponding codewords. 

Massage Codeword 
1 (1, 2, 3, 4) 
2 (1, 3, 4, 2) 
3 (2, 1, 4, 3) 
4 (2, 4, 3, 1) 
5 (3, 1, 2, 4) 
6 (3, 4, 1, 2) 
7 (4, 2, 1, 3) 
8 (4, 3, 2, 1) 
9 (1, 4, 2, 3) 
10 (2, 3, 1, 4) 
11 (3, 2, 4, 1) 
12 (4, 1, 3, 2) 

 

 

less than 100 µs, and the inter-arrival times are independent and are 0.1 to 1 second 

introducing unwanted (called insertion) 

trans

apart. In a PLC using a signaling rate of 10 kHz, we have symbol duration of 100 µs. 

Hence, an impulse noise may affect at most two adjacent symbols in such a 

communication system. Suppose an impulse noise occurs between the two first 

symbols while message 2 is transmitting, we may have a demodulated output 

((1, 2, 3, 4), (1, 2, 3, 4), 4, 2). Comparing this output with all codewords, we find that 

(1, 3, 4, 2) agrees with the output in all of the four positions and all the other 

codewords agree with the output in two or three positions. Hence, the correct 

message is obtained. 

White Gaussian noise causes errors by 

mitted frequencies or causing absence (called deletion) of symbols in the 

demodulated output. Suppose f1 is inserted and f3 is deleted in the transmission of 

message 2 due to the white Gaussian noise, we may have a demodulated output 

(1, 1, (1, 4), (1, 2)). Comparing this output with all codewords, we find that (1, 3, 4, 2) 

is the closest and, as a result, message 2 is obtained. 
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In conclusion, a PLC with an (N, D)-PA is able to correct at most D – 1 errors 

caus

Proposition 2.1 [36] 

, 

 – 1, D), 

 P(N – 1, D), 

roposition 2.2 [6] If q is a prime-power, then P(q, q – 1) = q(q – 1). 

roposition 2.3 [28] If q is a prime-power, then P(q + 1, q – 1) = (q + 1)q(q – 1). 

Construction of permutation arrays is another typical research topic due to the 

impo

ed by narrow-band, impulse, or white Gaussian noises. While a large D is good 

for error correction, increasing the minimum distance may reduce the size of a 

permutation array, resulting in inefficiency of the transmission. Let P(N, D) denote 

the maximal size of an (N, D)-PA. The exact value of P(N, D) is an open problem 

except for some specific cases. In most cases we know just a lower bound and an 

upper bound. Trying to find a tight bound on P(N, D) is a typical research topic in 

the literature. The following are some well-known elementary properties of P(N, D). 

 

i) P(N, 2) = N!, 

ii) P(N, 3) = N!/2

iii) P(N, N) = N, 

iv) P(N, D) ≥ P(N

v) P(N, D) ≥ P(N, D + 1), 

vi) P(N, D) ≥ N, 

vii) P(N, D) ≤ N ×

viii) P(N, D) ≤ N!/(D – 1)!. 

 

P

 

P

 

rtance of permutation arrays in PLC. Given a length N and a minimum distance 

D, we want to construct a permutation array of size as large as possible. The simplest 

way to construct permutation arrays is by computer search as in [24]. However, this 

method is only practical for small N due to the search space. Another approach of 

constructions is to construct permutation arrays by combining existing PAs and other 

codes, e.g. binary codes as in [5], [8], [33], and [36]. Nevertheless, these methods are 
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restricted to some specific values of N and D. The other constructions take an 

indirect approach, which begins with constructing a mapping from vectors to 

permutations, called distance-preserving mapping, and then transforms a code with a 

minimum distance into a permutation array by using such a mapping. We will 

describe distance-preserving mappings in the following sections, including the 

definitions and the research results in the literature. After that, we will propose 

distance-preserving mappings from binary vectors and from ternary vectors in the 

next two chapters, respectively. 

 

2.3 Distance-Preserving Mappings (DPMs) and 

Being an important way to construct permutation arrays, distance-preserving 

map

Let Zq = {0, 1, … , q – 1} and denote the set of all q-ary vectors of length n. 

That

= {(z1, z2, … , zn) : z1, z2, … , zn ∈ Zq}. 

 

efinition 2.3 A mapping f : → SN is called a distance-preserving mapping if 

sfy

dH ( f (x), f (y)) ≥ dH (x, y). 

 

 mapping that increases more distances than that of input vectors may be more 

inter

Distance-Increasing Mappings (DIMs) 

pings come into notice in recent years. A mapping from the set of all q-ary 

vectors of length n to the set SN is called a distance-preserving mapping (DPM) if 

every two vectors are mapped to permutations with the same or even larger 

Hamming distance than that of the vectors.  

n
qZ  

 is,  
n
qZ

D n
qZ  

any two vectors x, y  in nZ  sati  q

A

esting for applications. A distance-increasing mapping (DIM) is a special DPM 

such that the distances of mapped permutations are strictly increased except when 
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that is obviously not possible. 

 

Definition 2.4 A mapping f : → SN  is called a distance-increasing mapping if 

dH ( f (x), f (y)) ≥ min{ dH (x, y) + 1, N }. 

 

et F (q, n, N) denote the set of all mappings from  to SN, P (q, n, N) denote 

the s N

N P

I (q

xample 2.6 The following table lists the elements x ∈ and the corresponding 

., 

 

Table 2.2  Mapping table of f ∈ I (2, 4, 4). 

x f (x) x f (x) 

n
qZ  

any two distinct vectors x, y  in  satisfy n
qZ

L  n
qZ

et of all DPMs from nZ  to S , and I (q, n, N) denote the set of all DIMs from 

nZ  to S . A mapping in (q, n, N) is called a q-ary n_N-DPM. A mapping in 

, n, N) is called a q-ary n_N-DIM. If n = N, then an n_N-DPM/n_N-DIM can be 

denote by n-DPM/n-DIM for simplicity. Besides, a DPM/DIM from binary vectors 

(q = 2) to permutations is called a binary DPM/DIM, and a DPM/DIM from ternary 

vectors (q = 3) to permutations is called a ternary DPM/DIM. 

 

q

q

E 4
2Z  

values of f (x) ∈ S4. It can be checked that f  ∈ I (2, 4, 4), i.e f  is a binary 4-DIM. 

(0,0,0,0) (1,2,3,4) (1,0,0,0) (2,1,3,4) 
(0,0,0,1)
(0,0,1,0)
(0,0,1,1)
(0,1,0,0)
(0,1,0,1)
(0,1,1,0)
(0,1,1,1)

(4,2,3,1)
(1,3,2,4)
(4,3,2,1)
(1,2,4,3)
(3,2,4,1)
(1,4,2,3)
(3,4,2,1)

(1,0,0,1)
(1,0,1,0)
(1,0,1,1)
(1,1,0,0)
(1,1,0,1)
(1,1,1,0)
(1,1,1,1)

(4,1,3,2) 
(2,3,1,4) 
(4,3,1,2) 
(2,1,4,3) 
(3,1,4,2) 
(2,4,1,3) 
(3,4,1,2) 
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For a mapping f , N n trix where Di,j is the 

ber of unordered pairs {x, y} in  such that dH (x, y) = i and dH (f (x), f (y)) = j. 

We call Df the distance expansion distribution or distance expansion matrix of f. 

nce expansion matrix of the 

apping f  in Example 2.6. The element d12 = 32 means that all of the 

 ∈F (q, n ), let Df = [ Di,j ] be a n by N ma

num n
qZ

Distance expansion matrix shows the distance increasing property of a mapping and 

is an important criterion to compare different DPMs/DIMs of the same length (the 

same vector length and the same permutation length). 

 

Example 2.7 The following table shows the dista

m

( ) 322 4
1

4
2
1

 
=⋅⋅  unordered pairs {x, y} in 4

2Z  with distance dH (x, y) = 1 were 

mapped to f x) and f (y) with distance d ( f (x), f (y)) = 2. The 0’s on the lower 

 and the diagonal of the matrix justify that f  is distance increasing. 

Since we focus on DPMs and DIMs only, in the rest of the dissertation we will omit 

the 0’s in the lower triangular part of a distance expansion matrix. 

 

( H

triangular part

Table 2.3  Distance expansion matrix of the mapping in Table 2.2. 

 

 1 2 3 4 
1 0 32 0 0 
2 0 0 32 16
3 0 0 0 32
4 0 0 0 8 

 

atrix is an important criterion to compare DPMs, 

the comparison can be tedious since we have to compare n × N matrices. For a 

mapp

 

While distance expansion m

ing f ∈ P (q, n, N), define 
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{ }∑
∈

−=∆
yx

HH yxdyfxfdf
,

 ),())(),(( )(  
n
qZ

∑ ∑
= +=

−=
n

i

N

ij
jiDij

1 1
,)(2 01 )( ∆−∆= f  

where 

()1(),( −

=∈

−=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==∆ ∑∑ n

n

i

in

Zyx
H qqnq

i
n

iqyxd
n
q

, 

and 

. 

∆1( f ) is called the total distance of f and ∆( f ) is calle the total distance 

increase of f. For example, the total distance and the total distance increase of the 

DIM in Table 2.2 are 768 and 256, respectively. Total distance and total distance 

incre

∆1( f ) ≤ N (q2n − (2βα + β + α2 N )). 

)

The maximum possible valu  by ∆max. 

DPMs and DIMs can be used to construct permutation arrays. Given an (n, d) 

code lled a codeword, and 

the H

12

1,
0 )1

∑∑∑
= =∈

⋅==∆
n

i

N

ij
ji

Zyx
H Djyfxfdf

n
q 1

,
,

1 2))(),(()(

d 

ase are also important criteria for the comparisons of different DPMs/DIMs of 

the same length. Swart, de Beer, and Ferreira gave the following upper bound on 

∆1( f ) [29], [30]. 

 

Proposition 2.4 Let α = ⎣qn / N⎦ and β = qn mod N. Then 

Furthermore, if N = qr, where r ≤ n, then 

∆1( f  ≤ q2n (qr− 1). 

 

e of ∆1( f ) is denoted

 C over qZ  (C is a subset of n
qZ , each member of C is ca

amming distance between any two distinct codewords in C is at least d), if a 
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DPM f from n  to SqZ N can be found, then f (C) is an (N, d)-PA. From this mapping 

we immediately get the bound that for 2 ≤ d ≤ n, 

P(N, d) ≥ A (n, d) q

where Aq(n, d) denotes the maximal size of such an (n, d) code. Furthermore, if a 

DIM g from  to SN can be s an (N, d + 1)-PA. From this 

q

It means that the plentiful research results on coding theory can be applied to 

permutation arrays, including c d lower bounds on the size of 

2.4 Previous Works 

DPMs were first d  the paper [11] where Ferreira et al. utilized DPMs 

sf al code into a runlength constrained or balanced 

trelli

Ms for all n ≥ 4 [17]. The construction extends a binary DPM 

of le

of length n – 1. In addition to the recursive construction, in that paper they also 

n
qZ found, then g(C) i

mapping we immediately get the bound that for 2 ≤ d ≤ n, 

P(N, d) ≥ A (n, d – 1) 

onstruction methods an

an (n, d) code. 

 

iscussed in

to tran orm a linear convolution

s code with the same or larger free distance. In 2000, Ferreira and Vinck 

constructed binary n-DPMs for 5 ≤ n ≤ 8 and used them to construct permutation 

trellis codes [9]. They found a mapping in P (2, 4, 4) by computer search and from 

this mapping they recursively constructed binary n-DPMs, using an ad hoc “prefix 

method,” for n = 5, 6, 7, and 8. However, it was not clear in their paper if and how 

this method could be generalized to n > 8. This paper brought distance-preserving 

mappings to the attention of researchers and many papers on this topic have been 

available ever since. 

Three years later, Chang et al. proposed a recursive systematic method to 

construct binary n-DP

ngth n – 1 to a binary DPM of length n with the assistance of a position function 
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provided a non-recursive construction of DPMs from binary vectors of even length. 

Form these constructions they derived the following result which improved the lower 

bound on P(N, D) known before. 

 

Proposition 2.5 [17] For N ≥ 4 and 2 ≤ D ≤ N, 

P(N, D) ≥ A2(N, D – 1).  (2.1) 

 

e construction of DPMs from binary 

vectors of odd length [23]. I d the concept of dis

xpansion distribution and applied it as a criterion to compare the distance increasing 

prop

appings r4 ∈I (2, 4, 4), 

r5 ∈I

Later in the same year, Lee proposed a non-recursive construction of n-DPMs 

of swap operations. In fact, all constructions of DPMs/DIMs 

desc

Later in 2004, Lee proposed a non-recursiv

n that paper he introduce tance 

e

erty of different DPMs of the same length.  

In 2005, Chang introduced the concept of distance-increasing mapping and 

proposed recursive and non-recursive constructions of binary n-DIMs for any length 

n ≥ 4 [14]. The non-recursive construction is based on three m

(2, 5, 5), and r6 ∈I (2, 6, 6) where r5 is found by computer search and r4 as well 

as r6 are obtained by the construction described in [17, Construction 3]. Hence, a 

small lookup table containing r5 is needed for further construction of rn for n ≥ 7. 

from binary vectors for all n ≥ 4 [21]. He viewed a permutation as lying on circles 

and constructed DIMs of even length as well as DPMs of odd length. 

With the similar way (viewing a permutation as lying on circles), Lee improved 

his method and finally proposed a new construction of DIMs for both even and odd 

length in 2006 [22]. 

Also in 2006, Chang proposed another non-recursive construction of binary 

n-DIMs that does not need any table lookup operations [15]. The construction was 

based on a number 

ribed above except computer search were swap based. The author claimed that 

the new construction needed fewer swap operations than other previously proposed 
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constructions. 

In the same year, Chang also proposed two new recursive constructions of 

binary n-DIMs which strictly increased the Hamming distance by at least δ (δ ≥ 2) 

except when it was obviously not possible [13]. That is, let f  be such a mapping, for 

any t

n_ n, δ)-DIM for short. 

The first construction combined two DIMs, a binary (m, δ  – 1)-DIM and a binary 

(n, δ  – 1)-DIM, into a binary ( )-DIM. In that paper a binary (16, 2)-DIM was 

n-DPMs for 

n ≥ 4 from September 2005 to August 2006 [29], [30], [31]. The constructed DPMs 

were superior in total distance. 

corre

 method can also be used to construct DIMs. 

In August 2006, Huang e ursive construction of binary 

(n_(n+2), 3)-DIMs for n ≥ 6 with some predefined lookup tables [37]. With this 

wo distinct binary vectors x, y ∈ nZ2 ,  

dH ( f (x), f (y)) ≥ min{ dH (x, y) + δ, n }. 

We called such a mapping a binary ( n, δ)-DIM, or a binary (

m × n, δ

constructed from two binary (4, 1)-DIMs as an example. The second construction 

combined a binary (m, δ)-DIM and a binary (n, δ)-DIM into a binary (m + n, δ)-DIM. 

Apart from the constructions, the author also proved that for any δ ≥ 2 there existed a 

smallest positive integer nδ such that a binary (n, δ)-DIM could be constructed for 

any n ≥ nδ . An explicit upper bound on nδ was given in that paper. As a consequence, 

for all N ≥ nδ  and δ  + 1 ≤ D ≤ N, we had 

P(N, D) ≥ A2(N, D – δ ). (2.2) 

Swart et al. proposed a class of multilevel constructions for binary 

They showed that if the sequences of swaps 

sponding to the input vectors were suitably chosen, then the resulting DPM 

might possess higher total distance than other constructions. In particular, if n = 2r, 

then the maximum possible value of the total distance of a DPM was reached for 

these constructions. That is,  

∆1( f ) = 22n (2r – 1). 

Note that the construction

t al. proposed a rec
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cons (2.1) but 

worse than (2.2). 

 N ≥ 8 and 4 ≤ D ≤ N, 

P(N, D) ≥ A2(N – 2, D – 3) > A2(N, D – 1). 

recursive construction of a binary 

(m + n , δ)-DIM from m δ)-DIM and a bina n, δ)-DIM [16]. In this 

paper he also proposed a new way to construct PA  the proposed DIMs and, 

with this construction, he im

P(MN, D) ≥ A2(MN, D – δ)P(M, ⎡D/(N – 2δ)⎤ ). 

truction, they obtained the following bound which was better than 

 

 

Proposition 2.6 [37] For

 

In July 2007, Chang proposed another 

 a binary ( , ry (

s from

proved the lower bound on the size of PAs as follows. 

 

Proposition 2.7 [16] For N > 2δ  > 0, M > 0, and δ  + 1 ≤ D ≤ MN, if there exists an 

(N, δ)-DIM, then 
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Chapter 3  

DIMs from Binary Vectors 
 

 

In most papers, DPMs and DIMs are implicitly described by algorithms [14], 

[15], [17], [21], [22], [23], [37]. Although the algorithmic presentations are more 

convenient for a computer programmer to implement, they are theoretically informal 

and most readers will not be comfortable with them. In this chapter we explicitly 

define mappings from vectors to permutations based on simple composition of 

permutations (permutation multiplication). With this definition, we first propose non- 

recursive constructions of binary n-DIMs for even and odd length, respectively. In 

these constructions, binary vectors and the mapped permutations are of the same 

length, i.e. n = N. Thus, in this chapter we use the notation n only. These 

constructions are still easy to implement. Comparisons of our DIMs with other 

previously proposed DPMs and DIMs are given as well. 

 

Definition 3.1 Let B = 〈ρ1, ρ2, … , ρn〉 be an ordered set of permutations in Sn. We 

define a mapping from nZ 2  to Sn as 

nx
n

xx
nxxxf ρρρ oLooK 21

2121 ),  ,,( = ∏
∈

=
xJj

jρ . (3.1) 

where Jx = { j | xj = 1, j = 1, …, n }. Note that by the notation ∏  the multiplication is 
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performed in the order of the integers in Jx. B is called the basic construction set of f. 

 

Example 3.1 Suppose f is constructed by (3.1) with the basic construction set 

B = 〈 ρ1 = (2, 1, 3, 4), ρ2 = (1, 2, 4, 3), 

ρ3 = (1, 3, 2, 4), ρ4 = (4, 2, 3, 1) 〉. 

Then,  

f (0, 0, 0, 0) = ρ1
0

 ○ ρ2
0

 ○ ρ3
0

 ○ ρ4
0 =ι○ι○ι○ι = ι = (1, 2, 3, 4), and 

f (1, 0, 1, 1) = ρ1ρ3ρ4 = ∏
∈ }4,3,1{j

jρ = (2, 1, 3, 4) (1, 3, 2, 4) (4, 2, 3, 1) 

= (4, 3, 1, 2). 

 

3.1 DIMs of Even Length 

Based on a basic construction set, (3.1) gives us a mapping from nZ 2  to Sn. 

However, the mapping is not necessarily distance preserving or distance increasing. 

Remember that our goal is to construct distance-increasing mappings from nZ 2  to Sn. 

The following lemmas indicate how to choose the members of a basic construction 

set such that the constructed mapping is distance increasing. 

 

Lemma 3.1 Let f  be a mapping constructed by (3.1) with the basic construction set 

Bf = 〈ρ1, ρ2, … , ρn〉. Then f ∈ I (2, n, n) if for any two distinct subset J1 and J2  of Fn, 

),(
21

∏∏ ∈∈ Jj jJj jHd ρρ > | J1 ⊕ J2 | when | J1 ⊕ J2 | < n, and (3.2) 

),(
21

∏∏ ∈∈ Jj jJj jHd ρρ = | J1 ⊕ J2 | when | J1 ⊕ J2 | = n, (3.3) 

where J1 ⊕ J2 is the symmetric difference of J1 and J2, that is, 

)()( 212121 JJJJJJ IU −=⊕ . 

Proof. For any two distinct vectors a, b ∈ nZ 2 . Let a = (a1, a2, … , an), b = (b1, b2, … , 

bn), J1 = { j | ai = 1, 1 ≤ j ≤ n }, and J2 ={ j | bi = 1, 1 ≤ j ≤ n }. Then dH (a, b) = 
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| J1 ⊕ J2 | and 

∏ ∈
=

1
)(

Jj jf ρa , ∏ ∈
=

2
)(

Jj jf ρb . 

It is clear that f ∈ I (2, n, n) if (3.2) and (3.3) are true.  

Lemma 3.1 states the criteria that the basic construction set of a binary (n, 0) 

DIM should meet. However, we must consider ( )n2
2  combinations of any two distinct 

subsets of Bf. Under some conditions, the following lemma considers only 2n subsets 

of Bf. 

 

Lemma 3.2 Let Bf = 〈ρ1, ρ2, … , ρn〉 be the basic construction set of f and assume 

that ⎣ ⎦},  ,{ 21 nρρ K and ⎣ ⎦ },  ,{ 1  2 nn ρρ K+ are commutative sets. Besides, all 

permutations in Bf are self-inverse, i.e., 2
iρ  = ι for all ρi ∈ Bf. Then f ∈ I (2, n, n) if 

every subset J ⊆ Fn satisfies 

),( ιρ∏ ∈Jj jHd > | J | when | J | < n, and (3.4) 

),( ιρ∏ ∈Jj jHd = | J | when | J | = n. (3.5) 

where | J | denotes the number of elements of J. 

Proof. For any two subsets J1, J2 ⊆ Fn, let J = J1 ⊕ J2 ⊆ Fn. Using the properties of 

commutativity and self-inversion, we have 

),(),(
2121

ι ∏∏∏ ⊕∈∈∈
=

JJj jHJj jJj jH dd ρρρ . 

For example, let n = 4, J1 = {ρ2, ρ3, ρ4}, and J2 = {ρ1, ρ3}. Then  

),(
21

∏∏ ∈∈ Jj jJj jHd ρρ = dH (ρ2ρ3ρ4, ρ1ρ3) 

= dH (ρ1ρ2ρ3ρ4ρ3, ρ1ρ1ρ3ρ3)  

= dH (ρ1ρ2ρ3ρ3ρ4, ι) = dH (ρ1ρ2ρ4, ι) 

),(
21

ι ∏ ⊕∈
=

JJj jHd ρ . 
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As a consequence, according to Lemma 3.1, f ∈ I (2, n, n) if the statement is true.  

According to Lemma 3.2, we can construct a binary n-DIM for even n as 

follows. 

 

Construction 3.1 Let n = 2m and m ≥ 2. Construct a mapping fn with the following 

basic construction set 

nfB = 〈 ρ1 = (2, 1, 3, 4, … , n), 

ρ2  = (1, 2, 4, 3, 5, 6, … , n), 

M  

ρm = (1, 2, … , n – 2, n, n – 1), 

ρm+1 = (1, 3, 2, 4, … , n), 

ρm+2 = (1, 2, 3, 5, 4, 6, … , n), 

M  

ρn  = (n, 2, … , n – 1, 1) 〉. 

 

Theorem 3.1 The mapping fn constructed by Construction 3.1 is a DIM for even n. 

Proof. It is clear that both 〈ρ1, ρ2, … , ρm〉 and 〈ρm+1, ρm+2, … , ρn〉 are commutative 

and all permutations in 
nfB  are self-inverse. Thus, it suffices to prove that (3.4) and 

(3.5) are true for any subset J ⊆ Fn. 

Notice that dH (ρi, ι) = 2 for all ρi ∈ nfB . Furthermore, for any two distinct 

permutations ρi, ρj ∈ nfB , dH (ρiρj, ι) = 4 if ρi and ρj commute, and dH (ρiρj, ι) = 3 

if ρi and ρj do not commute. Thus, we can define a function I :
nfB ×

nfB → Z as 

⎩
⎨
⎧

=
otherwise,     1

commute,  and  if     0
),( ji

jiI
ρρ

ρρ  

and write dH (ρiρj, ι) = 4 – I (ρi, ρj). This formula can be extended to 

∑∏ ≠∈∈
−=

jiJji jiJj jH IJd
,,

),(||2),( ρρρ ι  (3.6) 
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Now let  

B1 = 〈 ρj | j ∈ J and 1 ≤ j ≤ m 〉 ⊆
nfB and 

B2 = 〈 ρj | j ∈ J and m + 1 ≤ j ≤ n 〉 ⊆
nfB .  

Formula (3.6) can be rewritten as 

),( ι ∏ ∈Jj jHd ρ = 2| B1 | + 2| B2 | ∑ ∑∈ ∈
−

1 2
),(

B B ji
i j

I
ρ ρ

ρρ  (3.7) 

For a permutation ρi ∈ B1, there are at most two permutations in B2 not 

commuting with ρi. Similarly, each permutation in B2 does not commute with at most 

two permutations in B1. Consider the following possible cases. 

Case 1: | B1 | ≠ | B2 |. We have 

∑ ∑∈ ∈1 2
),(

B B ji
i j

I
ρ ρ

ρρ ≤ 2 × min {| B1 |, | B2 |}. 

Thus 

),( ι ∏ ∈Jj jHd ρ ≥ 2 × max {| B1 |, | B2 |} > | B1 | + | B2 | = | J |. 

Case 2: | B1 | = | B2 | and | J | < n. At least one permutation in B2 does not commute 

with at most one permutation in B1, or else | J | = n. Thus, 

),( ι ∏ ∈Jj jHd ρ > 2| B1 | = | J |. 

Case 3: | B1 | = | B2 | and | J | = n. Each permutation in B1 (B2) does not commute with 

exactly two permutations in B2 (B1). Thus, 

),( ι ∏ ∈Jj jHd ρ = 2| B1 | = | J |. 

For any subset J ⊆ Fn, Case 1 and Case 2 show that (3.4) is true and Case 3 

shows that (3.5) is true. Thus, fn ∈ I (2, n, n).  

 

 

Example 3.2 (n = 6) f6 : 6
2Z → S6 is constructed with the following basic construction 
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set 

6fB = 〈 ρ1 = (2, 1, 3, 4, 5, 6),  

ρ2 = (1, 2, 4, 3, 5, 6), 

ρ3 = (1, 2, 3, 4, 6, 5), 

ρ4 = (1, 3, 2, 4, 5, 6), 

ρ5 = (1, 2, 3, 5, 4, 6), 

ρ6 = (6, 2, 3, 4, 5, 1) 〉. 

The mapping table of f6 is listed in Appendix A and the distance expansion matrix of 

f6 is listed in Table 3.7. From Table 3.7 it is easy to see that f6 is a DIM. 

 

We have to mention that the DIM fn ∈ I (2, n, n) for even n proposed here is 

identical to zn proposed in [22], and is similar to the mapping h2m ∈ I (2, 2m, 2m) for 

m = 2, or m > 2 and m is odd, as proposed in [17]. Although h2m is described by an 

algorithm there, it can be described as the mapping corresponding to the basic 

construction set 
mhB

2
= 〈 µ1 , µ2, … , µ2m〉 where 

µi = (1, 2, … , 2i – 2, 2i, 2i – 1, 2i + 2, … , 2m), and 

µm+i = (1, 2, … , i – 1, m + i, i + 1, … , m + i – 1, i, m + i + 1, … , 2m) 

for i = 1, 2, … , m. Note that ρi = µi for 1 ≤ i ≤ m, but ρi ≠ µi for m + 1 ≤ i ≤ 2m. 

 

3.2 DIMs of Odd Length 

We cannot construct a binary n-DIM for odd n in the same way as 

Construction 1 because it is infeasible to find two commutative sets which form a 

basic construction set when n is odd. In the following, we develop a different 

construction method for odd n. 

 

Lemma 3.3 Let n = 2m + 1, m ≥ 2, fn be a mapping constructed by (3.1) with the 
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following basic construction set 

nfB = 〈 ρ1  = (2, 1, 3, 4, … , n), 

ρ2 = (1, 2, 4, 3, 5, 6, … , n), 

M  

ρm  = (1, 2, … , n – 3, n – 1, n – 2, n), 

ρm+1, 

ρm+2 = (1, 3, 2, 4, … , n), 

ρm+3 = (1, 2, 3, 5, 4, 6, … , n), 

M  

ρn = (1, 2, … , n – 2, n, n – 1) 〉, 

and suppose 

ρm+1 = (π1, π2, … , πn). 

Let U = {{π2, π3}, {π4, π5}, … , {πn – 1, πn}}, V = {{1, 2}, {3, 4}, … , {n – 2, n – 1}}. 

For 1≤ k ≤ 2
1−n , let u1, … , uk be any k distinct elements of U, and v1, … , vk be any k 

distinct elements of V. If UU
k
i i

k
i i vu

11 ==
≠ , then for any subset J ⊆ Fn \{m+1},  

|| ),(
}1{ 1 Jd

mJj mjH >∏ +∈ +U
ρρ . (3.8) 

Proof. Let J1 = { j | j ∈ J and 1 ≤ j ≤ m}, J2 = { j | j ∈ J and m + 2 ≤ j ≤ n}, 

B1 = 〈 ρj | j ∈ J1 〉, and B2 = 〈ρj | j ∈ J2 〉, B1, B2 ⊆ nfB . B1 is commutative, and so is 

B2. Let | B2 | = k, 0 ≤ k ≤ 2
1−n . Consider the permutation ∏ ∈+=

2
1 Jj jm ρρµ . We 

know that dH (µ, ρm+1) = 2k. Let })(|{ ii iP πµπ ≠= . For a permutation ρc ∈ B1, 

1 ≤ c ≤ m, we have 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+

+=+

22

12

2

),( 1

k

k

k

d mcH ρµρ  

. 2 and 12 if ,

both,not but  2or  12either  if ,

,decreases)never  distance (the 2 and 12 if ,

PcPc

PcPc

PcPc

∉∉−

∈∈−

∈∈−

 

The following shows that (3.8) is true in all possible cases. 
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Case 1: | B1 | ≠ | B2 |. 

),( 1}1{ ++∈∏ mmJj jHd ρρ
U

≥ 2 × max{| B1 |, | B2 |} 

> | B1 | + | B2 | = | J |. 

Case 2: | B1 | = | B2 |. Since the union of any k distinct element of U is not equal to the 

union of any k distinct element of V. We have 

),( 1}1{ ++∈∏ mmJj jHd ρρ
U

> 2 × | B1 | = | J |.  

 

Lemma 3.4 Let n = 2m + 1, m ≥ 2, f be a mapping constructed by (3.1) with the 

basic construction set Bf in Lemma 3.3. Then f ∈ I (2, n, n) if the following 

statements are true. 

i) .),( 1}1{\
nd mmZj jH

n
=++∈∏ ρρ  

ii) For each i ∈ Fn \{m+1}, .),(
}1,{\ 1 nd

miZj mjH
n

=∏ +∈ +ρρ  

iii) Let U = {{π2, π3}, {π4, π5}, … , {πn – 1, πn}}, V = {{1, 2}, {3, 4}, … , {n – 2, 

n – 1}}. For 1≤ k ≤ 2
1−n , let u1, … , uk be any k distinct elements of U, and 

v1, … , vk be any k distinct elements of V, UU
k
i i

k
i i vu

11 ==
≠ . 

Proof. First, i) implies that (3.3) in Lemma 3.1 is true. Second, for any two distinct 

subsets J1, J2 ⊆ Fn, there are three possible cases:  

1. Neither J1 nor J2 contains m + 1.  

2. Either J1 or J2 contains m + 1 but not both.  

3. Both J1 and J2 contain m + 1.  

No matter in which case, we show that (3.2) in Lemma 3.1 is always true. 

Case 1: m + 1 ∉ J1 and m + 1 ∉ J2. This case is basically the same situation as in 

Theorem 3.1 above. Thus 

),(),(
2121

ιρρρ ∏∏∏ ⊕∈∈∈
=

JJj jHJj jJj jH dd > | J1 ⊕ J2 |. 
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Case 2: Without loss of generality, assume m + 1 ∈ J1 and m + 1 ∉ J2. We prove (3.2) 

by induction on the size of J1 ⊕ J2. The base step is stated in ii) for 

| J1 ⊕ J2 | = n – 1. Now assume (3.2) is true for | J1 ⊕ J2 | = k + 1 but is not 

true for | J1 ⊕ J2 | = k. That is,  

),(
21

ι ∏ ⊕∈ JJj jHd ρ ≤ k 

for some | J1 ⊕ J2 | = k. However, the only possibility for this assumption is  

),(
21

ι ∏ ⊕∈ JJj jHd ρ  = k. 

Because according to the hypothesis,  

),(
}{21

ι ∏ ⊕∈ iJJj jHd
U

ρ > k + 1 

for all i ∈ Fn – (J1 ⊕ J2), and ρi is a transposition that changes exactly two 

positions (note that m + 1 ∈ J1 ⊕ J2). Thus, ∏ ⊕∈ 21 JJj jρ  agrees with ι in 

n – k positions, and each permutation ρi such that i ∈ Fn – (J1 ⊕ J2) changes 

exactly two of these positions to make  

),(
}{21

ι ∏ ⊕∈ iJJj jHd
U

ρ = k + 2. 

There are totally n – k permutations each corresponding to an element of 

Fn – (J1 ⊕ J2). By the same logic as in Lemma 3.3, it is not possible for 

those n – k permutations, which consist of two commutative sets and one of 

them is of size ⎡ ⎤2
kn−≥ , that change only n – k positions, which is a 

contradiction! Thus, we have  

),(
21

ι ∏ ⊕∈ JJj jHd ρ > k for | J1 ⊕ J2 | = k. 

Case 3: m + 1 ∈ J1 and m + 1 ∈ J2. According to Lemma 3.3, we have 
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),(
21

∏∏ ∈∈ Jj jJj jHd ρρ ∏ +⊕∈ +=
}1{ 1

21
),(

mJJj mjHd
U

ρρ  

> | J1 ⊕ J2 |.  

 

So if we can find a ρm+1 satisfying i), ii), and iii) in Lemma 3.4, then we have a 

binary n-DIM for odd n. The following examples exhibit how to find a suitable 

permutation for ρm+1 for n = 5 and n = 7 respectively. 
 

Example 3.3 (n = 5) Suppose f5 : 5
2Z → S5 is constructed by (3.1) with the following 

basic construction set 

5fB = 〈 ρ1 = (2, 1, 3, 4, 5),  

ρ2 = (1, 2, 4, 3, 5), 

ρ3 = (π1, π2, π3, π4, π5), 

ρ4 = (1, 3, 2, 4, 5), 

ρ5 = (1, 2, 3, 5, 4) 〉. 

To make f5 a DIM, the following requirements should be satisfied: 

i) dH (ρ1ρ2ρ4ρ5, ρ3) = 5. 

ii) dH (ρ2ρ4ρ5, ρ3) = 5, dH (ρ1ρ4ρ5, ρ3) = 5, dH (ρ1ρ2ρ4, ρ3) = 5, and 

dH (ρ1ρ2ρ5, ρ3) = 5. 

iii) {π2, π3}, {π4, π5}∉ {{1, 2}, {3, 4}} and {π2, π3, π4, π5} ≠ {1, 2, 3, 4}. 

Since 

ρ1ρ2ρ4ρ5 = (2, 4, 1, 5, 3), 

ρ2ρ4ρ5  = (1, 4, 2, 5, 3),  

ρ1ρ4ρ5  = (2, 3, 1, 5, 4), 

ρ1ρ2ρ5  = (2, 1, 4, 5, 3),  

ρ1ρ2ρ4  = (2, 4, 1, 3, 5),  

we have π1 ∉ {1, 2}, π2 ∉ {1, 3, 4}, π3 ∉ {1, 2, 4}, π4 ∉{3, 5}, and π5 ∉ {3, 4, 5}. 

Furthermore, from iii) above we have π1 ≠ 5. According to these restrictions and the 
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rules stated in iii), the only solution for ρ3 is (3, 2, 5, 4, 1). The mapping table of f5 is 

listed in Appendix A and the distance expansion matrix of f5 is listed in Table 3.6. 

 

Example 3.4 (n = 7): Assume f7 : 7
2Z → S7 is constructed by (3.1) with the basic 

construction set described in Lemma 3.3. Based on the requirements depicted in 

Lemma 3.4, we exclude some values for ρ4 in the same way as Example 3.1. The 

excluded values are summarized in Table 3.1. 

 

 

Table 3.1  The excluded values for ρ4 in the construction of f7 ∈ I (2, 7, 7). 

 π1 π2 π3 π4 π5 π6 π7

1 × × ×     
2 ×  ×     
3  ×  × ×   
4  × ×  ×   
5    ×  × ×
6    × ×  ×
7 ×     × ×

 

In Table 3.1 the marks “×” denote the values that should be excluded. Besides, 

the selection of the values should satisfy the condition iii) in Lemma 3.4. There are 

many solutions for ρ4 (totally 68). In order to make the distance expansion matrix as 

good as possible, we can choose a solution such that dH (ρ4, ι) is the largest among 

all possible solutions, for example, (5, 6, 3, 7, 1, 2, 4). The mapping table of f7 is 

listed in Appendix A and the distance expansion matrix of f7 is listed in Table 3.12. 

 

Now we give a general construction of binary n-DIMs for odd n as follows. 
 

Construction 3.2 Let n = 2m + 1 and m ≥ 2. Construct a mapping fn with the basic 

construction set described in Lemma 3.3 where 
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⎪
⎪
⎩
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⎧
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m
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ρ  
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,7 if
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≥

=

=

n

n
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Theorem 3.2 The mapping fn constructed by Construction 3.2 is a DIM for odd n. 

Proof. We have shown that f5 and f7 are DIMs from the above examples. For n ≥ 9, 

like the constructions of f5 and f7, we exclude some values for ρm+1 as follows: 

π1 ∉ {1, 2, n}, 

π n–1 ∉ { n – 2, n},  

π n ∉ { n – 2, n – 1, n}, 

π2i ∉ {2i – 1, 2i + 1, 2i + 2}, and 

π2i+1 ∉ {2i – 1, 2i, 2i + 2}. 

for i = 1, 2, … , (n – 3) / 2. The excluded values and the values selected for ρm+1 are 

summarized in Table 3.2 where the marks “×” denote the values excluded and the 

marks “○” denote the values selected. It can be checked that ρm+1 satisfies iii) in 

Lemma 3.4.  

 

Table 3.2  The excluded values for ρm+1 in the construction of fn ∈ I (2, n, n) for 
odd n. 

 π1 π2 π3 π4 π5 π6 π7 . . . πn–1 πn 
1 × × ×  ○       
2 ×  ×   ○      
3  ×  × ×  ○     
4  × ×  ×       
. 
. 
. 

    . 
. 

.
 

n–4           ○ 
n–3   ○         
n–2  ○        × × 
n–1 ○          × 
n ×   ○      × × 
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3.3 Comparisons 

In this section, we compare our DIMs fn with other mappings, including DPMs 

hn proposed by Chang et al. [17], DPMs ln of odd length proposed by Lee [23], DIMs 

rn proposed by Chang [14], DIMs Qn proposed by Chang [15], DIMs zn proposed by 

Lee [22], and DPMs Mn proposed by Lee [31]. Tables 3.3 ~ 3.27 list the distance 

expansion matrices of these mappings for comparisons for 5 ≤ n ≤ 11. Table 3.28 lists 

the distance expansion matrix of fn for n = 13. The total distances ∆1( f ) of these 

mappings are listed in Table 3.29. The asterisk behind a number indicates that this 

number is the largest among all items. In the comparisons of distance expansion 

distributions, we only compare fn with hn, ln, and rn for 5 ≤ n ≤ 9, and also compare fn 

with Qn for 8 ≤ n ≤ 10 because only those mappings are given in the 

above-mentioned papers. We do not compare fn with Mn for their distance expansion 

matrices since there is no such matrix in the corresponding paper. For even n, the 

distance expansion distribution of zn and fn are exactly the same since zn and fn are 

identical when n is even. 

For n = 5, Tables 3.3 and 3.4 show that both h5 and l5 are DPMs but not DIMs, 

whereas Tables 3.5 and 3.6 show that r5, z5, and f5 are all DIMs (the distance 

expansion distribution of z5 and f5 are exactly the same). The distance expansion 

distribution of r5 is better than that of z5 and f5, and the total distances of these 

mappings justify this argument. This is reasonable since r5 is obtained by computer 

search.  

 

 

Table 3.3  Distance expansion matrix of h5. 

0 80 0 0 0
0 96 64 0
 0 112 48
  16 64
   16
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Table 3.4  Distance expansion matrix of l5. 

0 64 6 2 8
 4 68 64 24
  14 76 70
   22 58
    16

 

Table 3.5  Distance expansion matrix of r5. 

0 49 8 10 13
0 68 68 24
 0 93 67
  0 80
   16

 

Table 3.6  Distance expansion matrix of z5 and f5. 

0 64 16 0 0
 0 48 112 0
  0 64 96
   0 80
    16

 

For n = 6, l6 is not compared since the paper [23] focuses on DPMs of odd length 

only. Although f6 is not identical to h6 and r6 (h6 = r6), the distance expansion 

matrices of these mapping is just the same (see Table 3.7).  

 

 

Table 3.7  Distance expansion matrix of h6, r6, z6, and f6. 

0 192 0 0 0 0 
0 192 288 0 0 
 0 192 384 64
  0 192 288
   0 192
    32
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For n = 7, we see again that both h7 and l7 are DPMs but not DIMs, whereas r7, z7, 

and f7 are all DIMs (see Tables 3.8 ~ 3.12). One notable thing is that the distance 

expansion distribution of f7 is better than that of r7 and z7, and the total distance of f7 

is the best (equal to that of M7).  
 

 

Table 3.8  Distance expansion matrix of h7. 

0 448 0 0 0 0 0 
 0 512 832 0 0 0 
  0 576 1344 320 0 
   0 640 1344 256
    0 704 640
     64 384
      64

 

 

Table 3.9  Distance expansion matrix of l7. 

0 384 0 0 6 22 36
0 516 444 28 128 228
 0 582 658 396 604
  4 524 776 936
   34 436 874
    56 392
     64

 

 

Table 3.10  Distance expansion matrix of r7. 

0 384 64 0 0 0 0 
 0 320 896 128 0 0 
  0 256 1408 512 64
   0 320 1344 576
    0 384 960
     0 448
      64
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Table 3.11  Distance expansion matrix of z7. 

0 384 64 0 0 0 0 
 0 352 832 160 0 0 
  0 320 1280 576 64
   0 352 1280 608
    0 384 960
     0 448
      64

 

 

Table 3.12  Distance expansion matrix of f7. 

0 384 0 0 0 64 0 
 0 320 640 0 256 128
  0 256 768 640 576
   0 192 832 1216
    0 192 1152
     0 448
      64 

 

 

For n = 8, the distance expansion distribution of f8 is worse than that of r8 and Q8 

but is better than that of h8 (see Tables 3.13 ~ 3.16).  

 

 

Table 3.13  Distance expansion matrix of h8. 

0 1024 0 0 0 0 0 0 
 0 1280 2304 0 0 0 0 
  0 1600 4160 1408 0 0 
   0 1920 4992 1920 128 
    0 2240 3840 1088 
     128 1792 1664 
      192 832 
       128 
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Table 3.14  Distance expansion matrix of r8. 

0 680 120 112 104 8 0 0 
 0 576 1704 744 336 216 8 
  0 568 2856 2552 936 256
   0 528 3960 3456 1016 
    0 744 3920 2504 
     0 944 2640 
      0 1024 
       128

 

 

Table 3.15  Distance expansion matrix of Q8. 

0 768 256 0 0 0 0 0 
 0 512 2432 512 128 0 0 
  0 256 3840 2304 768 0 
   0 256 4224 3584 896 
    0 512 3840 2816 
     0 768 2816 
      0 1024 
       128 

 

 

Table 3.16  Distance expansion matrix of z8 and f8. 

0 1024 0 0 0 0 0 0 
 0 1024 2560 0 0 0 0 
  0 1024 4096 2048 0 0 
   0 1024 4608 3072 256 
    0 1024 4096 2048 
     0 1024 2560 
      0 1024 
       128 

 

 

For n = 9, we find that large numbers of quantity aggregate on the rightmost 

column of the distance expansion matrix of f9 (see Table 3.22). Hence, the distance 
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expansion distribution of f9 is obviously the best among the six mappings. In addition, 

∆1( f9) is the largest among all mappings, including M9. We also notice that r9 and z9 

are almost the same except the fourth row (see Table 3.19 and 3.21). The aggregation 

of quantity in the rightmost column of the distance expansion matrix is a 

characteristic of fn for n ≥ 9 and n is odd (see Tables 3.22, 3.27, and 3.28 for 

examples). Thus, the distance expansion distribution of fn is better than that of hn, ln, 

rn, Qn, and zn for n ≥ 9 and n is odd. Therefore, we conclude that fn has better distance 

expansion distribution than these five previously proposed DPMs or DIMs for n ≥ 7 

and n is odd. The total distance of fn is also better then that of these mappings, but 

worse than that of Mn for n ≥ 11 and n is odd. However, fn is a DIM while Mn is not 

a DIM. 
 

 

Table 3.17  Distance expansion matrix of h9. 

0 2304 0 0 0 0 0 0 0 
 0 3072 6144 0 0 0 0 0 
  0 4160 12096 5248 0 0 0 
   0 5376 16384 9472 1024 0 
    0 6592 16128 8768 768 
     256 6272 11520 3456 
      448 4672 4096 
       512 1792 
        256 

 

 

Table 3.18  Distance expansion matrix of l9. 

0 2048 0 0 0 0 6 68 182 
 0 3076 4092 0 0 40 514 1494 
  0 4176 8016 2144 126 1646 5396 
   0 4848 9512 3560 3170 11166 
    0 4492 7650 5462 14652 
     4 3200 5496 12804 
      82 1980 7154 
       136 2168 
        256 
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Table 3.19  Distance expansion matrix of r9. 

0 2048 256 0 0 0 0 0 0 
 0 1792 6400 1024 0 0 0 0 
  0 1536 10240 8704 1024 0 0 
   0 1536 11776 15360 3328 256 
    0 1536 12544 14848 3328 
     0 1792 11008 8704 
      0 2048 7168 
       0 2304 
        256 

 
Table 3.20  Distance expansion matrix of Q9. 

0 1536 768 0 0 0 0 0 0 
 0 896 5568 2368 384 0 0 0 
  0 640 7296 10240 3008 320 0 
   0 512 8640 15424 7104 576 
    0 704 9344 16704 5504 
     0 1024 9792 10688 
      0 1600 7616 
       0 2304 
        256 

 
Table 3.21  Distance expansion matrix of z9. 

0 2048 256 0 0 0 0 0 0 
 0 1792 6400 1024 0 0 0 0 
  0 1536 10240 8704 1024 0 0 
   0 1280 12800 13824 4352 0 
    0 1536 12544 14848 3328 
     0 1792 11008 8704 
      0 2048 7168 
       0 2304 
        256 

 
Table 3.22  Distance expansion matrix of f9. 

0 2048 0 0 0 0 0 0 256 
 0 1792 5376 0 0 0 0 2048 
  0 1536 7680 5120 0 0 7168 
   0 1280 7680 7680 1280 14336 
    0 1024 6144 6144 18944 
     0 768 3840 16896 
      0 512 8704 
       0 2304 
        256 
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Table 3.23  Distance expansion matrix of r10. 

0 4096 1024 0 0 0 0 0 0 0 
 0 3200 14720 5120 0 0 0 0 0 
  0 2304 22784 29184 7168 0 0 0 
   0 2560 24320 56192 21376 3072 0 
    0 2560 27392 65792 29440 3840 
     0 2560 30464 55168 19328
      0 3328 27904 30208
       0 4224 18816
        0 5120 
         512 

 

 

Table 3.24  Distance expansion matrix of Q10. 

0 4096 1024 0 0 0  0 0 0 
 0 3200 14720 5120 0  0 0 0 
  0 2304 22784 29184 7168 0 0 0 
   0 2560 24320 56192 21376 3072 0 
    0 2560 27392 65792 29440 3840 
     0 2560 30464 55168 19328
      0 3328 27904 30208
       0 4224 18816
        0 5120 
         512 

 

 

Table 3.25  Distance expansion matrix of z10 and f10. 

0 5120 0 0 0 0 0 0 0 0 
 0 5120 17920 0 0 0 0 0 0 
  0 5120 30720 25600 0 0 0 0 
   0 5120 38400 51200 12800 0 0 
    0 5120 40960 61400 20480 1024 
     0 5120 38400 51200 12800
      0 5120 30720 25600
       0 5120 17920
        0 5120 
         512 

 



Chapter 3  DIMs from Binary Vectors 38

Table 3.26  Distance expansion matrix of z11. 

0 10240  1024 0 0 0 0 0 0 0 0 
 0 9728 39936 6656 0 0 0 0 0 0 
  0 9216 67584 78848 13312 0 0 0 0 
   0 8704 86016 158208 76800 8192 0 0 
    0 8192 97280 206848 137216 22528 1024 
     0 8704 97280 214528 133120 19456 
      0 9216 90112 168960 69632 
       0 9728 73728 85504 
        0 10240 46080 
         0 11264 
          1024 

 

Table 3.27  Distance expansion matrix of f11. 
0 10240 0 0 0 0 0 0 0 0 1024 
 0 9216 36864 0 0 0 0 0 0 10240 
  0 8192 57344 57344 0 0 0 0 46080 
   0 7168 64512 107520 35840 0 0 122880 
    0 6144 61440 122880 61440 6144 215040 
     0 5120 51200 102400 51200 263168 
      0 4096 36864 61440 235520 
       0 3072 21504 144384 
        0 2048 54272 
         0 11264 
          1024 

 

Table 3.28  Distance expansion matrix of f13. 
0 49152 0 0 0 0 0 0 0 0 0 0 4096
 0 45056 225280 0 0 0 0 0 0 0 0 49152
  0 40960 368640 491520 0 0 0 0 0 0 270336
   0 36864 442368 1032192 516096 0 0 0 0 901120
    0 32768 458752 1376256 1146880 229376 0 0 2027520
     0 28672 430080 1433600 1433600 430080 28672 3244032
      0 24576 368640 1228800 1228800 368640 3809280
       0 20480 286720 860160 716800 3387392
        0 16384 196608 458752 2256896
         0 12288 110592 1048576
          0 8192 311296
           0 53248
            4096
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Table 3.29  List of total distance of various DPMs. 

n ∆max hn ln rn Qn zn Mn fn 

5 4090 3712 3872 4020* − − 3712 3968 

6 20472 18432 − 18432 − 18432 19456* 18432 

7 98294 83968 91016 88064 − 88064 94208* 94208* 

8 458752 378880 − 413312 409600 393216 458752* 393216 

9 2097144 1689600 1911000 1802240 1863680 1802240 1982464 1998848*

10 9437160 7281792 − 8110080 8110080 7863680 9043968* 7863680

11 41943022 31923328 37741432 36330496 − 35127296 40108032* 39321600

12 184549344 138878080 − 154927104 − 150994944 180355072* 150994944

13 805306346 600251520 717371576 677117952 − − 780140544* 746586112
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Chapter 4 

DPMs from Ternary Vectors 
 

 

All DPMs and DIMs proposed so far are from binary vectors ([6], [13], [14], 

[15], [17], [18], [21], [22], [23], [29], [30], [31], [37]) except [19] and [34]. In this 

chapter, we propose a general construction method that constructs DPMs or DIMs 

from ternary vectors. That is, the proposed method constructs DPMs or DIMs from 
nZ3  to SN. By using this method, we construct DIMs for N = n + 2 for all n ≥ 3, 

DPMs for N = n + 1 for all n ≥ 9, as well as DPMs for N = n for all n ≥ 13. 

 

4.1 The General Recursive Construction 

Here we present a recursive construction E that constructs mappings from nZ3  

to SN. Given a mapping mf ∈ F (3, m, M), E( mf ) = 1+mf  is a mapping in 

F (3, m + 1, M + 1). That is, the construction “extends” the mapping mf : mZ3 → SM 

to the mapping 1+mf : 1
3
+mZ → SM+1. Repeated use of the construction E gives a 

sequence of mappings 2+mf = E( 1+mf ) = E(E( mf )) ∈ F (3, m + 2, M + 2),  

3+mf = E( 2+mf ) = E(E(E( mf )) ∈ F (3, m + 3, M + 3), … , and so on. We will show 
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that 

i) nf ∈ P (3, n, N) for all n > m if mf ∈ P (3, m, M). 

ii) nf ∈ I (3, n, N) for all n > m if mf ∈ I (3, m, M) and M > m. 

iii) nf ∈ P (3, n, N) for all n > m if mf ∈ I (3, m, M) and M = m. 

where N – n = M – m. 

For any array u = (u1, u2, … , un), we use the notation ui to denote the element 

ui in position i. For example, let a = (5, 3, 2, 4, 6, 1), then a5 = 6. 

 

Construction E: For f ∈ F (3, n, N), define g = E ( f ) ∈F (3, n + 1, N + 1) as follows. 

Let x = (x1, x2, … , xn) ∈ nZ3  and f (x) = (ρ1, ρ2, … , ρN). Suppose that the element 

N – 4 occurs in position r, that is ρr = N – 4. Then 

g(x |0)i = 
⎩
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if n is even and xn = 2, then 

g(x |2)i = 
⎪
⎩

⎪
⎨

⎧ +

−

,

1
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otherwise (n is odd or xn < 2), then 

g(x |2)i = 
⎪
⎩

⎪
⎨

⎧ +

,

1

i

N

N

ρ
ρ   

}1,{for 

1for 

for 

+∉

+=

=

NNi

Ni

Ni

 

 

To help the reader understand the construction, we give an alternative 

algorithmic description in Table 4.1. 
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Table 4.1  An algorithmic description of Construction E. 

Algorithm of Construction E 

Input: x = (x1, x2, … , xn+1)∈ 1
3
+nZ  

Output: (µ1, µ2, … , µN+1) = g(x)  

Begin 

1. (ρ1, ρ2, … , ρN) ← f (x1, x2, … , xn); 

2. (µ1, µ2, … , µN, µN+1) ← (ρ1, ρ2, … , ρN, N + 1) 

3. Case xn+1 = 1: 

4.  r ← µ –1 (N – 4); 

5.  swap (µr, µN+1); 

6. Case xn+1 = 2: 

7.  If (n is odd) and (xn = 2) then swap (µN–1, µN+1); 

8.  Else swap (µN, µN+1); 
End 

 

 
Example 4.1 Let f (0,0,0) = (1,2,3,4,5). By Construction 4.1, we have 

g(0,0,0,0) = (1,2,3,4,5,6), 

g(0,0,0,1) = (6,2,3,4,5,1), 

g(0,0,0,2) = (1,2,3,4,6,5). 

Furthermore, let h = E(g), we have 

h(0,0,0,0,0) = (1,2,3,4,5,6,7), 

h(0,0,0,0,1) = (1,7,3,4,5,6,2), 

h(0,0,0,0,2) = (1,2,3,4,5,7,6), 

h(0,0,0,1,0) = (6,2,3,4,5,1,7), 

h(0,0,0,1,1) = (6,7,3,4,5,1,2), 

h(0,0,0,1,2) = (6,2,3,4,5,7,1), 

h(0,0,0,2,0) = (1,2,3,4,6,5,7), 

h(0,0,0,2,1) = (1,7,3,4,6,5,2), 

h(0,0,0,2,2) = (1,2,3,4,7,5,6). 
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For f ∈ F (3, m, M), we define a sequence of mappings nf ∈ F (3, n, n + M – m), 

for all n ≥ m, recursively by 

mf = f and 1+nf = C ( nf ) for all n ≥ m. 

Now we show that based on an initial mapping f ∈ P (3, m, M), nf ∈ 

P (3, n, n + M – m) for all n > m. Furthermore, if f  is a DIM, i.e. f ∈ I (3, m, M), then 

nf ∈ I (3, n, n + M – m) or nf ∈ P (3, n, n + M – m) for all n > m. 

 

Lemma 4.1 If mf ∈ P (3, m, M), m is odd, and Mm xf )( ≠ M – 4 for all x ∈ mZ3 . Then 

1+mf ∈ P (3, m + 1, M + 1). 

 

The proof of Lemma 4.1 is similar to that of the following lemma (and a little 

simpler). Thus, we omit the proof. 

 

Lemma 4.2 If mf ∈ I (3, m, M), m is odd, and Mm xf )( ≠ M – 4 for all x ∈ mZ3 . Then 

i) 1+mf ∈ I (3, m + 1, M + 1) if M > m, or  

ii) 1+mf ∈ P (3, m + 1, M + 1) if M = m. 

Proof. For every two distinct vectors x = (x′ | xm+1), y = (y′ | ym+1) in 1
3
+mZ  where x′, y′ 

∈ mZ3 , consider the following cases. 

 

Table 4.2  Possible cases for two distinct vectors in 1
3
+mZ . 

 ym+1 = 0 ym+1 = 1 ym+1 = 2
xm+1 = 0 Case 1 Case 2 Case 3
xm+1 = 1 Case 4 Case 5 Case 6
xm+1 = 2 Case 7 Case 8 Case 9
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i) M > m:  

Case 1, 5, 9: ))'(),'(())(),(( 11 yfxfdyfxfd mmHmmH =++  

> dH (x′, y′)  

= dH (x, y). 

Case 2: 11 )( ++ Mm xf  = M + 1 ≠ 11 )( ++ Mm yf  = M – 4; r
k

m yf )(1+  = M + 1 and 

rm xf )(1+ ≠ M + 1 where r = )4()'( 1 −− Myfm . Thus, 

1))'(),'(())(),(( 11 +≥++ yfxfdyfxfd k
mmHmmH  

> dH (x′, y′) + 1  

= dH (x, y). 

Case 3, 4, 7: similar to Case 2. 

Case 6: Table 4.3 illustrates the values of im xf )'( , im yf )'( , im xf )(1+ , and im yf )(1+  for 

i = r, M, and M + 1 respectively. In the table we see that 11 )( ++ Mm xf = M – 4 

and 11 )( ++ Mm yf = Mm yf )'( ≠ M – 4 (by the fact that Mm xf )'( ≠ M – 4); 

rm xf )(1+ = M + 1 and rm yf )(1+ = rm yf )'( ≠ M + 1 where r = )4()'( 1 −− Mxfm  

and r < M; Mm yf )(1+ = M + 1 and Mm xf )(1+ = Mm xf )'( ≠ M + 1. Thus, 

1))'(),'(())(),(( 11 +≥++ yfxfdyfxfd k
mmHmmH  

> dH (x′, y′) + 1  

= dH (x, y). 

 

 

Table 4.3  List of some values of mf and 1+mf in the case of xm+1 = 1 and ym+1 = 2. 

i im xf )'(  im yf )'(  im xf )(1+ im yf )(1+  

r M – 4 rm yf )'( M + 1 rm yf )'(  

M Mm xf )'( Mm yf )'( Mm xf )'( M + 1 

M + 1 – – M – 4 Mm yf )'(  
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Case 8: similar to Case 6. 

In all cases, ),())(),(( 11 yxdyfxfd HmmH >++ . Thus,  

1+mf ∈ I (3, m + 1, M + 1). 

ii) M = m:  

The proof is similar to i) except in Case 1, 5, and 9, when dH (x′, y′) = m, 

))'(),'(())(),(( 11 yfxfdyfxfd mmHmmH =++  

= dH (x′, y′) = dH (x, y) 

< m + 1, 

which means that 1+mf is possible to increase the distance but it just preserves the 

distance. Thus, 

1+mf ∈ P (3, m + 1, M + 1).  

 

Theorem 4.1 If mf ∈P (3, m, M), m is odd, and Mm xf )( ∉ {M – 3, M – 4} for all 

x ∈ mZ3 , then nf ∈ P (3, n, n + M – m) for all n > m. 

 

We omit the proof of Theorem 4.1 since it is similar to that of the following 

theorem (and a little simpler). 

 

Theorem 4.2 If mf ∈ I (3, m, M), m is odd, and Mm xf )( ∉ {M – 3, M – 4} for all 

x ∈ mZ3 . Then 

i) nf ∈ I (3, n, N) for all n > m if M > m, or 

ii) nf ∈ P (3, n, N) for all n > m if M = m. 

where N = n + M – m. 
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Proof. i) M > m: The proof is done by induction. We have proved that nf ∈ I (3, n, N) 

for n = m + 1 in Lemma 4.2. For n ≥ m + 2, suppose that 1−nf ∈ I (3, n – 1, N – 1). For 

any two distinct vectors x = (x′ | xn), y = (y′ |  yn) in nZ3  where x′, y′ ∈ 1
3
−nZ , consider 

the cases listed in Table 4.2. 

Case 1, 5, 9: ),())(),(( yxdyfxfd HnnH > (similar to Lemma 4.2). 

Case 2, 3, 4, 7: ),())(),(( yxdyfxfd HnnH > (similar to Lemma 4.2). 

Case 6: Since xn = 1, we have Nn xf )( = (N – 1) – 4 = N – 5. Furthermore, yn = 2 

(a) If n is even, then 

Nn yf )( = 11 )'( −− Nn yf =
⎪
⎩

⎪
⎨

⎧

−−
−
−

7or  2
6
1

NN
N
N

 
.2 if
,1 if
,0 if

1

1

1

=
=
=

−

−

−

n

n

n

y
y
y

 

Thus, Nn xf )( ≠ Nn yf )( . Besides, 1)( −Nn yf = N and 1)( −Nn xf ≠ N (by the 

fact that Mmm xxf ),,( 1 K ∉ {M – 3, M – 4}). 

(b) If n is odd, then 

Nn yf )( =

⎪
⎪
⎩

⎪⎪
⎨

⎧

−=

−=

−=

−−

−−

−−

1)'(

6)'(

1)'(

21

11

11

Nyf

Nyf

Nyf

Nn

Nn

Nn

 
.2 if
,1 if
,0 if

1

1

1

=
=
=

−

−

−

n

n

n

y
y
y

 

Thus, Nn xf )( ≠ Nn yf )( . Furthermore, if yn–1 = 2, then 

2)( −Nn yf = N and 2)( −Nn xf ≠ N (also by the fact that 

Mmm xxf ),,( 1 K ∉ {M – 3, M – 4}). 

Otherwise (yn–1 ≠ 2),  

1)( −Nn yf = N and 1)( −Nn xf ≠ N. 
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Besides, rn xf )( = N and rn yf )(  ≠ N where r = )5()'( 1
1 −−
− Nxfn and r < N – 1 

if n is even, or r < N – 2 if n is odd. Therefore,  

1))'(),'(())(),(( 11 +≥ −− yfxfdyfxfd nnHnnH  

> dH (x′ , y′ ) + 1  

= dH (x, y). 

Table 4.4 gives a summarization of possible values of Nn xf )( for all n > m. 

Case 8: similar to Case 6. 

In all cases, ),())(),(( yxdyfxfd HnnH > . Thus, nf ∈ I (3, n, N). 

ii) M = m: Since 1+mf ∈ P (3, m + 1, M + 1) (proved in Lemma 4.1), similar to the 

above proof, we have nf ∈ P (3, n, N) for all n > m.  

 

 

 

Table 4.4  Possible values of Nn xf )(  for all n > m. 

Nn xf )(  xn xn–1
n = m + 1 n ≥ m + 2

0  N + 1 N 
1  N – 4 N – 5 

0 N– 1 
1 N – 6 

2 
2 

Mm xf )(  N – 1 
N – 2 
N – 7 

 

 

The recursive construction E can be generalized. In the construction E we 

defined r by ρr = N – 4. The recursion would work equally well if we defined r by 
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ρr = N – t for some fixed t ≥ 3 and changed the conditions in the lemmas and 

theorems to 

Mm xf )( ∉ { M – (t – 1), M – t }. (4.1) 

Because if we list the last three symbols in 2+mf = E (E ( mf )) as follows, 

 

Table 4.5  Listing the last three symbols in 2+mf = E (E ( mf )). 

xm+1 xm+2 Mm xf )(2+  12 )( ++ Mm xf  22 )( ++ Mm xf  
0 0 ρM M + 1 M + 2 
1 0 ρM M – t M + 2 
2 0 M + 1 ρM M + 2 
1 1 ρM M + 1 M – (t – 1) 
1 1 ρM M – t M – (t – 1) 
2 1 M + 1 ρM M – (t – 1) 
0 2 ρM M + 2 M + 1 
1 2 ρM M + 2 M – t 
2 2 M + 2 ρM M + 1 

 

then, in order to make 2+mf suitable for subsequent recursions, we have 

M + 2 – (t – 1) ∉ {M + 1, M + 2, M – t, M – (t – 1) }, and 

M + 2 – t ∉ { M + 1, M + 2, M – t, M – (t – 1) }. 

Note that m + 2 is odd since m is odd. Hence, t ∉ {0, 1, 2}. 

It is also possible to vary the t from one step to the next as long as, for all 

x ∈ nZ3  

})(,)({

)(

1 NnNn

Nn

xfxftN

xftN

−∉−

≠−
 

even. is  if

odd, is  if

n

n
 (4.2) 

One reason we chose a fixed t is that if the condition (4.1) is satisfied at the start 

of the recursion, then (4.2) is satisfied for all n ≥ m. 
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4.2 DIMs from nZ3  to 2+nS  

Now we construct DIMs from nZ3  to 2+nS  by using Construction E. According 

to Theorem 4.2, all we have to do is to find a suitable initial mapping f ∈ 

I (3, n, n + 2) for some odd n such that 

f (x)n+2 ∉ {(n + 2) – 3, (n + 2) – 4} for all x ∈ nZ3 . 

We construct DIMs in I (3, n, n + 2) because, in contrast to I (3, n, n + 1) and 

I (3, n, n), it is easier to find such an initial mapping. In fact, I (3, n, n + 2) is not 

empty for n = 1 and n = 2. For example, Table 4.6 exhibits a DIM g ∈ I (3, 1, 3) and 

Table 4.7 shows a DIM h ∈ I (3, 2, 4), respectively. 

 

 

Table 4.6  The mapping table and the distance expansion matrix of g ∈ I (3, 1, 3). 

x )(xg  x )(xg  x )(xg  

(0) (1,2,3) (1) (2,3,1) (2) (3,1,2)

 

 

Table 4.7  The mapping tables and the distance expansion matrix of h ∈ I (3, 2, 4). 

x )(xh  x )(xh  x )(xh  

(0,1) (1,2,3,4) (0,1) (4,2,3,1) (0,2) (1,4,3,2) 

(1,0) (2,3,1,4) (1,1) (2,3,4,1) (1,2) (4,3,1,2) 

(2,0) (3,1,2,4) (2,1) (3,4,2,1) (2,2) (3,1,4,2) 

 

0 6 12 0 

  3 15

0 0 3 
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However, neither g nor h can be a suitable initial mapping for Construction E. 

Here we define a DIM 3f ∈ I (3, 3, 5) which is suitable for Construction E to 

construct a sequence of DIMs in I (3, n, n + 2) for all n > 3. That is, 53 )(xf  ∉ {1, 2} 

for all x ∈ nZ3 . 3f is obtained by the algorithm listed in Table 4.10.  

The mapping 3f  is listed in Table 4.8. From the mapping table we see that 

53 )(xf  ∉ {1, 2} for all x ∈ 3
3Z . In addition, the distance expansion matrix listed in 

Table 4.9 shows that 3f is distance increasing. Hence, 3f is suitable for 

Construction E to construct a sequence of DIMs in I (3, n, n + 2) for all n > 3. Based 

on this result and the examples given in Table 4.6 and Table 4.7, we have the 

following result. 

 

Theorem 4.3 I (3, n, n + 2) is not empty for n ≥ 1. 

 

 

 

Table 4.8  Mapping table of 3f ∈ I (3, 3, 5). 

x )(3 xf  x )(3 xf  x )(3 xf  

(0,0,0) 
(1,0,0) 
(2,0,0) 
(0,1,0) 
(1,1,0) 
(2,1,0) 
(0,2,0) 
(1,2,0) 
(2,2,0) 

(1,2,3,4,5)
(2,3,1,4,5)
(3,1,2,4,5)
(4,2,3,1,5)
(2,3,4,1,5)
(3,4,2,1,5)
(1,4,3,2,5)
(4,3,1,2,5)
(3,1,4,2,5)

(0,0,1)
(1,0,1)
(2,0,1)
(0,1,1)
(1,1,1)
(2,1,1)
(0,2,1)
(1,2,1)
(2,2,1)

(1,2,5,4,3)
(2,5,1,4,3)
(5,1,2,4,3)
(4,2,5,1,3)
(2,5,4,1,3)
(5,4,2,1,3)
(1,4,5,2,3)
(4,5,1,2,3)
(5,1,4,2,3)

(0,0,2)
(1,0,2)
(2,0,2)
(0,1,2)
(1,1,2)
(2,1,2)
(0,2,2)
(1,2,2)
(2,2,2)

(1,2,3,5,4) 
(2,3,1,5,4) 
(3,1,2,5,4) 
(5,2,3,1,4) 
(2,3,5,1,4) 
(3,5,2,1,4) 
(1,5,3,2,4) 
(5,3,1,2,4) 
(3,1,5,2,4) 
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Table 4.9  Distance expansion matrix of 3f . 

0 36 45 0 0 

 0 27 111 24

  0 18 90
 

 

 

Table 4.10  Construction algorithm for 3f . 

Construction algorithm for 3f  

Input: (x1, x2, x3) ∈ 3
3Z  

Output: (ϕ1, ϕ2, …, ϕ5) = 3f ( x1, x2, x3)  
Begin 
1. case x1 = 0: 
2.  (ϕ1, ϕ2, …, ϕ5) ← (1, 2, 3, 4, 5); 
3. case x1 = 1: 
4.  (ϕ1, ϕ2, …, ϕ5) ← (2, 3, 1, 4, 5); 
5. case x1 = 2: 
6.  (ϕ1, ϕ2, …, ϕ5) ← (3, 1, 2, 4, 5); 
7. case x2 = 1: 
8.  i ← π –1 (1); 
9.  swap (ϕi, ϕ4); 
10. case x2 = 2: 
11.  i ← π –1 (2); 
12.  swap (ϕi, ϕ4); 
13. case x3 = 1: 
14.  i ← π –1 (3); 
15.  swap (ϕi, ϕ5); 
16. case x3 = 2: 
17.  i ← π –1 (4); 
18.  swap (ϕi, ϕ5); 
End 
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Example 4.2 We construct 4f ∈ I (3, 4, 6) and 5f ∈ I (3, 5, 7) from 3f . The distance 

expansion matrices of 4f and 5f are listed in Table 4.11 and Table 4.12, respectively. 

 

 

Table 4.11  Distance expansion matrix of 4f ∈ I (3, 4, 6). 

0 162 162 0 0 0 
 0 135 549 270 18
  0 144 720 432
   0 108 540

 

 

Table 4.12  Distance expansion matrix of 5f ∈ I (3, 5, 7). 

0 648 540 27 0 0 0 
 0 567 2457 1584 234 18 
  0 630 3828 4224 1038 
   0 720 4500 4500 
    0 648 3240 

 

4.3 DPMs from nZ3  to 1+nS  

To construct DPMs from nZ3  to 1+nS , using Construction E, we need a mapping 

f ∈ P (3, n, n + 1) as an initial mapping such that 

f (x)n+1 ∉ {(n + 1) – 3, (n + 1) – 4} for all x ∈ nZ3 . 

Finding an initial mapping in P (3, n, n + 1) is a tough work. For a DPM 

13: +→ n
n SZf  to be existing, n ≥ 4 is a necessary condition since 
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4! = 24 < 33 = 27 and 5! = 120 > 34 = 81. 

In the beginning, we tried to find such a mapping by computer search. 

Unfortunately, an extensive computer search has been unsuccessful. In our 

experiment, computer search is almost infeasible due to the large search space. As a 

result, we tried some other approaches. Finally, an indirect approach has been 

successful. This approach is to construct f from two simpler mappings found by 

computer search. 

For a vector u = (u1, u2, … , un), and a set X ⊂ {1, 2, …, n}, let u \ X denote the 

vector obtained from u by removing the elements with subscript in X. For example, 

(u1, u2, u3, u4, u5, u6) \ {1,5} = (u2, u3, u4, u6). 

By computer search we have found mappings G ∈ F (3, 5, 7) and H ∈ F (3, 4, 6) 

that satisfy the following conditions: 

i) For every x ∈ 5
3Z , 6 ∈ {G(x)1, G(x)2, G(x)3}, 

ii) For every x ∈ 5
3Z , 7 ∈ {G(x)4, G(x)5, G(x)6}, 

iii) For every distinct x, y ∈ 5
3Z , dH ( }7{\)(xG , }7{\)( yG ) ≥ dH (x, y), 

iv) For every u ∈ 4
3Z , 1 ∈ {H(x)1, H(x)2, H(x)3}, 

v) For every distinct u, v ∈ 4
3Z , dH ( }6,5{\)(uH , }6,5{\)(vH ) ≥ dH (u, v). 

 

The mappings G and H are listed explicitly in Appendix B. We will now show 

how these mappings can be combined to produce a mapping f ∈ P (3, 9, 10) 

satisfying 

f (x)10 ∉ {6, 7} for all x ∈ 9
3Z . 

 

Construction 4.2 Construction of f ∈ P (3, 9, 10). 

Let x ∈ 9
3Z  and x = (xL, xR) where xL ∈ 5

3Z  and xR ∈ 4
3Z . In addition, let 
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ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7) = G(xL), 

γ = (γ1, γ2, γ3, γ4, γ5, γ6) = H(xR) + (4, 4, 4, 4, 4, 4). 

Note that Condition iv) implies that γ5 ≥ 6 and γ6 ≥ 6. Similarly, Condition i) and 

ii) imply that ϕ7 ≤ 5. 

Define ρ = (ρ1, ρ2, … , ρ10) as follows. 

ρi = γ5  if 1 ≤ i ≤ 3 and   ϕi = 6, 

ρi = γ6  if 4 ≤ i ≤ 6 and   ϕi = 7, 

ρi = ϕi  if 1 ≤ i ≤ 6 and   ϕi ≤ 5, 

ρi = ϕ7  if 7 ≤ i ≤ 9 and   γi – 6 = 5, 

ρi = γi – 6  if 7 ≤ i ≤ 10 and   γi – 6 ≥ 6. 

In ρ, swap 1 and 6 and also swap 2 and 7, and let the resulting array be denoted 

by π. More formally, 

ρi = 1 if ρi = 6, 

ρi = 2 if ρi = 7, 

ρi = 6 if ρi = 1, 

ρi = 7 if ρi = 2, 

ρi = ρi otherwise. 

Then define 

f (x) = π. 

 

In order to help the reader understand the combination, we give an alternative 

algorithmic description in Table 4.13. 

 

Example 4.3 Let G(0, 1, 0, 1, 2) = (6, 5, 2, 1, 7, 4, 3) and H(0, 1, 0, 2) = (1, 5, 3, 2, 4, 6). 

Then 

ϕ = (6, 5, 2, 1, 7, 4, 3), 
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γ = (5, 9, 7, 6, 8, 10),  

ρ = (8, 5, 2, 1, 10, 4, 3, 9, 7, 6), and 

f (0, 1, 0, 1, 2, 0, 1, 0, 2) = (8, 5, 7, 6, 10, 4, 3, 9, 2, 1). 

 

 

 

Table 4.13  An algorithmic description of the construction of f ∈ P (3, 9, 10). 

Combining algorithm for the initial mapping f ∈ P (3, 9, 10) 

Input: x = (x1, x2, … , x9) ∈ 9
3Z  

Output: (π1, π2, … , π10) = f (x1, x2, … , x9) 

Begin 

1. ϕ : (ϕ1, ϕ2, … , ϕ7) ← G(x1, x2, x3, x4, x5); 

2. (φ1, φ2, … , φ6) ← H(x6, x7, x8, x9); 

3. γ : (γ1, γ2, … , γ6)← (φ1 + 4, φ2 + 4, φ3 + 4, φ4 + 4, φ5 + 4, φ6 + 4); 

4. i ← γ–1(5); 

5. j ← ϕ–1(6); 

6. k ← ϕ–1(7); 

7. γi ← ϕ7; 

8. ϕj ← γ5; 

9. ϕk ← γ6; 

10. ρ : (ρ1, ρ2, … , ρ10) ← (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, γ1, γ2, γ3, γ4); 

11. i ← ρ–1(1); 

12. j ← ρ–1(2); 

13. k ← ρ–1(6); 

14. l ← ρ–1(7); 

15. swap (ρi, ρk); 

16. swap (ρj, ρl); 

17. π : (π1, π2, … , π10) ← (ρ1, ρ2, … , ρ10); 

End 
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Now we show that f  has the started property.  

 

Lemma 4.3 f ∈ P (3, 9, 10) and f (x)10 ∉ {6, 7} for every x ∈ 9
3Z . 

Proof. We first show that π ∈ S10. We have ϕ ∈ S7 and γ is a permutation of (5, 6, 7, 

8, 9, 10). In particular, 5, 6, and 7 appear both in ϕ and γ. The effect of the first line 

in the definition of ρ is to remove another element (γ5) into the position where ϕ has 

a 6. Similarly, the second line overwrites the 7 in ϕ, and the fourth line overwrites the 

5 in γ. The definition of ρ is then the concatenation of the six first (overwritten) 

elements of ϕ and the four first (overwritten) elements of γ. Therefore, ρ contains no 

duplicate elements, that is, ρ ∈ S10. And so π ∈ S10. 

The element 1 in ρ must be in any one of the first six positions, coming from ϕ, 

or in one of the positions 7, 8, or 9 (if ϕ7 = 1). Similarly, the element 2 must be in one 

of the first nine positions of ρ. Therefore, both 6 and 7 must be among the first nine 

positions of π, that is π10 ∉ {6, 7}. 

Finally, we must show that f  is distance preserving. Let x ≠ x’, and let the arrays 

corresponding to x’ be denoted by ϕ’, γ’, ρ’, and π’. By assumption, 

dH (x, x’) = dH (xL, x’L) + dH (xR, x’R) 

≤ dH (ϕ \{7}, ϕ’\{7}) + dH (γ \{5,6}, γ’\{5,6}). (4.3) 

For 1 ≤ i ≤ 6 we have 

dH (ϕ i, ϕ’i) ≤ dH (ρ i, ρ’i). (4.4) 

If ϕ i = ϕ’i this is obvious. Otherwise, we may assume without loss of generality that 

ϕ’i < ϕ i and we must show that ρ i ≠ ρ’i . If ϕ i ≤ 5, then 

ρ’i = ϕ’i < ϕ i = ρ i . 

If ϕ i = 6, then 

ρ’i = ϕ’i ≤ 5 and ρ i = γ5 ≥ 6. 
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If ϕ i = 7, then 4 ≤ i ≤ 6 and so ϕ’i ≠ 6. Hence 

ρ’i = ϕ’i ≤ 5 and ρ i = γ6 ≥ 6. 

This completes the proof of (4.4). A similar argument shows that for 7 ≤ i ≤ 10 we 

have 

dH (γi–6, γ’i–6) ≤ dH (ρ i, ρ’i), (4.5) 

and that for 1 ≤ i ≤ 10 we have 

dH (ρ i, ρ’i) ≤ dH (π i, π’i). (4.6) 

Combining (4.3) – (4.6), we get 

dH (x, x’) ≤ dH (ϕ \{7}, ϕ’\{7}) + dH (γ \{5,6}, γ’\{5,6}) 

≤ dH (ρ , ρ’) ≤ dH (π , π’). 

Hence, f  is distance preserving.   

 

Table 4.14 lists the distance expansion matrix of f . With f  as an initial mapping, 

we can prove the following theorem with Theorem 4.1. 

 

Theorem 4.4: P (3, 9, 10) is not empty for n ≥ 9. 

 

Table 4.14  Distance expansion matrix of f  ∈ P (3, 9, 10). 

0 51354 41391 45441 33210 5751 0 0 0 0 
 34344 112865 269143 323206 291836 192492 124626 57474 11190 
  53806 366311 958353 1434482 1568770 1297158 739170 195438 
   140255 910577 2837002 4931228 5640290 4032984 1348128
    310621 2275959 7345554 12583794 12049018 5115982
     698738 4980708 14847858 20652244 11728356
      1258982 8380434 19598010 16112206
       1675300 8824024 12175492
        1191024 3847824
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4.4 DPMs from nZ3  to nS  

For a DPM n
n SZf →3:  to be existing, n ≥ 7 is a necessary condition since  

6! = 720 < 36 = 729 and 7! = 5040 > 37 = 2187. 

Like the construction of P (3, n, n + 1), we cannot find an initial mapping by 

simply searching a DPM from nZ3  to Sn. Hence, similar to the previous section, we 

construct an initial mapping by an indirect approach. However, the construction is 

more involved and contains several steps. We will describe the constructions of the 

intermediate mappings and the desired initial mapping f ∈ P (3, 13, 13). The 

properties of the intermediate mappings and the started property of the mapping f  

will also be shown.  

We start with three mappings R, S ∈ F (3, 3, 5) and T ∈ F (3, 4, 6). These 

mappings were found by computer search and are used as building blocks for the 

constructions of the intermediate mappings. They have the following properties: 

i) For every x ∈ 3
3Z , 1 ∈ {R(x)1, R(x)2, R(x)3}, 

ii) For every x ∈ 3
3Z , R(x)5 ≠ 5, 

iii) For every distinct x, y ∈ 3
3Z , dH ( }5,4{\)(xR , }5,4{\)( yR ) ≥ dH (x, y), 

iv) For every x ∈ 3
3Z , 2 ∈ {S(x)1, S(x)2, S(x)3}, 

v) For every x ∈ 3
3Z , S(x)5 ≠ 1, 

vi) For every distinct x, y ∈ 3
3Z , dH ( }5,4{\)(xS , }5,4{\)( yS ) ≥ dH (x, y), 

vii) For every x ∈ 4
3Z , 2 ∈ {T(x)1, T(x)2, T(x)3}, 

viii) For every x ∈ 4
3Z , T(x)6 ≠ 1, 

ix) For every distinct x, y ∈ 4
3Z , dH ( }6,5{\)(xT , }6,5{\)( yT ) ≥ dH (x, y). 

The mappings R, S, and T are listed explicitly in Appendix B. Based on these 

mappings, we construct two mapping U ∈ F (3, 6, 8) and V ∈ F (3, 7, 9) where U is 
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obtained by combining R with S, and V is obtained by combining R with T, 

respectively. 

 

Construction 4.3 Construction of U ∈ F (3, 6, 8).  

Let x ∈ 6
3Z  and let 

α = (α1, α2, α3, α4, α5) = R(x1, x2, x3), 

β = (β1, β2, β3, β4, β5) = S(x4, x5, x6) + (3, 3, 3, 3, 3). 

Define η = (η1, η2, … , η8) as follows. 

ηi = β5  if 1 ≤ i ≤ 4 and   αi = 5 

ηi = αi  if 1 ≤ i ≤ 4 and   αi ≠ 5, 

ηi = α5  if 5 ≤ i ≤ 8 and   βi –4 = 4, 

ηi = βi– 4  if 5 ≤ i ≤ 8 and   βi –4 ≠ 4. 

In η, swap 1 and 7 and also swap 5 and 8, and let the resulting array be denoted 

by σ. Then define U(x) = σ. 

 

Construction 4.4 Construction of V ∈ F (3, 7, 9). 

Let x ∈ 7
3Z  and let 

λ = (λ1, λ2, λ3, λ4, λ5) = R(x1, x2, x3), 

θ = (θ1, θ2, θ3, θ4, θ5, θ6) = T(x4, x5, x6, x7) + (3, 3, 3, 3, 3, 3). 

Define µ = (µ1, µ2, … , µ9) as follows: 

µi = θ6  if 1 ≤ i ≤ 4 and   λi = 5 

µi = λi  if 1 ≤ i ≤ 4 and   λi ≠ 5, 

µi = λ5  if 5 ≤ i ≤ 9 and   θi – 4 = 4, 

µi = θi – 4  if 5 ≤ i ≤ 9 and   θi – 4 ≠ 4. 

In µ, swap 2 and 5, and let the resulting array be denoted by τ. Then define 

V(x) = τ. 
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In order to help the reader understand the constructions, we give alternative 

algorithmic descriptions for Constructions 4.3 and 4.4 in Tables 4.15 and 4.16, 

respectively. 

 

 

 

 

Table 4.15  An algorithmic description of the construction of U ∈ F (3, 6, 8). 

Combining algorithm for U ∈ F (3, 6, 8) 

Input: x = (x1, x2, … , x6) ∈ 6
3Z  

Output: (σ1, σ2, … , σ8) = U(x1, x2, … , x6) 

Begin 

1. α : (α1, α2, … , α5) ← R(x1, x2, x3); 

2. (φ1, φ2, … , φ5) ← S(x4, x5, x6); 

3. β : (β1, β2, … , β5) ← (φ1 + 3, φ2 + 3, φ3 + 3, φ4 + 3, φ5 + 3); 

4. i ← β–1(4); 

5. j ← α–1(5); 

6. βi ← α5; 

7. αj ← β5; 

8. η : (η1, η2, … , η8) ← (α1, α2, α3, α4, β1, β2, β3, β4); 

9. i ← η–1(1); 

10. j ← η–1(5); 

11. k ← η–1(7); 

12. l ← η–1(8); 

13. swap (ηi, ηk); 

14. swap (ηj, ηl); 

15. σ : (σ1, σ2, … , σ8) ← (η1, η2, … , η8); 

End 
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Table 4.16  An algorithmic description of the construction of V ∈ F (3, 7, 9). 

Combining algorithm for V ∈ F (3, 7, 9) 

Input: x = (x1, x2, … , x7) ∈ 7
3Z  

Output: (τ1, τ1, … , τ9) = V(x1, x2, … , x7) 

Begin 

1. λ : (λ1, λ2, … , λ5) ← R(x1, x2, x3); 

2. (φ1, φ2, … , φ6) ← T(x4, x5, x6, x7); 

3. θ : (θ1, θ2, … , θ6) ← (φ1 + 3, φ2 + 3, φ3 + 3, φ4 + 3, φ5 + 3, φ6 + 3); 

4. i ← θ–1(4); 

5. j ← λ–1(5); 

6. θi ← λ5; 

7. λj ← θ6; 

8. µ : (µ1, µ2, … , µ9) ← (λ1, λ2, λ3, λ4, θ1, θ2, θ3, θ4, θ5); 

9. i ← µ–1(2); 

10. j ← µ–1(5); 

11. swap (µi, µj); 

12. τ : (τ1, τ2, … , τ9) ← (µ1, µ2, … , µ9) 

End 

 

 

 

Example 4.4 Let R(0, 1, 0) = (1, 2, 4, 5, 3) and S(1, 0, 2) = (1, 2, 3, 5, 4). Then  

α = (1, 2, 4, 5, 3), 

β = (4, 5, 6, 8, 7), 

η = (1, 2, 4, 7, 3, 5, 6, 8), and 

U(0, 1, 0, 1, 0, 2) = (7, 2, 4, 1, 3, 8, 6, 5). 
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Example 4.5 Let R(0, 1, 0) = (1, 2, 4, 5, 3) and T(1, 0, 2, 2) = (4, 2, 1, 6, 5, 3). Then  

λ = (1, 2, 4, 5, 3), 

θ = (4, 2, 1, 6, 5, 3), 

µ = (1, 2, 4, 6, 7, 5, 3, 9, 8), and 

V(0, 1, 0, 1, 0, 2, 2) = (1, 5, 4, 6, 7, 2, 3, 9, 8). 

 

 

The intermediate mappings U and V have the following properties which are 

important to the construction of the initial mapping f ∈ P (3, 13, 13). 

 

Lemma 4.4  

i) For every x ∈ 6
3Z , 7 ∈ {U(x)1, U(x)2, U(x)3}, 

ii) For every x ∈ 6
3Z , 8 ∈ {U(x)5, U(x)6, U(x)7}, 

iii) For every distinct x, y ∈ 6
3Z , dH ( }8,4{\)(xU , }8,4{\)( yU ) ≥ dH (x, y), 

Proof. We first show that σ ∈ S8. We have α ∈ S5 and β is a permutation of (4, 5, 6, 

7, 8). In particular, 4 and 5 appear both in α and β. The effect of the first line in the 

definition of η is to remove another element (β5) into the position where α has a 5. 

Similarly, the third line overwrites the 4 in β. Note that α5 ≠ 5 and β5 ≠ 4. The 

definition of η is then the concatenation of the four first (overwritten) elements of α 

and the four first (overwritten) elements of β. Therefore, η contains no duplicate 

elements, that is, η ∈ S8. And so σ ∈ S8.  

The element 1 in η must be in any one of the first three positions, coming from 

α, since according to Construction 4.3 

ηi = αi if 1 ≤ i ≤ 4 and αi ≠ 5, 

and the fact that 1 ∈ {α1, α2, α3}. 

Similarly, the element 5 in η must be in either one of the positions 5, 6, or 7, 



Chapter 4  DPMs from Ternary Vectors 63

coming from β, since  

ηi = βi– 4 if 5 ≤ i ≤ 8 and βi –4 ≠ 4, 

and the fact that 5 ∈ {β1, β2, β3}. 

Since σ is obtained by swapping 1 and 7 as well as swapping 5 and 8 in η, we 

have 7 ∈ {σ1, σ2, σ3} and 8 ∈ {σ5, σ6, σ7}. Thus, Conditions i) and ii) are proved. 

Finally, let x = (xL, xR) and y = (yL, yR) where xL, xR, yL, yR ∈ 3
3Z . Let the arrays 

corresponding to y be denoted by α’, β’, η’, and σ’. By assumption, 

dH (x, y) = dH (xL, yL) + dH (xR, yR) 

≤ dH (α \{4,5}, α’\{4,5}) + dH (β \{4,5}, β’\{4,5}). (4.7) 

For 1 ≤ i ≤ 3 we have 

dH (αi, α’i) ≤ dH (ηi, η’i).  (4.8) 

If αi = α’i this is obvious. Otherwise, we may assume without loss of generality that  

α’i < αi and we must show that ηi ≠ η’i . If αi < 5, then 

η’i = α’i < αi = ηi . 

If αi = 5, then 

η’i = α’i < 5 and ηi = β5 ≥ 5. 

This completes the proof of (4.8). A similar argument shows that for 5 ≤ i ≤ 7 we 

have 

dH (βi– 4, β’i–4) ≤ dH (ηi, η’i). (4.9) 

and that for 1 ≤ i ≤ 8 we have 

dH (ηi, η’i) ≤ dH (σi, σ’i). (4.10) 

Combining (4.7) – (4.10), we get 
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dH (x, y) ≤ dH (α \{4,5}, α’\{4,5}) + dH (β \{4,5}, β’\{4,5}) 

≤ dH (η \{4,8}, η’\{4,8}) ≤ dH (σ \{4,8}, σ’\{4,8}). 

Hence, Condition iii) is proved.   

 

Lemma 4.5  

i) For every x ∈ 7
3Z , 1 ∈ {V(x)1, V(x)2, V(x)3}, 

ii) For every x ∈ 7
3Z , 2 ∈ {V(x)5, V(x)6, V(x)7}, 

iii) For every distinct x, y ∈ 7
3Z , dH ( }9,4{\)(xV , }9,4{\)( yV ) ≥ dH (x, y), 

Proof. We first show that τ ∈ S9. We have λ ∈ S5 and θ  is a permutation of (4, 5, 6, 7, 

8, 9). In particular, 4 and 5 appear both in λ and θ. The effect of the first line in the 

definition of µ is to remove another elements (θ6) into the position where λ has a 5. 

Similarly, the third line overwrites the 4 in θ. Note that λ5 ≠ 5 and θ6 ≠ 4. The 

definition of µ is then the concatenation of the four first (overwritten) elements of λ 

and the five first (overwritten) elements of θ. Therefore, µ contains no duplicate 

elements, that is, µ ∈ S9. And so τ ∈ S9. 

The element 1 in µ must be in any one of the first three positions, coming from 

λ, since according to Construction 4.4 

µi = λi if 1 ≤ i ≤ 4 and λi ≠ 5, 

and the fact that 1 ∈ {λ1, λ2, λ3}. 

Similarly, the element 5 in µ must be in either one of the positions 5, 6, or 7, 

coming from θ, since  

µi = θi– 4 if 5 ≤ i ≤ 9 and θi – 4 ≠ 4, 

and the fact that 5 ∈ {θ1, θ2, θ3}. 

Since τ is obtained by swapping 2 and 5 in µ, we have 1 ∈ {τ1, τ2, τ3} and 



Chapter 4  DPMs from Ternary Vectors 65

2 ∈ {τ5, τ6, τ7}. Thus, Condition i) and ii) are proved. 

Finally, let x = (xL, xR) and y = (yL, yR) where xL, yL ∈ 3
3Z  and xR, yR ∈ 4

3Z . Let 

the arrays corresponding to y be denoted by λ’, θ’, µ’, and τ’. By assumption, 

dH (x, y) = dH (xL, yL) + dH (xR, yR) 

≤ dH (λ \{4,5}, λ’\{4,5}) + dH (θ \{5,6}, θ’\{5,6}). (4.11) 

For 1 ≤ i ≤ 3 we have 

dH (λi, λ’i) ≤ dH (µi, µ’i).  (4.12) 

If λi = λ’i this is obvious. Otherwise, we may assume without loss of generality that  

λ’i < λi and we must show that µi ≠ µ’i . If λi < 5, then 

µ’i = λ’i < λi = µi . 

If λi = 5, then 

µ’i = λ’i < 5 and µi = θ6 ≥ 5. 

This completes the proof of (4.12). A similar argument shows that for 5 ≤ i ≤ 8 we 

have 

dH (θi– 4, θ’i–4) ≤ dH (µi, µ’i). (4.13) 

and that for 1 ≤ i ≤ 9 we have 

dH (µi, µ’i) ≤ dH (τi, τ’i). (4.14) 

Combining (4.11) – (4.14), we get 

dH (x, y) ≤ dH (λ \{4,5}, λ’\{4,5}) + dH (θ \{5,6}, θ’\{5,6}) 

≤ dH (µ \{4,9}, µ’\{4,9}) ≤ dH (τ \{4,9}, τ’\{4,9}). 

Hence, Condition iii) is proved.   

 

Now it is time for us to see the construction of the initial mapping 
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f ∈ P (3, 13, 13). The construction is described in Construction 4.5. An alternative 

algorithmic description is given in Table 4.17 in order to help the reader understand 

the construction. 

 

Construction 4.5 Construction of f ∈ P (3, 13, 13). 

Let x ∈ 13
3Z  and x = (xL, xR) where xL ∈ 6

3Z  and xR ∈ 7
3Z . In addition, let 

ϕ = (ϕ1, ϕ2, … , ϕ8) = U(xL), 

γ = (γ1, γ2, … , γ9) = V(xR) + (4, 4, … , 4). 

Define ρ = (ρ1, ρ2, … , ρ13) as follows. 

ρi = γ4  if 1 ≤ i ≤ 3 and   ϕi = 7, 

ρi = ϕi  if 1 ≤ i ≤ 3 and   ϕi ≠ 7, 

ρi = γ9  if 4 ≤ i ≤ 6 and   ϕi+1 = 8, 

ρi = ϕi+1  if 4 ≤ i ≤ 6 and   ϕi+1 ≠ 8, 

ρi = ϕ4  if 7 ≤ i ≤ 9 and   γi – 6 = 5, 

ρi = γi – 6  if 7 ≤ i ≤ 9 and   γi – 6 ≠ 5, 

ρi = ϕ8  if 10 ≤ i ≤ 13 and   γi – 5 = 6, 

ρi = γi – 5  if 10 ≤ i ≤ 13 and   γi – 5 ≠ 6. 

In ρ, swap 1 and 9 and also swap 2 and 10, and let the resulting array be 

denoted by π. Then define 

f (x) = π. 

 

Example 4.6 Let  

U(0, 1, 0, 1, 0, 2) = (7, 2, 4, 1, 3, 8, 6, 5), and 

V(0, 1, 0, 1, 0, 2, 2)  = (1, 5, 4, 6, 7, 2, 3, 9, 8).  

Then  

ϕ = (7, 2, 4, 1, 3, 8, 6, 5), 

γ = (5, 9, 8, 10, 11, 6, 7, 13, 12), 
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ρ = (10, 2, 4, 3, 12, 6, 1, 9, 8, 11, 5, 7, 13), and 

f (0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 2) = (2, 10, 4, 3, 12, 6, 9, 1, 8, 11, 5, 7, 13). 

 

 

Table 4.17  An algorithmic description of the construction of f ∈ P (3, 13, 13). 

Combining algorithm for f ∈ P (3, 13, 13) 

Input: x = (x1, x2, … , x13) ∈ 13
3Z  

Output: (π1, π2, … , π13) = f (x1, x2, … , x13) 

Begin 

1. ϕ : (ϕ1, ϕ2, … , ϕ8) ← U(x1, x2, … , x6); 

2. (φ1, φ2, … , φ9) ← V(x7, x8, … , x13); 

3. γ : (γ1, γ2, … , γ9) ← (φ1 + 4, φ2 + 4, … , φ9 + 4); 

4. i ← γ–1(5); 

5. j ← γ–1(6); 

6. k ← ϕ–1(7); 

7. l ← ϕ–1(8); 

8. γi ← ϕ4; 

9. γj ← ϕ8; 

10. ϕk ← ρ4; 

11. ϕl ← ρ9; 

12. ρ : (ρ1, ρ2, … , ρ13) ← (ϕ1, ϕ2, ϕ3, ϕ5, ϕ6, ϕ7, γ1, γ2, γ3, γ5, γ6, γ7, γ8); 

13. i ← ρ–1(1); 

14. j ← ρ–1(2); 

15. k ← ρ–1(9); 

16. l ← ρ–1(10); 

17. swap (ρi, ρk); 

18. swap (ρj, ρl); 

19. π : (π1, π1, … , π13) ← (ρ1, ρ2, … , ρ13); 

End 
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Now we show that f  has the started property. 

 

Lemma 4.6 f ∈ P (3, 13, 13) and f (x)13 ∉ {9, 10} for every x ∈ 13
3Z . 

Proof. We first show that π ∈ S13. We have ϕ ∈ S8 and γ is a permutation of 

(5, 6, … , 13). In particular, 5, 6, 7, and 8 appear in both ϕ and γ. The effect of the 

first line in the definition of ρ is to remove another elements (γ4) into the position 

where ϕ has a 7. Similarly, the third line overwrites the 8 in ϕ, the fifth line 

overwrites the 5 in γ, and the seventh line overwrites the 6 in γ. The definition of ρ is 

then the concatenation of the elements ϕ1, ϕ2, ϕ3, ϕ5, ϕ6, and ϕ7 (overwritten) of ϕ as 

well as the elements γ1, γ2, γ3, γ5, γ6, γ7, and γ8 (overwritten) of γ. Therefore, ρ 

contains no duplicate elements, that is, ρ ∈ S13. And so π ∈ S13. 

The element 1 in ρ must be either in one of the first six positions, coming from 

ϕ, or in one of the positions 7, 8, … , or 12 (if ϕ4 = 1 or ϕ8 = 1). Similarly, the 

element 2 must be in one of the first twelve positions of ρ. Therefore, both 9 and 10 

must be among the first twelve positions of π, that is, π13 ∉ {9, 10}. 

Finally, we must show that f  is distance preserving. Let x ≠ x’, and let the arrays 

corresponding to x’ be denoted by ϕ’, γ’, ρ’, and π’. By assumption, 

dH (x, x’) = dH (xL, x’L) + dH (xR, x’R) 

≤ dH (ϕ \{4,8}, ϕ’\{4,8}) + dH (γ \{4,9}, γ’\{4,9}). (4.15) 

For 1 ≤ i ≤ 6 we have 

dH (ϕ i, ϕ’i) ≤ dH (ρ i, ρ’i)  if 1 ≤ i ≤ 3, and (4.16) 

dH (ϕ i+1, ϕ’i+1) ≤ dH (ρ i, ρ’i)  if 4 ≤ i ≤ 6. (4.17) 

If ϕ i = ϕ’i this is obvious. Otherwise, we may assume without loss of generality that 

ϕ’i < ϕ i and we must show that ρ i ≠ ρ’i . If ϕ i ≤ 6, then 

ρ’i = ϕ’i < ϕ i = ρ i    if 1 ≤ i ≤ 3, or 

ρ’i = ϕ’i+1 < ϕ i+1 = ρ i   if 4 ≤ i ≤ 6. 
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If ϕ i = 7, then 

ρ i = γ4 ≥ 7  , and 

ρ’i = ϕ’i ≤ 6  if 1 ≤ i ≤ 3, or 

ρ’i = ϕ’i+1 < 6  if 4 ≤ i ≤ 6. 

If ϕ i = 8, then 4 ≤ i ≤ 6 and so ϕ’i ≠ 7. Hence 

ρ i = γ9 ≥ 7  , and 

ρ’i = ϕ’i ≤ 6  if 1 ≤ i ≤ 3, or 

ρ’i = ϕ’i+1 < 6  if 4 ≤ i ≤ 6. 

This completes that proof of (4.16) and (4.17). A similar arguments show that for 

7 ≤ i ≤ 13 we have 

dH (γi–6, γ’i–6) ≤ dH (ρ i, ρ’i)  if 7 ≤ i ≤ 9, and (4.18) 

dH (γi–5, γ’i–5) ≤ dH (ρ i, ρ’i)  if 10 ≤ i ≤ 13. (4.19) 

and that for 1 ≤ i ≤ 13 we have 

dH (ρ i, ρ’i) ≤ dH (π i, π’i). (4.20) 

Combining (4.15) – (4.20), we get 

dH (x, x’) ≤ dH (ϕ \{4,8}, ϕ’\{4,8}) + dH (γ \{4,9}, γ’\{4,9}) 

≤ dH (ρ , ρ’) ≤ dH (π , π’). 

Hence, f  is distance preserving.   

 

Table 4.21 lists the distance expansion matrix of f . In order to fit the table into a 

page, we split the distance expansion matrix into two parts from left to right. With f  

as an initial mapping, we can prove the following theorem with Theorem 4.1. 

 

Theorem 4.5: P (3, n, n) is not empty for n ≥ 13. 
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4.5 Application to Permutation Arrays 

Chang et al. in [17] showed that for n ≥ 4 and 2 ≤ D ≤ n, P(N, D) ≥ A2(n, D – 1). 

Chang in [13] further improved the bound to P(N, D) ≥ A2(N, D – δ ) for n ≥ nδ and 

δ + 1 ≤ D ≤ n where δ ≥ 2 and nδ is a positive integer determined by δ, e.g., nδ ≥ 16 

for δ  = 2. Here we give other lower bounds. 

 

Theorem 4.6 Let nk be the least integer such that for n ≥ nk, I (3, n, N) is not empty, 

then for n ≥ nk and 2 ≤ D ≤ n, P(N, D) ≥ A3(n, D – 1). 

Proof. Let A be a code alphabet of size 3 and C be a (n, D – 1) code over A. Let 

f ∈ I (3, n, N). It is obvious that f (C) is an (N, D)-PA. Therefore,  

P(N, D) ≥ A3(n, D – 1).  

 

Theorem 4.7 Let nk be the least integer such that for n ≥ nk, P (3, n, N) is not empty. 

Then for n ≥ nk and 2 ≤ D ≤ n, P(N, D) ≥ A3(n, D). 

Proof. Similar to Theorem 4.6.  

 

We have shown that I (3, n, n + 2) is not empty for n ≥ 1, P (3, n, n + 1) is not 

empty for n ≥ 9, and P (3, n, n) is not empty for n ≥ 13. With these results, we can 

prove the following corollaries. 

 

Corollary 4.1 For N ≥ 3 and 2 ≤ D ≤ N, P(N, D) ≥ A3(N – 2, D – 1). 

 

Corollary 4.2 For N ≥ 10 and 2 ≤ D ≤ N, P(N, D) ≥ A3(N – 1, D). 

 

Corollary 4.3 For N ≥ 13 and 2 ≤ D ≤ N, P(N, D) ≥ A3(N, D). 
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Bounds on A2(n, d) and A3(n, d) have been studied by many researchers, for 

example, [4] and [35, Ch. 5]. Tables 4.19 and 4.20 list the best known lower bounds 

on A2(n, d) and A3(n, d) for 8 ≤ n ≤ 16, respectively. In general, the lower bound on 

P(N, D) obtained from use of ternary codes are better than those obtained from 

binary codes. For example, using Chang’s bound [13], we get P(16, 5) ≥ A2(16, 3) ≥ 

2720 whereas Corollary 4.4 gives P(16, 5) ≥ A3(16, 5) ≥ 19683. Similarly, we get 

P(16, 9) ≥ A2(16, 7) ≥ 36, and P(16, 9)≥ A3(16, 9) ≥ 243. A more complete 

comparison of the lower bound on P(16, D) for 5 ≤ D ≤ 12 is listed in Table 4.18. 

The asterisk behind a number indicates that this number is the largest among all 

items. 

 

Remark. After we submitted our paper, Te-Tsung et al. also proposed a construction 

of DPMs from ternary vectors [34]. Their construction method is different from ours. 

They first constructed ternary DPMs A8n ∈ P (3, 8n, 8n) for n ≥ 2 by an algorithm, 

and then constructed ternary DPMs of length 8n + 1,  8n + 2, ... , and 8n + 7 from 

the mapping A8n. As a result, their DPMs start from n = 16, which is worse than ours. 

 

 

Table 4.18  Comparison of the lower bound on P(16, D). 

Lin et al. [19] 
D 

Chang et al. 
[17] 

Huang et al. 
[37] 

Chang 
[13] Corollary 4.1 Corollary 4.2 Corollary 4.3

5 2048 8192 2720 24057* 6561 19683 
6 256 1024 2048 6561* 2187 6561* 
7 256 512 256 2187* 729 729 
8 36 128 256 243 243 297* 
9 32 64 36 81 81 243* 
10 6 16 32 31 27 54* 
11 4 8 6 12 10 18* 
12 2 4 4 6 6 9* 
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Table 4.19  Best known lower bounds on A2(n, d) for 8 ≤ n ≤ 16. 

8 20         

9 40 20        

10 72 40 12       

11 144 72 24 12      

12 256 144 32 24 4     

13 512 256 64 32 8 4    

14 1024 512 128 64 16 8 4   

15 2048 1024 256 128 32 16 4 4   
16 2720 2048 256 256 36 32 6 4 2 
n 

d 3 4 5 6 7 8 9 10 11 
 

 

Table 4.20  Best known lower bounds on A3(n, d) for 8 ≤ n ≤ 16. 

8 243         
9 729 243        
10 2187 729 ---       
11 6561 1458 --- ---      
12 --- 4374 729 --- 54     
13 --- 8019 2187 729 105 42    
14 118098 24057 6561 2187 243 81 31   
15 354294 72171 6561 2187 729 243 81 27  
16 1062882 216513 19683 6561 729 297 243 54 18 
n 

d 3 4 5 6 7 8 9 10 11 
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Table 4.21  Distance expansion matrix of f ∈ P (3, 13, 13). 

 

0 7499223 7735419 3857868 3267378 0 0 
 5412825 13677741 54993657 77247942 56888015 30417032 
  10747809 77580494 211825026 421803519 501911682
   36626024 242982187 846887509 1769590178
    105263378 773056332 2824925916
     285879216 2265593524
      753257142
       
       
       
       
       
       

(a) The left part 
 

0 0 0 0 0 0 
8677294 1279370 120512 0 0 0 

364081528 174922222 52509696 8102560 420976 0 
2483941294 2139969740 1151920836 373881088 67888104 5840600 
6385449644 9260453002 8042859708 4127290924 1166653528 144346784 
8520370780 19387502504 26647039408 20610803256 8407198472 1423077416 
6071844564 22632413854 48294677760 56644950656 33095930128 7601855048 
1859300480 14543002936 50842947800 91894856296 78620491736 24881794480

 4110998704 29891105728 89126735840 116260882432 52435159216
  7789174080 48592527648 105417407040 71660796768
   11696151456 54106672320 61538942880
    12183187968 30264067584
     6530347008 

(b) The right part 
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Chapter 5 

Conclusions 
 

 

5.1 Summary 

In this dissertation we have proposed several constructions of DPMs and DIMs, 

either from binary vectors or ternary vectors. In Chapter 3, non-recursive 

constructions of binary DIMs of odd and even length were proposed. These 

constructions are based on simple compositions of permutations of an ordered set, 

called basic construction set. We have proved that in some conditions the mapping 

“generated” by a basic construction set is distance increasing. As the numerical 

results in Section 3.3 showed, our new DIMs have sound distance expansion 

distributions for odd length. 

In Chapter 4, we proposed a general recursive construction method that 

constructs DPMs or DIMs from ternary vectors and then, based on this method, we 

proposed three constructions of ternary DPMs or DIMs. The first one constructs 

ternary n_(n+2)-DIMs for n ≥ 3, the second one constructs ternary n_(n+1)-DPMs 

for n ≥ 9, and the third one constructs ternary n-DPMs for n ≥ 13. This is the first 

time that constructions of DPMs or DIMs from ternary vectors are proposed in the 

literature. As we have showed, the proposed constructions improve the lower bounds 
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on P(N, D). 

 

5.2 Future Works 

Distance-preserving mappings are well studied in the past few years, especially 

binary distance-preserving mappings. However, there are still a lot of topics worth 

exploring.  

 An initial mapping for the construction of ternary n_(n+1)-DIMs.  

If a DIM from mZ3  to 1+mS  can be found, then ternary n_(n+1)-DIMs for all 

n ≥ m can be constructed by using Construction E in Section 4.1. 

 Constructions of ternary n-DIMs.  

Construction E can only construct ternary n-DPMs even though the initial 

mapping is distance increasing. Thus, a new construction method must be 

found. 

 A non-recursive systematic construction method of (n, δ)-DIMs from binary or 

ternary vectors. 

A mapping that increases more distance than that of input vectors may be more 

interesting for applications. Although Chang has proposed constructions of 

binary (n, δ)-DIMs for δ ≥ 2 [13], the constructions are recursive and are unable 

to construct binary (n, δ)-DIMs for all n > nδ  where nδ is the smallest positive 

integer nδ such that a binary (n, δ)-DIM could be constructed for any n ≥ nδ .The 

concept can also be applied to ternary DIMs. No ternary (n, δ)-DIM has been 

found for δ ≥ 1. 

 A tighter bound on the smallest positive integer nδ such that a binary (n, δ)-DIM 

exists for all n > nδ . 

For any δ ≥ 2, Chang provided a bound on the smallest positive integer nδ by 

which a binary (n, δ)-DIM can be constructed for all n > nδ [13]. It seems that 
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the bound can be further improved. 

 A general construction method of DPMs or DIMs from n
qZ  to SN. 

DPMs and DIMs from n
qZ  to SN are useful in converting a q-ary code, e.g. 

Reed-Solomon code, to a permutation array. The constructions of DPMs or 

DIMs proposed so far are from binary or ternary vectors and can not be 

generalized to q-ary vectors for all q ≥ 2. It is a great contribution if one can 

propose a general construction of DPMs or DIMs from q-ary vectors for all 

q ≥ 2. If the construction is recursive, an initial mapping should also be 

provided. 

 Construct DPMs or DIMs from a subset of vectors. 

In present DPMs and DIMs, all vectors are considered. The distance between 

each pair of vectors in the vector space should be preserved or even increased. 

However, this is somewhat overkill. In constructing permutation arrays from 

distance-preserving mappings, only a subset of vectors, which form a (n, d) 

code, is mapped to permutations, whereas the other vectors are irrelevant. 

Therefore, only the subset of vectors should be either distance preserving or 

distance increasing. 
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Appendix A  

 

 

Mapping table of f5 ∈ I (2, 5, 5). 

x f5(x) x f5(x) 
(0,0,0,0,0) 
(0,0,0,0,1) 
(0,0,0,1,0) 
(0,0,0,1,1) 
(0,0,1,0,0) 
(0,0,1,0,1) 
(0,0,1,1,0) 
(0,0,1,1,1) 
(0,1,0,0,0) 
(0,1,0,0,1) 
(0,1,0,1,0) 
(0,1,0,1,1) 
(0,1,1,0,0) 
(0,1,1,0,1) 
(0,1,1,1,0) 
(0,1,1,1,1) 

(1,2,3,4,5)
(1,2,3,5,4)
(1,3,2,4,5)
(1,3,2,5,4)
(3,2,5,4,1)
(3,2,5,1,4)
(3,5,2,4,1)
(3,5,2,1,4)
(1,2,4,3,5)
(1,2,4,5,3)
(1,4,2,3,5)
(1,4,2,5,3)
(4,2,5,3,1)
(4,2,5,1,3)
(4,5,2,3,1)
(4,5,2,1,3)

(1,0,0,0,0)
(1,0,0,0,1)
(1,0,0,1,0)
(1,0,0,1,1)
(1,0,1,0,0)
(1,0,1,0,1)
(1,0,1,1,0)
(1,0,1,1,1)
(1,1,0,0,0)
(1,1,0,0,1)
(1,1,0,1,0)
(1,1,0,1,1)
(1,1,1,0,0)
(1,1,1,0,1)
(1,1,1,1,0)
(1,1,1,1,1)

(2,1,3,4,5) 
(2,1,3,5,4) 
(2,3,1,4,5) 
(2,3,1,5,4) 
(3,1,5,4,2) 
(3,1,5,2,4) 
(3,5,1,4,2) 
(3,5,1,2,4) 
(2,1,4,3,5) 
(2,1,4,5,3) 
(2,4,1,3,5) 
(2,4,1,5,3) 
(4,1,5,3,2) 
(4,1,5,2,3) 
(4,5,1,3,2) 
(4,5,1,2,3) 
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Mapping table of f6 ∈ I (2, 6, 6). 

x f6(x) x f6(x) 
(0,0,0,0,0,0) 
(0,0,0,0,0,1) 
(0,0,0,0,1,0) 
(0,0,0,0,1,1) 
(0,0,0,1,0,0) 
(0,0,0,1,0,1) 
(0,0,0,1,1,0) 
(0,0,0,1,1,1) 
(0,0,1,0,0,0) 
(0,0,1,0,0,1) 
(0,0,1,0,1,0) 
(0,0,1,0,1,1) 
(0,0,1,1,0,0) 
(0,0,1,1,0,1) 
(0,0,1,1,1,0) 
(0,0,1,1,1,1) 
(0,1,0,0,0,0) 
(0,1,0,0,0,1) 
(0,1,0,0,1,0) 
(0,1,0,0,1,1) 
(0,1,0,1,0,0) 
(0,1,0,1,0,1) 
(0,1,0,1,1,0) 
(0,1,0,1,1,1) 
(0,1,1,0,0,0) 
(0,1,1,0,0,1) 
(0,1,1,0,1,0) 
(0,1,1,0,1,1) 
(0,1,1,1,0,0) 
(0,1,1,1,0,1) 
(0,1,1,1,1,0) 
(0,1,1,1,1,1) 

(1,2,3,4,5,6)
(6,2,3,4,5,1)
(1,2,3,5,4,6)
(6,2,3,5,4,1)
(1,3,2,4,5,6)
(6,3,2,4,5,1)
(1,3,2,5,4,6)
(6,3,2,5,4,1)
(1,2,3,4,6,5)
(5,2,3,4,6,1)
(1,2,3,6,4,5)
(5,2,3,6,4,1)
(1,3,2,4,6,5)
(5,3,2,4,6,1)
(1,3,2,6,4,5)
(5,3,2,6,4,1)
(1,2,4,3,5,6)
(6,2,4,3,5,1)
(1,2,4,5,3,6)
(6,2,4,5,3,1)
(1,4,2,3,5,6)
(6,4,2,3,5,1)
(1,4,2,5,3,6)
(6,4,2,5,3,1)
(1,2,4,3,6,5)
(5,2,4,3,6,1)
(1,2,4,6,3,5)
(5,2,4,6,3,1)
(1,4,2,3,6,5)
(5,4,2,3,6,1)
(1,4,2,6,3,5)
(5,4,2,6,3,1)

(1,0,0,0,0,0)
(1,0,0,0,0,1)
(1,0,0,0,1,0)
(1,0,0,0,1,1)
(1,0,0,1,0,0)
(1,0,0,1,0,1)
(1,0,0,1,1,0)
(1,0,0,1,1,1)
(1,0,1,0,0,0)
(1,0,1,0,0,1)
(1,0,1,0,1,0)
(1,0,1,0,1,1)
(1,0,1,1,0,0)
(1,0,1,1,0,1)
(1,0,1,1,1,0)
(1,0,1,1,1,1)
(1,1,0,0,0,0)
(1,1,0,0,0,1)
(1,1,0,0,1,0)
(1,1,0,0,1,1)
(1,1,0,1,0,0)
(1,1,0,1,0,1)
(1,1,0,1,1,0)
(1,1,0,1,1,1)
(1,1,1,0,0,0)
(1,1,1,0,0,1)
(1,1,1,0,1,0)
(1,1,1,0,1,1)
(1,1,1,1,0,0)
(1,1,1,1,0,1)
(1,1,1,1,1,0)
(1,1,1,1,1,1)

(2,1,3,4,5,6) 
(6,1,3,4,5,2) 
(2,1,3,5,4,6) 
(6,1,3,5,4,2) 
(2,3,1,4,5,6) 
(6,3,1,4,5,2) 
(2,3,1,5,4,6) 
(6,3,1,5,4,2) 
(2,1,3,4,6,5) 
(5,1,3,4,6,2) 
(2,1,3,6,4,5) 
(5,1,3,6,4,2) 
(2,3,1,4,6,5) 
(5,3,1,4,6,2) 
(2,3,1,6,4,5) 
(5,3,1,6,4,2) 
(2,1,4,3,5,6) 
(6,1,4,3,5,2) 
(2,1,4,5,3,6) 
(6,1,4,5,3,2) 
(2,4,1,3,5,6) 
(6,4,1,3,5,2) 
(2,4,1,5,3,6) 
(6,4,1,5,3,2) 
(2,1,4,3,6,5) 
(5,1,4,3,6,2) 
(2,1,4,6,3,5) 
(5,1,4,6,3,2) 
(2,4,1,3,6,5) 
(5,4,1,3,6,2) 
(2,4,1,6,3,5) 
(5,4,1,6,3,2) 
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Mapping table of f7 ∈ I (2, 7, 7): 

x f7(x) x f7(x) 
(0,0,0,0,0,0,0) 
(0,0,0,0,0,0,1) 
(0,0,0,0,0,1,0) 
(0,0,0,0,0,1,1) 
(0,0,0,0,1,0,0) 
(0,0,0,0,1,0,1) 
(0,0,0,0,1,1,0) 
(0,0,0,0,1,1,1) 
(0,0,0,1,0,0,0) 
(0,0,0,1,0,0,1) 
(0,0,0,1,0,1,0) 
(0,0,0,1,0,1,1) 
(0,0,0,1,1,0,0) 
(0,0,0,1,1,0,1) 
(0,0,0,1,1,1,0) 
(0,0,0,1,1,1,1) 
(0,0,1,0,0,0,0) 
(0,0,1,0,0,0,1) 
(0,0,1,0,0,1,0) 
(0,0,1,0,0,1,1) 
(0,0,1,0,1,0,0) 
(0,0,1,0,1,0,1) 
(0,0,1,0,1,1,0) 
(0,0,1,0,1,1,1) 
(0,0,1,1,0,0,0) 
(0,0,1,1,0,0,1) 
(0,0,1,1,0,1,0) 
(0,0,1,1,0,1,1) 
(0,0,1,1,1,0,0) 
(0,0,1,1,1,0,1) 
(0,0,1,1,1,1,0) 
(0,0,1,1,1,1,1) 

(1,2,3,4,5,6,7)
(1,2,3,4,5,7,6)
(1,2,3,5,4,6,7)
(1,2,3,5,4,7,6)
(1,3,2,4,5,6,7)
(1,3,2,4,5,7,6)
(1,3,2,5,4,6,7)
(1,3,2,5,4,7,6)
(5,6,3,7,1,2,4)
(5,6,3,7,1,4,2)
(5,6,3,1,7,2,4)
(5,6,3,1,7,4,2)
(5,3,6,7,1,2,4)
(5,3,6,7,1,4,2)
(5,3,6,1,7,2,4)
(5,3,6,1,7,4,2)
(1,2,3,4,6,5,7)
(1,2,3,4,6,7,5)
(1,2,3,6,4,5,7)
(1,2,3,6,4,7,5)
(1,3,2,4,6,5,7)
(1,3,2,4,6,7,5)
(1,3,2,6,4,5,7)
(1,3,2,6,4,7,5)
(6,5,3,7,1,2,4)
(6,5,3,7,1,4,2)
(6,5,3,1,7,2,4)
(6,5,3,1,7,4,2)
(6,3,5,7,1,2,4)
(6,3,5,7,1,4,2)
(6,3,5,1,7,2,4)
(6,3,5,1,7,4,2)

(1,0,0,0,0,0,0)
(1,0,0,0,0,0,1)
(1,0,0,0,0,1,0)
(1,0,0,0,0,1,1)
(1,0,0,0,1,0,0)
(1,0,0,0,1,0,1)
(1,0,0,0,1,1,0)
(1,0,0,0,1,1,1)
(1,0,0,1,0,0,0)
(1,0,0,1,0,0,1)
(1,0,0,1,0,1,0)
(1,0,0,1,0,1,1)
(1,0,0,1,1,0,0)
(1,0,0,1,1,0,1)
(1,0,0,1,1,1,0)
(1,0,0,1,1,1,1)
(1,0,1,0,0,0,0)
(1,0,1,0,0,0,1)
(1,0,1,0,0,1,0)
(1,0,1,0,0,1,1)
(1,0,1,0,1,0,0)
(1,0,1,0,1,0,1)
(1,0,1,0,1,1,0)
(1,0,1,0,1,1,1)
(1,0,1,1,0,0,0)
(1,0,1,1,0,0,1)
(1,0,1,1,0,1,0)
(1,0,1,1,0,1,1)
(1,0,1,1,1,0,0)
(1,0,1,1,1,0,1)
(1,0,1,1,1,1,0)
(1,0,1,1,1,1,1)

(2,1,3,4,5,6,7) 
(2,1,3,4,5,7,6) 
(2,1,3,5,4,6,7) 
(2,1,3,5,4,7,6) 
(2,3,1,4,5,6,7) 
(2,3,1,4,5,7,6) 
(2,3,1,5,4,6,7) 
(2,3,1,5,4,7,6) 
(5,6,3,7,2,1,4) 
(5,6,3,7,2,4,1) 
(5,6,3,2,7,1,4) 
(5,6,3,2,7,4,1) 
(5,3,6,7,2,1,4) 
(5,3,6,7,2,4,1) 
(5,3,6,2,7,1,4) 
(5,3,6,2,7,4,1) 
(2,1,3,4,6,5,7) 
(2,1,3,4,6,7,5) 
(2,1,3,6,4,5,7) 
(2,1,3,6,4,7,5) 
(2,3,1,4,6,5,7) 
(2,3,1,4,6,7,5) 
(2,3,1,6,4,5,7) 
(2,3,1,6,4,7,5) 
(6,5,3,7,2,1,4) 
(6,5,3,7,2,4,1) 
(6,5,3,2,7,1,4) 
(6,5,3,2,7,4,1) 
(6,3,5,7,2,1,4) 
(6,3,5,7,2,4,1) 
(6,3,5,2,7,1,4) 
(6,3,5,2,7,4,1) 
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x f7(x) x f7(x) 
(0,1,0,0,0,0,0) 
(0,1,0,0,0,0,1) 
(0,1,0,0,0,1,0) 
(0,1,0,0,0,1,1) 
(0,1,0,0,1,0,0) 
(0,1,0,0,1,0,1) 
(0,1,0,0,1,1,0) 
(0,1,0,0,1,1,1) 
(0,1,0,1,0,0,0) 
(0,1,0,1,0,0,1) 
(0,1,0,1,0,1,0) 
(0,1,0,1,0,1,1) 
(0,1,0,1,1,0,0) 
(0,1,0,1,1,0,1) 
(0,1,0,1,1,1,0) 
(0,1,0,1,1,1,1) 
(0,1,1,0,0,0,0) 
(0,1,1,0,0,0,1) 
(0,1,1,0,0,1,0) 
(0,1,1,0,0,1,1) 
(0,1,1,0,1,0,0) 
(0,1,1,0,1,0,1) 
(0,1,1,0,1,1,0) 
(0,1,1,0,1,1,1) 
(0,1,1,1,0,0,0) 
(0,1,1,1,0,0,1) 
(0,1,1,1,0,1,0) 
(0,1,1,1,0,1,1) 
(0,1,1,1,1,0,0) 
(0,1,1,1,1,0,1) 
(0,1,1,1,1,1,0) 
(0,1,1,1,1,1,1) 

(1,2,4,3,5,6,7)
(1,2,4,3,5,7,6)
(1,2,4,5,3,6,7)
(1,2,4,5,3,7,6)
(1,4,2,3,5,6,7)
(1,4,2,3,5,7,6)
(1,4,2,5,3,6,7)
(1,4,2,5,3,7,6)
(5,6,4,7,1,2,3)
(5,6,4,7,1,3,2)
(5,6,4,1,7,2,3)
(5,6,4,1,7,3,2)
(5,4,6,7,1,2,3)
(5,4,6,7,1,3,2)
(5,4,6,1,7,2,3)
(5,4,6,1,7,3,2)
(1,2,4,3,6,5,7)
(1,2,4,3,6,7,5)
(1,2,4,6,3,5,7)
(1,2,4,6,3,7,5)
(1,4,2,3,6,5,7)
(1,4,2,3,6,7,5)
(1,4,2,6,3,5,7)
(1,4,2,6,3,7,5)
(6,5,4,7,1,2,3)
(6,5,4,7,1,3,2)
(6,5,4,1,7,2,3)
(6,5,4,1,7,3,2)
(6,4,5,7,1,2,3)
(6,4,5,7,1,3,2)
(6,4,5,1,7,2,3)
(6,4,5,1,7,3,2)

(1,1,0,0,0,0,0)
(1,1,0,0,0,0,1)
(1,1,0,0,0,1,0)
(1,1,0,0,0,1,1)
(1,1,0,0,1,0,0)
(1,1,0,0,1,0,1)
(1,1,0,0,1,1,0)
(1,1,0,0,1,1,1)
(1,1,0,1,0,0,0)
(1,1,0,1,0,0,1)
(1,1,0,1,0,1,0)
(1,1,0,1,0,1,1)
(1,1,0,1,1,0,0)
(1,1,0,1,1,0,1)
(1,1,0,1,1,1,0)
(1,1,0,1,1,1,1)
(1,1,1,0,0,0,0)
(1,1,1,0,0,0,1)
(1,1,1,0,0,1,0)
(1,1,1,0,0,1,1)
(1,1,1,0,1,0,0)
(1,1,1,0,1,0,1)
(1,1,1,0,1,1,0)
(1,1,1,0,1,1,1)
(1,1,1,1,0,0,0)
(1,1,1,1,0,0,1)
(1,1,1,1,0,1,0)
(1,1,1,1,0,1,1)
(1,1,1,1,1,0,0)
(1,1,1,1,1,0,1)
(1,1,1,1,1,1,0)
(1,1,1,1,1,1,1)

(2,1,4,3,5,6,7) 
(2,1,4,3,5,7,6) 
(2,1,4,5,3,6,7) 
(2,1,4,5,3,7,6) 
(2,4,1,3,5,6,7) 
(2,4,1,3,5,7,6) 
(2,4,1,5,3,6,7) 
(2,4,1,5,3,7,6) 
(5,6,4,7,2,1,3) 
(5,6,4,7,2,3,1) 
(5,6,4,2,7,1,3) 
(5,6,4,2,7,3,1) 
(5,4,6,7,2,1,3) 
(5,4,6,7,2,3,1) 
(5,4,6,2,7,1,3) 
(5,4,6,2,7,3,1) 
(2,1,4,3,6,5,7) 
(2,1,4,3,6,7,5) 
(2,1,4,6,3,5,7) 
(2,1,4,6,3,7,5) 
(2,4,1,3,6,5,7) 
(2,4,1,3,6,7,5) 
(2,4,1,6,3,5,7) 
(2,4,1,6,3,7,5) 
(6,5,4,7,2,1,3) 
(6,5,4,7,2,3,1) 
(6,5,4,2,7,1,3) 
(6,5,4,2,7,3,1) 
(6,4,5,7,2,1,3) 
(6,4,5,7,2,3,1) 
(6,4,5,2,7,1,3) 
(6,4,5,2,7,3,1) 
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Mapping table of G ∈ F (3, 5, 7). 

x G(x) x G(x) x G(x) 
(0,0,0,0,0) 
(0,0,0,0,1) 
(0,0,0,0,2) 
(0,0,0,1,0) 
(0,0,0,1,1) 
(0,0,0,1,2) 
(0,0,0,2,0) 
(0,0,0,2,1) 
(0,0,0,2,2) 
(0,0,1,0,0) 
(0,0,1,0,1) 
(0,0,1,0,2) 
(0,0,1,1,0) 
(0,0,1,1,1) 
(0,0,1,1,2) 
(0,0,1,2,0) 
(0,0,1,2,1) 
(0,0,1,2,2) 
(0,0,2,0,0) 
(0,0,2,0,1) 

(6,1,2,7,3,4,5) 
(6,3,2,7,1,5,4) 
(6,3,2,7,4,5,1) 
(6,2,1,7,5,3,4) 
(6,1,2,7,5,3,4) 
(6,3,2,7,5,4,1) 
(6,1,2,7,3,5,4) 
(6,3,1,7,2,5,4) 
(6,3,1,7,4,5,2) 
(6,2,5,7,1,4,3) 
(6,2,5,7,3,4,1) 
(6,3,5,7,4,1,2) 
(6,2,5,7,1,3,4) 
(6,5,1,7,2,3,4) 
(6,2,5,7,4,3,1) 
(6,4,5,7,1,3,2) 
(6,2,4,7,1,5,3) 
(6,1,5,7,4,2,3) 
(6,4,2,7,3,1,5) 
(6,3,4,7,2,1,5) 

(1,0,0,0,0)
(1,0,0,0,1)
(1,0,0,0,2)
(1,0,0,1,0)
(1,0,0,1,1)
(1,0,0,1,2)
(1,0,0,2,0)
(1,0,0,2,1)
(1,0,0,2,2)
(1,0,1,0,0)
(1,0,1,0,1)
(1,0,1,0,2)
(1,0,1,1,0)
(1,0,1,1,1)
(1,0,1,1,2)
(1,0,1,2,0)
(1,0,1,2,1)
(1,0,1,2,2)
(1,0,2,0,0)
(1,0,2,0,1)

(2,6,1,7,3,5,4)
(1,6,3,7,2,5,4)
(3,6,2,7,1,4,5)
(4,6,1,7,5,3,2)
(4,6,2,7,5,3,1)
(1,6,2,7,5,3,4)
(4,6,1,7,5,2,3)
(4,6,1,7,3,2,5)
(3,6,4,7,1,2,5)
(2,6,5,7,4,1,3)
(2,6,3,7,1,4,5)
(1,6,3,7,5,4,2)
(2,6,5,7,1,3,4)
(4,6,5,7,2,3,1)
(1,6,2,7,4,3,5)
(4,6,5,7,1,2,3)
(4,6,5,7,3,2,1)
(1,6,5,7,4,3,2)
(2,6,4,7,3,1,5)
(5,6,3,7,2,1,4)

(2,0,0,0,0) 
(2,0,0,0,1) 
(2,0,0,0,2) 
(2,0,0,1,0) 
(2,0,0,1,1) 
(2,0,0,1,2) 
(2,0,0,2,0) 
(2,0,0,2,1) 
(2,0,0,2,2) 
(2,0,1,0,0) 
(2,0,1,0,1) 
(2,0,1,0,2) 
(2,0,1,1,0) 
(2,0,1,1,1) 
(2,0,1,1,2) 
(2,0,1,2,0) 
(2,0,1,2,1) 
(2,0,1,2,2) 
(2,0,2,0,0) 
(2,0,2,0,1) 

(2,1,6,7,3,5,4)
(1,5,6,7,3,4,2)
(2,3,6,7,4,5,1)
(2,4,6,7,3,5,1)
(4,2,6,7,5,3,1)
(3,1,6,7,2,4,5)
(4,1,6,7,5,2,3)
(4,1,6,7,3,2,5)
(3,1,6,7,5,4,2)
(3,2,6,7,4,1,5)
(4,2,6,7,3,1,5)
(3,2,6,7,1,4,5)
(2,5,6,7,1,3,4)
(4,5,6,7,2,3,1)
(2,3,6,7,5,4,1)
(4,5,6,7,1,2,3)
(4,5,6,7,3,2,1)
(3,1,6,7,4,2,5)
(2,5,6,7,4,1,3)
(5,3,6,7,2,1,4)
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x G(x) x G(x) x G(x) 
(0,0,2,0,2) 
(0,0,2,1,0) 
(0,0,2,1,1) 
(0,0,2,1,2) 
(0,0,2,2,0) 
(0,0,2,2,1) 
(0,0,2,2,2) 
(0,1,0,0,0) 
(0,1,0,0,1) 
(0,1,0,0,2) 
(0,1,0,1,0) 
(0,1,0,1,1) 
(0,1,0,1,2) 
(0,1,0,2,0) 
(0,1,0,2,1) 
(0,1,0,2,2) 
(0,1,1,0,0) 
(0,1,1,0,1) 
(0,1,1,0,2) 
(0,1,1,1,0) 
(0,1,1,1,1) 
(0,1,1,1,2) 
(0,1,1,2,0) 
(0,1,1,2,1) 
(0,1,1,2,2) 
(0,1,2,0,0) 
(0,1,2,0,1) 
(0,1,2,0,2) 
(0,1,2,1,0) 
(0,1,2,1,1) 
(0,1,2,1,2) 
(0,1,2,2,0) 
(0,1,2,2,1) 
(0,1,2,2,2) 

(6,3,2,7,4,1,5) 
(6,4,1,7,5,3,2) 
(6,5,4,7,2,3,1) 
(6,5,2,7,4,3,1) 
(6,4,1,7,5,2,3) 
(6,5,4,7,3,2,1) 
(6,5,3,7,4,2,1) 
(6,1,3,2,7,5,4) 
(6,3,2,4,7,5,1) 
(6,3,2,5,7,4,1) 
(6,4,2,5,7,3,1) 
(6,2,1,5,7,3,4) 
(6,5,2,1,7,4,3) 
(6,2,1,3,7,5,4) 
(6,3,1,4,7,5,2) 
(6,5,2,3,7,4,1) 
(6,3,5,2,7,1,4) 
(6,2,3,5,7,4,1) 
(6,3,5,2,7,4,1) 
(6,2,5,4,7,3,1) 
(6,2,5,1,7,3,4) 
(6,3,5,1,7,4,2) 
(6,2,5,3,7,1,4) 
(6,5,1,3,7,2,4) 
(6,4,5,3,7,2,1) 
(6,5,4,2,7,1,3) 
(6,4,3,2,7,1,5) 
(6,5,3,2,7,4,1) 
(6,4,2,1,7,3,5) 
(6,5,4,1,7,3,2) 
(6,3,4,5,7,2,1) 
(6,5,4,3,7,1,2) 
(6,5,4,3,7,2,1) 
(6,4,3,1,7,2,5) 

(1,0,2,0,2)
(1,0,2,1,0)
(1,0,2,1,1)
(1,0,2,1,2)
(1,0,2,2,0)
(1,0,2,2,1)
(1,0,2,2,2)
(1,1,0,0,0)
(1,1,0,0,1)
(1,1,0,0,2)
(1,1,0,1,0)
(1,1,0,1,1)
(1,1,0,1,2)
(1,1,0,2,0)
(1,1,0,2,1)
(1,1,0,2,2)
(1,1,1,0,0)
(1,1,1,0,1)
(1,1,1,0,2)
(1,1,1,1,0)
(1,1,1,1,1)
(1,1,1,1,2)
(1,1,1,2,0)
(1,1,1,2,1)
(1,1,1,2,2)
(1,1,2,0,0)
(1,1,2,0,1)
(1,1,2,0,2)
(1,1,2,1,0)
(1,1,2,1,1)
(1,1,2,1,2)
(1,1,2,2,0)
(1,1,2,2,1)
(1,1,2,2,2)

(5,6,3,7,4,1,2)
(2,6,4,7,5,1,3)
(2,6,4,7,5,3,1)
(5,6,3,7,4,2,1)
(3,6,1,7,5,2,4)
(1,6,5,7,3,2,4)
(5,6,1,7,4,2,3)
(3,6,5,4,7,1,2)
(3,6,2,5,7,4,1)
(3,6,5,2,7,4,1)
(4,6,1,2,7,3,5)
(3,6,2,4,7,5,1)
(4,6,3,1,7,5,2)
(4,6,1,2,7,5,3)
(4,6,1,3,7,5,2)
(4,6,2,3,7,5,1)
(4,6,5,2,7,1,3)
(5,6,2,4,7,1,3)
(4,6,3,5,7,1,2)
(5,6,2,1,7,3,4)
(4,6,5,1,7,3,2)
(3,6,4,1,7,5,2)
(4,6,5,3,7,1,2)
(4,6,5,3,7,2,1)
(5,6,1,3,7,4,2)
(5,6,3,2,7,1,4)
(5,6,3,4,7,1,2)
(5,6,3,2,7,4,1)
(5,6,4,1,7,3,2)
(5,6,3,4,7,2,1)
(5,6,4,1,7,2,3)
(5,6,4,2,7,3,1)
(5,6,4,3,7,1,2)
(5,6,4,3,7,2,1)

(2,0,2,0,2) 
(2,0,2,1,0) 
(2,0,2,1,1) 
(2,0,2,1,2) 
(2,0,2,2,0) 
(2,0,2,2,1) 
(2,0,2,2,2) 
(2,1,0,0,0) 
(2,1,0,0,1) 
(2,1,0,0,2) 
(2,1,0,1,0) 
(2,1,0,1,1) 
(2,1,0,1,2) 
(2,1,0,2,0) 
(2,1,0,2,1) 
(2,1,0,2,2) 
(2,1,1,0,0) 
(2,1,1,0,1) 
(2,1,1,0,2) 
(2,1,1,1,0) 
(2,1,1,1,1) 
(2,1,1,1,2) 
(2,1,1,2,0) 
(2,1,1,2,1) 
(2,1,1,2,2) 
(2,1,2,0,0) 
(2,1,2,0,1) 
(2,1,2,0,2) 
(2,1,2,1,0) 
(2,1,2,1,1) 
(2,1,2,1,2) 
(2,1,2,2,0) 
(2,1,2,2,1) 
(2,1,2,2,2) 

(5,3,6,7,4,1,2)
(3,4,6,7,2,1,5)
(3,4,6,7,2,5,1)
(5,3,6,7,4,2,1)
(3,4,6,7,5,1,2)
(3,4,6,7,5,2,1)
(5,1,6,7,4,2,3)
(3,5,6,4,7,1,2)
(4,1,6,5,7,3,2)
(3,5,6,2,7,4,1)
(4,1,6,2,7,5,3)
(4,2,6,1,7,5,3)
(4,3,6,1,7,5,2)
(4,1,6,3,7,5,2)
(4,2,6,3,7,5,1)
(5,1,6,3,7,4,2)
(4,5,6,2,7,1,3)
(5,2,6,4,7,1,3)
(4,3,6,5,7,1,2)
(5,2,6,1,7,3,4)
(4,5,6,1,7,3,2)
(5,2,6,1,7,4,3)
(4,5,6,3,7,1,2)
(4,5,6,3,7,2,1)
(5,2,6,3,7,4,1)
(5,3,6,2,7,1,4)
(5,3,6,4,7,1,2)
(5,3,6,2,7,4,1)
(5,4,6,1,7,3,2)
(5,3,6,4,7,2,1)
(5,4,6,1,7,2,3)
(5,4,6,2,7,3,1)
(5,4,6,3,7,1,2)
(5,4,6,3,7,2,1)
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x G(x) x G(x) x G(x) 
(0,2,0,0,0) 
(0,2,0,0,1) 
(0,2,0,0,2) 
(0,2,0,1,0) 
(0,2,0,1,1) 
(0,2,0,1,2) 
(0,2,0,2,0) 
(0,2,0,2,1) 
(0,2,0,2,2) 
(0,2,1,0,0) 
(0,2,1,0,1) 
(0,2,1,0,2) 
(0,2,1,1,0) 
(0,2,1,1,1) 
(0,2,1,1,2) 
(0,2,1,2,0) 
(0,2,1,2,1) 
(0,2,1,2,2) 
(0,2,2,0,0) 
(0,2,2,0,1) 
(0,2,2,0,2) 
(0,2,2,1,0) 
(0,2,2,1,1) 
(0,2,2,1,2) 
(0,2,2,2,0) 
(0,2,2,2,1) 
(0,2,2,2,2) 

(6,4,1,5,3,7,2) 
(6,3,2,4,1,7,5) 
(6,3,2,5,4,7,1) 
(6,1,4,2,5,7,3) 
(6,2,4,1,5,7,3) 
(6,3,2,1,5,7,4) 
(6,4,2,3,5,7,1) 
(6,1,2,3,5,7,4) 
(6,3,1,5,4,7,2) 
(6,3,5,2,1,7,4) 
(6,5,1,4,2,7,3) 
(6,3,5,2,4,7,1) 
(6,1,5,4,2,7,3) 
(6,2,5,1,3,7,4) 
(6,4,5,1,2,7,3) 
(6,2,5,3,1,7,4) 
(6,5,1,3,2,7,4) 
(6,3,5,1,4,7,2) 
(6,5,3,4,1,7,2) 
(6,5,1,4,3,7,2) 
(6,5,3,2,4,7,1) 
(6,4,2,1,3,7,5) 
(6,5,4,1,3,7,2) 
(6,5,3,1,4,7,2) 
(6,5,4,3,1,7,2) 
(6,5,4,3,2,7,1) 
(6,5,2,3,4,7,1) 

(1,2,0,0,0)
(1,2,0,0,1)
(1,2,0,0,2)
(1,2,0,1,0)
(1,2,0,1,1)
(1,2,0,1,2)
(1,2,0,2,0)
(1,2,0,2,1)
(1,2,0,2,2)
(1,2,1,0,0)
(1,2,1,0,1)
(1,2,1,0,2)
(1,2,1,1,0)
(1,2,1,1,1)
(1,2,1,1,2)
(1,2,1,2,0)
(1,2,1,2,1)
(1,2,1,2,2)
(1,2,2,0,0)
(1,2,2,0,1)
(1,2,2,0,2)
(1,2,2,1,0)
(1,2,2,1,1)
(1,2,2,1,2)
(1,2,2,2,0)
(1,2,2,2,1)
(1,2,2,2,2)

(3,6,5,4,1,7,2)
(4,6,1,5,3,7,2)
(3,6,5,2,4,7,1)
(4,6,1,2,5,7,3)
(4,6,2,1,5,7,3)
(4,6,3,1,5,7,2)
(4,6,1,3,5,7,2)
(4,6,2,3,5,7,1)
(5,6,1,3,4,7,2)
(4,6,5,2,1,7,3)
(5,6,2,4,1,7,3)
(4,6,3,5,1,7,2)
(5,6,2,1,3,7,4)
(4,6,5,1,3,7,2)
(5,6,2,1,4,7,3)
(4,6,5,3,1,7,2)
(4,6,5,3,2,7,1)
(5,6,2,3,4,7,1)
(5,6,3,2,1,7,4)
(5,6,3,4,1,7,2)
(5,6,3,2,4,7,1)
(5,6,4,1,3,7,2)
(5,6,3,4,2,7,1)
(5,6,4,1,2,7,3)
(5,6,4,2,3,7,1)
(5,6,4,3,1,7,2)
(5,6,4,3,2,7,1)

(2,2,0,0,0) 
(2,2,0,0,1) 
(2,2,0,0,2) 
(2,2,0,1,0) 
(2,2,0,1,1) 
(2,2,0,1,2) 
(2,2,0,2,0) 
(2,2,0,2,1) 
(2,2,0,2,2) 
(2,2,1,0,0) 
(2,2,1,0,1) 
(2,2,1,0,2) 
(2,2,1,1,0) 
(2,2,1,1,1) 
(2,2,1,1,2) 
(2,2,1,2,0) 
(2,2,1,2,1) 
(2,2,1,2,2) 
(2,2,2,0,0) 
(2,2,2,0,1) 
(2,2,2,0,2) 
(2,2,2,1,0) 
(2,2,2,1,1) 
(2,2,2,1,2) 
(2,2,2,2,0) 
(2,2,2,2,1) 
(2,2,2,2,2) 

(3,5,6,4,1,7,2)
(4,1,6,5,3,7,2)
(3,5,6,2,4,7,1)
(4,1,6,2,5,7,3)
(4,2,6,1,5,7,3)
(4,3,6,1,5,7,2)
(4,1,6,3,5,7,2)
(4,2,6,3,5,7,1)
(5,1,6,3,4,7,2)
(4,5,6,2,1,7,3)
(5,2,6,4,1,7,3)
(4,3,6,5,1,7,2)
(5,2,6,1,3,7,4)
(4,5,6,1,3,7,2)
(5,2,6,1,4,7,3)
(4,5,6,3,1,7,2)
(4,5,6,3,2,7,1)
(5,2,6,3,4,7,1)
(5,3,6,2,1,7,4)
(5,3,6,4,1,7,2)
(5,3,6,2,4,7,1)
(5,4,6,1,3,7,2)
(5,3,6,4,2,7,1)
(5,4,6,1,2,7,3)
(5,4,6,2,3,7,1)
(5,4,6,3,1,7,2)
(5,4,6,3,2,7,1)
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Mapping table of H ∈ F (3, 4, 6). 

x H(x) x H(x) x H(x) 
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,1,0)
(0,0,1,1)
(0,0,1,2)
(0,0,2,0)
(0,0,2,1)
(0,0,2,2)
(0,1,0,0)
(0,1,0,1)
(0,1,0,2)
(0,1,1,0)
(0,1,1,1)
(0,1,1,2)
(0,1,2,0)
(0,1,2,1)
(0,1,2,2)
(0,2,0,0)
(0,2,0,1)
(0,2,0,2)
(0,2,1,0)
(0,2,1,1)
(0,2,1,2)
(0,2,2,0)
(0,2,2,1)
(0,2,2,2)

(1,2,3,4,5,6)
(1,2,3,6,4,5)
(1,2,3,5,4,6)
(1,4,2,6,5,3)
(1,4,2,3,6,5)
(1,4,2,5,6,3)
(1,3,4,6,5,2)
(1,3,4,5,6,2)
(1,3,4,2,6,5)
(1,5,3,4,6,2)
(1,2,5,3,4,6)
(1,5,3,2,4,6)
(1,5,2,4,6,3)
(1,5,2,3,4,6)
(1,4,5,2,6,3)
(1,3,5,4,6,2)
(1,5,4,3,6,2)
(1,5,4,2,6,3)
(1,6,3,4,5,2)
(1,2,6,3,4,5)
(1,6,3,2,4,5)
(1,6,2,4,5,3)
(1,6,2,3,4,5)
(1,4,6,2,5,3)
(1,3,6,4,5,2)
(1,6,4,3,5,2)
(1,6,4,2,5,3)

(1,0,0,0)
(1,0,0,1)
(1,0,0,2)
(1,0,1,0)
(1,0,1,1)
(1,0,1,2)
(1,0,2,0)
(1,0,2,1)
(1,0,2,2)
(1,1,0,0)
(1,1,0,1)
(1,1,0,2)
(1,1,1,0)
(1,1,1,1)
(1,1,1,2)
(1,1,2,0)
(1,1,2,1)
(1,1,2,2)
(1,2,0,0)
(1,2,0,1)
(1,2,0,2)
(1,2,1,0)
(1,2,1,1)
(1,2,1,2)
(1,2,2,0)
(1,2,2,1)
(1,2,2,2)

(4,1,3,5,6,2)
(4,1,3,6,5,2)
(4,1,3,2,6,5)
(3,1,2,4,6,5)
(3,1,2,6,4,5)
(3,1,2,5,4,6)
(2,1,4,5,6,3)
(2,1,4,3,6,5)
(2,1,4,6,5,3)
(6,1,3,4,5,2)
(4,1,5,3,6,2)
(6,1,3,2,4,5)
(3,1,5,4,6,2)
(6,1,5,3,4,2)
(6,1,5,2,4,3)
(2,1,5,4,6,3)
(6,1,4,3,5,2)
(6,1,4,2,5,3)
(5,1,3,4,6,2)
(4,1,6,3,5,2)
(5,1,3,2,4,6)
(5,1,2,4,6,3)
(5,1,6,3,4,2)
(5,1,6,2,4,3)
(2,1,6,4,5,3)
(5,1,4,3,6,2)
(5,1,4,2,6,3)

(2,0,0,0) 
(2,0,0,1) 
(2,0,0,2) 
(2,0,1,0) 
(2,0,1,1) 
(2,0,1,2) 
(2,0,2,0) 
(2,0,2,1) 
(2,0,2,2) 
(2,1,0,0) 
(2,1,0,1) 
(2,1,0,2) 
(2,1,1,0) 
(2,1,1,1) 
(2,1,1,2) 
(2,1,2,0) 
(2,1,2,1) 
(2,1,2,2) 
(2,2,0,0) 
(2,2,0,1) 
(2,2,0,2) 
(2,2,1,0) 
(2,2,1,1) 
(2,2,1,2) 
(2,2,2,0) 
(2,2,2,1) 
(2,2,2,2) 

(4,2,1,5,6,3)
(4,2,1,3,6,5)
(4,2,1,6,5,3)
(3,4,1,5,6,2)
(3,4,1,6,5,2)
(3,4,1,2,6,5)
(2,3,1,4,6,5)
(2,3,1,6,4,5)
(2,3,1,5,4,6)
(6,2,1,4,5,3)
(6,2,1,3,4,5)
(4,5,1,2,6,3)
(3,5,1,4,6,2)
(6,4,1,3,5,2)
(6,5,1,2,4,3)
(6,3,1,4,5,2)
(2,5,1,3,4,6)
(6,3,1,2,4,5)
(5,2,1,4,6,3)
(5,2,1,3,4,6)
(4,6,1,2,5,3)
(3,6,1,4,5,2)
(5,4,1,3,6,2)
(5,6,1,2,4,3)
(5,3,1,4,6,2)
(2,6,1,3,4,5)
(5,3,1,2,4,6)
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Mapping table of R ∈ F (3, 3, 5). 

x R(x) x R(x) x R(x) 
(0,0,0) 
(0,0,1) 
(0,0,2) 
(0,1,0) 
(0,1,1) 
(0,1,2) 
(0,2,0) 
(0,2,1) 
(0,2,2) 

(1,2,3,5,4)
(1,4,3,5,2)
(1,5,3,4,2)
(1,2,4,5,3)
(1,4,2,5,3)
(1,5,4,3,2)
(1,2,5,4,3)
(1,4,5,3,2)
(1,3,5,4,2)

(1,0,0)
(1,0,1)
(1,0,2)
(1,1,0)
(1,1,1)
(1,1,2)
(1,2,0)
(1,2,1)
(1,2,2)

(4,1,3,5,2)
(5,1,3,4,2)
(2,1,3,5,4)
(3,1,4,5,2)
(5,1,4,3,2)
(2,1,4,5,3)
(4,1,5,3,2)
(5,1,2,4,3)
(2,1,5,4,3)

(2,0,0)
(2,0,1)
(2,0,2)
(2,1,0)
(2,1,1)
(2,1,2)
(2,2,0)
(2,2,1)
(2,2,2)

(4,2,1,5,3) 
(5,4,1,3,2) 
(2,5,1,4,3) 
(3,2,1,5,4) 
(3,4,1,5,2) 
(3,5,1,4,2) 
(4,3,1,5,2) 
(5,3,1,4,2) 
(2,3,1,5,4) 

 

 

 

Mapping table of S ∈ F (3, 3, 5). 

x S(x) x S(x) x S(x) 
(0,0,0) 
(0,0,1) 
(0,0,2) 
(0,1,0) 
(0,1,1) 
(0,1,2) 
(0,2,0) 
(0,2,1) 
(0,2,2) 

(2,1,3,4,5)
(2,4,3,1,5)
(2,5,3,1,4)
(2,1,4,5,3)
(2,4,1,5,3)
(2,5,4,1,3)
(2,1,5,4,3)
(2,4,5,1,3)
(2,3,5,1,4)

(1,0,0)
(1,0,1)
(1,0,2)
(1,1,0)
(1,1,1)
(1,1,2)
(1,2,0)
(1,2,1)
(1,2,2)

(4,2,3,1,5)
(5,2,3,1,4)
(1,2,3,5,4)
(3,2,4,1,5)
(5,2,4,1,3)
(1,2,4,5,3)
(4,2,5,1,3)
(5,2,1,4,3)
(1,2,5,4,3)

(2,0,0)
(2,0,1)
(2,0,2)
(2,1,0)
(2,1,1)
(2,1,2)
(2,2,0)
(2,2,1)
(2,2,2)

(4,1,2,5,3) 
(5,4,2,1,3) 
(1,5,2,4,3) 
(3,1,2,5,4) 
(3,4,2,1,5) 
(3,5,2,1,4) 
(4,3,2,1,5) 
(5,3,2,1,4) 
(1,3,2,5,4) 
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Mapping table of T ∈ F (3, 4, 6). 

x T(x) x T(x) x T(x) 
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,1,0)
(0,0,1,1)
(0,0,1,2)
(0,0,2,0)
(0,0,2,1)
(0,0,2,2)
(0,1,0,0)
(0,1,0,1)
(0,1,0,2)
(0,1,1,0)
(0,1,1,1)
(0,1,1,2)
(0,1,2,0)
(0,1,2,1)
(0,1,2,2)
(0,2,0,0)
(0,2,0,1)
(0,2,0,2)
(0,2,1,0)
(0,2,1,1)
(0,2,1,2)
(0,2,2,0)
(0,2,2,1)
(0,2,2,2)

(2,4,3,1,5,6)
(2,4,3,6,1,5)
(2,4,3,5,1,6)
(2,1,4,6,5,3)
(2,1,4,3,6,5)
(2,1,4,5,6,3)
(2,3,1,6,5,4)
(2,3,1,5,6,4)
(2,3,1,4,6,5)
(2,5,3,1,6,4)
(2,4,5,3,1,6)
(2,5,3,4,1,6)
(2,5,4,1,6,3)
(2,5,4,3,1,6)
(2,1,5,4,6,3)
(2,3,5,1,6,4)
(2,5,1,3,6,4)
(2,5,1,4,6,3)
(2,6,3,1,5,4)
(2,4,6,3,1,5)
(2,6,3,4,1,5)
(2,6,4,1,5,3)
(2,6,4,3,1,5)
(2,1,6,4,5,3)
(2,3,6,1,5,4)
(2,6,1,3,5,4)
(2,6,1,4,5,3)

(1,0,0,0)
(1,0,0,1)
(1,0,0,2)
(1,0,1,0)
(1,0,1,1)
(1,0,1,2)
(1,0,2,0)
(1,0,2,1)
(1,0,2,2)
(1,1,0,0)
(1,1,0,1)
(1,1,0,2)
(1,1,1,0)
(1,1,1,1)
(1,1,1,2)
(1,1,2,0)
(1,1,2,1)
(1,1,2,2)
(1,2,0,0)
(1,2,0,1)
(1,2,0,2)
(1,2,1,0)
(1,2,1,1)
(1,2,1,2)
(1,2,2,0)
(1,2,2,1)
(1,2,2,2)

(1,2,3,5,6,4)
(1,2,3,6,5,4)
(1,2,3,4,6,5)
(3,2,4,1,6,5)
(3,2,4,6,1,5)
(3,2,4,5,1,6)
(4,2,1,5,6,3)
(4,2,1,3,6,5)
(4,2,1,6,5,3)
(6,2,3,1,5,4)
(1,2,5,3,6,4)
(6,2,3,4,1,5)
(3,2,5,1,6,4)
(6,2,5,3,1,4)
(6,2,5,4,1,3)
(4,2,5,1,6,3)
(6,2,1,3,5,4)
(6,2,1,4,5,3)
(5,2,3,1,6,4)
(1,2,6,3,5,4)
(5,2,3,4,1,6)
(5,2,4,1,6,3)
(5,2,6,3,1,4)
(5,2,6,4,1,3)
(4,2,6,1,5,3)
(5,2,1,3,6,4)
(5,2,1,4,6,3)

(2,0,0,0) 
(2,0,0,1) 
(2,0,0,2) 
(2,0,1,0) 
(2,0,1,1) 
(2,0,1,2) 
(2,0,2,0) 
(2,0,2,1) 
(2,0,2,2) 
(2,1,0,0) 
(2,1,0,1) 
(2,1,0,2) 
(2,1,1,0) 
(2,1,1,1) 
(2,1,1,2) 
(2,1,2,0) 
(2,1,2,1) 
(2,1,2,2) 
(2,2,0,0) 
(2,2,0,1) 
(2,2,0,2) 
(2,2,1,0) 
(2,2,1,1) 
(2,2,1,2) 
(2,2,2,0) 
(2,2,2,1) 
(2,2,2,2) 

(1,4,2,5,6,3)
(1,4,2,3,6,5)
(1,4,2,6,5,3)
(3,1,2,5,6,4)
(3,1,2,6,5,4)
(3,1,2,4,6,5)
(4,3,2,1,6,5)
(4,3,2,6,1,5)
(4,3,2,5,1,6)
(6,4,2,1,5,3)
(6,4,2,3,1,5)
(1,5,2,4,6,3)
(3,5,2,1,6,4)
(6,1,2,3,5,4)
(6,5,2,4,1,3)
(6,3,2,1,5,4)
(4,5,2,3,1,6)
(6,3,2,4,1,5)
(5,4,2,1,6,3)
(5,4,2,3,1,6)
(1,6,2,4,5,3)
(3,6,2,1,5,4)
(5,1,2,3,6,4)
(5,6,2,4,1,3)
(5,3,2,1,6,4)
(4,6,2,3,1,5)
(5,3,2,4,1,6)

 


