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Abstract in English i

Construction and Analysis of Distance-Preserving

Mappings from Vectors to Permutations

Student : Jyh-Shyan Lin Advisor : Dr. Rong-Jaye Chen

Department of Computer Science
College of Computer Science
National Chiao Tung University

Abstract

A mapping from the ‘set. of all g-ary vectors of length n to the set of all
permutations of {1, 2, ... , N} where:N‘>n is called a distance-preserving mapping
(DPM) if every two vectors are mapped to permutations with the same or even larger
Hamming distance than that of the vectors. A distance-increasing mapping (DIM) is a
special DPM such that the distances of mapped permutations are strictly increased
except when that is obviously not possible. In this dissertation, we propose several
constructions of DIMs from binary vectors. These constructions possess some
advantages over previous proposed constructions. In addition, we also propose
constructions of DPMs and DIMs from ternary vectors. This is the first time that
constructions of DPMs and DIMs from ternary vectors are proposed in the literature.
A contribution of these constructions is their application to the improvement of the
lower bounds on the maximal size of permutation arrays (or permutation codes),

which are useful in the design of a power line communication system.
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Chapter 1

Introduction

1.1 Research Maotivations

A distance-preserving mapping (DPM).1s a function from the set of all g-ary
vectors of length n to the set of all'permutations of {1, 2, ... , N} where N > n such
that every two vectors are mapped to permutations with the same or even larger
Hamming distance than that of the vectors. The Hamming distance between two
vectors, or two permutations, is the number of positions where they differ. The
inspiration of researches on DPM is mainly from its application to the construction of
permutation arrays (or permutation codes), a set of permutations of the same length
in which the Hamming distance of every two distinct permutations is at least D
where D > 2. In 2000, Ferreira and Vinck used permutation codes to design a
modulation/demodulation scheme which is able to make robust transmission over
power lines [9]. The permutation codes they used were constructed via DPMs from
binary vectors. They found a DPM from binary vectors of length 4 by computer
search. From this mapping they constructed DPMs from binary vectors of length
n=>5,6, 7, and 8, using an ad hoc “prefix method.” In this paper it was not clear that
if and how their method could be generalized to all n > 8. This raised a question: how

to design a systematic method to construct DPMs from vectors to permutations for a
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given length (if it is possible). Ever from this paper was published, many
constructions of DPMs were proposed. Recently, the research interests in DPM have
turned to a special type of DPM, called distance-increasing mapping (DIM). A
mapping is called a DIM if every two distinct vectors are mapped to permutations
such that the Hamming distance between them is strictly increased except when that
is obviously not possible. In later chapters, we will describe the constructions of
DPMs/DIMs proposed so far in the literature, including those that we proposed.

1.2 Outline of the Dissertation

The remaining part of this dissertation is organized as follows. In Chapter 2 an
introduction to permutations, permutation. arrays, and power line communications is
given. The formal definitions and previous résearch results of DPMs and DIMs are
also given in this chapter. In_Chapter 3 we propose new simple constructions of
distance-increasing mappings from.binary.vectors. These constructions possess some
advantages over previously proposed constructions. In Chapter 4, we propose several
constructions of DPMs and DIMs: from ternary vectors. This is the first time that
constructions of DPMs and DIMs from ternary vectors are proposed in the literature.

Finally, conclusions and future works are given in Chapter 5.



Chapter 2 Preliminaries 3

Chapter 2

Preliminaries

2.1 Permutations

A permutation of a set 4 is ‘a.oneto-one.and onto function on 4. For example, let

A ={#, %, &}, the function ¢ given'schematically as follows is a permutation of 4.

¢
# > %
% > &
& > #

By renaming the elements of a set, any set with N elements can be mapped to
the set Fy = {1, 2, ... , N}. Thus, a permutation of any set of length N can be

redefined as a permutation of Fy. A more standard notation of a permutation

7. Fy— Fy is represented by

( 1 2 ..« N J

w = 1

71'1 7['2 e 7Z'N

where m, m, ... , 7y € Fy. This representation is called the standard form. Since r is

a function, we may denote 7 (i) = . For simplicity, # can also be represented by an

n-tuple 7 = (m, m, ..., zy), which is called the vector form.
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Example 2.1 The above set 4 can be mapped to F; = {1, 2, 3}. With the new

symbols, the above permutation ¢ can be rewritten as

@’ L 23 or equivalentl
= uiv :
2 31 a Y

¢’ =(2,31).

Let Sy denote the set of all N! permutations of Fy. The function composition o
is a binary operation on Sy. We call this operation permutation multiplication, which

is defined as followvs.

Definition 2.1 Let p and « be two permutations of Fy, the composition operation

p o u is defined as
popx)= plu(x)).

Example 2.2 Suppose that
12345 12345
p= and” = :
32451 25134

(12345) (12345) (12345
PeH=132451)l25134) (21345/

For simplicity, sometimes we denote pou by pu. It is clear that pu is also a

Then

permutation of Fy. Note that permutation multiplication is associative but not
commutative. It can be proven that Sy is a group under permutation multiplication
[20]. The identity of Sy, (1, 2, ..., N), is denoted by ¢. For a permutation p of Fy, we

define p° = ¢.

For a permutation p, the inverse function, o, is the permutation such that
pp = pip=t. p can be obtained by setting p (i) = fori=1, 2, ..., N where j is
the integer such that p (;) = i.
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Example 2.3 Suppose that

12345 4, (12345
p = .Then p™—~ = :
32451 52134

Definition 2.2 A set of permutations is called a commutative set if any two

permutations p and g in the set commute, that is, pu = up.

2.2 Permutation Arrays and Power Line
Communications

A permutation array (Or permutation code) of length N and distance D, or an
(N, D)-PA for short, is a subset of Sy such that the Hamming distance between any
two distinct permutations (in_vector-form) in the array is at least D. The Hamming
distance dy (a, b) betweentwo N-tuple a = (a1, @, ... , ay) and b = (b, by, ..., by) of

elements of any kind is the number of positions where they differ. That is,

du(@,b)=[{je Fy:a;#b}

Example 2.4 The following set C is a (4, 4)-PA.

C={(1,23,4),
4,1,2,3),
(3,4,1, 2),
(2,3,4,1) }.

Permutation arrays were somewhat studied in 1970s. Some representative
papers from that period are [12], [24], and [28]. Recently, an application of
permutation arrays on data communication over power lines introduced by Vinck [2]
has created renewed interest in permutation arrays [1], [3], [5], [6], [8], [9], [10], [32],
[33], [36]. In addition, permutation arrays have also been applied in the design of
block ciphers [7].
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Power line communications (PLC) are of recent interest because they are one of
the possible solutions to the “last dirty mile” problem in communication systems.
Although the primary function of power lines is to deliver electric power, the signal
can be used as carrier to deliver messages. The frequency of the signal can be
modulated, corresponding to a message transmitted, to produce a family of N “close”
frequencies that are orthogonal. When the modulated signal reaches the receiver,
these small variations in frequency can be decoded as symbols and then the message
could be retrieved [26]. This modulation process must not interfere with the power
transmission. For this reason, while minor variations in frequency (and
commensurate minor variations in power) are acceptable, it is imperative that the
power signal remains as constant as possible. One way to achieve this is to use a
constant composition code in which each codeword represents a message, and each
symbol in a codeword represents a frequeney. More specifically, let C be a code of
length L , L > N, over alphabet' 4 ={ay, a,...., an}, r1, r2, ... , ry be integers such
that

N

Zri =L.

i=1
If each codeword in C has exactly »; occurrences of the symbol a;, then C is a
constant composition code. Using C to encode each message and modulate the signal
(each symbol a; corresponds to a frequency f; ), the power delivered in the
transmission for any message is a constant. Furthermore, if L is close to N, then the

power envelope remains very close to constant.

In addition to keeping the power envelope constant, an effective design of a
PLC system must address the source of errors unique to power lines. There are three

main types of noise which may cause errors in PLC as reported in [25] and [27].

®  Permanent narrow-band noise caused by electrical equipments such as
television sets and refrigerators. This type of noise is permanent and affects
some frequencies over a long period of time;

® [mpulse noise caused by all kinds of switching operations. Such a noise
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affects the entire frequency band for a very short period of time (typically
less than 100 us); and

®  White Gaussian noise (background noise).

In many traditional data transmission media (e.g., telephone lines and satellite
communications), white Gaussian noise is the most dominating type of noise
affecting the communications, but in PLC the other two types of noise are more
important. Narrow-band noise can be addressed by using many frequencies but not
using any frequency too often. On the other hand, using many time slots is a good
way to deal with impulse noise. In the tradeoff between these objectives and the
requirement for constant power envelope, we choose r1 =r; = ... =ry=1and L = N,
resulting in each type of noise not affecting a single symbol in a codeword more than
one time, and in keeping the-length as.short as possible. Now considering the
structure of a codeword, we found. that each cedeword is a permutation. In order to
detect or correct errors caused by these noises, the codewords must be chosen
elaborately such that the Hamming distance between any two distinct codewords in
Cisat least D and D is as large as possible..Such a code C is then an (&, D)-PA. This

is the reason why permutation arrays are so important in power line communications.

Example 2.5 Twelve messages are encoded as in Table 2.1. The codewords form a
(4, 3)-PA. As an example, message 2 is encoded as (1, 3, 4, 2) and is transmitted in
time as a sequence of frequencies fy, fs, f4, and f,. While the message is transmitting,
if a narrow-band noise is present at the sub-channel of frequency f,;, causing a
sequence of frequencies (fi, fs), (f3, f4), T4, and (f2, f4) arrived in time at the receive
end. With these frequencies received, the receive end could obtain a demodulated
output ((1, 4), (3, 4), 4, (2, 4)). By maximum likelihood decoding, i.e., comparing
this output with all codewords and choosing the one with the maximum number of
agreements in all positions, the demodulator outputs the codeword (1, 3, 4, 2) and
then the receiver obtains the correct message.

Impulse noises can be viewed as “erasures” which may cause the demodulator

to output the presence of all frequencies. Typically, the duration of impulse noise is
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Table 2.1 Listing of 12 messages and the corresponding codewords.

Massage Codeword
1 (1,2,3,4)
2 (1, 3,4,2)
3 (2,1,4,3)
4 (2,4,3,1)
5 (3,1,2,4)
6 (3,4,1,2)
7 4,2,1,3)
8 4,3,2,1)
9 (1,4,2,3)
10 (2,3,1,4)
11 (3,2,4,1)
12 4,1,3,2)

less than 100 ps, and the inter-arrival times.are independent and are 0.1 to 1 second
apart. In a PLC using a signaling rate of 10 kHz, we have symbol duration of 100 ps.
Hence, an impulse noise may affect at most two adjacent symbols in such a
communication system. Suppose an impulse noise occurs between the two first
symbols while message 2 is transmitting, we may have a demodulated output
((1,2,3,4),(1, 2,3, 4), 4, 2). Comparing this output with all codewords, we find that
(1, 3, 4, 2) agrees with the output in all of the four positions and all the other
codewords agree with the output in two or three positions. Hence, the correct

message is obtained.

White Gaussian noise causes errors by introducing unwanted (called insertion)
transmitted frequencies or causing absence (called deletion) of symbols in the
demodulated output. Suppose f; is inserted and f; is deleted in the transmission of
message 2 due to the white Gaussian noise, we may have a demodulated output
(1,1, (1, 4), (1, 2)). Comparing this output with all codewords, we find that (1, 3, 4, 2)

is the closest and, as a result, message 2 is obtained.



Chapter 2 Preliminaries 9

In conclusion, a PLC with an (N, D)-PA is able to correct at most D — 1 errors
caused by narrow-band, impulse, or white Gaussian noises. While a large D is good
for error correction, increasing the minimum distance may reduce the size of a
permutation array, resulting in inefficiency of the transmission. Let P(N, D) denote
the maximal size of an (N, D)-PA. The exact value of P(N, D) is an open problem
except for some specific cases. In most cases we know just a lower bound and an
upper bound. Trying to find a tight bound on P(N, D) is a typical research topic in
the literature. The following are some well-known elementary properties of P(N, D).

Proposition 2.1 [36]

) P(N,2)=N,
i) P(N,3)=NI2,

iy PN, N) =N,

iv) P(N,D)=P(N-1, D),

v) P(N,D)>P(N,D+1),

vi) P(N, D)= N,

Vi) P(N, D)< Nx P(N-1, D),
viiiy P(N, D) < NY(D - 1)!.

Proposition 2.2 [6] If ¢ is a prime-power, then P(q, ¢ — 1) = g(q - 1).

Proposition 2.3 [28] If ¢ is a prime-power, then P(¢ + 1, ¢ —-1) = (¢ + 1)q(¢ - 1).

Construction of permutation arrays is another typical research topic due to the
importance of permutation arrays in PLC. Given a length N and a minimum distance
D, we want to construct a permutation array of size as large as possible. The simplest
way to construct permutation arrays is by computer search as in [24]. However, this
method is only practical for small N due to the search space. Another approach of
constructions is to construct permutation arrays by combining existing PAs and other
codes, e.g. binary codes as in [5], [8], [33], and [36]. Nevertheless, these methods are
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restricted to some specific values of N and D. The other constructions take an
indirect approach, which begins with constructing a mapping from vectors to
permutations, called distance-preserving mapping, and then transforms a code with a
minimum distance into a permutation array by using such a mapping. We will
describe distance-preserving mappings in the following sections, including the
definitions and the research results in the literature. After that, we will propose
distance-preserving mappings from binary vectors and from ternary vectors in the

next two chapters, respectively.

2.3 Distance-Preserving Mappings (DPMs) and
Distance-Increasing Mappings (DIMs)

Being an important way to construct permutation arrays, distance-preserving
mappings come into notice in recent years. A-mapping from the set of all g-ary
vectors of length » to the set Sy-is-called-a distance-preserving mapping (DPM) if
every two vectors are mapped to permutations with the same or even larger

Hamming distance than that of the vectors.

LetZ,={0,1,...,g—1}and Z; denote the set of all g-ary vectors of length ».
That is,

Zl’;:{(zl, 22y eue s Zn) 21,22y wee s Zn € Zg )

Definition 2.3 A mapping f: Z; — Sy is called a distance-preserving mapping if

any two vectorsx, y in Z; satisfy
du (f (%), f () 2 dn (x, y).

A mapping that increases more distances than that of input vectors may be more
interesting for applications. A distance-increasing mapping (DIM) is a special DPM

such that the distances of mapped permutations are strictly increased except when
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that is obviously not possible.

Definition 2.4 A mapping f': Z; — Sy is called a distance-increasing mapping if

any two distinct vectors x, y in Z; satisfy

du (f (%), f (7)) =min{dy (x,y) + 1, N }.

Let F (¢, n, N) denote the set of all mappings from Z to Sy, P (¢, n, N) denote
the set of all DPMs from Z' to Sy, and 1 (g, n, N) denote the set of all DIMs from
Z; to Sy. A mapping in P (g, n, N) is called a g-ary n_N-DPM. A mapping in

I (g, n, N)is called a g-ary n N-DIM. i = N, then an n_ N-DPM/n_N-DIM can be

denote by n-DPM/n-DIM for simplicity. Besides, a DPM/DIM from binary vectors
(¢ = 2) to permutations is called a binary DPM/DIM, and a DPM/DIM from ternary

vectors (¢ = 3) to permutations is called-a-ternary DPM/DIM.

Example 2.6 The following table lists the elements x € Z, and the corresponding

values of f(x) € Ss. It can be checked that /'€ 1 (2, 4, 4), i.e., f is abinary 4-DIM.

Table 2.2 Mapping table of f' 1(2, 4, 4).

X S ) X )
(0,0,0,0) | (1,234) | (1,0,0,0) | (2,1,3,4)
(0,0,0,1) | (4231) | (1,0,0,1) | (41,3,2)
(0,0,1,0) | (1,3,24) | (1,0,1,0) | (2,3,1,4)
(0,0,1,1) | (4321) | (1,0,1,1) | (431,2)
(0,1,0,0) | (1,24,3) | (1,1,0,0) | (2,1,4,3)
(0,1,0,1) | (3241) | (1,1,0,2) | (3,1,4,2)
0,1,1,0) | (1,423) | (1,1,1,0) | (2,41,3)
0,1,1,1) | (34,21) | (1,1,1,1) | (34,1,2)
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For a mapping f €F (g, n, N), let D,=[ D, ;] be an n by N matrix where D;; is the
number of unordered pairs {x, y} in Z; such that dy (x, y) =i and du (f(x), f(»)) = /.

We call Dy the distance expansion distribution or distance expansion matrix of f.
Distance expansion matrix shows the distance increasing property of a mapping and
is an important criterion to compare different DPMs/DIMs of the same length (the

same vector length and the same permutation length).

Example 2.7 The following table shows the distance expansion matrix of the
mapping f in Example 2.6. The element di, = 32 means that all of the

%-24-(‘1‘):32 unordered pairs {x, y} in Z; with distance dy(x, y) = 1 were
mapped to f(x) and f(y) withtdistance dg(f(x), f()) = 2. The 0’s on the lower
triangular part and the diagonal of the, matrix-justify that / is distance increasing.

Since we focus on DPMs and DIMs only, in the:rest of the dissertation we will omit

the 0’s in the lower triangular part of adistance expansion matrix.

Table 2.3 Distance expansion matrix of the mapping in Table 2.2.

1 2 3 4
110 32 0 O
2|10 0 32 16
310 0 0 32
410 0 0 8

While distance expansion matrix is an important criterion to compare DPMs,

the comparison can be tedious since we have to compare n x N matrices. For a

mapping f € P (¢, n, N), define
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A= DAdy (), f)~dy(x,p) }

x,yeZ;

n N
= 22 Z(j_i)Di,j = Al(f) A

i=1 j=i+1
where

Ag = de(x’J’) = qnii(?j(q—l)i - n(q—l)qzn‘l,

x,yeZ,'I’ i=1

and

n N
A(f) = Ddu(f(x) f()=2D">jD;;.

x,yeZ,'I’ i=1 j=i

Ai(f) is called the total distance. of f and A(f) is called the total distance
increase of f. For example, the total distance.and the total distance increase of the
DIM in Table 2.2 are 768 and 256; respectively. Total distance and total distance
increase are also important criteria.for the comparisons of different DPMs/DIMs of

the same length. Swart, de"Beér;*and Ferreira gave the following upper bound on

Ai(f) [29], [30].

Proposition 2.4 Let @ =|¢"/NJand 8= ¢" mod N. Then

M(f) <N (@ -QBa+ B+ N)).

Furthermore, if N = ¢, where r < n, then

M(f) < 4™ (¢"-1).

The maximum possible value of A;( f) is denoted by Amax.

DPMs and DIMs can be used to construct permutation arrays. Given an (n, d)
code C over Z, (Cis asubset of Z7, each member of C is called a codeword, and

the Hamming distance between any two distinct codewords in C is at least d), if a
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DPM f from Z; to Sy can be found, then f(C) is an (N, &)-PA. From this mapping

we immediately get the bound that for 2 < d <n,

P(N, d) 2 Ay(n, d)

where 4,(n, d) denotes the maximal size of such an (n, d) code. Furthermore, if a

DIM g from Z; to Sy can be found, then g(C) is an (N, d + 1)-PA. From this

mapping we immediately get the bound that for 2 < d <n,
P(N,d)>A4,(n,d-1)

It means that the plentiful research results on coding theory can be applied to
permutation arrays, including construction methods and lower bounds on the size of

an (n, d) code.

2.4 Previous Works

DPMs were first discussed in'the paper [11] where Ferreira et al. utilized DPMs
to transform a linear convolutional code into a runlength constrained or balanced
trellis code with the same or larger free distance. In 2000, Ferreira and Vinck
constructed binary n-DPMs for 5 < n < 8 and used them to construct permutation
trellis codes [9]. They found a mapping in P (2, 4, 4) by computer search and from
this mapping they recursively constructed binary n-DPMs, using an ad hoc “prefix
method,” for n = 5, 6, 7, and 8. However, it was not clear in their paper if and how
this method could be generalized to » > 8. This paper brought distance-preserving
mappings to the attention of researchers and many papers on this topic have been

available ever since.

Three years later, Chang et al. proposed a recursive systematic method to
construct binary n-DPMs for all » > 4 [17]. The construction extends a binary DPM
of length » — 1 to a binary DPM of length » with the assistance of a position function

of length » — 1. In addition to the recursive construction, in that paper they also
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provided a non-recursive construction of DPMs from binary vectors of even length.
Form these constructions they derived the following result which improved the lower
bound on P (N, D) known before.

Proposition 2.5 [17] For N> 4 and 2 <D <N,

P(N, D) > A>(N, D - 1). 2.1)

Later in 2004, Lee proposed a non-recursive construction of DPMs from binary
vectors of odd length [23]. In that paper he introduced the concept of distance
expansion distribution and applied it as a criterion to compare the distance increasing

property of different DPMs of the same length.

In 2005, Chang introduced the concept of distance-increasing mapping and

proposed recursive and non-recursive constructions of binary n-DIMs for any length

n >4 [14]. The non-recursive construction is based on three mappings r4 €1 (2, 4, 4),
rs €l (2,5, 5), and rs €l (2,'6,:6) Where 75 is.found by computer search and r4 as well

as rg are obtained by the construction described in [17, Construction 3]. Hence, a

small lookup table containing s is needed for further construction of », for n > 7.

Later in the same year, Lee proposed a non-recursive construction of n-DPMs
from binary vectors for all » >4 [21]. He viewed a permutation as lying on circles

and constructed DIMs of even length as well as DPMs of odd length.

With the similar way (viewing a permutation as lying on circles), Lee improved
his method and finally proposed a new construction of DIMs for both even and odd
length in 2006 [22].

Also in 2006, Chang proposed another non-recursive construction of binary
n-DIMs that does not need any table lookup operations [15]. The construction was
based on a number of swap operations. In fact, all constructions of DPMs/DIMs
described above except computer search were swap based. The author claimed that

the new construction needed fewer swap operations than other previously proposed
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constructions.

In the same year, Chang also proposed two new recursive constructions of
binary n-DIMs which strictly increased the Hamming distance by at least 6 (6 > 2)

except when it was obviously not possible [13]. That is, let / be such a mapping, for

any two distinct binary vectors x, y € Z ,

du (f (), f (7)) 2 min{ dy (x,y) + 6,n }.

We called such a mapping a binary (n_n, 6)-DIM, or a binary (n, 6)-DIM for short.
The first construction combined two DIMs, a binary (m, 6 —1)-DIM and a binary
(n, 6 — 1)-DIM, into a binary (m x n, 8)-DIM. In that paper a binary (16, 2)-DIM was
constructed from two binary (4, 1)-DIMs as an example. The second construction
combined a binary (m, 6)-DIM.and a binary.(»n, 6)-DIM into a binary (m + n, 5)-DIM.
Apart from the constructions, the author also proved that for any 6> 2 there existed a
smallest positive integer rns such that-a binary (n, 6)-DIM could be constructed for
any n > ns. An explicit upper.bound-onzzwas given in that paper. As a consequence,

foral N> nsand 6 + 1 < D <'N, we had
P(N, D) > 4>(N, D - 6). (2.2)

Swart et al. proposed a class of multilevel constructions for binary n-DPMs for
n >4 from September 2005 to August 2006 [29], [30], [31]. The constructed DPMs
were superior in total distance. They showed that if the sequences of swaps
corresponding to the input vectors were suitably chosen, then the resulting DPM
might possess higher total distance than other constructions. In particular, if n = 2',
then the maximum possible value of the total distance of a DPM was reached for
these constructions. That is,

A(f)=2%" (2" -1).
Note that the construction method can also be used to construct DIMs.

In August 2006, Huang et al. proposed a recursive construction of binary
(n_(nt+2), 3)-DIMs for n > 6 with some predefined lookup tables [37]. With this
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construction, they obtained the following bound which was better than (2.1) but

worse than (2.2).

Proposition 2.6 [37] For N>8and 4 <D <N,

P(N, D) > A,(N-2, D —3) > A»(N, D - 1).

In July 2007, Chang proposed another recursive construction of a binary
(m +n, 5)-DIM from a binary (m, 6)-DIM and a binary (n, 6)-DIM [16]. In this
paper he also proposed a new way to construct PAs from the proposed DIMs and,

with this construction, he improved the lower bound on the size of PAs as follows.

Proposition 2.7 [16] For N> 26 >0, M=>.0,and 6 + 1 < D < MN, if there exists an
(N, 6)-DIM, then

P(MN, D) = As(MN-D= 5)P(M, [ DIN - 25) ).
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Chapter 3

DIMs from Binary Vectors

In most papers, DPMs and DIMs are implicitly described by algorithms [14],
[15], [17], [21], [22], [23], [37]! Although the-algorithmic presentations are more
convenient for a computer programmer to implement, they are theoretically informal
and most readers will not be comfortable with them. In this chapter we explicitly
define mappings from vectors to permutations based on simple composition of
permutations (permutation multiplication). With this definition, we first propose non-
recursive constructions of binary n-DIMs for even and odd length, respectively. In
these constructions, binary vectors and the mapped permutations are of the same
length, i.e. n = N. Thus, in this chapter we use the notation n only. These
constructions are still easy to implement. Comparisons of our DIMs with other

previously proposed DPMs and DIMs are given as well.

Definition 3.1 Let B = (py, o, ... , pn) be an ordered set of permutations in S,. We

define a mapping from Z] to S, as

f (X15X2>"-7xn) ==/7r1"/7;2 o---oljén = I_I:/)j . (3'1)

jedy

where Jx={j|x=1,j=1, ..., n}. Note that by the notation [] the multiplication is
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performed in the order of the integers in Jy. B is called the basic construction set of f.

Example 3.1 Suppose f is constructed by (3.1) with the basic construction set

B=(p=2,1,3,4), 0, =(1,2,4,3),
p=(01,3,2,4), p1=(4,2,3,1)).
Then,

£(0,0,0,0)=p"c 0o p’ o p’ =tototot=1=(1,2,3,4),and
f(1,0, 1, )=pos= [[p;=(2.1,3,4)(1,3,2,4)(4,2,3,1)

jef1,3,4}

= (4, 3, 1, 2)'

3.1 DIMs of Even Length

Based on a basic cofistruction set;(3.1) gives us a mapping from Z) to Sp.
However, the mapping is not necessarily.-distance preserving or distance increasing.
Remember that our goal is to’construct distance-increasing mappings from ZJ to Sp.

The following lemmas indicate how to choose the members of a basic construction

set such that the constructed mapping is distance increasing.

Lemma 3.1 Let f be a mapping constructed by (3.1) with the basic construction set

Bi=<{po1, p2, ..., pny. Then f € 1 (2, n, n)if for any two distinct subset J; and J, of F,

dH(HJ.EJI,OJ-,HJ.EszJ-)> | J1 @ J;| when | J; @ J,| <n, and (3.2)

dH(HjEJij,HJ_EJZpJ—)z |31 @ Jy| when | J; @ J,| =n, (3.3)

where J; @ J, is the symmetric difference of J; and J,, that is,

Jl@Jz :(Jlujz)—(J1n~]2)-

Proof. For any two distinct vectors a, b € Z]'. Leta=(aj, &, ... , an), b=(by, ba, ...,

b, Ji={jla=1,1<j<n},andd={j|bi=1,1<j<n?}. Thendy (a, b)=
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|J1®J2|and
f(a):H]ele]’f(b):HJe.]sz .

It is clear that f € 1 (2, n, n) if (3.2) and (3.3) are true. 0

Lemma 3.1 states the criteria that the basic construction set of a binary (n, 0)

n

DIM should meet. However, we must consider (22 ) combinations of any two distinct

subsets of By. Under some conditions, the following lemma considers only 2" subsets

of Bf.

Lemma 3.2 Let Bt = (o1, 0, ... , pn) be the basic construction set of f and assume

that {p,,.... P} and {p|n;]i15---,Pn} are commutative sets. Besides, all

permutations in By are self-inverse, i.e., pi2 =.( forall pje Bs. Thenf € 1 (2, n, n)if

every subset J  F, satisfies

dH(HjEJpj,z)>|J|when|J|<n, and (3.4)

dH(HjEJp,,z)=|J|whenyJ|=n. (3.5)

where | J | denotes the number of elements of J.

Proof. For any two subsets J;, J, < Fp, let J = J; @ J, < F. Using the properties of

commutativity and self-inversion, we have
dH(Hjejlpj’Hjejzpj) =dy (HJ-GJI@JZP], L).
For example, let n =4, J; = {p, o3, p1}, and J» = {pi1, p3}. Then
du (T ;e 23-1 1y, 2= O (2050 p105)
= dn (21022030403, P11 P303)

= du (o12030301, D) = Au (L1020, L)

- dH(HjeJl@JQPj’ 0.
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As a consequence, according to Lemma 3.1, f € 1 (2, n, n) if the statement is true. [

According to Lemma 3.2, we can construct a binary n-DIM for even n as

follows.

Construction 3.1 Let n = 2m and m > 2. Construct a mapping f, with the following

basic construction set

By =(p =(2,1,3,4,...,n),

/o =(1,2,4,3,5,6,...,n),

on =(1,2,...,n=2,n,n-1),
Pl =(133:.2, 4, ..., n),
P2 = (2,3, 5,4, 6, ..., n),

Pn =2 ., n=1,1)).

Theorem 3.1 The mapping f,, constructed by Construction 3.1 is a DIM for even n.

Proof. It is clear that both (o1, o2, ... , pm) and {Pm+1, Pm+2, ... , Pn) are commutative

and all permutations in Bfn are self-inverse. Thus, it suffices to prove that (3.4) and

(3.5) are true for any subset J  F,.

Notice that dy (o, t) = 2 for all pj € B¢, . Furthermore, for any two distinct
permutations pi, gj € By , du (pig;, L) =4 if p; and p; commute, and duw (i}, L) =3
if pi and pj do not commute. Thus, we can define a function | : By x By — Z as

0 if p; and p; commute,

I(pi’pj):{

1 otherwise,

and write du (pigj, t) =4 —1 (pi, py). This formula can be extended to

di ([T, 05 0=2131-2 ;i1 0P)) (3.6)



Chapter 3 DIMs from Binary Vectors 22

Now let

Bi=(pljeJandl <j<m)cB; and
B=(pjjjeJandm+1<j<n)cBy .

Formula (3.6) can be rewritten as

dun([T,, 00 0=2B1+2Bo=Y . 3 L Woipy) (D)

For a permutation p; € Bj, there are at most two permutations in B, not
commuting with p;. Similarly, each permutation in B, does not commute with at most

two permutations in B;. Consider the following possible cases.

Case 1: | B; | # | B2|. We have
z,0i€B1 zijBz |(,Di,pj)§2 x min {| By, | B2}
Thus

dy([ 1., 05 D2 2xmaxc{iB, [, B2} > | Bi| +| Bz =] J|.

Case 2: | B;| =| Bz| and | J | < n. At least one permutation in B, does not commute

with at most one permutation in By, or else | J | = n. Thus,
du([1,., 7 0>2B11=13]

Case 3: | B;| =| Bz | and | J | = n. Each permutation in B, (B,) does not commute with

exactly two permutations in B; (B;). Thus,
dH(H]-EJPjo 0)=2|B[=]J|.

For any subset J < Fy,, Case 1 and Case 2 show that (3.4) is true and Case 3
shows that (3.5) is true. Thus, f, € 1(2, n, n). O

Example 3.2 (n = 6) fs: Z$— S¢ is constructed with the following basic construction
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set
By, = (/1 =(2.1,3,4,5,6),
p,=(1,2,4,3,5,06),
p=(1,2,3,4,6,5),
s =(1,3,2,4,5,6),
ps=(1,2,3,5,4,06),
P =1(6,2,3,4,51)).

The mapping table of fq is listed in Appendix A and the distance expansion matrix of

fe is listed in Table 3.7. From Table 3.7 it is easy to see that fs is a DIM.

We have to mention that the DIM f, € 1(2, n, n) for even n proposed here is
identical to z, proposed in [22], and.is similarto the mapping hym € 1(2, 2m, 2m) for

m =2, or m> 2 and m is odd,.as proposed in [17]. Although h,n is described by an
algorithm there, it can be describéd as.the mapping corresponding to the basic

construction set thm =t s, .. , lbm) Where

gi=(1,2,...,2i-2,2i,2i—1,2i+2, ...,2m), and

nsi= (L2, ...,i—1,m+ii+1,....m+i—1,im+i+1,..,2m)

fori=1,2,...,m. Note that pj= g for 1 <i<m,but g =g form+1<i<2m.

3.2 DIMs of Odd Length

We cannot construct a binary n-DIM for odd n in the same way as
Construction 1 because it is infeasible to find two commutative sets which form a
basic construction set when n is odd. In the following, we develop a different

construction method for odd n.

Lemma 3.3 Let n =2m + 1, m > 2, f, be a mapping constructed by (3.1) with the
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following basic construction set

By =(p =(,1,3,4,...,n),

, =(1,2,4,3,5,6,...,n),

om =(1,2,...,n=3,n—1,n-2,n),
Prm+ls

P2=(1,3,2,4,...,n),
omiz=(1,2,3,5,4,6,...,n),

o =(1,2,...,n=-2,n,n—1)),
and suppose

Pm+1= (72'1, ik, . 7Z'n).

Let U= {{m, m}, {m, ks s b, V= {{1,2), 3,4}, ..., n—2,n—1}}.

For 1<k S”T‘l, let uy, ..., Ugberany K distinct'elements of U, and vy, ... , vxbe any k

distinct elements of V. If U:(=1 u; # U:(zlvi , then for any subset J < Fp\{m+1},

du (T T,y man P Pme) > 13 1 (3.8)
Proof. Let J; = {j|jeJand 1 <j<m}, b ={]j|]jeJand m+ 2 <j<n},
Bi=(pjljedi),andB,={(p|] € J2), By, B, cB; . B i1s commutative, and so is
B,. Let | B, | =k 0<Kk S”T‘l. Consider the permutation ﬂ:Pm+1HJ-EJsz- We

know that dy (&, pmi1) = 2k. Let P ={z; | u(i) # 7;} . For a permutation p. € B,

1 £c<m, we have

2k ,if 2¢ —1 € P and 2c € P (the distance never decreases),
dy (Petts Pmsy) =12k +1 ,if either 2¢ —1€ P or 2¢ € P but not both,
2k+2 ,if2c-1g¢Pand2cgP.

The following shows that (3.8) is true in all possible cases.
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Case 1: | By | # | Ba|.
du (LT ;e mary o Pme) 2 2 x max{| By, | Ba}
>[Bi|+[By|=]J].

Case 2: | B;| = B, |. Since the union of any Kk distinct element of U is not equal to the

union of any K distinct element of V. We have

dH(HjEJU{m+1}pj’pm+1)>2X’81’:|J‘_ 0

Lemma 3.4 Let n =2m + 1, m > 2, f be a mapping constructed by (3.1) with the
basic construction set Bf in Lemma 3.3. Then f € 1(2, n, n) if the following

statements are true.

) dy (Hjezn\{mﬂ}pj’pml) =
ii) Foreachie F,\{m+1}, dH(HjEZn\{i’mH}pj,pmH)=n.

i) LetU={{m, m}, 4m, " tmig, mih, V={{1,2}, (3,4}, ..., In—2,

n—1}}. For 1<k S”T*I, let'ty, ... , ugbe any Kk distinct elements of U, and

. k k
Vi, ..., Vk be any Kk distinct elements of V, Ui:lui # U V.

i=1 !

Proof. First, i) implies that (3.3) in Lemma 3.1 is true. Second, for any two distinct

subsets J;, J, < Fi, there are three possible cases:

1. Neither J; nor J, contains m + 1.
2. Either J; or J; contains m + 1 but not both.

3. Both J; and J, contain m + 1.

No matter in which case, we show that (3.2) in Lemma 3.1 is always true.
Case I: m+ 1 ¢ Jyand m + 1 ¢ J,. This case is basically the same situation as in

Theorem 3.1 above. Thus

dH(Hjelej’Hjerpj):dH(HjeJ1®J2pj’l)>|Jl D &|.
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Case 2: Without loss of generality, assume m+ 1 € Jyand m+ 1 ¢ J,. We prove (3.2)
by induction on the size of J; @ J,. The base step is stated in ii) for
|J1 @ Jy|=n— 1. Now assume (3.2) is true for | J; @ J, | =k + 1 but is not
true for | J; @ J, | = k. That is,

dH(Hj€J1®J2pjﬂ L)Sk

for some | J; @ J; | = k. However, the only possibility for this assumption is

dH(HjeJ,@JZ'OJ" 0 =k

Because according to the hypothesis,
dy (HjeJl(DJZU{i}pJ’ H>k+1

for all i € Fy — (Jf ©J2), and pi.is a transposition that changes exactly two

positions (note that m + 17 J; @ J,). Thus, H agrees with ¢ in

jed, @3, Pi
n — K positions, and eachrpermutation p; such thati € F, — (J; @ J,) changes

exactly two of these positions to make
dy (HjeJ1®J2U{i}pj’ H=k+2.

There are totally n — k permutations each corresponding to an element of
Fn—(J1 @ Jy). By the same logic as in Lemma 3.3, it is not possible for

those n — k permutations, which consist of two commutative sets and one of

them is of sizez‘% , that change only n — k positions, which is a

contradiction! Thus, we have
dH(HJ_eszpJ—, 0)>kfor|Jd; ®J| =k

Case3:m+1 e Jjand m+ 1 € J,. According to Lemma 3.3, we have
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dH(Hjelej’Hjerpj) = dH(HjEJI@JZU{m+1}pjopm+1)

>0 DIy (]

So if we can find a pm+; satisfying i), ii), and iii) in Lemma 3.4, then we have a
binary n-DIM for odd n. The following examples exhibit how to find a suitable

permutation for pm+; for n =5 and n = 7 respectively.

Example 3.3 (n = 5) Suppose fs: Z; — Ss is constructed by (3.1) with the following
basic construction set
By, =(p =(2,1,3,4,5),
P =(1,2,4,3,5),
2 = (m, s 73, 73, 705),
ps=(1,3,2,4,5),
Ps—(152,3,5,4) ).

To make fs a DIM, the following requirements should be satisfied:

) du (pro20aps, p3) = 5.
i) du (020405, 3) = 5, A (P10405, 03) = S, A (L1204, P3) = 5, and
du (010205, P3) = S.
i) {m, m}, {m, e {{1,2}, {3,4}} and {m, m, m, s} # {1, 2, 3, 4}.

Since
p1oaosps = (2,4, 1,5, 3),
ppsps =(1,4,2,5,3),
ppsps =(2,3,1,5,4),
ppps =(2,1,4,5,3),
s =(2,4,1,3,5),

wehave m ¢ {1,2}, m ¢ {1,3,4}, m ¢ {1,2,4}, m ¢{3,5},and 75 ¢ {3, 4, 5}.

Furthermore, from iii) above we have 7 # 5. According to these restrictions and the
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rules stated in iii), the only solution for p5 is (3, 2, 5, 4, 1). The mapping table of fs is

listed in Appendix A and the distance expansion matrix of fs is listed in Table 3.6.

Example 3.4 (n = 7): Assume f; : Z] — S; is constructed by (3.1) with the basic

construction set described in Lemma 3.3. Based on the requirements depicted in
Lemma 3.4, we exclude some values for ps in the same way as Example 3.1. The

excluded values are summarized in Table 3.1.

Table 3.1 The excluded values for p4 in the construction of f; € 1(2, 7, 7).

m.om LT s g T
1 % x X
2+ % X
3 X X Ix
4 X X X
5 X X X
6 X X X
71 x X X

In Table 3.1 the marks “x” denote the values that should be excluded. Besides,
the selection of the values should satisfy the condition iii) in Lemma 3.4. There are
many solutions for p4 (totally 68). In order to make the distance expansion matrix as
good as possible, we can choose a solution such that dy (o4, ¢) is the largest among
all possible solutions, for example, (5, 6, 3, 7, 1, 2, 4). The mapping table of f; is

listed in Appendix A and the distance expansion matrix of f; is listed in Table 3.12.

Now we give a general construction of binary n-DIMs for odd n as follows.

Construction 3.2 Let n = 2m + 1 and m > 2. Construct a mapping f, with the basic

construction set described in Lemma 3.3 where
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(3’275347 1)5 lfn 25,
pm+1 = (576737 731>254)7 1f|’l :7,
(n-Ln-2,n-3n,1,2,...,.n—4), ifn=9.

Theorem 3.2 The mapping f, constructed by Construction 3.2 is a DIM for odd n.

Proof. We have shown that fs and f; are DIMs from the above examples. For n > 9,

like the constructions of fs and f;, we exclude some values for py+; as follows:

me {l,2,n},

o1 & {n=2,n},

g {n-2,n—1,n},

mi 42050, 20+ 1, 2i + 2}, and
i1 € {2015 21, 21+ 2}

fori=1,2,...,(n—3)/2: The excluded values and the values selected for pm+; are
summarized in Table 3.2 where the marks ‘%’ denote the values excluded and the
marks “o” denote the values selected. It can be checked that py+; satisfies iii) in

Lemma 3.4. [

Table 3.2 The excluded values for pn+; in the construction of f, € 1(2, n, n) for

odd n.
m M M3 T 5 g T cee Tn-1  7hn
1 X X o)
2 X o
3 X X 0
4 X X
n—4 o)
n-3 o)
n-2 o X
n—-1
n o) X
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3.3 Comparisons

In this section, we compare our DIMs f, with other mappings, including DPMs
hn proposed by Chang et al. [17], DPMs I, of odd length proposed by Lee [23], DIMs
I'n proposed by Chang [14], DIMs Q, proposed by Chang [15], DIMs z, proposed by
Lee [22], and DPMs M, proposed by Lee [31]. Tables 3.3 ~ 3.27 list the distance
expansion matrices of these mappings for comparisons for 5 <n < 11. Table 3.28 lists
the distance expansion matrix of f, for n = 13. The total distances A;( ) of these
mappings are listed in Table 3.29. The asterisk behind a number indicates that this
number is the largest among all items. In the comparisons of distance expansion
distributions, we only compare f, with hy, I, and r, for 5 <n <9, and also compare f,
with Qn for 8<n<10 because only those mappings are given in the
above-mentioned papers. We de'not compare. f, with M, for their distance expansion
matrices since there is no such matrix in the corresponding paper. For even n, the
distance expansion distribution of z, and fy are €xactly the same since z, and f, are

identical when n is even.

For n = 5, Tables 3.3 and 3.4 show: that both hs and |s are DPMs but not DIMs,
whereas Tables 3.5 and 3.6 show that rs, zs, and fs are all DIMs (the distance
expansion distribution of zs and fs are exactly the same). The distance expansion
distribution of rs is better than that of zs and fs, and the total distances of these
mappings justify this argument. This is reasonable since Is is obtained by computer

search.

Table 3.3 Distance expansion matrix of hs.

0 80 0O O O

0 9 64 0
0 112 48
16 64

16
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Table 3.4 Distance expansion matrix of |s.

0 64 6 2 8
4 68 64 24
14 76 70

22 58

16

Table 3.5 Distance expansion matrix of Is.

0 499 & 10 13
0 68 68 24
0 93 67

0 80

16

Table 3.6 = Distance expansion matrix of zs and fs.

0 64 16 0 O
0 48 112 0

0 64 96

0 &0

16

For n =6, ls is not compared since the paper [23] focuses on DPMs of odd length
only. Although fs is not identical to hs and rs (hg = r¢), the distance expansion

matrices of these mapping is just the same (see Table 3.7).

Table 3.7 Distance expansion matrix of hg, r¢, Zs, and f.

0192 0 0 0 O
0 192288 0 0
0 192 384 64

0 192 288

0 192

32
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For n =7, we see again that both h; and |; are DPMs but not DIMs, whereas 17, z7,

and f; are all DIMs (see Tables 3.8 ~ 3.12). One notable thing is that the distance

expansion distribution of f; is better than that of r; and z;, and the total distance of f;

is the best (equal to that of M>).

Table 3.8 Distance expansion matrix of hs.

0 512 83

0 448 0 0 O

2 0

0 576 1344 320 O
0 640 1344 256

0

0 0
0 0

704 640
64 384
64

Table 3.9  Distance expansion matrix of .

0 384 0

0 6 22 36
0 516 444 28 128 228
0 582 658 396 604
4 524 776 936
34 436 874

56 392
64

Table 3.10 Distance expansion matrix of I;.

0 384 64 O

0

0

0 320 896 128
0 256 1408 512 64
320 1344 576

0

0 0
0 0

384 960
0 448
64
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Table 3.11 Distance expansion matrix of z;.

0 3834 64 0 O 0 0
0 352832 160 O O

0 320 1280 576 64

0 352 1280 608

0 384 960

0 448

64

Table 3.12 Distance expansion matrix of f;.

0384 0 0 0 64 O
0 320 640 0 256 128

0 256 768 640 576

0 192 832 1216

0 192 1152

0 448

64

For n = 8, the distance expansion distribution of fg is worse than that of rg and Qs

but is better than that of hg (see Tables 3.13 ~ 3.16).

Table 3.13 Distance expansion matrix of hg.

0 1024 0 0 0 0 0 0
0 1280 2304 0 0 0 0

0 1600 4160 1408 O 0

0 1920 4992 1920 128

0 2240 3840 1088

128 1792 1664

192 832

128
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Table 3.14 Distance expansion matrix of rg.

0 680 120 112 104 8 0 0
0 576 1704 744 336 216 8

0 568 2856 2552 936 256

0 528 3960 3456 1016

0 744 3920 2504

0 944 2640
0 1024
128

Table 3.15 Distance expansion matrix of Qs.

0 768 256 0 0 0 0 0
0 512 2432 512 128 O 0
0 256 3840 2304 768 O

0 256 4224 3584 896

0 512 3840 2816

0 768 2816
0 1024
128

Table 3.16 Distance expansion matrix of zg and fs.

0 1024 0 0 0 0 0 0
0 1024 2560 O 0 0 0
0 1024 4096 2048 0 0

0 1024 4608 3072 256

0 1024 4096 2048

0 1024 2560
0 1024
128

For n = 9, we find that large numbers of quantity aggregate on the rightmost

column of the distance expansion matrix of fy (see Table 3.22). Hence, the distance
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expansion distribution of fy is obviously the best among the six mappings. In addition,
Ai( fo) is the largest among all mappings, including My. We also notice that r9 and z9
are almost the same except the fourth row (see Table 3.19 and 3.21). The aggregation
of quantity in the rightmost column of the distance expansion matrix is a
characteristic of f, for n>9 and n is odd (see Tables 3.22, 3.27, and 3.28 for
examples). Thus, the distance expansion distribution of fj is better than that of hy, I,
In, Qn, and z, for n > 9 and n is odd. Therefore, we conclude that f, has better distance
expansion distribution than these five previously proposed DPMs or DIMs for n > 7
and n is odd. The total distance of f, is also better then that of these mappings, but
worse than that of M, for n > 11 and n is odd. However, f, is a DIM while M, is not
a DIM.

Table 3:17 | Distance expansion matrix of ho.

0 2304 O 0 0 0 0 0 0
0 3072 6144 O 0 0 0 0

0 4160 12096 5248 0 0 0

0 5376 16384 9472 1024 O

0 6592 16128 8768 768

256 6272 11520 3456

448 4672 4096

512 1792

256

Table 3.18 Distance expansion matrix of lo.

0 2048 O 0 0 0 6 68 182
0 3076 4092 0 0 40 514 1494

0 4176 8016 2144 126 1646 5396

0 4848 9512 3560 3170 11166

0 4492 7650 5462 14652

4 3200 5496 12804

82 1980 7154

136 2168

256
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Table 3.19 Distance expansion matrix of ry.

0 2048 256 0 0 0 0 0 0
0 1792 6400 1024 O 0 0 0
0 1536 10240 8704 1024 O 0

0 1536 11776 15360 3328 256

0 1536 12544 14848 3328

0 1792 11008 8704

0 2048 7168
0 2304
256

Table 3.20 Distance expansion matrix of Qo.

0 1536 768 O 0 0 0 0 0
0 896 5568 2368 384 0 0 0

0 640 7296 10240 3008 320 0

0 512 8640 15424 7104 576

0 704 9344 16704 5504

0 1024 9792 10688

0 1600 7616

0 2304

256

Table 3.21 . Distance expansion matrix of Zo.

0 2048 256 0 0 0 0 0 0
0 1792 6400 1024 O 0 0 0
0 1536 10240 8704 1024 O 0
0 1280 12800 13824 4352 0
0 1536 12544 14848 3328
0 1792 11008 8704

0 2048 7168
0 2304
256

Table 3.22 Distance expansion matrix of fo.

0 2048 O 0 0 0 0 0 256
0 1792 5376 O 0 0 0 2048

0 1536 7680 5120 O 0 7168

0 1280 7680 7680 1280 14336

0 1024 6144 6144 18944

0 768 3840 16896

0 512 8704

0 2304

256
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Table 3.23 Distance expansion matrix of I.

0 4096 1024 0 0 0 0 0 0 0
0 3200 14720 5120 0 0 0 0 0
0 2304 22784 29184 7168 0 0 0
0 2560 24320 56192 21376 3072 0
0 2560 27392 65792 29440 3840
0 2560 30464 55168 19328
0 3328 27904 30208
0 4224 18816
0 5120
512
Table 3.24 Distance,expansion matrix of Q.
0 4096 1024 0 0 0 0 0 0
0 3200 14720 5120 0 0 0 0
0 2304 22784 29184 7168 0 0 0

0 2560 24320 56192 21376 3072 0
0 2560 27392 65792 29440 3840
0 2560 30464 55168 19328
0 3328 27904 30208
0 4224 18816
0 5120
512

Table 3.25 Distance expansion matrix of ;o and fyo.

0 5120
0

0 0 0 0 0 0 0
5120 17920 0 0 0 0 0
0 5120 30720 25600 0 0 0
0 5120 38400 51200 12800 O

0 5120 40960 61400 20480 1024

0 5120 38400 51200 12800

0 5120 30720 25600

0 5120 17920

0 5120

512

SO OO

37
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Table 3.26 Distance expansion matrix of zj;.

0 10240 1024 O 0 0 0 0 0 0 0
0 9728 39936 6656 O 0 0 0 0 0

0 9216 67584 78848 13312 0 0 0 0

0 8704 86016 158208 76800 8192 0 0

0 8192 97280 206848 137216 22528 1024
0 8704 97280 214528 133120 19456

0 9216 90112 168960 69632

0 9728 73728 85504

0 10240 46080

0 11264
1024
Table 3.27 Distance expansion matrix of fj;.
0 10240 0 0 0 0 0 0 0 0 1024
0 9216 36864 0 0 0 0 0 0 10240
0 8192 57344 57344 0 0 0 0 46080
0 7168 64512 107520 35840 0 0 122880

0 6144 61440 122880 61440 6144 215040
0 5120 51200 102400 51200 263168

0 4096 36864 61440 235520

0 3072 21504 144384

0 2048 54272

0 11264
1024
Table 3.28 Distance expansion matrix of f3.
0 49152 O 0 0 0 0 0 0 0 0 0 4096
0 45056 225280 O 0 0 0 0 0 0 0 49152
0 40960 368640 491520 0 0 0 0 0 0 270336
0 36864 442368 1032192 516096 0 0 0 0 901120
0 32768 458752 1376256 1146880 229376 0 0 2027520

0 28672 430080 1433600 1433600 430080 28672 3244032
0 24576 368640 1228800 1228800 368640 3809280
0 20480 286720 860160 716800 3387392
0 16384 196608 458752 2256896
0 12288 110592 1048576

0 8192 311296

0 53248

4096
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Table 3.29 List of total distance of various DPMs.

N Amax hn I In Qn Zn M, fn

5 4090 3712 3872 4020* - - 3712 3968

6 20472 18432 - 18432 - 18432 19456* 18432
7 98294 83968 91016 88064 - 88064 94208* 94208*
8 458752 378880 - 413312 409600 393216 458752* 393216
9 2097144 1689600 1911000 1802240 1863680 1802240 1982464  1998848*
10 9437160 7281792 - 8110080 8110080 7863680  9043968* 7863680
11 41943022 31923328 37741432 36330496 - 35127296 40108032* 39321600
12 184549344 138878080 - 154927104 - 150994944 180355072* 150994944

13 805306346 600251520 717371576 677117952 - - 780140544* 746586112
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Chapter 4

DPMs from Ternary Vectors

All DPMs and DIMs=preposed so_far are from binary vectors ([6], [13], [14],
[15], [17], [18], [21], [22]5[23], 291, [30], [31], [37]) except [19] and [34]. In this
chapter, we propose a general construction method that constructs DPMs or DIMs

from ternary vectors. That is, the proposed method constructs DPMs or DIMs from

Z to Sn. By using this method, we construct DIMs for N = n + 2 for all n > 3,

DPMs for N=n+1 for all n > 9, as well as DPMs for N =n for all n > 13.

4.1 The General Recursive Construction

Here we present a recursive construction E that constructs mappings from ZJ
to Sn. Given a mapping f,, € F3, m, M), E( f,,)= f,.,, is a mapping in
F(@3,m+ 1, M+ 1). That is, the construction “extends” the mapping f, : Z;' — Sw
to the mapping f,, ., : Z3m+1—> Sm+1. Repeated use of the construction E gives a

sequence of mappings ., =E(f,.,) = EE(f,) € FG3,m+2, M+2),

fri3=E(f,.,)=EEE(T,) eF@B, m+3, M+3),...,and so on. We will show
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that
) f eP@,n N)foralln>mif f_ P 3, m,M).
i) f,el@,nN)yforalln>miff, e 13, m, M)and M>m.

i) f,eP@,n,N)foralln>mif f_ e 1(3,m,M)and M =m.

where N—n=M —m.

For any array u = (uj, Uy, ... , Uy), we use the notation U; to denote the element

Uj in position i. For example, leta = (5, 3, 2, 4, 6, 1), then as = 6.

Construction E: Forf € F(3,n, N), defineg=E(f) e F(3,n+ 1, N + 1) as follows.
Let X = (X1, X2, ... , Xn) € Z3 andf(X) = (p;, 02, ... , pn). Suppose that the element

N — 4 occurs in position I, that 1§ pf= N — 4 Then

N41 fori='N+1
9(x|0)i = ;

Pi> forl== N +1

N=4"" fori=N+1
gix|1); = {N+1 fori=r

Pi> forig{r,N +1}

if nis even and X, = 2, then

N+1 fori=N-1
fori=N+1
Pi> fori¢ {N-1LN+1}

9(x|2)i

I
iS]
=

I

otherwise (N is odd or X, < 2), then
N+1 fori=N
ax|2)i = < pn fori=N+1
Pi> forig {N,N +1}

To help the reader understand the construction, we give an alternative

algorithmic description in Table 4.1.
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Table 4.1 An algorithmic description of Construction E.

Algorithm of Construction E
Input: X = (X1, Xa, ... , Xne1)€ Z3 "

Output: (w1, to, ..., t+1) = 9(X)

Begin

1. (o1, P2, -5 pN) < T (X1, Xa, ooty Xn);

2. (tu, o, ..., N, tine1) < (01, P2, oo, N, N+ 1)

3. Case Xp+1 = 1:

4. repu ' (N-4);

5. swap (tr, tn+1);

6. Case Xn+1 = 2:

7. If (nis odd) and (x=2) then'swap (-1, tn+1);
8. Else swap (un, gin+1);

End

Example 4.1 Let f(0,0,0) = (1,2,3;4,5). By Construction 4.1, we have

9(0,0,0,0) = (1,2,3,4,5,6),
9(0,0,0,1)=(6,2,3,4,5,1),
9(0,0,0,2) = (1,2,3,4,6,5).

Furthermore, let h = E(Qg), we have

h(0,0,0,0,0) = (1,2,3,4,5,6,7),
h(0,0,0,0,1) = (1,7,3,4,5,6,2),
h(0,0,0,0,2) = (1,2,3,4,5,7,6),
h(0,0,0,1,0) = (6,2,3,4,5,1,7),
h(0,0,0,1,1) = (6,7,3,4,5,1,2),
h(0,0,0,1,2) = (6,2,3,4,5,7,1),
h(0,0,0,2,0) = (1,2,3,4,6,5,7),
h(0,0,0,2,1) =(1,7,3,4,6,5,2),
h(0,0,0,2,2) = (1,2,3,4,7,5,6).
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For f € F (3, m, M), we define a sequence of mappings f, € F(3,n,n+ M -m),

for all n > m, recursively by

fo=fand f ,,=C(f,)foralln>m.

n+1—

Now we show that based on an initial mapping f € P(3, m, M), f, €

P (3, n, n + M —m) for all n > m. Furthermore, if f is a DIM, i.e. f € I (3, m, M), then

f,el3,n,n+M-m)or f,e P(3,n,n+M-m)foralln>m.

Lemma 4.1 If f,, € P (3, m, M), m is odd, and f(x)y # M — 4 for all x € Z{". Then

f ., ePGm+1,M+1)

The proof of Lemma 4.1 is similar to that of the following lemma (and a little

simpler). Thus, we omit the proof.

Lemma4.2If f,, e 1 (3, m, M), mis.odd;and f (X)y #M —4 for all x € Z3". Then

i) f..,el@m+1,M+1)ifM>m, or

iy f,,eP@Gm+I,M+1)ifM=m.

Proof. For every two distinct vectors X = (X' | Xm+1), Y = (Y’ | Yms1) in Z]*' where X', y'

€ Z3", consider the following cases.

Table 4.2 Possible cases for two distinct vectors in Z™" .

Yme1 =0 | Yme1 =1 | Yme1 =2
Xm1 =0 ] Casel | Case2 | Case3
Xmi1 =1 | Case4 | Case5 | Case6
Xmi1 =2 | Case7 | Case8 | Case9
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i) M>m:

Case 1’ 5, 9: dH(fm+l(X)a fm+1(y)) = dH(fm(X')a fm(y'))
>dH (X" y')
=du (X, y).
Case 2: fr Oy =M+ 1% f (Y =M—4 f5,(y), =M+ 1 and

o (X),#M+ 1 wherer="f_(y")"' (M —4). Thus,

g (Fry 0, T (1)) 2 d (F (X)), T (y) +1
>dy (X, y) + 1
= dH (X9 y)

Case 3, 4, 7: similar to Case 2:

Case 6: Table 4.3 illustrates the valuesof f, (X')i, f,,(Y")i, fru  (X)i, and f,(y); for
I =r, M, and M + 1 tespectively.-In the table we see that f,,,(X)y,,= M—4
and o, (Vv = fn(Y)u = M =4 (by the fact that f (X)yz= M — 4);
fo(X),=M+1andf, (y),=f.(y),#M+ 1 where r =f_(x')""(M —4)
andr<M; f_  (y)yy=M+1landf  ,(X)y=F,(X)y#M+ 1. Thus,
Ay (Finn (0, Frg () 2 dyy (F (), Fr(y)) +1

>du (X, y) + 1
=dn (X, ).

Table 4.3 List of some values of f and f,,,, in the case of Xm1 = 1 and Yy = 2.

i fon (X fn (Y'); foa 01 fra(Y);

r M-4  f.(y)  M+1  f(y),

M D v (O M+
M+1 — - M -4 frn(Y)M
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Case 8: similar to Case 6.
In all cases, dy (. ;(X), f.1(Y))>dg(X,y). Thus,
frooel@G,m+1,M+1).
i) M=m:
The proof'is similar to i) except in Case 1, 5, and 9, when dy (X', y') = m,

Ay (F 1 O T (YD) = iy (B (X, £ (Y1)

=dy (X, y)=dn (X, y)
<m+1,

which means that f ., is possibleito inerease the distance but it just preserves the

distance. Thus,

f o, ePB m+EM+1), 0

Theorem 4.1 If f_ eP (3, m, M),/ m'is odd, and f, (X), & {M — 3, M — 4} for all

x €Z3',then f, € P(3,n,n+ M —m)forall n>m.

We omit the proof of Theorem 4.1 since it is similar to that of the following

theorem (and a little simpler).
Theorem 42 If f_ e 1(3, m, M), mis odd, and f,(X)y, ¢ {M—3, M — 4} for all
X € Z3'. Then

i) f,el@,n,N)foralln>mifM>m,or

i) f,eP(@3,n,N)foralln>mifM=m.

where N=n+ M —-m.
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Proof. i) M > m: The proof is done by induction. We have proved that f, € 1 (3, n, N)

forn=m+ 1 in Lemma 4.2. For n >m + 2, suppose that f,_, € 1(3,n—1,N-1). For

any two distinct vectors X = (X[ Xn), Y = (Y| Yn) in Z§ where X', y’ € Z]~", consider

the cases listed in Table 4.2.

Case 1,5,9: dy (f, (x), f, (y)) >dy (X, y) (similar to Lemma 4.2).
Case 2,3,4,7: dy (f, (x), f, (y)) >dy (X, Y)(similar to Lemma 4.2).
Case 6: Since X, = 1, we have f, (X) = (N—1) —4 =N - 5. Furthermore, y, = 2

(a) If nis even, then
N -1 ify, =0,

fn (y)N:fn—l(y‘)N—l= N =6 if Yoo =1,
N=2orN-7 ify 6 =2.

Thus, f, (X)y = f, (¥)y" Besides, T, (y)y,= N and f, (X)y_;# N (by the
fact that T (X;,..., Xy )m € {M=3, M —4}).
(b) If n is odd, then

fa (Vv =N-1 ify, =0,
fn (y)N: fn—l(y')Nfl =N-6 if Yn71=1,
fo o (Y)no=N-1 ify,,=2.

Thus, f, (X)y# f, (Y)y . Furthermore, if y,; = 2, then

f, (Y)n,=Nand f, (X)y_,# N (also by the fact that
frn (X5 s X € M =3, M —4}).
Otherwise (Yn-1 # 2),

f, (Y)yg=Nand f (x)y=N.
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Besides, f, (x),= N and f, (y), # N where r =f__ (x')""(N=5)and r<N-—1

if nis even, or r <N —2 if n is odd. Therefore,

di (Fo 00, fy (¥) 2 dyy (F 1 (X, Fr i (Y') +1
>dy (', y) + 1
= dH (X’ y)

Table 4.4 gives a summarization of possible values of f, (x), for all n>m.

Case 8: similar to Case 6.

In all cases, dy, (f, (X), f, (y))>dy(X,y). Thus, f, e 1(3,n,N).

i) M =m: Since f,, € P@3, m+ 1, M+:1) (proved in Lemma 4.1), similar to the

above proof, we have f, € P(3;n, N)forall n>m. O

Table 4.4 Possible values of f, (x), foralln>m.

Xn Xn_1 fn(X)N

n=m+1 | n>m+2

0 N-+1 N
1 N-4 N-5
0 N-1

1 N—-6

2 frn (XM N-1
2 N-2
N-7

The recursive construction E can be generalized. In the construction E we

defined r by pr = N — 4. The recursion would work equally well if we defined r by
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por= N —t for some fixed t > 3 and changed the conditions in the lemmas and

theorems to
fr(XOueg {M-(t-1),M-t}. 4.1)

Because if we list the last three symbols in f, ., =E(E( f )) as follows,

Table 4.5 Listing the last three symbols in f.,,, =E(E( f,)).

Xm+1 Xm+2 fm+2(X)M 1:m+2(X)M+1 fm+2(X)M+2
0 0 EY M+ 1 M +2
10 Py M —t M +2
2 0 M+ 1 o M +2
11 Py M+ 1 M- (t—1)
11 ou M-t M—(t—1)
2 1 M+ 1 i M—(t—1)
0 2 oy M +2 M+ 1
12 oy M+ 2 M —t
2 2 M2 o M+ 1

then, in order to make f,, , , suitable for subsequent recursions, we have

M+2-(t-1eg M+1,M+2,M—t, M—(t—1)},and
M+2-te {M+1,M+2,M-t,M—(t—1)}.

Note that m + 2 is odd since m is odd. Hence, t ¢ {0, 1, 2}.
It is also possible to vary the t from one step to the next as long as, for all

XeZ;

N-t=f (X)y if nis odd,

o 4.2)
N-te{f, Xy f, (X)y} 1f Niseven.

One reason we chose a fixed t is that if the condition (4.1) is satisfied at the start

of the recursion, then (4.2) is satisfied for all n>m.
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4.2 DIMs from Z; to S,.,

Now we construct DIMs from Z; to S, ., by using Construction E. According

n+2
to Theorem 4.2, all we have to do is to find a suitable initial mapping f €

1 (3, n, n+ 2) for some odd n such that
fOne2 2 {(N+2)-3,(n+2)—4} forallx e Z;.

We construct DIMs in I (3, n, n + 2) because, in contrast to 1 (3, n, n + 1) and
1 (3,n, n), it is easier to find such an initial mapping. In fact, 1 (3, n, n + 2) is not
empty for n =1 and n = 2. For example, Table 4.6 exhibits a DIM g € 1(3, 1, 3) and

Table 4.7 shows a DIM h € 1 (3,.2;4), réspectively.

Table 4.6 The mapping tabletand the-distance expansion matrix of g € 1(3, 1, 3).

x | 900 | x| gOTEREX | g(X)
© | (1,23) (D] 23D 2] G.l12)

Table 4.7 The mapping tables and the distance expansion matrix of h € 1(3, 2, 4).

X h(x) X h(x) X h(x)
0,1) | (1,2,3,4) | (0,1)| 4,2,3,1) | (0,2) | (1,4,3,2)
(1,0) | (2,3,1,4) | (1, | 23,4, | (1,2)| 4,3,1,2)

2,00 3,1,24) | (2,D) | 3.4.2,1) | (2,2)| (3,1,4,2)
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However, neither g nor h can be a suitable initial mapping for Construction E.

Here we define a DIM f; € 1(3, 3, 5) which is suitable for Construction E to
construct a sequence of DIMs in I (3, n, n + 2) for all n > 3. That is, f; (X)s ¢ {1, 2}

forall x e Z;. f; is obtained by the algorithm listed in Table 4.10.

The mapping f; is listed in Table 4.8. From the mapping table we see that
f; (x)s ¢ {1,2} forallx e Z33 . In addition, the distance expansion matrix listed in

Table 4.9 shows that f; is distance increasing. Hence, f; is suitable for

Construction E to construct a sequence of DIMs in I (3, n, n + 2) for all n > 3. Based

on this result and the examples given in Table 4.6 and Table 4.7, we have the

following result.

Theorem 4.3 1 (3, n, n + 2)is'not empty forn > 1.

Table 4.8 Mapping table of f; € 1 (3, 3, 5).

X f5 (X) X f5 (X) X f5 (X)

(0,0,0) | (1,2,3,4,5) | (0,0,1) | (1,2,5.4,3) | (0,0,2) | (1,2,3,5.4)
(1,0,0) | (2,3,1,4,5) | (1,0,1) | (2,5,1,4,3) | (1,0,2) | (2,3,1,5.4)
(2,0,0) | (3,1,2,4,5) | (2,0,1) | (5,1,2,4,3) | (2,0,2) | (3,1,2,5.4)
(0,1,0) | (4,2,3,1,5) | (0,1,1) | (4,2,5,1,3) | (0,1,2) | (5,2,3,1,4)
(1,1,0) | (2,3.4,1,5) | (1,L,1) | (2,5.4,1,3) | (1,1,2) | (2.3.5,1,4)
2,1,0) | (3.4,2,1,5) | @,1,1) | (5.4,2,1,3) | (2,1,2) | (3,5.2,1,4)
(0,2,0) | (1,4,3,2,5) | (0,2,1) | (1,4,5,2,3) | (0,2,2) | (1,5,3,2,4)
(1,2,0) | (4,3,1,2,5) | (1,2,1) | (4,5,1,2,3) | (1,2,2) | (5.3,1,2,4)
(2,2,0) | (3,1,4.2,5) | 2.2,1) | (5,1,4,2,3) | (2.2.2) | (3,1,5,2.,4)
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Table 4.9 Distance expansion matrix of f; .

0 36 45 0 0
0 27 111 24
0 18 90

Table 4.10 Construction algorithm for f; .

Construction algorithm for f,

Input: (X, X2, X3) € Z3

Output: (o1, ¢, ..., ¢s) =15 (X1, X2, X3)
Begin

1 case x; = 0:

2 (01, @, ..., @)= (1525354575);
3 case x; = I:

4 (@1, @2, ..., @s) < (2,3,71,4,°5);
5. casex;=2:

6 (01, @2, ..., 05) <= (3,1,2,4,5);
7 case x, = I:

8 i 7' (1);

9 swap (@i, @)

10. case xp=2:

11. i7" Q)
12. swap (@i, ¢1);
13. case X3=1:

14. i7" Q3)
15. swap (@i, ¢s);
16. case X3 = 2:

17. i 7' (4)
18. swap (@i, ¢s);

End
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Example 4.2 We construct f, € 1 (3, 4, 6) and f; € 1 (3, 5, 7) from f; . The distance

expansion matrices of f, and f5 are listed in Table 4.11 and Table 4.12, respectively.

Table 4.11 Distance expansion matrix of f, € 1 (3, 4, 6).

0 162 162 0 0 0
0 135 549 270 18

0 144 720 432

0 108 540

Table 4.12 Distance expansion‘matrix of f5 € 1 (3, 5, 7).

0 648 540 27 0 0 0
0 567 2457 1584 234 18

0 630 3828 4224 1038

0 720 4500 4500

0 648 3240

4.3 DPMs from Z3 to S,.;

To construct DPMs from Z; to S,,,, using Construction E, we need a mapping

f e P(3,n,n+ 1) as an initial mapping such that
fX)ne1 2 {(N+1)=3,(n+1)—4} forallx e Z;.

Finding an initial mapping in P (3, n, n + 1) is a tough work. For a DPM

f:Z —>S,,, to be existing, n >4 is a necessary condition since
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41=24<3>=27and 5! = 120 > 3*=81.

In the beginning, we tried to find such a mapping by computer search.
Unfortunately, an extensive computer search has been unsuccessful. In our
experiment, computer search is almost infeasible due to the large search space. As a
result, we tried some other approaches. Finally, an indirect approach has been
successful. This approach is to construct f from two simpler mappings found by

computer search.

For a vector u = (uy, Uy, ..., Uy), and a set X — {1, 2, ..., n}, let u\x denote the

vector obtained from U by removing the elements with subscript in X. For example,
(U1, Uz, U3, Us, Us, Ue)\ (1,51 = (U2, U3, Us, Us).

By computer search we have found mappings G € F (3, 5, 7) andH € F (3, 4, 6)

that satisfy the following conditions:
i)  Forevery X € 2], 6 exfG ()1, G(X)2; G(X)s},
i) Forevery X € Z35 , 7€ 4G (X)4, G(X)s5, G(X)6},
iii) For every distinct X,y € Z3, dy (G(X)i73-G(Y)y7y) = du (X, Y),
iv) Foreveryu eZi,1e {HX), HX) HX):},

V)  Forevery distinct u, v € Z;, dy (H (W56 HWV)5.61) 2 A (U, V).

The mappings G and H are listed explicitly in Appendix B. We will now show
how these mappings can be combined to produce a mapping f € P (3, 9, 10)

satisfying

f(X)10 & {6, 7} forall x € Z;.

Construction 4.2 Construction of f € P (3, 9, 10).

Letx € Z;) and X = (X., Xg) where X, € Z35 and Xg € Z;‘ . In addition, let
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P= ((019 D2y Q35 P4y P55 Yo, (07) = G(XL)7
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Y= (Y1, Y2, V35 ¥4, V5, Vo) = H(XR) + (4,4, 4,4, 4, 4).

Note that Condition iv) implies that ys > 6 and y¢ > 6. Similarly, Condition i) and

i) imply that ¢; < 5.

Define p= (p1, p2, ... , p1o) as follows.

P Ys
Pi= e
P G
p= ¢
Pi = Yi-6

if1<i<3
if4<i<6
if1<i<é6
if7<i<9
if7<i<10

and
and
and
and

and

=0,
pi=17,
¢i<5,
Yiee =3,
Yi—6 = 6.

In p, swap 1 and 6 and-alse swap 2 and 7,;and let the resulting array be denoted

by 7. More formally,

Then define

pi="11fp =6,
=21t =7,
pi=6ifp=1,
pi=Tif p=2,

pi = pi otherwise.

fx)=r

In order to help the reader understand the combination, we give an alternative

algorithmic description in Table 4.13.

Example 4.3 Let G(0,1,0,1,2) = (6,5,2,1,7,4,3) and H(0,1,0,2) = (1,5,3,2,4,6).

Then

?=1(6,5,2,1,7,4,3),
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y=(,9,7,6,8,10),
p=(8,5,2,1,10,4,3,9,7, 6), and

f(0,1,0,1,2,0,1,0,2)=(8,5,7,6,10,4,3,9,2, ).

Table 4.13  An algorithmic description of the construction of f € P (3, 9, 10).
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Combining algorithm for the initial mapping f € P (3,9, 10)
Input: X = (X, Xa, ... , Xo) € Z3

Output: (7, m, ..., 7o) = F(XiXay hilXo)

Begin

1. @ (@1, P2y .., P7) < GX1, X2, X35 Xg, X5)3

2. (1, Do, ... s P6) < H(Xs, X7, X35 X0);

3. YoV, Y2, oo s Vo) (Dt 4 G ¥4, s t4, g+ 4, §s + 4, g6t 4);
4. i —v'(5);

5. je @)

6. k<« ¢'(7);

7. Yi < @75

8. @ < V55

9. D < Ye;

10. p: (o1, P2, oo P10) <= (P15 P2, P, P, D5, Do, V15 V2, V35 V4);
1. i« p (D)

12. jep'Q)

13. k<« p(6);

14. 1< p'(7);

15.  swap (o, px);

16.  swap (g, 0);

7. n:(m, m, ..., mo) < (P1, P2, -+ 5 P10);

End
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Now we show that f has the started property.

Lemma4.3 feP (3,9, 10) and f(X);o & {6, 7} for every x € Z3 .

Proof. We first show that 7 € S;o. We have ¢ € S; and v is a permutation of (5, 6, 7,
8,9, 10). In particular, 5, 6, and 7 appear both in ¢ and y. The effect of the first line
in the definition of p is to remove another element (ys) into the position where ¢ has
a 6. Similarly, the second line overwrites the 7 in ¢, and the fourth line overwrites the
5 in y. The definition of p is then the concatenation of the six first (overwritten)
elements of ¢ and the four first (overwritten) elements of y. Therefore, p contains no

duplicate elements, that is, p € Sjp. And so 7 € Sjo.

The element 1 in p must béin any ong:of the first six positions, coming from ¢,
or in one of the positions 7,28, ot 9 (if|¢p; = 1). Similarly, the element 2 must be in one
of the first nine positions of p. Therefore, both 6 and 7 must be among the first nine

positions of 7, that is 719 & {6, 7}

Finally, we must show that f “is'distance preserving. Let X # X', and let the arrays

corresponding to X’ be denoted by ¢’, y’, p’, and 7’. By assumption,

dH (X, X’) = dH (X|_, X’L) + dH (XR, X’R)

<du (@\73, @\i7) i (Y5600 Yi5.6))- (4.3)
For 1 <i<6wehave
du (@i, @) < du (oi, £). (4.4)

If @i = ¢J; this is obvious. Otherwise, we may assume without loss of generality that

@i < @i and we must show that p; # g. If ¢; <5, then
pi=gi< ¢i= pi.
If @i = 6, then

Li=@i<5and pi=1vs>6.
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If i=7,then 4 <i<6 andso ¢+ 6. Hence
Li=@i<5and pi =1y = 6.

This completes the proof of (4.4). A similar argument shows that for 7 <i < 10 we

have

du (Yice, Y'ie) < dn (i, O, (4.5)

and that for 1 <i <10 we have

du (i, Ai) < A (i, 7). (4.6)
Combining (4.3) — (4.6), we get

dn (X, X) < du (@73, 2"\73) T du (Yi5.605 YA5.63)
<tn (p,.0) < du iz, 7).

Hence, f is distance preserving. O

Table 4.14 lists the distance expansionmatrix of f. With f as an initial mapping,

we can prove the following theorem with Theorem 4.1.

Theorem 4.4: P (3, 9, 10) is not empty for n > 9.

Table 4.14 Distance expansion matrix of f € P (3,9, 10).

0 51354 41391 45441 33210 5751 0 0 0 0
34344 112865 269143 323206 291836 192492 124626 57474 11190
53806 366311 958353 1434482 1568770 1297158 739170 195438
140255 910577 2837002 4931228 5640290 4032984 1348128
310621 2275959 7345554 12583794 12049018 5115982
698738 4980708 14847858 20652244 11728356
1258982 8380434 19598010 16112206
1675300 8824024 12175492
1191024 3847824




Chapter 4 DPMs from Ternary Vectors 58

4.4 DPMs from Z3 to S,

ForaDPM f : Z] — S, to be existing, n > 7 is a necessary condition since

6! =720 <3%=729 and 7! = 5040 > 3" =2187.

Like the construction of P (3, n, n + 1), we cannot find an initial mapping by
simply searching a DPM from Z; to S,. Hence, similar to the previous section, we

construct an initial mapping by an indirect approach. However, the construction is

more involved and contains several steps. We will describe the constructions of the
intermediate mappings and the desired initial mapping f € P (3, 13, 13). The

properties of the intermediate mappings and the started property of the mapping f

will also be shown.

We start with three mappings RS €. (3, 3, 5) and T € F (3, 4, 6). These

mappings were found by computer-search and are used as building blocks for the

constructions of the intermediaté mappings. They have the following properties:

i) Foreveryx €Z;,1 e {R(X)1, R(X)2, R(X)3},

i) Foreveryx € Z;, R(X)s # 5,

iii) For every distinct X,y € Z3, du (R(X), 4.5, R(Y)\ga.51) = Ani (X, Y),
iv) Foreveryx € Z3,2 € {S(X)1, S(X)2, S(X)3},

v) Forevery x € Z;,S(X)s # 1,

vi) For every distinct X, y € Z3, dn (S(X), 4.5, S(Y)ja5) = Ani (X, Y),
vii) Forevery x € Z3,2 € {T(X)1, T(X)2, T(X)3},

viii) Forevery x € Z3, T(X)s = 1,

iX) For every distinct X,y € Z;, dy (TXs.615 T (Vhsey ) = du (X, Y).

The mappings R, S, and T are listed explicitly in Appendix B. Based on these
mappings, we construct two mapping U € F(3, 6, 8) and V € F (3, 7, 9) where U is
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obtained by combining R with S, and V is obtained by combining R with T,

respectively.

Construction 4.3 Construction of U € F (3, 6, 8).
Letx € Z$ and let
a= (a1, o, as, au, as) = R(X1, X2, X3),

B= (B, B, B, B, B5) = S(X4, X5, Xs) + (3, 3, 3, 3, 3).

Define n=(n1, 12, ..., 13) as follows.

ni=pPs if1<i<4 and =5
ni= a if1<i<4 and i #5,
ni= o5 if5<i<8 and S 4=4,

ni=pia if5<i<8 - and [ 4#4.

In 77, swap 1 and 7 and also swap 5 and 8, and let the resulting array be denoted

by o. Then define U(X) = o.

Construction 4.4 Construction of V € F(3,7,9).

Letx € Z; and let

/1 = (lea 123 133 /145 /15) = R(Xla X29 X3)7
0= (6, 6, &, b, 05, 65) =T (X4, Xs, X, X7) + (3, 3, 3, 3, 3, 3).

Define p= (w, 1o, ... , tbo) as follows:

Ui = 05 if1<i<4 and A4=5
L= A if1<i<4 and Ai#5,
U= As if5<i<9 and 6G_4=4,

Ui= B4 if5<i<9 and 6_,#4.

In 4, swap 2 and 5, and let the resulting array be denoted by z. Then define
V(X)=r
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In order to help the reader understand the constructions, we give alternative
algorithmic descriptions for Constructions 4.3 and 4.4 in Tables 4.15 and 4.16,

respectively.

Table 4.15 An algorithmic description of the construction of U € F (3, 6, 8).

Combining algorithm for U € F (3, 6, 8)
Input: X = (X, Xa, ... , Xe) € Z$

Output: (a1, o, ..., 0g) = U(X1, X2, ... , X6)

Begin

1. a: (o, a, ..., as) & R(X;, X2, X3);

2. (P, s s 5) < S(Xa, X5, Xe);

3.0 BB P s Bo) (Pt 3BT gy 3, hut 3, Ps + 3);
4. i< ()

5. j«— a5

6. S as;

7. o < fs;

8. ni(m, 1, ..., ) < (a1, o, a3, au, P, o, B3, )
9. i< '(l)y

10 je17'(5);

11. k<« 77'(7);

12. 1« 7'®);

13.  swap (7i, 7);

14.  swap (7, m);

15. o: (o1, 09, ..., 08) < (1, 12y ..., TR);

End
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Table 4.16 An algorithmic description of the construction of V € F (3, 7, 9).
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Combining algorithm for Ve F (3,7, 9)

Input: X = (X, X2, ... , X7) € Z4

OUtpUtZ (‘[1, Tly eee s Z'9) = V(X], X2y oun s X7)

Begin

1
2
3
4
3.
6
7
8
9

10.
11.
12.
End

A (A, Ay ey As) < R(X1, X2, X3);

(15 P55 B) < T(Xa, Xs, X6, X7);

0:(61, 0, ...,0) < (A +3, h+3, ¢+3, 4a+3,¢5+3, ¢ +3);
i< 0'@4);

j <275

6 <« As;

Aj < O;

(g, p, .y o) <= (M, Aoy Aa, 445, 01,05, 65, Oy, 05),
i 1'(2);

w5y

swap (44, 44);

t:(01, 0, ..., 1) < (L, Lo, .., o)

Example 4.4 Let R(0, 1,0) = (1,2, 4, 5,3) and S(1,0,2)= (1,2, 3, 5, 4). Then

a=(1,2,4,5,3),
B=(4,5,6,8,7),
n=(1,2,4,7,3,5,6,8),and
U(,1,0,1,0,2)=(7,2,4,1,3,8,6,5).
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Example 4.5 Let R(0, 1, 0)= (1, 2,4, 5,3) and T(1,0,2,2)=(4,2, 1, 6,5, 3). Then

A=(1,2,4,5,3),
6=(4,2,1,6,5,3),
1u=(1,2,4,6,7,5,3,9,8),and
V(0,1,0,1,0,2,2)=(1,5,4,6,7,2,3,9, 8).

The intermediate mappings U and V have the following properties which are

important to the construction of the initial mapping f € P (3, 13, 13).

Lemma4.4

i) Foreveryx € Z§,7'e {Uin(x)azU(x)s},

i) Forevery x € Z%, 8'e {UX)s; UX)s, U(X)7},

iii) For every distinctX,y e Z%, dy-(U (XN (281 -U(Yiagy) = du (X, Y),
Proof. We first show that o € Sg. We have « € S5 and S is a permutation of (4, 5, 6,
7, 8). In particular, 4 and 5 appear both in & and f. The effect of the first line in the
definition of 7 is to remove another element (/) into the position where « has a 5.
Similarly, the third line overwrites the 4 in . Note that s # 5 and fs # 4. The
definition of 7 is then the concatenation of the four first (overwritten) elements of «

and the four first (overwritten) elements of f. Therefore, 7 contains no duplicate

elements, that is, 7 € Sg. And so o € Ss.

The element 1 in 77 must be in any one of the first three positions, coming from

a, since according to Construction 4.3
ni=aifl <i<4and a; #5,
and the fact that 1 € {1, o, a3}.

Similarly, the element 5 in 7 must be in either one of the positions 5, 6, or 7,
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coming from S, since
ni=pf-4if5<i<8and fis+#4,
and the fact that 5 € {£, B, Bs}.

Since o is obtained by swapping 1 and 7 as well as swapping 5 and 8 in 7, we

have 7 € {0y, o, o3} and 8 € {05, 04, 07}. Thus, Conditions i) and ii) are proved.

Finally, let X = (X, Xg) and y = (YL, Yr) Where X., Xr, Y1, Yr € z§’ . Let the arrays

corresponding to y be denoted by «’, f, 17°, and &’. By assumption,

du (X, Y) =du (XL, YU) + du (XR, YR)
< du (e 5y, @\a5y) + Au (Brasy, BFasy). 4.7

For 1 <i<3 we have
du (e, &) < du (mi, 177). (4.8)

If oi = o’ this is obvious. Otherwise, we may assume without loss of generality that

’i < o and we must show that 7 # 77i. If & <5, then
ni=ai<a=n.
If o =5, then
mi=ai<S5Sand ni= 5= 5.

This completes the proof of (4.8). A similar argument shows that for 5 <i <7 we

have

du (Bi-4, Bica) < du (i, 177). 4.9)
and that for 1 <i < 8 we have

du (71, 77'i) < dw (a1, O%). (4.10)

Combining (4.7) — (4.10), we get
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du (X, Y) < du (2\jasy, Avasy) + Au (Brasy, Basy)

< du (7481, 7a8)) < A (O\jasy, O'\asy)-

Hence, Condition iii) is proved. 0

Lemma 4.5

i)  Foreveryx €Zj,1 e {VX), V(X)2, V(X)3},

i) Foreveryx eZ],2 e {V(X)s, V(X)s, V(X)7},

iii) For every distinct X,y € Z7, dy (V (ga015V (Yhiaoy) 2 du (X, Y),
Proof. We first show that 7 € So. We have A € Ss and @ is a permutation of (4, 5, 6, 7,
8, 9). In particular, 4 and 5 appéar both in'4 and 6. The effect of the first line in the
definition of u is to remove anothér -e¢lements () into the position where A has a 5.
Similarly, the third line overwrites the 4 in @.-Note that As = 5 and 6 # 4. The
definition of x is then the concatenation of the four first (overwritten) elements of 4

and the five first (overwritten) elements of 6. Therefore, i contains no duplicate

elements, that is, 1z € So. And so 7 € Sq.

The element 1 in # must be in any one of the first three positions, coming from

A, since according to Construction 4.4
ui=Aiif 1 <i<4and 4;#5,
and the fact that 1 € {4;, 4», 43}.

Similarly, the element 5 in # must be in either one of the positions 5, 6, or 7,

coming from 6, since
i = 9|,4if5 <i<9and 9|,4¢4,
and the fact that 5 € {6, 6, 6;}.

Since 7 is obtained by swapping 2 and 5 in &, we have 1 € {7, », 3} and
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2 € {15, %, 77}. Thus, Condition i) and ii) are proved.
Finally, let X = (X, Xr) and Y = (YL, Yr) Where X, Y € z§’ and Xg, YR € Z;l . Let
the arrays corresponding to y be denoted by A’, &, 1/, and 7. By assumption,

du (X, ) = du (XL, YL) + du (XR, YR)
<du (Avasy, Avasy) + i (Bvser, Grser) (4.11)

For 1 <i<3 we have
du (Ai, A%) < du (s, 175). (4.12)

If A4i = A’; this is obvious. Otherwise, we may assume without loss of generality that

A’i < i and we must show that g4 # £i. If 4i <5, then
wis i< A= pi.
If 4i =5, then
Wi=Ai<Sand = 6,=>5.

This completes the proof of (4.12). A similar argument shows that for 5 <i < 8 we

have
An (B4, Fia) < dy (i, 175). (4.13)
and that for 1 <1< 9 we have
du (i, 125) < du (7, 7). (4.14)
Combining (4.11) — (4.14), we get

du (X, Y) < dn (Avgasy, A\asy) T du (Bysey, Fser)

< du (a9, 0a9y) < i (Tva01, Th49))-

Hence, Condition iii) is proved. O

Now it is time for us to see the construction of the initial mapping
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f e P (3, 13, 13). The construction is described in Construction 4.5. An alternative

algorithmic description is given in Table 4.17 in order to help the reader understand

the construction.

Construction 4.5 Construction of f € P (3, 13, 13).

Letx € Z313 and X = (X., Xg) where X € Z36 and Xg € Z37 . In addition, let

o= (91, @2, ..., g5) = U(XL),
’Y:(YI, Y2, .. ay9):V(XR)+(49 49 74)

Define p= (o1, o2, ... , p13) as follows.

Oi = Ya if1'<¥<3  and
Oi= ¢ if1<1<3"" and
Pi= 9 if4<i<6 -and
Pi= oA if4<1<6 and
Pi= ¢4 if7<i<9  and
£i=7Yi-6 if7<i<9 and
Pi= @8 if10<i<13 and
£i = Yi-s if10<i<13 and

=T,

p#,

¢gin = 8,
Pin # 8,
Yi-6 =5,
Yi—6 % 5,
Yi-5 =06,
Yi—s # 6.

In p, swap 1 and 9 and also swap 2 and 10, and let the resulting array be

denoted by 7. Then define

fX)=rm

Example 4.6 Let

U©,1,0,1,0,2) =(7,2,4,1,3,8,6,5),and
V(0,1,0,1,0,2,2) =(1,5,4,6,7,2,3,9, 8).

Then
0»=(7,2,4,1,3,8,6,5),
v=(.,9,8,10,11,6,7,13, 12),
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p=(10,2,4,3,12,6,1,9,8, 11,5, 7, 13), and
f(0,1,0,1,0,2,0,1,0,1,0,2,2)=(2,10,4,3,12,6,9, 1,8, 11, 5,7, 13).

Table 4.17  An algorithmic description of the construction of f € P (3, 13, 13).

Combining algorithm for f € P (3, 13, 13)
Input: X = (X1, Xa, ... , X13) € Z3°

OUtpUtI (72'1, V5V 72'13) =f (X1, X2y oee s X13)

Begin

1. o: (o, @, ..., @g) < U(Xy, X2, ..., X6);

2. (@1, o, v s o) <V (XpsXs, ..., X13);

3. YV, Y2, e, Y0) <A T4, +4 k.t 4
4. iy '(5);

5. jey(6);

6. k< ¢ '(7);

7. 1l ¢ '©8);

8. Vi< o4

9. e o

10, o< pu;

I1. o« po;

12, pi(oy, p2, oo s p13) < (@1, @2, @3, 05, P65 @1, Y15 Y2, V35 V5 V65 V75 V8);5
13. i< p ')

4. j«p'Q);

15, k<« p'9);

16. 1« p'(10);

17. swap (o1, pv);

18.  swap (o, p);

19. 7:(m,m, ..., m3) < (o1, 02 ..., P13);

End
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Now we show that f has the started property.

Lemma 4.6 f e P (3,13,13)and f(X);3 ¢ {9, 10} for every x € Z3°.

Proof. We first show that 7 € S;3. We have ¢ € Sg and y is a permutation of
(5,6, ..., 13). In particular, 5, 6, 7, and 8 appear in both ¢ and y. The effect of the
first line in the definition of p is to remove another elements (y4) into the position
where ¢ has a 7. Similarly, the third line overwrites the 8 in ¢, the fifth line
overwrites the 5 in vy, and the seventh line overwrites the 6 in y. The definition of p is
then the concatenation of the elements @i, @, @3, @s, @s, and ¢@; (overwritten) of ¢ as
well as the elements vyi, V2, V3, Vs, Y6, Y7, and ys (overwritten) of y. Therefore, p

contains no duplicate elements, thatiis, @€ Si3. And so 7 € Sys.

The element 1 in p must be either in one of the first six positions, coming from
@, or in one of the positions 7, 8, ..., or 12 (af @4 = 1 or ¢ = 1). Similarly, the
element 2 must be in one of the-first twelve positions of p. Therefore, both 9 and 10

must be among the first twelve‘positionsof 7z, that is, 713 ¢ {9, 10}.

Finally, we must show that f is distance preserving. Let X # X', and let the arrays

corresponding to X’ be denoted by ¢’, y’, p’, and 7’. By assumption,

du (X, X') = dn (X, X'1) + du (Xr, X'R)

<du (@viasy, @iasy) +du (Y01, Yia0)). (4.15)

For 1 <i<6wehave
dr (@i, @) < du (pi, P1) if 1 <i<3,and (4.16)
du (@is1, Fin) <du (o1, pi)  1if4<i1L6. (4.17)

If pi = @i this is obvious. Otherwise, we may assume without loss of generality that

@i < @i and we must show that p; # gi. If ¢; < 6, then

Li= @i< @i= pi if1<i<3,or
Pi= Pir1 < Qir1 = Pi if4<i<e.
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If i =17, then

pi=vazT , and
Oi=¢@i<6 if 1<i<3,or
Li=¢in<6 if4<i<e6.

If pi=8,then 4 <1< 6 and so ¢ # 7. Hence

pPi=Y92"7 , and
Oi=@gi<6 if1 <i<3,or
Oi= @i <6 if4<i<e.
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This completes that proof of (4.16) and (4.17). A similar arguments show that for

7 <i<13 we have

dn (Vig ¥Vie) < Ou (pi, gi) ~if 7<i<9, and
du (vis, Vis) <dg (o, i) af 10<i<13.

and that for 1 <i <13 we have
du (o1, £) < du (i, 7).

Combining (4.15) — (4.20), we get

dn (X, X') < du (@via8), @viasy) +du (Y1491, Yii4y)

<du (o, ) L du (7, 7).

Hence, f is distance preserving.

(4.18)
(4.19)

(4.20)

Table 4.21 lists the distance expansion matrix of f. In order to fit the table into a

page, we split the distance expansion matrix into two parts from left to right. With f

as an initial mapping, we can prove the following theorem with Theorem 4.1.

Theorem 4.5: P (3, n, n) is not empty for n > 13.
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4.5 Application to Permutation Arrays

Chang et al. in [17] showed that forn>4and 2 <D <n, P(N, D) > Ax(n,D - 1).
Chang in [13] further improved the bound to P(N, D) > Ax(N, D — 9) for n > nsand
0+ 1 <D <nwhere 62> 2 and nsis a positive integer determined by o, e.g., ns> 16

for 6 = 2. Here we give other lower bounds.

Theorem 4.6 Let ng be the least integer such that for n > ny, 1 (3, n, N) is not empty,

then forn>ngand 2 <D <n, P(N, D) > A;(n, D -1).

Proof. Let A be a code alphabet of size 3 and C be a (n, D — 1) code over A. Let
f e 1(3,n, N). It is obvious that f(C) is an (N, D)-PA. Therefore,

P(N, D)= As(nyD — 1). 0

Theorem 4.7 Let ny be thelleastinteger such that for n > ny, P (3, n, N) is not empty.

Then for n > ngand 2 < D < n;:P(N, D) > As(n, D).

Proof. Similar to Theorem 4.6. 0

We have shown that 1 (3, n, n + 2) is not empty forn > 1, P (3, n, n + 1) is not
empty for n > 9, and P (3, n, n) is not empty for n > 13. With these results, we can

prove the following corollaries.
Corollary 4.1 ForN>3and2 <D <N,P(N,D)>A3;(N-2,D - 1).
Corollary 4.2 ForN>10and 2 <D <N, P(N, D) > A;(N -1, D).

Corollary 4.3 For N> 13 and 2 <D <N, P(N, D) > A3(N, D).
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Bounds on Ay(n, d) and As(n, d) have been studied by many researchers, for
example, [4] and [35, Ch. 5]. Tables 4.19 and 4.20 list the best known lower bounds
on Ay(n, d) and Az(n, d) for 8 < n < 16, respectively. In general, the lower bound on
P(N, D) obtained from use of ternary codes are better than those obtained from
binary codes. For example, using Chang’s bound [13], we get P(16, 5) > Ay(16, 3) >
2720 whereas Corollary 4.4 gives P(16, 5) > As(16, 5) > 19683. Similarly, we get
P(16, 9) > Ax(16, 7) = 36, and P(16, 9)> A;3(16,9) > 243. A more complete
comparison of the lower bound on P(16, D) for 5 <D < 12 is listed in Table 4.18.
The asterisk behind a number indicates that this number is the largest among all

items.

Remark. After we submitted our paper, Te=Tsung et al. also proposed a construction

of DPMs from ternary vectors [34]: Their construction method is different from ours.
They first constructed ternary DPMs Agy € P (3, 8n, 8n) for n > 2 by an algorithm,

and then constructed ternary DPM§ of length.8n + 1, 8n + 2, ..., and 8n + 7 from

the mapping Asn. As a result, theit. DPMs start from n = 16, which is worse than ours.

Table 4.18 Comparison of the lower bound on P(16, D).

Changetal. Huangetal. Chang Linetal. [19]
[17] [37] [13]  Corollary 4.1 Corollary 4.2 Corollary 4.3
5 2048 8192 2720 24057* 6561 19683
6 256 1024 2048 6561* 2187 6561*
7 256 512 256 2187* 729 729
8 36 128 256 243 243 297*
9 32 64 36 81 81 243%*
10 6 16 32 31 27 54*
11 4 8 6 12 10 18*

12 2 4 4 6 6 9*
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Table 4.19 Best known lower bounds on Ax(n, d) for 8 <n < 16.

8 | 20
40 20

10| 72 40 12

11| 144 72 24 12

12 | 256 144 32 24 4

13| 512 256 64 32 8 4

14 [ 1024 512 128 64 16 8 4

15 | 2048 10241256,,128 32 16 4 4

16 | 2720,52048,.256.256, 36 32 6 4 2

nal 3 4 5 6 7 8 9 10 11

72

Table 4.20 Best known lower bounds on As(n, d) for 8 <n < 16.

243

729 243
10 | 2187 729
11 | 6561 1458
12 - 4374
13 --- 8019

14 | 118098 24057
15 | 354294 72171
16 [1062882 216513

729 - 54

2187 729 105 42

6561 2187 243 81 31

6561 2187 729 243 81 27
19683 6561 729 297 243 54 18

il 3 4

5 6 7 8 9 10 11
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Table 4.21 Distance expansion matrix of f e P (3, 13, 13).

0 7499223 7735419 3857868 3267378 0 0
5412825 13677741 54993657 77247942 56888015 30417032
10747809 77580494 211825026 421803519 501911682
36626024 242982187 846887509 1769590178
105263378 773056332 2824925916
285879216 2265593524

753257142
(a) The left part
0 0 0 0 0 0
8677294 1279370 120512 0 0 0
364081528 174922222 52509696 8102560 420976 0

2483941294 2139969740 1151920836 373881088 67888104 5840600
6385449644 9260453002 8042859708 4127290924 1166653528 144346784
8520370780 19387502504 26647039408 20610803256 8407198472 1423077416
6071844564 22632413854 48294677760 56644950656 33095930128 7601855048
1859300480 14543002936 50842947800 91894856296 78620491736 24881794480
4110998704 29891105728 89126735840 116260882432 52435159216
7789174080 48592527648 105417407040 71660796768
11696151456 54106672320 61538942880
12183187968 30264067584
6530347008

(b) The right part
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Chapter 5

Conclusions

5.1 Summary

In this dissertation we have proposed several constructions of DPMs and DIMs,
either from binary vectors or. ternary “vectors. In Chapter 3, non-recursive
constructions of binary DIMs of odd and even length were proposed. These
constructions are based on simple compositions of permutations of an ordered set,
called basic construction set. We have proved that in some conditions the mapping
“generated” by a basic construction set is distance increasing. As the numerical
results in Section 3.3 showed, our new DIMs have sound distance expansion

distributions for odd length.

In Chapter 4, we proposed a general recursive construction method that
constructs DPMs or DIMs from ternary vectors and then, based on this method, we
proposed three constructions of ternary DPMs or DIMs. The first one constructs
ternary n_(n+2)-DIMs for n > 3, the second one constructs ternary n_(n+1)-DPMs
for n > 9, and the third one constructs ternary n-DPMs for n > 13. This is the first
time that constructions of DPMs or DIMs from ternary vectors are proposed in the

literature. As we have showed, the proposed constructions improve the lower bounds
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on P(N, D).

5.2 Future Works

Distance-preserving mappings are well studied in the past few years, especially

binary distance-preserving mappings. However, there are still a lot of topics worth

exploring.

An initial mapping for the construction of ternary n_(n+1)-DIMs.
If a DIM from Z]' to S, can be found, then ternary n_(n+1)-DIMs for all

n>m can be constructed by using Construction E in Section 4.1.

Constructions of ternary.n-DIMs.
Construction E can only construct ternary n-DPMs even though the initial
mapping is distancezincreasing: Thus, a new construction method must be

found.

A non-recursive systematic construction method of (n, 6)-DIMs from binary or
ternary vectors.

A mapping that increases more distance than that of input vectors may be more
interesting for applications. Although Chang has proposed constructions of
binary (n, 6)-DIMs for 6> 2 [13], the constructions are recursive and are unable
to construct binary (n, 8)-DIMs for all n > ns where ns is the smallest positive
integer ns such that a binary (n, 6)-DIM could be constructed for any n > ns. The
concept can also be applied to ternary DIMs. No ternary (n, 6)-DIM has been
found for 6> 1.

A tighter bound on the smallest positive integer nssuch that a binary (n, 6)-DIM
exists for all n > ny.
For any 6 > 2, Chang provided a bound on the smallest positive integer ns by

which a binary (n, 6)-DIM can be constructed for all n > ns[13]. It seems that
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the bound can be further improved.

® A general construction method of DPMs or DIMs from Zg to Sy.

DPMs and DIMs from Z; to Sy are useful in converting a g-ary code, e.g.

Reed-Solomon code, to a permutation array. The constructions of DPMs or
DIMs proposed so far are from binary or ternary vectors and can not be
generalized to g-ary vectors for all g > 2. It is a great contribution if one can
propose a general construction of DPMs or DIMs from g-ary vectors for all
g=>2. If the construction is recursive, an initial mapping should also be

provided.

® Construct DPMs or DIMs from a subset of vectors.
In present DPMs and DIMS, all vectors are considered. The distance between
each pair of vectors in‘thejvector space should be preserved or even increased.
However, this is somewhat overkill. In constructing permutation arrays from
distance-preserving mappings;-only-a subset of vectors, which form a (n, d)
code, is mapped to permutations, whereas the other vectors are irrelevant.
Therefore, only the subset of vectors should be either distance preserving or

distance increasing.
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Appendix A

Mapping table of f5 € 1 (2, 5, 5).

X f5(X) X f5(X)

(0,0,0,0,0: |#(1,2,3,4,5)| (1,0:0,0,0) | (2,1,3,4,5)
(0,0,0,0,1) | (1,2,354) | (1,00,0,1) | (2,1,3,5,4)
(0,0,0,1,0)7} (1,3,2.45)| (1,0,0,1,0) | (2,3,1,4,5)
(0,0,0,1,1) | (1,3:254) 1(1,0,01,1) | (2,3,1,5,4)
(0,0,1,0,00 | (3,254,1) | (1,0,1,0,0) | (3,1,5,4,2)
(0,0,1,0,1) | (325.1,4) | (1,0,1,01) | (3,1,5,2,4)
(0,0,1,1,00 | (35,24,1) | (1,0,1,1,0) | (3,5,1,4,2)
(0,0,1,1,1) | (35.214) | (1,01,1,1) | (3,5,1,2,4)
(0,1,0,0,0) | (1,2,4,35) | (1,1,0,0,0) | (2,1,4,3,5)
(0,1,0,0,1) | (1,2453) | (1,1,001) | (2,1,4,53)
(0,1,0,1,0) | (1,4,235) | (1,1,0,1,0) | (2,4,1,3,5)
(0,1,0,1,1) | (1,4,253) | (1,1,01,1) | (2,4,1,5,3)
(0,1,1,0,0) | (4,2531) | (1,1,1,0,0) | (4,1,5,3,2)
(0,1,1,01) | (4,2513) | (1,1,1,0,1) | (4,1,5,2,3)
(0,1,1,1,00 | (4,5,2,3.1) | (1,1,1,1,0) | (4,5,1,3,2)
(0,1,1,1,1) | (45213) | (1,1,1,1,1) | (4,5,1,2,3)
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Mapping table of fg € 1 (2, 6, 6).

X

fs(x)

X

fs(x)

(0,0,0,0,0,0)
(0,0,0,0,0,1)
(0,0,0,0,1,0)
(0,0,0,0,1,1)
(0,0,0,1,0,0)
(0,0,0,1,0,1)
(0,0,0,1,1,0)
(0,0,0,1,1,1)
(0,0,1,0,0,0)
(0,0,1,0,0,1)
(0,0,1,0,1,0)
(0,0,1,0,1,1)
(0,0,1,1,0,0)
(0,0,1,1,0,2)
(0,0,1,1,1,0)
0,0,1,1,1,1)
(0,1,0,0,0,0)
(0,1,0,0,0,1)
(0,1,0,0,1,0)
0,1,0,0,1,1)
(0,1,0,1,0,0)
0,1,0,1,0,1)
0,1,0,1,1,0)
0,1,0,1,1,1)
(0,1,1,0,0,0)
0,1,1,0,0,1)
0,1,1,0,1,0)
0,1,1,0,1,1)
0,1,1,1,0,0)
0,1,1,1,0,2)
0,1,1,1,1,0)
0,1,1,1,1,1)

(1,2,3,4,5,6)
(6,2,3,4,5,1)
(1,2,3,5,4,6)
(6,2,3,5,4,1)
(1,3,2,4,5,6)
(6,3,2,4,5,1)
(1,3,2,5,4,6)
(6,3,2,5,4,1)
(1,2,3,4,6,5)
(5,2,3,4,6,1)
(1,2,3,614,5)
(5,2,3,6:451)
(1,3,2,4,6,5)
(5,3,2,4,6,1)
(1,3,2645)
(5,3:2,6,4,1)
(1,2,4,3,5,6)
(6,2,4,3,5,1)
(1,2,4,5,3,6)
(6,2,4,5,3,1)
(1,4,2,3,5,6)
(6,4,2,3,5,1)
(1,4,2,5,3,6)
(6,4,2,5,3,1)
(1,2,4,3,6,5)
(5,2,4,3,6,1)
(1,2,4,6,3,5)
(5,2,4,6,3,1)
(1,4,2,3,6,5)
(5,4,2,3,6,1)
(1,4,2,6,3,5)
(5,4,2,6,3,1)

(1,0,0,0,0,0)
(1,0,0,0,0,1)
(1,0,0,0,1,0)
(1,0,0,0,1,1)
(1,0,0,1,0,0)
(1,0,0,1,0,2)
(1,0,0,1,1,0)
(1,0,0,1,1,1)
(1,0,1,0,0,0)
(1,0,1,0,0,2)
(1,0,1,0,1,0)
($,0,1,0,1,1)
(1,0,1,1,0,0)
(1,0,1,1,0,1)
(1,0,1,1,1,0)
(1,0,1,1,1,1)
(1,1,0,0,0,0)
(1,1,0,0,0,2)
(1,1,0,0,1,0)
(1,1,0,0,1,1)
(1,1,0,1,0,0)
(1,1,0,1,0,2)
(1,1,0,1,1,0)
(1,1,0,1,1,1)
(1,1,1,0,0,0)
(1,1,1,0,0,)
(1,1,1,0,1,0)
(1,1,1,0,1,1)
(1,1,1,1,0,0)
(1,1,1,1,0,)
(1,1,1,1,1,0
111111)

(2,1,3,4,5,6)
(6,1,3,4,5,2)
(2,1,3,5,4,6)
(6,1,3,54,2)
(2,3,1,4,5,6)
(6,3,1,4,5,2)
(2,3,1,5,4,6)
(6,3,1,5,4,2)
(2,1,3,4,6,5)
(5,1,3,4,6,2)
(2,1,3,6,4,5)
(5,1,3,6,4,2)
(2,3,1,4,6,5)
(5,3,1,4,6,2)
(2,3,1,6,4,5)
(5,3,1,6,4,2)
(2,1,4,3,5,6)
(6,1,4,3,5,2)
(2,1,4,5,3,6)
(6,1,4,5,3,2)
(2,4,1,3,5,6)
(6,4,1,3,5,2)
(2,4,1,5,3,6)
(6,4,1,5,3,2)
(2,1,4,3,6,5)
(5,1,4,3,6,2)
(2,1,4,6,3,5)
(5,1,4,6,3,2)
(2,4,1,3,6,5)
(5,4,1,3,6,2)
(2,4,1,6,3,5)
(5,4,1,6,3,2)
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Mapping table of f; e 1 (2, 7, 7):

X f2(x) X f7(x)
(0,0,0,0,0,0,0) | (1,2,3,45,6,7) | (1,0,0,0,0,0,0) | (2,1,3,4,5,6,7)
(0,0,0,0,0,0,1) | (1,2,3,45,7,6) | (1,0,0,0,0,0,1) | (2,1,3,4,5,7,6)
(0,0,0,0,0,1,0) | (1,2,35/4,6,7) | (1,0,0,0,0,1,0) | (2,1,3,5,4,6,7)
(0,0,0,00,1,1) | (1,2,354,7,6) | (1,0,0,0,0,1,1) | (2,1,3,5,4,7,6)
(0,0,0,0,1,0,0) | (1,3,2,45,6,7) | (1,0,0,0,1,0,0) | (2,3,1,4,5,6,7)
(0,0,0,0,1,0,1) | (1,3,245,7,6) | (1,0,0,0,1,0,1) | (2,3,1,4,5,7,6)
(0,0,0,0,1,1,0) | (1,3,25/4,6,7) | (1,0,0,0,1,1,0) | (2,3,1,5,4,6,7)
0,00,0,1,1,1) | (1,3,25/4,7,6) | (1,0,0,0,1,1,1) | (2,3,1,5,4,7,6)
(0,0,0,1,0,0,0) | (5,6,3,7,1,2,4) | (1,0,0,1,0,0,0) | (5,6,3,7,2,1,4)
(0,0,0,1,0,0,1) | (56,3,7,1,4,2) | (1,0,0,1,0,0,1) | (56,3,7,2,4,1)
(0,0,0,1,0,1,0) | (5,6,3;147,2/4) 4. (1,0,0,1,0,1,0) | (5,6,3,2,7,1,4)
(0,0,0,1,0,1,1) | (5,6,3,1,%4:2)+ (£0,0,1,0,1,1) | (56,3,2,7,4,1)
(0,0,0,1,1,0,0) | (5,3,6,7,1;2.4) | (1,0,0,1,1,0,0) | (5,3,6,7,2,1,4)
(0,0,0,1,1,0,1) | (5,3,6,7,1,4,2) | (1,0,0,1,1,0,1) | (53,6,7,2,4,1)
(0,0,0,1,1,1,0) | (5,3,6,1;7,24)| (1,0,0,1,1,1,0) | (5,3,6,2,7,1,4)
(0,0,0,1,1,1,2) | (5,3,6;1,7,4,2) 4(1,0,0,1,1,1,1) | (53,6,2,7,4,1)
(0,0,1,0,0,0,0) | (1,2,3,4,6,5,7) | (1,0,1,0,0,0,0) | (2,1,3,4,6,5,7)
(0,0,1,0,0,0,1) | (1,2,34,6,7,5) | (1,0,1,0,0,0,1) | (2,1,3,4,6,7,5)
(0,0,1,0,0,1,0) | (1,2,3,6,45,7) | (1,0,1,0,0,1,0) | (2,1,3,6,4,5,7)
0,01,0,0,1,1) | (1,2,3,6,4,75) | (1,0,1,0,0,1,1) | (2,1,3,6,4,7,5)
(0,0,1,0,1,0,0) | (1,3,24,6,57) | (1,0,1,0,1,0,0) | (2,3,1,4,6,5,7)
0,01,0,1,0,1) | (1,3,24,6,7,5) | (1,0,1,0,1,0,1) | (2,3,1,4,6,7,5)
0,01,0,1,1,0) | (1,3,2,6,457) | (1,0,1,0,1,1,0) | (2,3,1,6,4,5,7)
0,01,0,1,11) | (1,3,2,6,4,75) | (1,0,1,0,1,1,1) | (2,3,1,6,4,7,5)
(0,0,1,1,0,0,0) | (6,5,3,7,1,2,4) | (1,0,1,1,0,0,0) | (6,5,3,7,2,1,4)
0,01,1,001) | (6,53,7,1,4,2) | (1,0,1,1,0,0,2) | (6,5,3,7,2,4,1)
0,01,1,0,1,0) | (6,53,1,7,24) | (1,0,1,1,0,1,0) | (6,5,3,2,7,1,4)
0,01,1,011) | (6,53,1,7,42) | (1,0,1,1,0,1,1) | (6,5,3,2,7,4,1)
0,01,1,1,0,0) | (6,3,5,7,1,24) | (1,0,1,1,1,0,0) | (6,3,5,7,2,1,4)
0,011,101 | (6,3,57,14,2) | (1,0,1,1,1,0,1) | (6,3,5,7,2,4,1)
0,01,1,11,0) | (6,3,51,7,24) | (1,0,1,1,1,1,0) | (6,3,5,2,7,1,4)
0,01,1,111) | (6,3,51,7,42) | (1,0,1,1,1,1,1) | (6,3,5,2,7,4,1)
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X f7(x) X f7(x)
(0,1,0,0,0,0,0) | (1,2,4,3,5,6,7) | (1,1,0,0,0,00) | (2,1,4,35,6,7)
(0,1,00,0,0,1) | (1,2,4,3,57,6) | (1,1,0,0,00,1) | (2,1,4,35,7,6)
(0,1,00,0,1,0) | (1,2,45,3,6,7) | (1,1,0,0,0,1,0) | (2,1,4,53,6,7)
(0,1,00,0,1,1) | (1,2,45,3,7,6) | (1,1,00,0,1,1) | (2,1,453,7,6)
(0,1,0,0,1,0,0) | (1,4,2,3,5,6,7) | (1,1,0,0,1,0,0) | (2.4,1,35,6,7)
(0,1,00,1,0,1) | (1,4,2,3,57,6) | (1,1,00,1,01) | (2.4,1,357,6)
(0,1,00,1,1,0) | (1,425,367 | (1,1,00,1,1,0) | (2,4,1,53,6,7)
0,1,00,1,1,1) | (1,425,3,7,6) | (1,1,00,1,1,1) | (2,4,153,7,6)
(0,1,0,1,0,0,0) | (5,6,47,1,23) | (1,1,0,1,0,0,0) | (5,6,4,7,2,1,3)
(0,1,0,1,0,0,1) | (5,6,47,1,32) | (1,1,0,1,00,1) | (5,6,4,7,2,3,1)
(0,1,0,1,0,1,0) | (5,6,4,1,7,23) | (1,1,0,1,0,1,0) | (5,6,4,2,7,1,3)
0,1,0,1,0,1,1) | (5,6,41,7,32) | (1,1,0,1,0,1,1) | (5,6,4,2,7,3,1)
(0,1,0,1,1,0,0) | (5,4,6;Z:1218)u1- (1,1,0,1,1,0,0) | (5,4,6,7,2,1,3)
(0,1,0,1,1,0,1) | (5:4,6,7,5:82)+l (1:1,0,1,1,0,1) | (54,6,7,2,3,1)
(0,1,0,1,1,1,0) | {5,4,6,1,7.2.3) | (1,1:0,1,1,1,0) | (5,4,6,2,7,1,3)
0,1,01,1,1,1) | 15,461,7:32) | (1,1:0,1,1,1,1) | (5,4,6,2,7,3,1)
(0,1,1,0,0,0,0) | (1,243,650 (1,1,1,0,0,0,0) | (2,1,4,3,6,5,7)
(0,1,1,0,0,0,1) | (1,2/4:3,6,7,5)+1.(1,1,1,0,0,0,1) | (2,1,4,3,6,7,5)
(0,1,1,0,0,1,0) | (1,246,357 | (1,1,1,0,0,1,0) | (2,1,4,6,3,5,7)
0,1,1,00,1,1) | (1,2,4,6,3,7,5) | (1,1,1,0,0,1,1) | (2,1,4,6,3,7,5)
(0,1,1,0,1,0,0) | (1,4,2,3,6,57) | (1,1,1,0,1,0,0) | (2,4,1,3,6,5,7)
0,1,1,0,1,0,1) | (1,42,3,6,7,5) | (1,1,1,0,1,0,1) | (2.4,1,3,6,7,5)
0,1,1,0,1,1,0) | (1,426,357 | (1,1,1,0,1,1,0) | (2,4,1,6,3,5,7)
0,1,1,01,1,1) | (1,42,6,3,7,5) | (1,1,1,0,1,1,1) | (2,4,1,6,3,7,5)
(0,1,1,1,0,0,0) | (6,5,47,1,23) | (1,1,1,1,0,0,0) | (6,5,4,7,2,1,3)
(0,1,1,1,0,0,1) | (6,54,7,1,32) | (1,1,1,1,00,1) | (6,5,4,7,2,3,1)
0,1,1,1,0,1,0) | (6,54,1,7,23) | (1,1,1,1,0,1,0) | (6,5,4,2,7,1,3)
0,1,1,1,0,1,1) | (6,54,1,7,32) | (1,1,1,1,0,1,1) | (6,5,4,2,7,3,1)
0,1,1,1,1,0,0) | (6,457,1,23) | (1,1,1,1,1,0,0) | (6,4,5,7,2,1,3)
0,1,1,1,1,0,1) | (6,457,1,32) | (1,1,1,1,1,0,1) | (6,4,5,7,2,3,1)
0,1,1,1,1,1,0) | (6,451,7,23) | (1,1,1,1,1,1,0) | (6,4,5,2,7,1,3)
01,1,1,111) | (6,451,732 | (1,1,1,1,1,1,1) | (6,4,5,2,7,3,1)
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Appendix B

Mapping table of G € F (3, 5, 7).
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X

G(x)

X

G(x)

X

G(x)

(0,0,0,0,0)
(0,0,0,0,1)
(0,0,0,0,2)
(0,0,0,1,0)
(0,0,0,1,1)
(0,0,0,1,2)
(0,0,0,2,0)
(0,0,0,2,1)
(0,0,0,2,2)
(0,0,1,0,0)
(0,0,1,0,1)
(0,0,1,0,2)
(0,0,1,1,0)
(0,0,1,1,1)
(0,0,1,1,2)
(0,0,1,2,0)
(0,0,1,2,1)
(0,0,1,2,2)
(0,0,2,0,0)
(0,0,2,0,1)

(6,1,2,7,3,4,5)
(6,3,2,7,1,5,4)
(6,3,2,7,4,5,1)
(6,2,1,7,5,3,4)
(6,1,2,7,5,3,4)
(6,3,2,7,5,4,1)
(6,1,2,7,3,5,4)
(6,3,1,7,2,5,4)
(6,3,1,7,4,5,2)
(6,2,5,7,1,4,3)
(6,2,5,7,3,4,1)
(6,3,5,7,4,1,2)
(6,2,5,7,1,3,4)
(6,5,1,7,2,3,4)
(6,2,5,7,4,3,1)
(6,4,5,7,1,3,2)
(6,2,4,7,1,5,3)
(6,1,5,7,4,2,3)
(6,4,2,7,3,1,5)
(6,3,4,7,2,1,5)

(1,0,0,0;0)
(1,0,0,0,1)
(1,0,0,0,2)
(1,0,0,1,0)
(1,0,0,1,1)
(1,0,0,1,2)
(1,0,0,2,0)
(1,0,0,2,1)
(1,0,0,2,2)
(1,0,1,0,0)
(1,0,1,0,1)
(1,0,1,0,2)
(1,0,1,1,0)
(1,0,1,1,1)
(1,0,1,1,2)
(1,0,1,2,0)
(1,0,1,2,1)
(1,0,1,2,2)
(1,0,2,0,0)
(1,0,2,0,1)

(2:6,1;7,3,5,4)
(1,6,3,7,2,5,4)
(3,6,2,7,1,4,5)
(46,1,7,5,3,2)
(4,6,2,7,5,3,1)
(1,6,2,7,5,3,4)
(4,6,1,7,5,2,3)
(4,6,1,7,3,2,5)
(3,6,4,7,1,2,5)
(2,6,5,7,4,1,3)
(2,6,3,7,1,4,5)
(1,6,3,7,5,4,2)
(2,6,5,7,1,3,4)
(4,6,5,7,2,3,1)
(1,6,2,7,4,3,5)
(4,6,5,7,1,2,3)
(4,6,5,7,3,2,1)
(1,6,5,7,4,3,2)
(2,6,4,7,3,1,5)
(5,6,3,7,2,1,4)

(2,0,0,0,0)
(2,0,0,0,1)
(2,0,0,0,2)
(2,0,0,1,0)
(2,0,0,1,1)
(2,0,0,1,2)
(2,0,0,2,0)
(2,0,0,2,1)
(2,0,0,2,2)
(2,0,1,0,0)
(2,0,1,0,1)
(2,0,1,0,2)
(2,0,1,1,0)
(2,0,1,1,1)
(2,0,1,1,2)
(2,0,1,2,0)
(2,0,1,2,1)
(2,0,1,2,2)
(2,0,2,0,0)
(2,0,2,0,1)

(2,1,6,7,3,5,4)
(1,5,6,7,3,4,2)
(2,3,6,7,4,5,1)
(2,4,6,7,3,5,1)
(4,2,6,7,5,3,1)
(3,1,6,7,2,4,5)
(4,1,6,7,5,2,3)
(4,1,6,7,3,2,5)
(3,1,6,7,5,4,2)
(3,2,6,7,4,1,5)
(4,2,6,7,3,1,5)
(3,2,6,7,1,4,5)
(2,5,6,7,1,3,4)
(4,5,6,7,2,3,1)
(2,3,6,7,5,4,1)
(4,5,6,7,1,2,3)
(4,5,6,7,3,2,1)
(3,1,6,7,4,2,5)
(2,5,6,7,4,1,3)
(5,3,6,7,2,1,4)
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X

G(x)

X

G(x)

X

G(x)

(0,0,2,0,2)
(0,0,2,1,0)
(0,0,2,1,1)
(0,0,2,1,2)
(0,0,2,2,0)
(0,0,2,2,1)
(0,0,2,2,2)
(0,1,0,0,0)
(0,1,0,0,1)
(0,1,0,0,2)
(0,1,0,1,0)
(0,1,0,1,1)
(0,1,0,1,2)
(0,1,0,2,0)
(0,1,0,2,1)
(0,1,0,2,2)
(0,1,1,0,0)
(0,1,1,0,1)
(0,1,1,0,2)
(0,1,1,1,0)
(0,1,1,1,1)
(0,1,1,1,2)
(0,1,1,2,0)
(0,1,1,2,1)
(0,1,1,2,2)
(0,1,2,0,0)
(0,1,2,0,1)
(0,1,2,0,2)
(0,1,2,1,0)
(0,1,2,1,1)
(0,1,2,1,2)
(0,1,2,2,0)
(0,1,2,2,1)
(0,1,2,2,2)

(6,3,2,7,4,1,5)
(6,4,1,7,5,3,2)
(6,5,4,7,2,3,1)
(6,5,2,7,4,3,1)
(6,4,1,7,5,2,3)
(6,5,4,7,3,2,1)
(6,5,3,7,4,2,1)
(6,1,3,2,7,5,4)
(6,3,2,4,7,5,1)
(6,3,2,5,7,4,1)
(6,4,2,5,7,3,1)
(6,2,1,5,7,3,4)
(6,5,2,1,7,4,3)
(6,2,1,3,7,5,4)
(6,3,1,4,7,5,2)
(6,5,2,3,7,4,1)
(6,3,5,2,7,1,4)
(6,2,3,5,7,4,1)
(6,3,5,2,7,4,1)
(6,2,5,4,7,3,1)
(6,2,5,1,7,3,4)
(6,3,5,1,7,4,2)
(6,2,5,3,7,1,4)
(6,5,1,3,7,2,4)
(6,4,5,3,7,2,1)
(6,5,4,2,7,1,3)
(6,4,3,2,7,1,5)
(6,5,3,2,7,4,1)
(6,4,2,1,7,3,5)
(6,5,4,1,7,3,2)
(6,3,4,5,7,2,1)
(6,5,4,3,7,1,2)
(6,5,4,3,7,2,1)
(6,4,3,1,7,2,5)

(1,0,2,0,2)
(1,0,2,1,0)
(1,0,2,1,1)
(1,0,2,1,2)
(1,0,2,2,0)
(1,0,2,2,1)
(1,0,2,2,2)
(1,1,0,0,0)
(1,1,0,0,1)
(1,1,0,0,2)
(1,1,0,1,0)
(1,1,0,1,1)
(1,130/1,2)
(1,1,0,2,0)
(1,1,0,2,1)
(1,1,0,2.2)
(1,1,1,0,0)
(1,3;1,0,1)
(1,1,1,0,2)
(1,1,1,1,0)
(1,1,1,1,1)
(1,1,1,1,2)
(1,1,1,2,0)
(1,1,1,2,1)
(1,1,1,2,2)
(1,1,2,0,0)
(1,1,2,0,1)
(1,1,2,0,2)
(1,1,2,1,0)
(1,1,2,1,1)
(1,1,2,1,2)
(1,1,2,2,0)
(1,1,2,2,1)
(1,1,2,2,2)

(5,6,3,7,4,1,2)
(2,6,4,7,5,1,3)
(2,6,4,7,5,3,1)
(5,6,3,7,4,2,1)
(3,6,1,7,5,2,4)
(1,6,5,7,3,2,4)
(5,6,1,7,4,2,3)
(3,6,5,4,7,1,2)
(3,6,2,5,7,4,1)
(3,6,5,2,7,4,1)
(4,6,1,2,7,3,5)
(3,6,2,4,7,5,1)
(4,6,3,1,7,5,2)
(4,6/1,2,7,5,3)
(4,6,13,7,5,2)
(4,6,2,3,7,5,1)
@,6552,7,1,3)
(5,6,2,4,7,1,3)
(4,6,3,5,7,1,2)
(5,6,2,1,7,3,4)
(4,6,5,1,7,3,2)
(3,6,4,1,7,5,2)
(4,6,5,3,7,1,2)
(4,6,5,3,7,2,1)
(5,6,1,3,7,4,2)
(5,6,3,2,7,1,4)
(5,6,3,4,7,1,2)
(5,6,3,2,7,4,1)
(5,6,4,1,7,3,2)
(5,6,3,4,7,2,1)
(5,6,4,1,7,2,3)
(5,6,4,2,7,3,1)
(5,6,4,3,7,1,2)
(5,6,4,3,7,2,1)

(2,0,2,0,2)
(2,0,2,1,0)
(2,0,2,1,1)
(2,0,2,1,2)
(2,0,2,2,0)
(2,0,2,2,1)
(2,0,2,2,2)
(2,1,0,0,0)
(2,1,0,0,1)
(2,1,0,0,2)
(2,1,0,1,0)
(2,1,0,1,1)
(2,1,0,1,2)
(2,1,0,2,0)
(2,1,0,2,1)
(2,1,0,2,2)
(2,1,1,0,0)
(2,1,1,0,1)
(2,1,1,0,2)
(2,1,1,1,0)
(2,1,1,1,1)
(2,1,1,1,2)
(2,1,1,2,0)
(2,1,1,2,1)
(2,1,1,2,2)
(2,1,2,0,0)
(2,1,2,0,1)
(2,1,2,0,2)
(2,1,2,1,0)
(2,1,2,1,1)
(2,1,2,1,2)
(2,1,2,2,0)
(2,1,2,2,1)
(2,1,2,2,2)

(5,3,6,7,4,1,2)
(3,4,6,7,2,1,5)
(3,4,6,7,2,5,1)
(5,3,6,7,4,2,1)
(3,4,6,7,5,1,2)
(3,4,6,7,5,2,1)
(5,1,6,7,4,2,3)
(3,5,6,4,7,1,2)
(4,1,6,5,7,3,2)
(3,5,6,2,7,4,1)
(4,1,6,2,7,5,3)
(4,2,6,1,7,5,3)
(4,3,6,1,7,5,2)
(4,1,6,3,7,5,2)
(4,2,6,3,7,5,1)
(5,1,6,3,7,4,2)
(4,5,6,2,7,1,3)
(5,2,6,4,7,1,3)
(4,3,6,5,7,1,2)
(5,2,6,1,7,3,4)
(4,5,6,1,7,3,2)
(5,2,6,1,7,4,3)
(4,5,6,3,7,1,2)
(4,5,6,3,7,2,1)
(5,2,6,3,7,4,1)
(5,3,6,2,7,1,4)
(5,3,6,4,7,1,2)
(5,3,6,2,7,4,1)
(5,4,6,1,7,3,2)
(5,3,6,4,7,2,1)
(5,4,6,1,7,2,3)
(5,4,6,2,7,3,1)
(5,4,6,3,7,1,2)
(5,4,6,3,7,2,1)
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X

G(x)

X

G(x)

X

G(x)

(0,2,0,0,0)
(0,2,0,0,1)
(0,2,0,0,2)
(0,2,0,1,0)
(0,2,0,1,1)
(0,2,0,1,2)
(0,2,0,2,0)
(0,2,0,2,1)
(0,2,0,2,2)
(0,2,1,0,0)
(0,2,1,0,1)
(0,2,1,0,2)
(0,2,1,1,0)
(0,2,1,1,1)
(0,2,1,1,2)
(0,2,1,2,0)
(0,2,1,2,1)
(0,2,1,2,2)
(0,2,2,0,0)
(0,2,2,0,1)
(0,2,2,0,2)
(0,2,2,1,0)
(0,2,2,1,1)
(0,2,2,1,2)
(0,2,2,2,0)
(0,2,2,2,1)
(0,2,2,2,2)

(6,4,1,5,3,7,2)
(6,3,2,4,1,7,5)
(6,3,2,5,4,7,1)
(6,1,4,2,5,7,3)
(6,2,4,1,5,7,3)
(6,3,2,1,5,7,4)
(6,4,2,3,5,7,1)
(6,1,2,3,5,7,4)
(6,3,1,5,4,7,2)
(6,3,5,2,1,7,4)
(6,5,1,4,2,7,3)
(6,3,5,2,4,7,1)
(6,1,5,4,2,7,3)
(6,2,5,1,3,7,4)
(6,4,5,1,2,7,3)
(6,2,5,3,1,7,4)
(6,5,1,3,2,7,4)
(6,3,5,1,4,7,2)
(6,5,3,4,1,7,2)
(6,5,1,4,3,7,2)
(6,5,3,2,4,7,1)
(6,4,2,1,3,7,5)
(6,5,4,1,3,7,2)
(6,5,3,1,4,7,2)
(6,5,4,3,1,7,2)
(6,5,4,3,2,7,1)
(6,5,2,3,4,7,1)

(1,2,0,0,0)
(1,2,0,0,1)
(1,2,0,0,2)
(1,2,0,1,0)
(1,2,0,1,1)
(1,2,0,1,2)
(1,2,0,2,0)
(1,2,0,2,1)
(1,2,0,2,2)
(1,2,1,0,0)
(1,2,1,0,1)
(1,2,1,0,2)
(1,2:1/1,0)
1,2.1,51
(1,2,1,1,2)
(1,2,1,2.0)
1,21.2.D
(1,2:1,2,2)
(1,2,2,0,0)
(1,2,2,0,1)
(1,2,2,0,2)
(1,2,2,1,0)
(1,2,2,1,1)
(1,2,2,1,2)
(1,2,2,2,0)
(1,2,2,2,1)
(1,2,2,2,2)

(3,6,5,4,1,7,2)
(4,6,1,5,3,7,2)
(3,6,5,2,4,7,1)
(4,6,1,2,5,7,3)
(4,6,2,1,5,7,3)
(4,6,3,1,5,7,2)
(4,6,1,3,5,7,2)
(4,6,2,3,5,7,1)
(5,6,1,3,4,7,2)
(4,6,5,2,1,7,3)
(5,6,2,4,1,7,3)
(4,6,3,5,1,7,2)
(5,6,2,1,3,7,4)
(4,6,5,1,3,7,2)
(5,6,2,1,4,7,3)
(4,6,5,3,1,7,2)
(4,6,5,3,2,7,1)
(5.6,2,3,4,7,1)
(5,6,3,2,1,7,4)
(5,6,3,4,1,7,2)
(5,6,3,2,4,7,1)
(5,6,4,1,3,7,2)
(5,6,3,4,2,7,1)
(5,6,4,1,2,7,3)
(5,6,4,2,3,7,1)
(5,6,4,3,1,7,2)
(5,6,4,3,2,7,1)

(2,2,0,0,0)
(2,2,0,0,1)
(2,2,0,0,2)
(2,2,0,1,0)
(2,2,0,1,1)
(2,2,0,1,2)
(2,2,0,2,0)
(2,2,0,2,1)
(2,2,0,2,2)
(2,2,1,0,0)
(2,2,1,0,1)
(2,2,1,0,2)
(2,2,1,1,0)
(2,2,1,1,1)
(2,2,1,1,2)
(2,2,1,2,0)
(2,2,1,2,1)
(2,2,1,2,2)
(2,2,2,0,0)
(2,2,2,0,1)
(2,2,2,0,2)
(2,2,2,1,0)
(2,2,2,1,1)
(2,2,2,1,2)
(2,2,2,2,0)
(2,2,2,2,1)
(2,2,2,2,2)

(3,5,6,4,1,7,2)
(4,1,6,5,3,7,2)
(3,5,6,2,4,7,1)
(4,1,6,2,5,7,3)
(4,2,6,1,5,7,3)
(4,3,6,1,5,7,2)
(4,1,6,3,5,7,2)
(4,2,6,3,5,7,1)
(5,1,6,3,4,7,2)
(4,5,6,2,1,7,3)
(5,2,6,4,1,7,3)
(4,3,6,5,1,7,2)
(5,2,6,1,3,7,4)
(4,5,6,1,3,7,2)
(5,2,6,1,4,7,3)
(4,5,6,3,1,7,2)
(4,5,6,3,2,7,1)
(5,2,6,3,4,7,1)
(5,3,6,2,1,7,4)
(5,3,6,4,1,7,2)
(5,3,6,2,4,7,1)
(5,4,6,1,3,7,2)
(5,3,6,4,2,7,1)
(5,4,6,1,2,7,3)
(5,4,6,2,3,7,1)
(5,4,6,3,1,7,2)
(5,4,6,3,2,7,1)
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Mapping table of H € F (3, 4, 6).

X

H(x)

X

H(x)

X

H(x)

(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,1,0)
(0,0,1,1)
(0,0,1,2)
(0,0,2,0)
(0,0,2,1)
(0,0,2,2)
(0,1,0,0)
(0,1,0,1)
(0,1,0,2)
(0,1,1,0)
0,1,1,1)
0,1,1,2)
(0,1,2,0)
0,1,2,1)
0,1,2,2)
(0,2,0,0)
(0,2,0,1)
(0,2,0,2)
0,2,1,0)
0,2,1,1)
0,2,1,2)
0,2,2,0)
0,2,2,1)
0,2,2,2)

(1,2,3,4,5,6)
(1,2,3,6,4,5)
(1,2,3,5,4,6)
(1,4,2,6,5,3)
(1,4,2,3,6,5)
(1,4,2,5,6,3)
(1,3,4,6,5,2)
(1,3,4,5,6,2)
(1,3,4,2,6,5)
(1,5,3,4,6,2)
(1,2,5,3,4,6)
(1,5,3,2,4,6)
(1,5,2,4,6,3)
(1,5,2,3,4,6)
(1,4,5,2,6,3)
(1,3,5,4,6,2)
(1,5,4,3,6,2)
(1,5,4,2,6,3)
(1,6,3,4,5,2)
(1,2,6,3,4,5)
(1,6,3,2,4,5)
(1,6,2,4,5,3)
(1,6,2,3,4,5)
(1,4,6,2,5,3)
(1,3,6,4,5,2)
(1,6,4,3,5,2)
(1,6,4,2,5,3)

(1,0,0,0)
(1,0,0,1)
(1,0,0,2)
(1,0,1,0)
(1,0,1,1)
(1,0,1,2)
(1,0,2,0)
(1,0,2,1)
(1,0,2,2)
(1,1,0,0)
(1,1,0:1)
(1,1,0,2)
(1,1,1,0
(1,1,1,1)
(1,4,1,2)
(1,1,2,0)
(1,1,2,1)
(1,1,2,2)
(1,2,0,0)
(1,2,0,1)
(1,2,0,2)
(1,2,1,0)
(1,2,1,1)
(1,2,1,2)
(1,2,2,0)
(1,2,2,1)
(1,2,2,2)

(4,1,3,5,6,2)
(4,1,3,6,5,2)
(4,1,3,2,6,5)
(3,1,2,4,6,5)
(3,1,2,6,4,5)
(3,1,2,5,4,6)
(2,1,4,5,6,3)
(2,1,4,3,6,5)
(2,1,4,6,5,3)
(6,1,3,4,5,2)
(4,1,5,3,6,2)
(6,1,3,2,4,5)
(3,1,54,6,2)
(6,1,5,3,4,2)
(6,1,5,2,4,3)
(2,1,5,4,6,3)
(6,1,4,3,5,2)
(6,1,4,2,5,3)
(5,1,3,4,6,2)
(4,1,6,3,5,2)
(5,1,3,2,4,6)
(5,1,2,4,6,3)
(5,1,6,3,4,2)
(5,1,6,2,4,3)
(2,1,6,4,5,3)
(5,1,4,3,6,2)
(5,1,4,2,6,3)

(2,0,0,0)
(2,0,0,1)
(2,0,0,2)
(2,0,1,0)
(2,0,1,1)
(2,0,1,2)
(2,0,2,0)
(2,0,2,1)
(2,0,2,2)
(2,1,0,0)
(2,1,0,1)
(2,1,0,2)
(2,1,1,0)
(2,1,1,1)
(2,1,1,2)
(2,1,2,0)
(2,1,2,1)
(2,1,2,2)
(2,2,0,0)
(2,2,0,1)
(2,2,0,2)
(2,2,1,0)
(2,2,1,1)
(2,2,1,2)
(2,2,2,0)
(2,2,2,1)
(2,2,2,2)

(4,2,1,5,6,3)
(4,2,1,3,6,5)
(4,2,1,6,5,3)
(3,4,1,5,6,2)
(3,4,1,6,5,2)
(3,4,1,2,6,5)
(2,3,1,4,6,5)
(2,3,1,6,4,5)
(2,3,1,5,4,6)
(6,2,1,4,5,3)
(6,2,1,3,4,5)
(4,5,1,2,6,3)
(3,5,1,4,6,2)
(6,4,1,3,5,2)
(6,5,1,2,4,3)
(6,3,1,4,5,2)
(2,5,1,3,4,6)
(6,3,1,2,4,5)
(5,2,1,4,6,3)
(5,2,1,3,4,6)
(4,6,1,2,5,3)
(3,6,1,4,5,2)
(5,4,1,3,6,2)
(5,6,1,2,4,3)
(5,3,1,4,6,2)
(2,6,1,3,4,5)
(5,3,1,2,4,6)
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Mapping table of R € F (3, 3, 5).

X R(x) X R(x) X R(X)
0,00) | (1,2354) | (1,0,0) | (41,3,5,2) | (2,0,0) | (4,2,1,5,3)
0,0,1) | (1,4352) | (1,0,1) | (51,34,2) | (2,0,1) | (5,4,1,3,2)
0,0,2) | (1,534,2) | (1,0,2) | (21,3,54) | (2,0,2) | (2,5,1,4,3)
0,1,0) | (1,2453) | (1,1,0) | (3,1,4,5,2) | (2,1,0) | (3,2,1,5,4)
0,1,1) | (1,4253) | (1,1,1) | (5,1,43,2) | (2,1,1) | (34,1,5,2)
0,1,2) | (1,5432) | (1,1,2) | (2,1,4573) | (2,1,2) | (3,51,4,2)
0,20) | (1,254,3) | (1,20) | (41,53,2) | (2,2,0) | (4,3,15,2)
0,2,1) | (1,453.2) | (1;20)-}(51,2,43) | (2,2,1) | (5,3,1,4,2)
0,2,2) | (1,354,2) 1 (1,2,2) |.(2,45,4,3) | (2,2,2) | (2,3,1,5,4)

Mapping table of S € F (3, 3,5).

X S(x) X S(x) X S(x)
(0,0,0) | (2,1,3,4,5) | (1,0,0) | (4,23,1,5) | (2,0,0) | (4,1,2,5,3)
0,01) | (243,15 ] (1,0,1) | (5,23,1,4) | (2,0,1) | (54,2,1,3)
0,0,2) | (2,53,1,4) ] (1,0,2) | (1,23,5,4) | (2,0,2) | (1,5,2,4,3)
0,1,0) | (2,1,45,3) | (1,1,0) | (3,24,1,5) | (2,1,0) | (3,1,2,5,4)
0,1,1) | (2,4153) | (1,1,2) | (5,2,4,1,3) | (2,1,1) | (3,4,2,1,5)
0,1,2) | (254,1,3) | (1,1,2) | (1,2,45,3) | (2,1,2) | (3,5,2,1,4)
0,20) | (2,1,54,3) | (1,2,0) | (4,25,1,3) | (2,2,0) | (4,3,2,1,5)
0,2,1) | (2,451,3) | (1,2,1) | (5,2,1,4,3) | (2,2,1) | (5,3,2,1,4)
0,2,2) | (2,351,4) | (1,2,2) | (1,2,5,4,3) | (2,2,2) | (1,3,2,5,4)
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Mapping table of T € F (3, 4, 6).

X

T(x)

X

T(x)

X

T

(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,1,0)
(0,0,1,1)
0,0,1,2)
(0,0,2,0)
0,0,2,1)
0,0,2,2)
(0,1,0,0)
0,1,0,1)
0,1,0,2)
0,1,1,0)
0,1,1,1)
0,1,1,2)
0,1,2,0)
0,1,2,1)
0,1,2,2)
(0,2,0,0)
(0,2,0,1)
0,2,0,2)
0,2,1,0)
0,2,1,1)
0,2,1,2)
0,2,2,0)
0,2,2,1)
0,2,2,2)

(2,4,3,1,5,6)
(2,4,3,6,1,5)
(2,4,3,5,1,6)
(2,1,4,6,5,3)
(2,1,4,3,6,5)
(2,1,4,5,6,3)
(2,3,1,6,5,4)
(2,3,1,5,6,4)
(2,3,1,4,6,5)
(2,5,3,1,6,4)
(2,4,5,3,1,6)
(2,5,3,4,1,6)
(2,5,4,1,6,3)
(2,5,4,3,1,6)
(2,1,5,4,6,3)
(2,3,5,1,6,4)
(2,5,1,3,6,4)
(2,5,1,4,6,3)
(2,6,3,1,5,4)
(2,4,6,3,1,5)
(2,6,3,4,1,5)
(2,6,4,1,5,3)
(2,6,4,3,1,5)
(2,1,6,4,5,3)
(2,3,6,1,5,4)
(2,6,1,3,5,4)
(2,6,1,4,5,3)

(1,0,0,0)
(1,0,0,1)
(1,0,0,2)
(1,0,1,0)
(1,0,1,1)
(1,0,1,2)
(1,0,2,0)
(1,0,2,1)
(1,0,2,2)
(1,1,0,0)
(1,1,05)
(1,1,0,2)
(1,1,:0)
(1.1,1,1)
(1;1,1,2)
(1,1,2,0)
(1,1,2,1)
(1,1,2,2)
(1,2,0,0)
(1,2,0,1)
(1,2,0,2)
(1,2,1,0)
(1,2,1,1)
(1,2,1,2)
(1,2,2,0)
(1,2,2,1)
(1,2,2,2)

(1,2,3,5,6,4)
(1,2,3,6,5,4)
(1,2,3,4,6,5)
(3,2,4,1,6,5)
(3,2,4,6,1,5)
(3,2,4,5,1,6)
(4,2,1,5,6,3)
(4,2,1,3,6,5)
(4,2,1,6,5,3)
(6,2,3,1,5,4)
(1,2,5,3,6,4)
(6,2,3,4,1,5)
(3,2,5,1,6,4)
(6,2,5,3,1,4)
(6,2,5,4,1,3)
(4,2,5,1,6,3)
(6,2,1,3,5,4)
(6,2,1,4,5,3)
(5,2,3,1,6,4)
(1,2,6,3,5,4)
(5,2,3,4,1,6)
(5,2,4,1,6,3)
(5,2,6,3,1,4)
(5,2,6,4,1,3)
(4,2,6,1,5,3)
(5,2,1,3,6,4)
(5,2,1,4,6,3)

(2,0,0,0)
(2,0,0,1)
(2,0,0,2)
(2,0,1,0)
(2,0,1,1)
(2,0,1,2)
(2,0,2,0)
(2,0,2,1)
(2,0,2,2)
(2,1,0,0)
(2,1,0,1)
(2,1,0,2)
(2,1,1,0)
(2,1,1,1)
(2,1,1,2)
(2,1,2,0)
(2,1,2,1)
(2,1,2,2)
(2,2,0,0)
(2,2,0,1)
(2,2,0,2)
(2,2,1,0)
(2,2,1,1)
(2,2,1,2)
(2,2,2,0)
(2,2,2,1)
(2,2,2,2)

(1,4,2,5,6,3)
(1,4,2,3,6,5)
(1,4,2,6,5,3)
(3,1,2,5,6,4)
(3,1,2,6,5,4)
(3,1,2,4,6,5)
(4,3,2,1,6,5)
(4,3,2,6,1,5)
(4,3,2,5,1,6)
(6,4,2,1,5,3)
(6,4,2,3,1,5)
(1,5,2,4,6,3)
(3,5,2,1,6,4)
(6,1,2,3,5,4)
(6,5,2,4,1,3)
(6,3,2,1,5,4)
(4,5,2,3,1,6)
(6,3,2,4,1,5)
(5,4,2,1,6,3)
(5,4,2,3,1,6)
(1,6,2,4,5,3)
(3,6,2,1,5,4)
(5,1,2,3,6,4)
(5,6,2,4,1,3)
(5,3,2,1,6,4)
(4,6,2,3,1,5)
(5,3,2,4,1,6)
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