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摘要 

本篇論文研究結合工具耗損之修正製程能力指標和無母數信賴區間方法。我

們應用了 percentile bootstrap  (PB)  觀察全製程良率   
  之信賴區間。此研究方法

應用於太陽能電池效能之量測，然而影響太陽能電池效能有三個主要特性，分別

為理想電流 (Isc) , 開路電壓  (Voc) 和阻值  (Rsh) 。此三個特性影響 I-V曲線表

現，而 I-V曲線為太陽能電池轉換效能重要的特性因子。此三個特性的製程量測為

依據量測機台的探針，在這個案例中當探針呈現不可靠的狀態下間接影響太陽能

電池轉換效能的量測。也就是說當量測太陽能電池轉換效能為逐漸下降的情形時，

並無法得知是探針耗損需要被更換亦或太陽能電池本身轉換效能不符規格。因此

我們提出透過   
        

製程指標特性下去判斷真實製程狀態。在量測製程上，我們

提供更可靠的製程指標特性   
        

以判斷探針的更換準則。 

關鍵字：太陽能電池、多品質特性、工具磨耗、信賴區間下界、拔靴法  
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Abstract 

This paper considers the modified process capability index with the tool wear 

process with the confidence bound of the bootstrap estimates. This paper applies the 

percentile bootstrap (PB) method to the overall process yield measure    
   to obtain the 

confidence bounds. This paper applies this modified process capability index to the 

measurement of efficiency for silicon solar cell. It is noted that the ideal current source 

(Isc), open-circuit voltage (Voc) and the shunt resistance (Rsh) are the three important 

factors for the I-V characteristic curve. The probe measures these characteristics in the 

producing process. In this case, if the probe is not replaced, the efficiency of the silicon 

solar cell is unreliable and the value of silicon solar cell is drop down. Based on the 

value of    
        

, it can be judged that the process is “emergency” for characteristic 

measuring of efficiency. In the actual measuring process, we propose the more reliable 

index of the lower confidence bounds    
        

 to judge the replacement of the probe. 

Key words: Silicon solar cell, Multiple characteristics, Tool wear, Lower Confidence 

Bounds, Bootstrap. 
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1. Introduction 

1.1. Solar Cell Industry and Efficiency Characteristic 

In the global trend, promoting the development of renewable energy utilization is a 

critical strategy. The renewable energy includes wind energy, solar energy, biomass energy, 

hydro energy, and geothermal energy. In this paper, we discuss emphasis on the subject of the 

product quality of the solar photovoltaic manufacturing industry.  

In the early application of photovoltaic, Bigger and Kern (1990) discussed the 

methodology developed with help from Electric Power Research Institute (EPRI) in the 

electric utility industry. Hasti et al. (1990) reviewed the status of crystalline cell research and 

presented the recent results through a combination of university. Hamakawa (2003) discussed 

the technological development of the solar photovoltaic in recent and investigated the some 

new strategies to develop photovoltaic industry in Japan. With the technological progress, the 

solar cell productions are various and different from the solar cell industry. Current practices 

in the solar cell producing include various technological which mainly produced crystal 

silicon (c-Si) , amorphous Si (a-Si) and CIGS. Many researchers investigated extensively the 

dynamics of solar cell industry in the literature. Nakata (2011) presented an extensive study to 

illustrate the technological in business for global solar cell industry. 

Szlufcik et al. (1997) discussed silicon solar-cell (mono and multi) modules comprise 

approximately 85% of all worldwide PV module shipments and presented an extensive study 

to illustrate which the efficiency-enhancement techniques of commercial cells have 

investigated extensively. However, the energy conversion efficiency as high as 24% have 

been achieved on the laboratory. 

In recent years, the typical efficiency of industrial crystalline silicon solar cells is in the 

range of 16–20%. In the photovoltaic industry, the major concern is how to improve the 

efficiency and decrease the price of the commercial PV modules. Current practices in the 

high-efficiency features to industrially fabricated solar cells acceptable trend are efficiencies 

above 18% for multi crystalline and above 20% for mono crystalline silicon solar cells. 

Luque and Hegedus (2003) introduced the manufacturing process of solar cell and the 

relationship characteristic parameters for the I–V curve of the solar cell. Those characteristic 

parameters are defined in the following: 

                        
   

   
 
        

   
 

When η is the power conversion efficiency, FF is the fill factor, Isc is the short-circuit 

current, Voc is the open-circuit voltage, PMP is the largest rectangle for any point on the I–V 

curve and Pin is the incident power.  

Tasi (2005) discussed the photoelectric for the efficiency of the silicon solar cell. 

Spertino and Akilimali (2009) discussed the two factors that influenced the typical large 

photovoltaic (PV) are the current–voltage (I–V) mismatch and the impact of reverse currents 
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which is in different operating condition. The I–V curve of the solar cell is computed by the 

characteristic parameters of the solar cell’s efficiency. The efficiency of the solar cell can 

contribute the price of PV module down when the manufacturing I–V mismatched. The three 

important parameters factors to maintain the conversion efficiency and quality are Voc, Isc, 

and Rsh. 

 

1.2. Process Capability and Tool Replacement Policy 

Spertino and Akilimali (2009) discussed the measurements of solar cell and use the diode 

characteristic to determine I–V curve’s behavior. He also discussed the solar module can be 

formed as series-parallel network module through the solar cell pole parallel current generator. 

The I–V curve’s behavior is following other important parameters including the 

maximum-power point, Pmax. A simulate natural light is composed by typical I –V curve 

measurement system. The I–V curve measurement system use the external load or power 

supply to make voltage and current go through the device then measure them. The 

measurement system provided many measurements of important parameters including the test 

bed to mount the device under test, temperature control and sensors, and a data acquisition 

system to measure the current and voltage. 

The efficiency measuring is easily neglected in the process quality. Ruland et al. (2003) 

presented the quality control of the line resistivity measurements. The I–V curve behavior 

trend must be controlled to make sure if it maintains the efficiency quality. To control this 

conversion efficiency, they should control the multiple characteristics parameters like FF, Voc, 

Isc, Rs, Rsh etc at the same time. However, these three of important parameters as Voc, Isc, 

and Rsh also affected the I–V curve behavior trend. With the progress of technic of solar cell 

cell’s producing process, the quality of efficiency measuring is important and variously. Most 

of current conditions for conversion efficiency quality control are not always fulfilled in many 

manufacturing situations. 

The process capability indices (PCI) can be widely and straightforwardly applied to the 

product producing performance. Pearn and Wu (2005) discussed to use multi-characteristics 

process indices to apply to in measuring manufacturing for passive components to optic fiber 

communications, which are multi-characteristics products with one-side specification. For the 

product performance, they estimated the bootstrap methods’ confidence bound as follows,  

   
  

 

 
   {∏         

 
     }. 

Furthermore, several authors considered about the decreasing of the tools. 

Many researchers discussed to establish the tool replacement policy for executing the tool 

wear control. Quesenberry (1988) proposed the tool wear should be corrected by a regression 

model and suggested that the tool wear rate must be estimated accurately. In order to controls 

multiple characteristics for the quality of product performance, however, the studies must be 
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consolidated as the tool replacement policy causes has become critical issues. Pearn et al. 

(2006) presented the research of process capability indices (PCI) applied to the multiple 

characteristics processes of the tool wear policy.  

However, about the assumption by the researchers to the tool wear of multiple 

characteristics process capability, the subject of one side of multiple characteristics which 

combined the tool wear is more critical and important than only discussed about the tool wear. 

 

1.3. Research Objectives 

Three realistic examples about the one-side of multiple characteristics process to 

illustrate the tool wear applications of the propose approaches. The three important 

parameters as Voc, Isc, and Rsh also affected the I–V curve behavior trend. The real-world 

case is the investigation of the one side of the multiple characteristics production in the solar 

process. The method to monitor the products for avoiding producing the unacceptable 

products is using the control chart to decide if the process should be stopped or should to 

replace the tools.  

We propose the modified    
  which bases on the bootstrap (PB) method in a period 

dynamic process. Further, the process of capability measurement is the assignable causes. 

Considering the influence of systematic assignable cause, we modify the dynamic process of 

   
  indices. Since the process mean μ and the standard deviation σ are usually unknown, we 

apply the percentile bootstrap (PB) method to obtain the confidence bounds to modify 

   
  indices. However, the tool must be replaced due to the wear in the producing process. To 

monitor the tool capable in the producing process, we can monitor the dynamic changes by 

modifying  ̂  
  

 indices. Then these results apply the bootstrap (PB) method to find 

modification of the lower confidence bounds of    
        

  indices. 
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2 Multiple Quality Characteristics of Crystalline Silicon Solar Cell  

2.1.Isc  

Ideal current source (Isc) is one of the characteristics which affected the I–V curve 

behavior trend. The I–V curve of the solar cell is computed by the characteristic parameters of 

the solar cell’s efficiency. The efficiency of the solar cell can contribute the price of PV 

module down when the manufacturing I–V mismatched. In the following sections, we 

illustrate the relationship between the ideal current source (Isc) and the efficiency of the solar 

cell. 

Luque and Hegedus (2003) is illustrated widely of the characteristics and the efficiency 

of the silicon solar cell. The efficiency expression of solar cell is based on the ideal current 

source (Isc) in the two parallel diodes. One of the ideal factors of diode is “1”. It represents 

the recombination current in the quasi-neutral regions (∝ e
qV /kT

 ) , and the other ideal factor of 

diode is “2”. It represents the recombination in depletion regions (∝ e
qV /2kT 

) . Figure 1 

presents the simple solar cell model and the two ideal factors of diode “1” and “2”. Then, the 

general current produced by a solar cell as 

         ( 
  

    )     ( 
  

     ). 

The short-circuit current and dark saturation are restricted by the solar cell structure, 

material properties, and the operating conditions. All of the solar cell operated requirements 

must be investigated from these terms. 

 

 

 

 

 

Figure 1. Simple solar cell circuit model (Luque and Hegedus (2003)).  

Tasi (2005) discussed the efficiency of silicon solar cell. The photocurrents go from n 

conductor to p conductor when is in the dark. In contrast, the photocurrent go from p 

conductor to n conductor when there is light. The ideal conductor’s relationship between the 

circuit (I) and the voltage (V) is as follows 

       
 

     . 

Where I is the current, V is the voltage, Is is the saturation current,         , Where 

KB is Boltzman constant, T is the temperature, q0 is the electron unit. When the light shapes 

the circulated photocurrent from the n conductor to the p conductor, the direction of the 

electric field will point from the n conductor to the p. The photocurrent which shapes from the 



 

 5 

light is negative pole (IL) . The formula which considers about the relationship between the 

ideal current and negative pole current of voltage and current is as follows 

    ( 
 

    )    . 

The silicon solar cell is a general diode as the IL=0 in the dark. Assuming that the voltage 

of solar cell becomes zero (V=0) as the short circuit, the short-circuit current should be 

calculated as Isc=-IL. 

 

2.1.Voc  

 

 

 

 

 

 

 

 

 

Figure 2. Current-Voltage (I-V) characteristic curve. 

On the other hand, assuming that the silicon solar cell’s current is zero (I=0) as the open 

circuit, then this voltage should be calculated as  

          
  

  
    . 

The silicon solar cell’s current-voltage (I-V) characteristic curve is plotted in Figure2. The 

calculation of the solar cell’s output power is voltage multiplies current as follows 

        ( 
 

    )     . 

The output power of solar is the point on IV characteristic curve. Its presenting way is 

multiplying the maximum of I=IMP and V=VMP as Figure2, but this product is unconcern. The 

maximum output power Pmax can be decided by dP/dV=0 

  

  
       

       

  
       [   

  

  
]         . 

 

Thus, the maximum power point Pmax is calculated as Pmax=IpmaxVpmax, as well as the 
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efficiency of the silicon solar cell is the ratio for the power of incident light (Pin) and shown 

as 

η 
    

   
. 

Another parameter the fill factor, FF, provides a convenient measuring for the silicon solar 

cell’s efficiency. The fill factor, FF, is a measurement of the two rectangles’ ratio of the I-V 

characteristic curve, and it is always less than one. The fill factor, FF, is shown or calculated 

in Figure2 as 

   
    

      
 
          

      
 
         

         
. 

It establishes the ratio of the relationship between the actual maximum power and the 

rectangle-defined Voc and Isc in the Figure2. 

 

2.3 The Shunt Resistance Rsh 

In fact, the photovoltaic includes both parasitic series resistance and shunt resistance 

and the author of Figure1 didn’t present perfectly for the relationship between the current and 

voltage. Generally, the typically associated resistances as parasitic series resistance and shunt 

resistances are easily neglected in the real silicon solar cell. Luque and Hegedus (2003) 

presented extensively to illustrate the author of Figure1 does not reflect the real situation 

accurately and discussed the formula must to been modified as shown in Figure3 or 

          ( 
        

    )     ( 
        

     )  
         

   
. 

 

Figure 3. The parasitic series resistance and shunt resistance for silicon solar cell (Luque and 

Hegedus (2003)).  

The metal conductor’s structure must accompany with the resistance. The resistance is the 

parasitic series resistance and the shunt resistance (Rsh) of the photovoltaic, and the shunt 

resistance (Rsh) defined as the leakage current of silicon solar cell clearly. Similarly, the 

relationship between the current and the voltage of silicon solar cell must be considered as the 

resistance by parasitic series resistance and the shunt resistance as 
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   [ 
     
    ]  

     

   
   . 

However, assuming that the voltage is zero  (V=0)  and will effect the parasitic series 

resistance  (Rs)  more than the shunt resistance  (Rsh) . Thus, the relationship between the 

current and voltage have been modified as 

           . 

The shunt resistance (Rsh) won’t effect the short-circuit current, but it will reduce the 

open-circuit voltage. Furthermore, the plotting slop of Voc and Isc defined Rsh, and it 

presents as Figure 4. 

 

 

Figure 4. The shunt resistance (Rsh) and the parasitic series resistance for Isc and Voc. 

 

The shunt resistance is calculated as  

           . 

When the shunt resistance is more, the leakage current of silicon solar cell (Ileak) is less. In the 

actual model, the shunt resistance (Rsh) is the important parameter. 
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2.4 Efficiency Characteristics Measurement 

In the paper, we discuss the tool replacement policy for the one-side index of the maximum 

manufacturing specification with multiple characteristics. The ideal current source (Isc) , the 

open-circuit voltage (Voc) and the shunt resistance (Rsh) are the critical factor that affected 

the performance of the I-V characteristic curve. These three key parameters’ specifications are 

shown as Table1. 

 

Table 1. Specifications for the ideal current source (Isc) , the open-circuit voltage (Voc) 

and the shunt resistance (Rsh). 

Parameters Specification 

The ideal current source  (Isc)  ≧8.4 

The open-circuit voltage  (Voc)  ≧0.60 

The shunt resistance Rsh ≧60 

 

The measuring method of these three key parameters is to simulate the sunshine and the 

1000w/m
2
 incident light (Pin) . The measuring machine of the silicon solar cell’s efficiency 

imitates the sunshine shines on the surface of the silicon solar cell and measures it as shows in 

Figure5. While the surface of the silicon solar cell is shined by the measuring machine, the 

Photoelectric Effect is occurred then produce the current. I-V characteristic curve and the 

ideal current source (Isc) , the open-circuit voltage (Voc) and the shunt resistance (Rsh) are 

measured by the probe of the measuring machine, and they are monitored during the 

production process. 

 

 

 

 

 

 

 

 

 

 

Figure 5. The measuring machine for the efficiency of the silicon solar cell. 
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 Figure6 illustrates how the probe measures the characteristic of the silicon solar cell. 

Moreover, the probe’s wear is one of the important controls of the measuring machine in the 

tool wear policy. 

 

 

 

 

 

 

 

 

 

 

Figure 6. The probe of the measuring machine. 

 

The process is incapable when the probe’s failure reaches the minimum of the rule. 

Therefore, the tool replacement must proceed during the measuring process. The process 

indices give an accurate measurement to the defective of the tool wear. The process capability 

indices provide suitable control to the tool wear in the producing process. The ideal current 

source (Isc) , the open-circuit voltage (Voc) and the shunt resistance (Rsh) are three important 

parameters that affect the silicon solar cell’s efficiency simultaneously. We discuss to use the 

one-side process indices of the ideal current source (Isc) , the open-circuit voltage (Voc) and 

the shunt resistance (Rsh) to control the probe replacement policy in the producing process in 

the following sections. 
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3. Manufacturing Capability of Isc, Voc and Rsh With Tool Wear Process 

3.1. Process Capability Indices 

We have known how these three important parameters affect the solar cell efficiency in 

the above sections. The producing process needs to be controlled by these three important 

parameters. The process capability indices (PCIs) provide the method of controlling the 

producing quality in the manufacturing process. Recent years, process capability indices 

(PCIs) including CP , CPU, CPL , and CPK have been investigated actually in quality assurance 

and statistical literatures (see Kane, 1986; Chan et al., 1988; Pearn et al., 1992; Kotz and 

Lovelace, 1998 for details). Several capability indices have been used widely in 

manufacturing industry as follows: 

   
       

  
 ,        {

     

  
 
     

  
}, 

    
     

  
 ,     

     

  
, 

where USL and LSL are the upper and the lower specification limits,   is the process mean, 

and   is the process standard deviation.  

Many authors had promoted the various process capability indices in many literatures. As 

Kushler and Hurley (1992) , Rodriguez (1992) ,Kotz and Johnson (1993) , V ännman and 

Kotz (1995) , Bothe (1997) , Spiring (1997) , Palmer and Tsui (1999) , Pearn and Shu  

(2003) , and references therein. Those capability indices improve and implement the quality 

activities program successfully by quantifying the process performance. The quantifying 

process is the necessary to identifying and enhancing process performance by the process 

capability indices. The process capability indices connect the relationship between the actual 

process performance and the manufacturing specifications by the methods of statistical 

analysis.  

The process capability is assumed that the data distributions are statistically independent. 

Vasilopoulos and Stamboulis (1978) studied the correlation between the data and the control 

chart limits. The correlation effect has always been ignored in estimating process capability. 

The systematic assignable causes must be considered in the process. These situations such as 

the tool wear have to be decomposed before the assignable causes are systematic and the 

capability is evaluated. Due to the systematic assignable causes exist in the process, the 

variation of assignable causes (  
 ) has to be considered in the overall variation on the process 

(  ) . The overall variation on the process (  ) is composed by the random cause variation 

(  
 ) and the assignable cause variation (  

 ) ,i.e.     
    

   

Spiring (1989) developed     index modification for dynamic process under the effect 

of systematic assignable causes. Spiring (1991) discussed the dynamic process is constantly 

changing as the process, tools, age, etc. The assignable cause of the variation must be 



 

 11 

removed from the measuring process capability. When assignable cause variation is not 

systematic, the process capability conforms to the actual measuring process. The capability is 

maintained cyclically to conform to the minimum requirement during the period of the 

adjustments of the frequency of process. The assignable causes variation is just like the cause 

of the tool wear when it isn’t be systematic, which has to be dealt in the random of the process 

mean. 

 

3.2. Capability Measures with Tool Wear 

The tool wear case which starts from a systematic assignable should be eliminated its 

variation in the continuous manufacturing process. When the capability index fails in the 

manufacturing specifications, one of the reasons may be the process is incapable, another 

reason may be the tool replacement must be initiated. Long and De Coste (1988) discussed 

the effect of the capability indices for stopping the tool wear. Numerous authors have 

investigated the potential issue among the samples and the effect of control chart limits (see 

Vasilopoulos and Stamboulis, 1978; Efron, 1979 ).  

The situation of variation of tool wear in the process is the existence systematic assignable 

cause. The wear which occurs in the producing process affects the autocorrelations and 

removal. Quesenberry (1988) discussed the process mean can be adjusted and the tool wear 

can be estimated through a regression for its interval of the tool wear. The tool wear problem 

exists in the process, and the process capability can be calculated at each time dynamical 

period. Assuming we have known the predictable recurring pattern of the specification limits 

and target, the process capability of dynamic process conforms to the actual measuring 

process. Pearn et al. (2007) discussed to develop the tool replacement policy of one side 

process through the regression mode due to systematic assignable case. They consider n 
observations can be viewed as a straight line over the sampling window at time period

at .Then 

they fit these n observations as                     by sequential regression method, 

where     is the sequence number of the sampling unit, and     ~Normal (0,   
 ). The 

ordinary least square (OLS) estimates of     and     are 

 ̂   
         

       
 ̅   

 ∑      
 
   

      
       ̂   

  ∑     
 
   

       
 

 

       
 ̅  , 

where  ̅   ∑       
 
   . Thus, the estimated equation is ̂     ̂    ̂     . To remove the 

variation which produces from the assignable causes of the overall variation, we propose the  

          ∑
        ̂     

 

   

 

   
 ∑

        ̂    ̂       
 

   

 

   
 

to estimate the process variation         
 . 

The      is the mean square error which associated with the regression equation  ̂    
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 ̂    ̂     . Where    is the sequence number of the sampling unit and  ̂   denotes the 

linear change in the tool wear given a unit change in time.  

      ∑
        ̂     

 

     

 
   . 

Use ordinary least square (OLS) to estimate     and     , and assuming the sampling 

scheme is the sequential and computational formula for       can be expressed alternatively 

as 

      
 

       
 [∑     

  
    

        

     
 ̅  
  

  (∑      
 
   )

 

       
 
   ̅  ∑ (     )

 
   

     
], 

where n denotes the subgroup sample size, and      represents the i th value of the quality 

characteristic in the sampling period ta. 

Considering the important characteristics of the solar cell manufacturing industry, we 

apply these characteristics in the index    . Pearn and Hsu (2007) have investigated the 

measuring index     that measures each the characteristic of the tool wear processes. They 

proposed a modified      index of dynamic processes under the effect of systematic 

assignable cause:  

 ̃          
 ̅      

 √                  
,

 

 

where      [         ]
    [         ]  [         ] and  ̅   ∑       

 
   . 

 

3.3. Capability Measures for Multiple Characteristics  

The efficiency is the most important characteristic of silicon solar cell. In the foregoing 

sections, we have discussed how the I-V characteristic curve performance affects on the 

efficiency of the silicon solar cell. Then, the ideal current source (Isc) , open-circuit voltage  

(Voc) and the shunt resistance (Rsh) are the three important factors for the I-V characteristic 

curve. The probe measures these characteristics in the producing process. The probe is worn 

gradually during the producing processes. In this case, if the probe is not replaced, the 

efficiency of the silicon solar cell will be unreliable and the value of silicon solar cell will 

drop down.  Consequently, to maintain the product value and to raise the measuring quality, 

controlling the tool wear of probe becomes essential.   

 

 

Pearn et al. (2007) considered the process of multiple quality characteristics with tool 

wear problems; they proposed the following overall capability index, referred to as 
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   {∏      ̃     

 
   }, 

where ( )   is the cumulative distribution of the standard normal distribution (0,1)N , and 
1  is the inverse function of ( )  . And  

 ̃    
 

 
   { (     

 ̅     

 √
         

   

)}, 

where denotes the  ̃    denotes the  ̃   value of the j-th characteristic for j=1, 2,…, v , and 

v  is the number of characteristics. The index,    
  , can be viewed as a generalization of the 

single characteristic yield index,  ̃  . Given    
     , we have 

{∏      ̃     
 
   }        . 

   In fact, the one-to-one correspondence relationship between the index    
   and the 

overall process yields P can be established as follows: 

  ∏    ∏      ̃      
 
   

 
          

   . 

Hence, the new index    
   provides an exact measurement on the overall process yield when 

the characteristics are mutually independent. For example, if    
   = 1.00, then the entire 

process yield would be exactly 99.865%, and each single characteristic yield is no less than 

(0.9986501) 
1/5

= 0.9997299 (equivalent to 270 NCPPM) . Table 2 displays various commonly 

used capability requirement and the corresponding overall process yield. 

 

Table 2. Various    
  values and the corresponding process yield . 

   
   Process Yield 

1.00 0.9986501020 

1.25 0.9999115827 

1.33 0.9999669634 

1.45 0.9999931931 

1.50 0.9999966023 

1.60 0.9999992067 

1.67 0.9999997278 

2.00 0.9999999990 
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For process with v characteristics, if the requirement of the overall process capability 

is    
     , a sufficient condition (which is minimal) for the requirement to each single 

characteristic can be obtained by the follows. Let CL be the minimum  ̃    required for each 

single characteristic, then 

 

 
   {∏      ̃     

 
   }  

 

 
   {∏          

   }    . 

And we obtain the lower bound of each single characteristic to be 

   
 

 
     √        

 
.
 

Table3 displays the minimum CL of unresent for the overall process capability 

is    
     , a sufficient condition (which is minimal) for the requirement to each single 

characteristic can be obtained by the follows. Let CL to be the minimum  ̃    for the required 

overall process capability  ̃    are 1.00 and 1.33 for  =1 (1) 5 characteristics. For example, 

if the overall capability requirement  ̃     1.00 would be satisfied, it means each single 

characteristic yield is no less than (0.9986501) 
1/5

 = 0.9997299 (equivalent to 270 NCPPM) , 

and the capability for all the five characteristics is the following, for j = 1, 2, …, 5.   

 ̃    
 

 
   (√    

 )        , for j = 1, 2, …, 5. 

 

Table 3. Minimal requirement for each single characteristic of various capability levels 

for multiple characteristics. 

    c  

 

CL 

1.000 1.33 

1 1.000 1.330 

2 1.068 1.383 

3 1.107 1.414 

4 1.133 1.436 

5 1.153 1.452 
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4 .Manufacturing Capability Calculations 

4.1. The Bootstrap Confidence Bound 

We discussed the modified process capability indexes with the tool wear process in the 

foregoing sections. The multiple characteristics process capability indices measurement with 

single characteristic has to be considered. Prean and Wu (2005) estimated the one-sided 

multiple characteristics index    
  and the overall process yield P can be established as 

follows: 

  ∏    ∏      ̃      
 
   

 
          

  . 

Unfortunately, the process mean μ and the standard σ usually are unknown. In fact, the 

point estimates of the measuring process capability indices ignore the existence in the 

disregard for the sampling errors. The decision of the measuring process capability indices 

that base on the sampling error is unreliable. 

The estimates of the Evaluating point in actual measuring capability indices are biased 

because sampling error is ignored. Efron (1979, 1982) introduced a nonparametric but 

effective estimation method called the “Bootstrap”, which collecting, simulating and inferring 

the data of technique basic. The bootstrap sampling samples are collected from the empirical 

probability distribution of the random sample population. The nonparametric bootstrap 

approach but not rely on any assumptions that based on particular sampling distribution. 

Efron and Tibshirani (1986) developed the three type of bootstrap confidence interval, 

including the standard bootstrap confidence interval (SB) , the percentile bootstrap confidence 

interval  (PB) , and the biased corrected percentile bootstrap confidence interval (BCPB) . 

Franklin and Wasserman (1992) investigated the lower confidence bound for the capability 

indices,   ,     and     which use these three bootstrap methods. The bootstrap estimates 

for the non-normal process is more reliable than other analytic methods. The bootstrap 

sampling methods are resampling from the unknown population. Efropn and Tibahirani (1986) 

indicated that a rough minimum of 1000 bootstrap resamples is usually sufficient to compute 

reasonably accurate confidence interval estimates. 

Prean and Wu (2005) showed and applied the bootstrap (PB) method to the overall 

process yield measure    
   to find out the confidence bounds. They developed the bootstrap 

estimates of    
   are defined: 

   
   

 

 
    ∏   

            . 

They performed extensively about the computational experiments and apply the three 

bootstrap methods to find the lower confidence bounds of the overall yield measures    
  . The 

results showed that PB method outperformed significantly SB and BCPB methods. We 

combine the modified process capability with the tool wear process and present the 

confidence bound using the bootstrap estimates. The relationship between the two methods 

are applied and discussed in the following sections. We apply the percentile bootstrap (PB) 
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method to the overall process yield measure    
   to obtain the confidence bounds. In order to 

obtain more reliable results, B = 10,000 bootstrap resamples are taken and these 10,000 

bootstrap estimates of    
   are calculated and ordered in ascending order. The notations  ̂  

   

and    
         are used to denote the estimator of an overall yield index and the associated 

ordered bootstrap estimates. For instance,    
        is the smallest of the 10,000 bootstrap 

estimates of     
  . 

For each single characteristic with tool wear problem, the  ̃    index for dynamic 

processes at time period at  under the effect of systematic assignable cause is 

 ̃     
      

 ̅       

 √                   
, 

where      [         ]
    [         ]  [         ] and  ̅   ∑       

 
   ., for j = 

1, 2, …, . Thus, the bootstrap estimates of ordered bootstrap estimates. For instance, 

   
        is the smallest of the 10,000 bootstrap estimates of     

   are defined as: 

 ̂    
   

 

 
   {∏      ̃     

   
   }. 

From the ordered collection of    
        , the   percentage and the )1(  percentage points 

are used to obtain )21(  % PB confidence interval for    
   is [  ̂  

          ̂  
             ]. 

While a lower )1(  % confidence bound can be constructed by using only the lower limit 

      ̂    
       . 

That is, for a 95% LCB of    
   based on the PB method with B = 10,000 would be brained as 

  ̂  
        . This approach makes it feasible for the engineers to perform capability testing for 

calculating by using  ̂  
  . 
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4.2. Manufacturing Capability Calculations 

The data of probe wear started to collect from the beginning of the producing process 

begins until the end. The series data of probe wear composes of 300 observations subdivided 

into 10 subgroups. Figures 7-9 plot the individual values of Isc, Voc, and Rsh in the series 

data of the silicon solar cells respectively. The dropping down trend of the individual values is 

because the probe wear appears to be linear in nature. 

Due to the probe deterioration, these observations values have a tendency that series data 

from a high value drops to the lower specification limit gradually. Figures 7-9 show that the 

existence of trend in the probe wearing which seems to be the dropping of linear relationship. 

When assignable causes are systematic, the producing process is influenced by tool wear. The 

goal of reliability process is monitored and avoided being affected by the systematic 

assignable causes. In order to monitor the producing process and maintain the receivable 

capability, the assignable causes of the tool wear problem must to be removed. In the 

following, the multiple characteristics of measuring process capability index are calculated 

according to the tool wear problems. Consequently, we propose a procedure to monitor the 

important multiple parameters of the process capability index during the multiple 

measurement characteristics process and the tool wear problem. When the process capability 

index fails to reach the prescribed minimum value, one would conclude the incapable process 

that the process is incapable and the tool replacement must be taken.  
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Table 4.  The collected characteristics data of the efficiency. 

Voc (V)  Isc (Am)  Rsh (Ω)  

0.6351  0.6280  0.6203  0.6137  8.5676  8.5820  8.5254  8.4382  115.1098 132.4254 111.0484 61.93621 

0.6253  0.6174  0.6173  0.6141  8.6300  8.5839  8.5447  8.4467  166.0985 132.5074 101.5662 76.40811 

0.6384  0.6264  0.6154  0.6140  8.6327  8.5856  8.4211  8.4792  208.5881 123.4369 89.71226 83.57288 

0.6238  0.6153  0.6206  0.6188  8.5748  8.5506  8.4807  8.4833  195.9131 130.539 86.87646 61.15147 

0.6285  0.6137  0.6133  0.6165  8.5832  8.5320  8.5374  8.4470  185.4173 145.6558 95.32601 65.25066 

0.6395  0.6166  0.6153  0.6186  8.5608  8.4966  8.5385  8.4070  189.8256 132.8529 81.04649 62.23389 

0.6243  0.6280  0.6179  0.6147  8.5836  8.5397  8.4141  8.4488  228.0368 116.4915 98.04463 61.16061 

0.6333  0.6147  0.6167  0.6115  8.5625  8.5379  8.4812  8.4986  209.1927 175.3443 99.05467 72.08104 

0.6268  0.6171  0.6228  0.6194  8.5983  8.5589  8.4270  8.4394  205.0416 133.7756 103.8753 78.04487 

0.6331  0.6134  0.6185  0.6139  8.5337  8.5109  8.4737  8.5133  165.9573 115.9553 99.4052 64.89397 

0.6236  0.6203  0.6182  0.6142  8.5940  8.5614  8.4763  8.4885  149.1478 110.6349 96.24635 68.58256 

0.6251  0.6187  0.6155  0.6132  8.5485  8.5122  8.5314  8.4380  150.7254 126.7412 98.14216 67.66044 

0.6364  0.6185  0.6178  0.6198  8.5984  8.5238  8.4382  8.4136  164.1458 123.6254 90.49261 66.7335 

0.6264  0.6239  0.6169  0.6118  8.5477  8.5103  8.4555  8.4118  103.1746 162.7452 96.93583 74.63146 

0.6216  0.6233  0.6189  0.6127  8.5825  8.5481  8.5042  8.4178  185.0597 150.7022 94.32773 86.32913 

0.6302  0.6194  0.6242  0.6175  8.5272  8.5330  8.5096  8.4699  94.63106 111.9032 98.21197 73.23484 

0.6203  0.6179  0.6181  0.6062  8.5671  8.5573  8.4484  8.4617  166.7928 120.6153 75.82017 93.46229 

0.6202  0.6157  0.6205  0.6075  8.4837  8.4579  8.4278  8.4280  145.5571 155.9529 73.85004 95.88242 

0.6316  0.6143  0.6245  0.6111  8.4919  8.5478  8.4451  8.4184  172.9781 162.91 81.79738 65.40627 

0.6205  0.6257  0.6159  0.6092  8.5532  8.5439  8.5065  8.4218  135.9749 143.7671 98.05449 62.35523 

0.6191  0.6193  0.6156  0.6109  8.4892  8.5510  8.4690  8.4597  135.029 92.30382 92.88813 79.25245 

0.6175  0.6202  0.6141  0.6055  8.4941  8.5569  8.4793  8.4386  133.7001 93.45649 99.53754 73.19956 

0.6235  0.6177  0.6149  0.6024  8.5183  8.5352  8.4629  8.4109  128.1607 116.0257 86.06665 93.09574 

0.6151  0.6154  0.6142  0.6071  8.5575  8.4426  8.5218  8.4852  157.207 86.68295 68.05806 88.90796 

0.6351  0.6280  0.6203  0.6137  8.5236  8.5158  8.4396  8.4092  182.3935 101.0775 85.30753 64.40675 
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Figure 7. Plot of the Voc of the efficiency. 

 

Figure 8. Plot of Isc of the efficiency.

 

Figure 9. Plot of Rsh of the efficiency. 
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In this case, we present three samples each of size 100, for the efficiency of the silicon 

solar cell from the measuring probe process in the factory. These 300 measurements are 

displayed in Table 4.The measuring processes will run with uncontrollable but acceptable 

trend, as illustrated evidently in Figure 7 and Figure 8 and Figure 9, respectively.  

These charts clearly show the status of each single product characteristic. And these three 

capabilities of the efficiency all drop and close to the lower control limit of the specifications. 

These trends appear the linear of relationship. We consider applying the modified regression 

due to linear relationship. In the preceding chapters, we calculate the modified    
  index for 

dynamic processes and apply the mean square error (MSE) associated with the regression 

relationship in the following sections. These trends display as a constant or consistent process 

drift in many applications. The effects of tool wear with systematic assignable causes have to 

be decomposed in order to calculate process capability accurately. We calculate the modified 

process capability in the following sections. 

 

Table 5. Calculations for process capability of the efficiency characteristic. 

Efficiency Characteristic LSL . ̅ S  ̃    LC
 

Isc 8.4 0.617 0.006 1.047465 0.538028 

Voc 0.60 8.504 0.055 0.825816 0.369965 

Rsh 60 114.136 40.488 1.345127 0.860878 

 

Hence sample data collected from 100 measuring values are displayed in Table 4. And 

the upper specification limit, the calculated sample mean, location departure, sample standard 

deviation, the estimated  ̃   and lower confidence bound    for each characteristic are 

summarized in Table 5.  

Table 5 clearly shows the lower confidence bound    worse than the estimated  ̃   . 

Accordingly, the estimates  ̃    of the process capability has been overestimated the true 

capability. The lower confidence bound    is used to obtain )21(  % PB confidence 

interval for    
  . The lower confidence bound    is constructed by using only the lower limit 

under the lower )1(  % confidence bound. The PB method with B = 1,000 would be 

brained as   ̂  
         for a 95% LCB for    

  . 

The index    
  and the PB method lower confidence bound of    

   for the single 

characteristic overlay, the individual values of Isc, Voc and Rsh can be calculated as follows. 

The results are summarized in Table 6. 

http://tw.dictionary.yahoo.com/dictionary?p=worse
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 Table 6. Calculations for overall yield index. 

Characteristic  ̂  
   NCPPM    

        
 NCPPM 

CPL Total 0.8044 7904.44 0.6721 21881.14 

 

Table 6 displays the manufacturing capability and its corresponding NCPPM for the 

measuring efficiency process using the estimated  ̂  
   values and the lower confidence bounds 

   
        

. The    
        

obtained using PB method is certainly more reliable than the estimated 

 ̂  
   index values.  

Due to the probe replacement policy on the two weeks cycle, the cycle replacement 

policy doesn’t consider the ability for the measuring efficiency process. Accordingly, the 

measuring efficiency corresponding to characteristics corresponding to  ̂  
   = 0.8044 and the 

corresponding NCPPM is 7904. This shows that the process is “examine” for characteristic 

measuring of efficiency. 

But, the practices of measuring manufacturing capability by only evaluating estimated 

 ̂  
   index have been criticized. In fact, the index  ̂  

   may overestimate the true capability. 

The index  ̂  
   conveys unreliable and misleading information and should be avoided in the 

measuring efficiency applications. Based on the value of    
        

, we thus can judge that the 

process is “emergency” for characteristic measuring of efficiency and the number of the 

nonconformities is more than 21881 PPM. 

Current replacement policy cycled of the probe is disability for the measuring efficiency 

process. The lower confidence bounds    
        

 provides more reliable and accurate at the 

replacement policy information of the probe. Furthermore, the index  ̂  
   should be avoided 

in the measuring efficiency applications. 
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4.3. Optimal Tool Replacement Procedure 

The probes measure the efficiency of solar cell replacement technology is always based 

on time or failing heavily in the past experiments. To maintain high measuring efficiency 

process quality and minimize the production cost, the management procedure described below 

sieve to both monitor the process and find the probe time for measuring efficiency 

replacement.  

In measuring efficiency process, the probe replacement is important to provide Isc, Voc, 

and Rsh reliability and accuracy. Therefore, the tool wear of measuring probe is physically 

unavoidable in the measuring process. The measuring probes wear gradually within 

measuring process. It is necessary to decide that the optimal tool replacement time. The 

optimal tool replacement time could maintain the product value and raise the measuring 

quality. 

In current measuring process, the probe is replaced time-based on the two weeks cycling. 

The measuring process activities keep going within the replacement time, whether the 

measuring process may be unreliability or failing from the probe. The time-based replacement 

policy may misjudge the bad process within measuring time. In this case, the probe becomes 

incapable for the estimated  ̂  
   and the number of the nonconformities is 7904 NCPPM. In 

fact, the practice failing number is 21881 NCPPM based on the lower confidence bound of 

   
        

  

We first propose a method based on one-side multiple capability indexes    
  to find the 

optimal time for tool replacement in this article. We applied the MSE that associated with the 

regression method to modify the variance when tool wear due to systematic assignable cause. 

We propose the lower confidence bounds    
        

 to judge the time for the replacement of 

the measuring probe. By the sequential regression method, we obtain the lower confidence 

bound of the actual process capability. If the lower confidence bound of the process capability 

fail to achieve requirement of capability. Then, the process should be stopped and the probe 

must be replaced to avoid producing unacceptable silicon solar cells. The lower confidence 

bounds    
        

can judge the replacement of the probe in the actual measuring process. 
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5. Conclusions 

The efficiency is the most important characteristic of silicon solar cell. Then, the ideal 

current source (Isc) , open-circuit voltage (Voc) and the shunt resistance (Rsh) are the three 

important factors for the I-V characteristic curve. The probe measures these characteristics in 

the producing process. The probe is worn gradually during the producing processes. In this 

case, if the probe is not replaced, the efficiency of the silicon solar cell will be unreliable and 

the value of silicon solar cell will drop down. 

We combine the modified process capability with the tool wear process and present the 

lower confidence bound using the bootstrap estimates. We apply the percentile bootstrap (PB) 

method to the overall process yield measure    
   to obtain the confidence bounds. In order to 

obtain more reliable results, B = 10,000 bootstrap resamples are taken and these 10,000 

bootstrap estimates of    
   are calculated and ordered in ascending order. In this case, due to 

the probe replacement policy on the two weeks cycle, the cycle replacement policy doesn’t 

consider the ability for the measuring efficiency process. Accordingly, the measuring 

efficiency corresponding to characteristics corresponding to  ̂  
  = 0.8044 and the 

corresponding NCPPM is 7904. This shows that the process is “examine” for characteristic 

measuring of efficiency. But, the practices of measuring manufacturing capability by only 

evaluating estimated  ̂  
   index have been criticized.  

In fact, the index  ̂  
   may overestimate the true capability. Based on the value of 

   
        

, we thus can judge that the process is “emergency” for characteristic measuring of 

efficiency and the number of the nonconformities is more than 21881 PPM. Current 

replacement policy cycled of the probe is disability for the measuring efficiency process. The 

lower confidence bounds    
        

 provides more reliable and accurate at the replacement 

policy information of the probe. In the actual measuring process, we propose the lower 

confidence bounds    
        

 to judge the replacement of the probe. 
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