

\$C_{11}\$ Contractions are Reflexive Author(s): Pei Yuan Wu Source: Proceedings of the American Mathematical Society, Vol. 77, No. 1 (Oct., 1979), pp. 68-72 Published by: American Mathematical Society Stable URL: <u>http://www.jstor.org/stable/2042718</u> Accessed: 28/04/2014 17:08

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

http://www.jstor.org

C₁₁ CONTRACTIONS ARE REFLEXIVE

PEI YUAN WU¹

ABSTRACT. It is shown that a completely nonunitary C_{11} contraction defined on a separable Hilbert space with finite defect indices is reflexive.

In this note, only bounded linear operators defined on complex, separable Hilbert spaces will be considered. A contraction $T(||T|| \le 1)$ on a Hilbert space \mathcal{K} is of class C_{11} if $T^n x \neq 0$ and $T^{*n} x \neq 0$ for any $x \neq 0$. It is well known that such a contraction is quasi-similar to a unitary operator. Since unitary operators (even normal operators) are reflexive (cf. [3]), the question arises: Is the property of reflexivity preserved under the quasi-similarity? In other words, is a C_{11} contraction reflexive? In the present note we show that the answer is affirmative if the C_{11} contraction is completely nonunitary (c.n.u.) and has finite defect indices. We conjecture that the general case is also true.

Recall that a contraction T is c.n.u. if there is no nontrivial reducing subspace on which T is unitary. The *defect indices* of T are, by definition,

$$d_T = \dim[(1 - T^*T)^{1/2} \Re]^-, \quad d_{T^*} = \dim[(1 - TT^*)^{1/2} \Re]^-.$$

If T is of class C_{11} , then $d_T = d_{T^*}$. In the following discussion we shall make use of the *functional model for contractions* developed by Sz.-Nazy and Foiaş (cf. [4]). More specifically, if T is a c.n.u. contraction with $d_T = d_{T^*} = n < \infty$, then T can be considered as defined on

$$H = \left[H_n^2 \oplus \overline{\Delta L_n^2} \right] \ominus \left\{ \Theta_T w \oplus \Delta w \colon w \in H_n^2 \right\}$$

by $T(f \oplus g) = P(e^{it}f \oplus e^{it}g)$ for $f \oplus g \in H$, where L_n^2 and H_n^2 denote the standard Lebesgue and Hardy spaces of \mathbb{C}^n -valued functions defined on the unit circle, Θ_T is the characteristic function of T, $\Delta = (1 - \Theta_T^* \Theta_T)^{1/2}$ and P denotes the (orthogonal) projection onto H. Any operator S in $\{T\}'$, the commutant of T, has the form $P[{}^A_B {}^O_C]$, where A is a bounded analytic function while B and C are bounded measurable functions satisfying $A\Theta_T = \Theta_T A_0$ and $B\Theta_T + C\Delta = \Delta A_0$ for some bounded analytic function A_0 (cf. [5]).

For an arbitrary operator T, $\{T\}'$, $\{T\}''$ and Alg T denote the commutant, double commutant and the weakly closed algebra generated by T and I,

© 1979 American Mathematical Society 0002-9939/79/0000-0465/\$02.25

Presented to the Society, October 13, 1978; received by the editors October 24, 1978.

AMS (MOS) subject classifications (1970). Primary 47A45; Secondary 47C05.

Key words and phrases. C_{11} contraction, reflexive operator, functional model for contractions, quasi-similarity.

¹This research was partially supported by National Science Council of Taiwan, Republic of China.

respectively, and Lat T, Lat" T denote the lattice of invariant subspaces and the lattice of bi-invariant subspaces of T, respectively. Let Alg Lat T and Alg Lat" T denote the (weakly closed) algebras of operators which leave all the subspaces in Lat T and Lat" T invariant, respectively. An operator T is *reflexive* if Alg Lat T = Alg T. Two operators T_1 , T_2 are *quasi-similar* if there exist one-to-one operators X and Y with dense ranges (called *quasi-affinities*) such that $XT_1 = T_2X$ and $YT_2 = T_1Y$.

We start the proof with the following:

LEMMA 1. Let T be a normal operator on a separable Hilbert space. Then $\{T\}' \cap \text{Alg Lat}'' T = \{T\}''$.

PROOF. By the spectral theorem, we may assume that $T = M_{E_1} \oplus M_{E_2} \oplus \ldots$ acting on

$$H = L^{2}(E_{1}, \mu) \oplus L^{2}(E_{2}, \mu) \oplus \cdots,$$

where $E_1 \supseteq E_2 \supseteq \cdots$ are Borel subsets of the complex plane, μ is a finite positive Borel measure and M_{E_j} denotes the operator of multiplication by independent variable on $L^2(E_j, \mu)$, $j = 1, 2, \cdots$ (cf. [2, p. 916]). Let $S \in$ $\{T\}' \cap Alg Lat''T$. Since for normal operators bi-invariant subspaces are exactly reducing subspaces, $S \in \{T\}' \in Alg Lat''T$ implies that $S = \varphi_1 \oplus \varphi_2$ $\oplus \cdots$, where $\varphi_j \in L^{\infty}(E_j, \mu)$, $j = 1, 2, \cdots$. Consider the reducing (hence bi-invariant) subspace

$$K = \{ f_1 \oplus f_2 \oplus \cdots \in H \colon \chi_{E_i} f_i = f_i \text{ for all } i < j \}.$$

We have $SK \subseteq K$, which implies that $\chi_{E_j} \varphi_i f_i = \varphi_j f_j$ for all $f_i \in L^2(E_i, \mu)$, $f_j \in L^2(E_j, \mu)$, i < j. In particular, if $f_i = \chi_{E_i}$ and $f_j = \chi_{E_j}$, we have $\varphi_i = \varphi_j$ on E_j . Hence

$$S = \varphi_1 \oplus \chi_{E_2} \varphi_1 \oplus \chi_{E_3} \varphi_1 \oplus \cdots = \varphi_1(T) \in \{T\}^{\prime\prime}.$$

This shows that $\{T\}' \cap \text{Alg Lat}'' T \subseteq \{T\}''$. Since the other inclusion is trivial, this completes the proof.

The next lemma characterizes the operators in $\{T\}^{"}$ for a c.n.u. C_{11} contraction T with finite defect indices.

LEMMA 2. Let T be a c.n.u. C_{11} contraction with $d_T = d_{T^*} = n < \infty$ defined on

$$H = \left[H_n^2 \oplus \overline{\Delta L_n^2} \right] \ominus \left\{ \Theta_T w \oplus \Delta w \colon w \in H_n^2 \right\}.$$

Then $\{T\}'' = \{P[A_B^0]: A\Theta_T = \Theta_T A_0, B\Theta_T + C\Delta = \Delta A_0 \text{ for some bounded analytic function } A_0, \text{ and } C \text{ is scalar-valued} \}.$

PROOF. Let $S = P[{A \ C}]$ be an operator in $\{T\}^{"}$, where $A\Theta_T = \Theta_T A_0$ and $b\Theta_T + C\Delta = \Delta A_0$ for some bounded analytic function A_0 , and let U be the operator of multiplication by e^{it} on ΔL_n^2 . It was shown in [6, Lemma 3.1] that $C \in \{U\}^{"}$. As in the proof of Lemma 1, $C = \varphi(U)$ for some $\varphi \in L^{\infty}$, that is, C is scalar-valued.

For the other inclusion, let $S = P[{}^{A}_{B}{}^{0}_{C}] \in \{T\}'$ be such that C is scalar-valued, and let $S' = P[{}^{A'}_{B'}{}^{0}_{C'}] \in \{T\}'$. Note that the linear manifold $K = \{P(0 \oplus g): g \in \Delta L^{2}_{n}\}$ is dense in H. Indeed, since Θ_{T} is an outer function, for any $f \in H^{2}_{n}$ there exists a sequence $\{w_{j}\}$ of elements in H^{2}_{n} such that $\Theta_{T}w_{j} \to f$ in norm. Hence

$$P(0 \oplus -\Delta w_i) = P(\Theta_T w_i \oplus 0) \to P(f \oplus 0).$$

It follows that

$$P(f \oplus g) = P(f \oplus 0) + P(0 \oplus g) \in \overline{K}$$

for any $f \in H_n^2$ and $g \in \overline{\Delta L_n^2}$. Thus $\overline{K} = H$, as asserted. Let Y = S|K and Y' = S'|K be operators (not necessarily bounded) defined on K. It is easily seen that YY' = Y'Y. By the denseness of K, this implies that SS' = S'S whence $S \in \{T\}''$.

As a preliminary step toward showing that C_{11} contractions are reflexive, the next result says that they satisfy $\{T\}' \cap \text{Alg Lat } T = \text{Alg } T$.

THEOREM 3. Let T be a c.n.u. C_{11} contraction with $d_T = d_{T^*} = n < \infty$ defined on

$$H = \left[H_n^2 \oplus \overline{\Delta L_n^2} \right] \ominus \left\{ \Theta_T w \oplus \Delta w \colon w \in H_n^2 \right\}.$$

(1) If $\Theta_T(e^{it})$ is isometric for t in a set of positive Lebesgue measure, then $\{T\}' \cap \text{Alg Lat } T = \text{Alg } T = \{T\}''$.

(2) If $\Theta_T(e^{it})$ is not isometric for almost all t, then $\{T\}' \cap \text{Alg Lat } T = \text{Alg } T = \{u(T): u \in H^{\infty}\}.$

PROOF. We first show that $\{T\}' \cap \text{Alg Lat } T \subseteq \{T\}''$. Let $S = P[\begin{smallmatrix} A & 0 \\ B & C \end{bmatrix} \in [T]' \cap \text{Alg Lat } T$. Let U, V be the operators of multiplication by e^{it} on ΔL_n^2 , $\Delta_* L_n^2$, respectively, where $\Delta_* = (1 - \Theta_T \Theta_T^*)^{1/2}$, and let $X: H \to \Delta_* L_n^2$ be the quasi-affinity $X(f \oplus g) = -\Delta_* f + \Theta_T g$ (cf. [6, Lemma 3.4]). Since $\Theta_T \Delta = \Delta_* \Theta_T$, we may consider Θ_T as a multiplication operator from ΔL_n^2 to $\Delta_* L_n^2$. For any $K \in \text{Lat}'' U$, let $H_0 = X^{-1}(\overline{\Theta_T K})$. Since operators in $\{V\}''$ are of the form $\varphi(V)$ where $\varphi \in L^\infty$, it is easily seen that $\overline{\Theta_T K} \in \text{Lat}'' V$. By Corollary 3.6 of [6], $H_0 \in \text{Lat}'' T$. Hence $SH_0 \subseteq H_0$. Thus for any $f \oplus g \in H_0$, $XS(f \oplus g) \in \overline{\Theta_T K}$. As in the proof of Theorem 3.5 in [6], it can be shown that

$$XS(f \oplus g) = \Theta_T C \Theta_T^{-1} (-\Delta_* f + \Theta_T g).$$

Note that Θ_T admits scalar multiples. Let δ be an outer scalar multiple of Θ_T and let Ω be a contractive analytic function such that $\Theta_T \Omega = \Omega \Theta_T = \delta I_{\mathbb{C}^n}$. Since $\Theta_T^{-1} = \delta^{-1} \Omega$, we conclude that

$$\Theta_T C \Omega \big(-\Delta_* f + \Theta_T g \big) \in \delta \overline{\Theta_T K}$$

for any $f \oplus g \in H_0$. By Corollary 3.6 of [6], XH_0 is dense in $\overline{\Theta_T K}$. Therefore,

$$\Theta_T C \delta K = \Theta_T C \Omega \Theta_T K \subseteq \overline{\delta \Theta_T K}.$$

Hence for any $x \in K$, there exists a sequence $\{x_n\}$ of elements in K such that

 $\delta \Theta_T x_n \to \Theta_T C \delta x$, which implies that $\delta^2 x_n = \delta \Omega \Theta_T x_n \to \Omega \Theta_T C \delta x = \delta^2 C x$. Since $\delta^2 x_n \in K$ for all $n, \delta^2 C x \in K$. This shows that $\delta^2 C K \subseteq K$, and hence by Lemma 1 we conclude that $\delta^2 C \in \{U\}' \cap \text{Alg Lat}'' U = \{U\}''$. Thus $\delta^2 C$ is scalar-valued, and so is C. By Lemma 2, $S \in \{T\}''$. If $\Theta_T(e^{it})$ is isometric for t in a set of positive Lebesgue measure, then $\{T\}'' = \text{Alg } T$ (cf. [6, Theorem 3.8]). This shows that $\{T\}' \cap \text{Alg Lat } T \subseteq \text{Alg } T$. Since the other inclusion is trivial, we have proved (1).

For the rest of the proof we assume that $\Theta_T(e^{it})$ is not isometric for almost all t. Let

$$Y: \overline{\Delta_* L_n^2} \to L^2 \oplus L^2(E_2) \oplus \cdots \oplus L^2(E_k)$$

be the unitary transformation which intertwines V and $M \oplus M_{E_2}$ $\oplus \cdots \oplus M_{E_k}$, where $E_2 \supseteq \cdots \supseteq E_k$ are Borel subsets of the unit circle and M, M_{E_2}, \ldots, M_{E_k} denote the operators of multiplication by e^{it} on L^2 , $L^2(E_2), \ldots, L^2(E_k)$, respectively (cf. [4, pp. 272–273]). For any $x \in K \equiv Y^{-1}(H^2 \oplus 0 \oplus \cdots \oplus 0)$, consider the element

$$f \oplus g \equiv P(0 \oplus \Omega x) = (0 \oplus \Omega x) - (\Theta_T w \oplus \Delta w)$$

in H, where $w \in H_n^2$. Since $\delta \in H^{\infty}$,

$$-\Delta_* f + \Theta_T g = -\Delta_* (-\Theta_T w) + \Theta_T (\Omega x - \Delta w) = \Theta_T \Omega x$$
$$= \delta x \in \delta K = Y^{-1} (\delta H^2 \oplus 0 \oplus \cdots \oplus 0) \subseteq K$$

It follows that $f \oplus g \in X^{-1}K$. Since $X^{-1}K \in \text{Lat } T$, $S(f \oplus g) \in X^{-1}K$. Hence

$$XS(f \oplus g) = XP\begin{bmatrix} A & 0 \\ B & C \end{bmatrix} \begin{bmatrix} f \\ g \end{bmatrix} = XP\begin{bmatrix} A & 0 \\ B & C \end{bmatrix} \begin{bmatrix} 0 \\ \Omega x \end{bmatrix} = XP(0 \oplus C\Omega x)$$
$$= \Theta_T C\Omega x = C\delta x \in K$$

for any $x \in K$. In particular, for $h \in H^2$ consider

$$x = Y^{-1}(h \oplus 0 \oplus \cdots \oplus 0).$$

Then

 $C\delta x = Y^{-1}(C\delta h \oplus 0 \oplus \cdots \oplus 0) \in K = Y^{-1}(H^2 \oplus 0 \oplus \cdots \oplus 0),$ which implies that $C\delta h \in H^2$ for any $h \in H^2$. Since δ is outer, δH^2 is dense in H^2 . From above we conclude that $CH^2 \subseteq H^2$ whence $C \in H^{\infty}$.

Note that the linear manifold $\{P(0 \oplus g): g \in \overline{\Delta L_n^2}\}$ is dense in H (cf. the proof of Lemma 2). Hence

$$SP(0 \oplus g) = P(0 \oplus Cg) = C(T)P(0 \oplus g)$$

for any $g \in \overline{\Delta L_n^2}$ implies that S = C(T) on *H*. Thus $S = C(T) \in \text{Alg } T$, which proves (2).

LEMMA 4. Let T be an operator on H satisfying $\{T\}' \cap Alg Lat T = Alg T$. If T is quasi-similar to a normal operator, then T is reflexive.

P. Y. WU

PROOF. It was proved by Apostol [1] that if T is quasi-similar to a normal operator, then there exists a sequence $\{H_n\}$ of invariant subspaces for T which are basic and such that $T_n \equiv T | H_n$ is similar to a normal operator for each n. Let $S \in \text{Alg Lat } T$. Then $SH_n \subseteq H_n$. Let $S_n = S | H_n$ for each n. Since T_n , being similar to a normal operator, is reflexive, we have $S_n \in \text{Alg Lat } T_n = \text{Alg } T_n$. It follows that ST = TS on H_n for all n. Since $\{H_n\}$ spans H, ST = TS on H. Thus $S \in \{T\}' \cap \text{Alg Lat } T = \text{Alg } T$. This shows that T is reflexive.

THEOREM 5. If T is a c.n.u. C_{11} contraction with finite defect indices, then T is reflexive.

PROOF. This follows from Theorem 3 and Lemma 4.

References

1. C. Apostol, Operators quasisimilar to a normal operator, Proc. Amer. Math. Soc. 53 (1975), 104-106.

2. N. Dunford and J. T. Schwartz, Linear operators, Part II, Interscience, New York, 1967.

3. D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511-517.

4. B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam; Akadémiai Kiadó, Budapest, 1970.

5. ____, On the structure of intertwining operators, Acta Sci. Math. 35 (1973), 225-254.

6. P. Y. Wu, Bi-invariant subspaces of weak contractions, J. Operator Theory (to appear).

DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL CHIAO TUNG UNIVERSITY, HSINCHU, TAIWAN, REPUBLIC OF CHINA