\$C_\{11\}\$ Contractions are Reflexive
Author(s): Pei Yuan Wu
Source: Proceedings of the American Mathematical Society, Vol. 77, No. 1 (Oct., 1979), pp. 6872
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2042718
Accessed: 28/04/2014 17:08

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support @jstor.org.

[^0]
C_{11} CONTRACTIONS ARE REFLEXIVE

PEI YUAN WU ${ }^{1}$

AbSTRACT. It is shown that a completely nonunitary C_{11} contraction defined on a separable Hilbert space with finite defect indices is reflexive.

In this note, only bounded linear operators defined on complex, separable Hilbert spaces will be considered. A contraction $T(\|T\| \leqslant 1)$ on a Hilbert space \mathcal{H} is of class C_{11} if $T^{n} x \nrightarrow 0$ and $T^{* n} x \nrightarrow 0$ for any $x \neq 0$. It is well known that such a contraction is quasi-similar to a unitary operator. Since unitary operators (even normal operators) are reflexive (cf. [3]), the question arises: Is the property of reflexivity preserved under the quasi-similarity? In other words, is a C_{11} contraction reflexive? In the present note we show that the answer is affirmative if the C_{11} contraction is completely nonunitary (c.n.u.) and has finite defect indices. We conjecture that the general case is also true.

Recall that a contraction T is c.n.u. if there is no nontrivial reducing subspace on which T is unitary. The defect indices of T are, by definition,

$$
d_{T}=\operatorname{dim}\left[\left(1-T^{*} T\right)^{1 / 2} \mathcal{H}\right]^{-}, \quad d_{T^{*}}=\operatorname{dim}\left[\left(1-T T^{*}\right)^{1 / 2} \mathcal{H}\right]^{-}
$$

If T is of class C_{11}, then $d_{T}=d_{T^{*}}$. In the following discussion we shall make use of the functional model for contractions developed by Sz.-Nazy and Foias (cf. [4]). More specifically, if T is a c.n.u. contraction with $d_{T}=d_{T^{*}}=n<$ ∞, then T can be considered as defined on

$$
H=\left[H_{n}^{2} \oplus \overline{\Delta L_{n}^{2}}\right] \ominus\left\{\Theta_{T} w \oplus \Delta w: w \in H_{n}^{2}\right\}
$$

by $T(f \oplus g)=P\left(e^{i t} f \oplus e^{i t} g\right)$ for $f \oplus g \in H$, where L_{n}^{2} and H_{n}^{2} denote the standard Lebesgue and Hardy spaces of \mathbf{C}^{n}-valued functions defined on the unit circle, Θ_{T} is the characteristic function of $T, \Delta=\left(1-\Theta_{T}^{*} \Theta_{T}\right)^{1 / 2}$ and P denotes the (orthogonal) projection onto H. Any operator S in $\{T\}^{\prime}$, the commutant of T, has the form $P\left[{ }_{B}^{A}{ }_{C}^{0}\right]$, where A is a bounded analytic function while B and C are bounded measurable functions satisfying $A \Theta_{T}=\Theta_{T} A_{0}$ and $B \Theta_{T}+C \Delta=\Delta A_{0}$ for some bounded analytic function A_{0} (cf. [5]).

For an arbitrary operator $T,\{T\}^{\prime},\{T\}^{\prime \prime}$ and Alg T denote the commutant, double commutant and the weakly closed algebra generated by T and I,

[^1]respectively, and Lat T, Lat" T denote the lattice of invariant subspaces and the lattice of bi-invariant subspaces of T, respectively. Let Alg Lat T and Alg Lat" T denote the (weakly closed) algebras of operators which leave all the subspaces in Lat T and Lat" T invariant, respectively. An operator T is reflexive if Alg Lat $T=\mathrm{Alg} T$. Two operators T_{1}, T_{2} are quasi-similar if there exist one-to-one operators X and Y with dense ranges (called quasi-affinities) such that $X T_{1}=T_{2} X$ and $Y T_{2}=T_{1} Y$.

We start the proof with the following:
Lemma 1. Let T be a normal operator on a separable Hilbert space. Then $\{T\}^{\prime} \cap \operatorname{Alg} \operatorname{Lat}{ }^{\prime \prime} T=\{T\}^{\prime \prime}$.

Proof. By the spectral theorem, we may assume that $T=M_{E_{1}} \oplus M_{E_{2}}$ $\oplus \ldots$. . acting on

$$
H=L^{2}\left(E_{1}, \mu\right) \oplus L^{2}\left(E_{2}, \mu\right) \oplus \cdots,
$$

where $E_{1} \supseteq E_{2} \supseteq \cdots$ are Borel subsets of the complex plane, μ is a finite positive Borel measure and $M_{E_{j}}$ denotes the operator of multiplication by independent variable on $L^{2}\left(E_{j}, \mu\right), j=1,2, \cdots$ (cf. [2, p. 916]). Let $S \in$ $\{T\}^{\prime} \cap \operatorname{Alg}$ Lat" T. Since for normal operators bi-invariant subspaces are exactly reducing subspaces, $S \in\{T\}^{\prime} \in \operatorname{Alg}$ Lat" T implies that $S=\varphi_{1} \oplus \varphi_{2}$ $\oplus \cdots$, where $\varphi_{j} \in L^{\infty}\left(E_{j}, \mu\right), j=1,2, \cdots$. Consider the reducing (hence bi-invariant) subspace

$$
K=\left\{f_{1} \oplus f_{2} \oplus \cdots \in H: \chi_{E}, f_{i}=f_{j} \text { for all } i<j\right\}
$$

We have $S K \subseteq K$, which implies that $\chi_{E_{j}} \varphi_{i} f_{i}=\varphi_{j} f_{j}$ for all $f_{i} \in L^{2}\left(E_{i}, \mu\right)$, $f_{j} \in L^{2}\left(E_{j}, \mu\right), i<j$. In particular, if $f_{i}=\chi_{E_{i}}$ and $f_{j}=\chi_{E_{j}}$, we have $\varphi_{i}=\varphi_{j}$ on E_{j}. Hence

$$
S=\varphi_{1} \oplus \chi_{E_{2}} \varphi_{1} \oplus \chi_{E_{3}} \varphi_{1} \oplus \cdots=\varphi_{1}(T) \in\{T\}^{\prime \prime}
$$

This shows that $\{T\}^{\prime} \cap \operatorname{Alg} \operatorname{Lat}^{\prime \prime} T \subseteq\{T\}^{\prime \prime}$. Since the other inclusion is trivial, this completes the proof.

The next lemma characterizes the operators in $\{T\}^{\prime \prime}$ for a c.n.u. C_{11} contraction T with finite defect indices.

Lemma 2. Let T be a c.n.u. C_{11} contraction with $d_{T}=d_{T^{*}}=n<\infty$ defined on

$$
H=\left[H_{n}^{2} \oplus \overline{\Delta L_{n}^{2}}\right] \ominus\left\{\Theta_{T} w \oplus \Delta w: w \in H_{n}^{2}\right\} .
$$

Then $\{T\}^{\prime \prime}=\left\{P\left[\begin{array}{cc}A & 0 \\ C\end{array}\right]: A \Theta_{T}=\Theta_{T} A_{0}, B \Theta_{T}+C \Delta=\Delta A_{0}\right.$ for some bounded analytic function A_{0}, and C is scalar-valued $\}$.

Proof. Let $S=P\left[\begin{array}{ll}A & 0 \\ C\end{array}\right]$ be an operator in $\{T\}^{\prime \prime}$, where $A \Theta_{T}=\Theta_{T} A_{0}$ and $b \Theta_{T}+C \Delta=\Delta A_{0}$ for some bounded analytic function A_{0}, and let U be the operator of multiplication by $e^{i t}$ on $\overline{\Delta L_{n}^{2}}$. It was shown in [6, Lemma 3.1] that $C \in\{U\}^{\prime \prime}$. As in the proof of Lemma 1, $C=\varphi(U)$ for some $\varphi \in L^{\infty}$, that is, C is scalar-valued.

For the other inclusion, let $S=P\left[\begin{array}{ll}A & 0 \\ C\end{array}\right] \in\{T\}^{\prime}$ be such that C is scalar-valued, and let $S^{\prime}=P\left[A_{B^{\prime}}^{A^{\prime}}{ }_{C}^{0}\right] \in\{T\}^{\prime}$. Note that the linear manifold $K=\{P(0 \oplus$ g): $\left.g \in \overline{\Delta L_{n}^{2}}\right\}$ is dense in H. Indeed, since Θ_{T} is an outer function, for any $f \in H_{n}^{2}$ there exists a sequence $\left\{w_{j}\right\}$ of elements in H_{n}^{2} such that $\Theta_{T} w_{j} \rightarrow f$ in norm. Hence

$$
P\left(0 \oplus-\Delta w_{j}\right)=P\left(\Theta_{T} w_{j} \oplus 0\right) \rightarrow P(f \oplus 0)
$$

It follows that

$$
P(f \oplus g)=P(f \oplus 0)+P(0 \oplus g) \in \bar{K}
$$

for any $f \in H_{n}^{2}$ and $g \in \overline{\Delta L_{n}^{2}}$. Thus $\bar{K}=H$, as asserted. Let $Y=S \mid K$ and $Y^{\prime}=S^{\prime} \mid K$ be operators (not necessarily bounded) defined on K. It is easily seen that $Y Y^{\prime}=Y^{\prime} Y$. By the denseness of K, this implies that $S S^{\prime}=S^{\prime} S$ whence $S \in\{T\}^{\prime \prime}$.

As a preliminary step toward showing that C_{11} contractions are reflexive, the next result says that they satisfy $\{T\}^{\prime} \cap \operatorname{Alg}$ Lat $T=\operatorname{Alg} T$.

Theorem 3. Let T be a c.n.u. C_{11} contraction with $d_{T}=d_{T^{*}}=n<\infty$ defined on

$$
H=\left[H_{n}^{2} \oplus \overline{\Delta L_{n}^{2}}\right] \ominus\left\{\Theta_{T} w \oplus \Delta w: w \in H_{n}^{2}\right\}
$$

(1) If $\Theta_{T}\left(e^{i t}\right)$ is isometric for t in a set of positive Lebesgue measure, then $\{T\}^{\prime} \cap \operatorname{Alg}$ Lat $T=\operatorname{Alg} T=\{T\}^{\prime \prime}$.
(2) If $\Theta_{T}\left(e^{i t}\right)$ is not isometric for almost all t, then $\{T\}^{\prime} \cap \operatorname{Alg}$ Lat $T=$ $\operatorname{Alg} T=\left\{u(T): u \in H^{\infty}\right\}$.

Proof. We first show that $\{T\}^{\prime} \cap \operatorname{Alg}$ Lat $T \subseteq\{T\}^{\prime \prime}$. Let $S=P\left[\begin{array}{cc}A & 0 \\ C\end{array}\right] \in$ $\{T\}^{\prime} \cap \operatorname{Alg}$ Lat T. Let U, V be the operators of multiplication by $e^{i t}$ on ΔL_{n}^{2}, $\overline{\Delta_{*} L_{n}^{2}}$, respectively, where $\Delta_{*}=\left(1-\Theta_{T} \Theta_{T}^{*}\right)^{1 / 2}$, and let $X: H \rightarrow \overline{\Delta_{*} L_{n}^{2}}$ be the quasi-affinity $X(f \oplus g)=-\Delta_{*} f+\Theta_{T} g$ (cf. [6, Lemma 3.4]). Since $\Theta_{T} \Delta=$ $\Delta_{*} \Theta_{T}$, we may consider Θ_{T} as a multiplication operator from $\overline{\Delta L_{n}^{2}}$ to $\overline{\Delta_{*} L_{n}^{2}}$. For any $K \in$ Lat" U, let $H_{0}=X^{-1}\left(\overline{\Theta_{T} K}\right)$. Since operators in $\{V\}^{\prime \prime}$ are of the form $\varphi(V)$ where $\varphi \in L^{\infty}$, it is easily seen that $\overline{\Theta_{T} K} \in$ Lat" V. By Corollary 3.6 of [6], $H_{0} \in$ Lat" $^{\prime \prime} T$. Hence $S H_{0} \subseteq H_{0}$. Thus for any $f \oplus g \in H_{0}, X S(f \oplus$ $g) \in \overline{\Theta_{T} K}$. As in the proof of Theorem 3.5 in [6], it can be shown that

$$
X S(f \oplus g)=\Theta_{T} C \Theta_{T}^{-1}\left(-\Delta_{*} f+\Theta_{T} g\right)
$$

Note that Θ_{T} admits scalar multiples. Let δ be an outer scalar multiple of Θ_{T} and let Ω be a contractive analytic function such that $\Theta_{T} \Omega=\Omega \Theta_{T}=\delta I_{\mathbf{C}^{n}}$. Since $\Theta_{T}^{-1}=\delta^{-1} \Omega$, we conclude that

$$
\Theta_{T} C \Omega\left(-\Delta_{*} f+\Theta_{T} g\right) \in \delta \overline{\Theta_{T} K}
$$

for any $f \oplus g \in H_{0}$. By Corollary 3.6 of [6], $X H_{0}$ is dense in $\overline{\Theta_{T} K}$. Therefore,

$$
\Theta_{T} C \delta K=\Theta_{T} C \Omega \Theta_{T} K \subseteq \overline{\delta \Theta_{T} K}
$$

Hence for any $x \in K$, there exists a sequence $\left\{x_{n}\right\}$ of elements in K such that
$\delta \Theta_{T} x_{n} \rightarrow \Theta_{T} C \delta x$, which implies that $\delta^{2} x_{n}=\delta \Omega \Theta_{T} x_{n} \rightarrow \Omega \Theta_{T} C \delta x=\delta^{2} C x$. Since $\delta^{2} x_{n} \in K$ for all $n, \delta^{2} C x \in K$. This shows that $\delta^{2} C K \subseteq K$, and hence by Lemma 1 we conclude that $\delta^{2} C \in\{U\}^{\prime} \cap \operatorname{Alg} \operatorname{Lat} t^{\prime \prime} U=\{U\}^{\prime \prime}$. Thus $\delta^{2} C$ is scalar-valued, and so is C. By Lemma $2, S \in\{T\}^{\prime \prime}$. If $\Theta_{T}\left(e^{i t}\right)$ is isometric for t in a set of positive Lebesgue measure, then $\{T\}^{\prime \prime}=\operatorname{Alg} T$ (cf. [6, Theorem 3.8]). This shows that $\{T\}^{\prime} \cap \operatorname{Alg}$ Lat $T \subseteq \operatorname{Alg} T$. Since the other inclusion is trivial, we have proved (1).

For the rest of the proof we assume that $\Theta_{T}\left(e^{i t}\right)$ is not isometric for almost all t. Let

$$
Y: \overline{\Delta_{*} L_{n}^{2}} \rightarrow L^{2} \oplus L^{2}\left(E_{2}\right) \oplus \cdots \oplus L^{2}\left(E_{k}\right)
$$

be the unitary transformation which intertwines V and $M \oplus M_{E_{2}}$ $\oplus \cdots \oplus M_{E_{k}}$, where $E_{2} \supseteq \cdots \supseteq E_{k}$ are Borel subsets of the unit circle and $M, M_{E_{2}}, \ldots, M_{E_{k}}$ denote the operators of multiplication by $e^{i t}$ on L^{2}, $L^{2}\left(E_{2}\right), \ldots, L^{2}\left(E_{k}\right)$, respectively (cf. [4, pp. 272-273]). For any $x \in K \equiv$ $Y^{-1}\left(H^{2} \oplus 0 \oplus \cdots \oplus 0\right)$, consider the element

$$
f \oplus g \equiv P(0 \oplus \Omega x)=(0 \oplus \Omega x)-\left(\Theta_{T^{w}} \oplus \Delta w\right)
$$

in H, where $w \in H_{n}^{2}$. Since $\delta \in H^{\infty}$,

$$
\begin{aligned}
-\Delta_{*} f+\Theta_{T} g & =-\Delta_{*}\left(-\Theta_{T} w\right)+\Theta_{T}(\Omega x-\Delta w)=\Theta_{T} \Omega x \\
& =\delta x \in \delta K=Y^{-1}\left(\delta H^{2} \oplus 0 \oplus \cdots \oplus 0\right) \subseteq K
\end{aligned}
$$

It follows that $f \oplus g \in X^{-1} K$. Since $X^{-1} K \in \operatorname{Lat} T, S(f \oplus g) \in X^{-1} K$. Hence

$$
\begin{aligned}
X S(f \oplus g) & =X P\left[\begin{array}{ll}
A & 0 \\
B & C
\end{array}\right]\left[\begin{array}{l}
f \\
g
\end{array}\right]=X P\left[\begin{array}{ll}
A & 0 \\
B & C
\end{array}\right]\left[\begin{array}{c}
0 \\
\Omega x
\end{array}\right]=X P(0 \oplus C \Omega x) \\
& =\Theta_{T} C \Omega x=C \delta x \in K
\end{aligned}
$$

for any $x \in K$. In particular, for $h \in H^{2}$ consider

$$
x=Y^{-1}(h \oplus 0 \oplus \cdots \oplus 0)
$$

Then

$$
C \delta x=Y^{-1}(C \delta h \oplus 0 \oplus \cdots \oplus 0) \in K=Y^{-1}\left(H^{2} \oplus 0 \oplus \cdots \oplus 0\right)
$$

which implies that $C \delta h \in H^{2}$ for any $h \in H^{2}$. Since δ is outer, δH^{2} is dense in H^{2}. From above we conclude that $C H^{2} \subseteq H^{2}$ whence $C \in H^{\infty}$.

Note that the linear manifold $\left\{P(0 \oplus g): g \in \overline{\Delta L_{n}^{2}}\right\}$ is dense in H (cf. the proof of Lemma 2). Hence

$$
S P(0 \oplus g)=P(0 \oplus C g)=C(T) P(0 \oplus g)
$$

for any $g \in \overline{\Delta L_{n}^{2}}$ implies that $S=C(T)$ on H. Thus $S=C(T) \in \operatorname{Alg} T$, which proves (2).

Lemma 4. Let T be an operator on H satisfying $\{T\}^{\prime} \cap \operatorname{Alg} \operatorname{Lat} T=\operatorname{Alg} T$. If T is quasi-similar to a normal operator, then T is reflexive.

Proof. It was proved by Apostol [1] that if T is quasi-similar to a normal operator, then there exists a sequence $\left\{H_{n}\right\}$ of invariant subspaces for T which are basic and such that $T_{n} \equiv T \mid H_{n}$ is similar to a normal operator for each n. Let $S \in \operatorname{Alg}$ Lat T. Then $S H_{n} \subseteq H_{n}$. Let $S_{n}=S \mid H_{n}$ for each n. Since T_{n}, being similar to a normal operator, is reflexive, we have $S_{n} \in$ Alg Lat $T_{n}=\operatorname{Alg} T_{n}$. It follows that $S T=T S$ on H_{n} for all n. Since $\left\{H_{n}\right\}$ spans $H, S T=T S$ on H. Thus $S \in\{T\}^{\prime} \cap$ Alg Lat $T=$ Alg T. This shows that T is reflexive.

Theorem 5. If T is a c.n.u. C_{11} contraction with finite defect indices, then T is reflexive.

Proof. This follows from Theorem 3 and Lemma 4.

References

1. C. Apostol, Operators quasisimilar to a normal operator, Proc. Amer. Math. Soc. 53 (1975), 104-106.
2. N. Dunford and J. T. Schwartz, Linear operators, Part II, Interscience, New York, 1967.
3. D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511-517.
4. B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam; Akadémiai Kiadó, Budapest, 1970.
5. \qquad , On the structure of intertwining operators, Acta Sci. Math. 35 (1973), 225-254.
6. P. Y. Wu, Bi-invariant subspaces of weak contractions, J. Operator Theory (to appear).

Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan, Republic of China

[^0]:

 American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

[^1]: Presented to the Society, October 13, 1978; received by the editors October 24, 1978.
 AMS (MOS) subject classifications (1970). Primary 47A45; Secondary 47C05.
 Key words and phrases. C_{11} contraction, reflexive operator, functional model for contractions, quasi-similarity.
 ${ }^{1}$ This research was partially supported by National Science Council of Taiwan, Republic of China.

