4.3.4 空氣陰極之極化曲線

電極的絕對電位直接而真實地反映電極過程的熱力學和動力學 特性,但到目前為止還無法用實驗直接測定單個電極電位的絕對值, 而必須選用一參考電極組成電池,用測量電動勢的方法測量兩極間的 比較電位,故稱作相對電極電位。理論上鋅陽極的平衡電位為1.25V, 而空氣陰極為0.40V,從純碳材的I-V曲線圖中(圖4-23)由於未添加任 何催化劑,因此氧還原反應進行相當緩慢,可視為鋅陽極本身的放電 曲線,結果顯示鋅極的電位很接近理論值,隨著負載變大,極化現象 增強; 但空氣陰極受活性極化的影響, OCV與理論值就差了 0.3~0.65V,此差距主要原因為氧電極的還原反應不只是一個四電子 過程,反應中有中間產物HO2 出現, HO2 分解反應的動力學受催化 劑種類影響,所以可改變催化劑來縮短這個差距。

圖 4-31 為空氣陰極的Tafel曲線圖,實驗裝置亦如圖 3-9,電位掃 瞄從 0.5V <u>--3mV/s</u> -0.5V進行氧化還原反應,可從圖中觀察出不同空 氣極的平衡電位,實驗數據分別列於表 4-7 中。平衡電位越高表示越 接近理論值 0.40V,則OCV差距便會變小,將表 4-3~表 4-6 與表 4-7 對照,發現有些數值是吻合的,但有些有很大的偏差,實驗數據的再 現性也有很大的影響;從圖中得知還原過程較複雜,不只一個反應發 生,研判可能是有中間產物HO2⁻的出現,但詳細機制仍不清楚,因 此不能單純從Tafel曲線去解釋,可能包含其他極化現象的生成。

圖 4-32~圖 4-35 為空氣陰極的極化曲線圖,可觀察出氧還原(OR) 及氧生成(Oxygen evolution, OE)反應的性能。圖 4-32 顯示LCC₃O-350 在OR上有較佳的催化效能,其餘皆不相上下,但MnO2的極化較嚴 重,在OE上XC-72 的催化效能最佳,接下來是YBCO>LCC₃O> LCC₂O~LCCO>BRO>MnO₂; 圖 4-33 顯示LCCO-600、LCC₃O-600、 YBCO-600 在OR上皆有良好之催化效能,但BRO的極化較為嚴重, 在OE上XC-72 與YBCO-600 的催化效能佳,其餘為LCC₃O>LCC₂O >LCCO>BRO; 圖 4-34 顯示CuO-350 在OR上催化效能較佳,其餘 則不相上下,在OE上還是XC-72 表現最佳,再來是Co₃O₄>RuO₂> CuO;圖4-35顯示在OR上的催化效能皆不相上下,但RuO2的極化較 4411111 嚴重,在OE上仍是XC-72表現最佳,再來是CuO>Co₃O₄>RuO₂; 綜 合上述發現在OR上較無規則性可言,但在OE上,由於純碳材的氧還 原反應進行相當緩慢,造成氧還原之逆反應較易進行,導致XC-72的 催化效能最佳,且觀察到若進行OR時發生了嚴重的極化現象,相反 地在進行OE時,效果就會不彰。

空氣極編號	平衡電位(mV)
XC-72	-132.0
MnO ₂	222.5
LCCO-350	325.5
LCC ₂ O-350	347.5
LCC ₃ O-350	333.0
YBCO-350	-95.5
BRO-350	153.0
LCCO-600	-17.0
LCC ₂ O-600	-23.5
LCC ₃ O-600	-69.5
YBCO-600	-120.0
BRO-600	187.0
Co ₃ O ₄ -350	-92.0
CuO-350	347.0
RuO ₂ -350	-54.0
Co ₃ O ₄ -600	-92.0
CuO-600	-88.5
RuO ₂ -600	-8.0

表 4-7 空氣極中以不同催化劑之 Tafel 曲線值

圖 4-31 空氣極中以不同催化劑之 Tafel 曲線圖

圖 4-31 空氣極中以不同催化劑之 Tafel 曲線圖(續)

圖 4-33 空氣極中以不同催化劑-600℃之極化曲線圖(2)

圖 4-35 空氣極中以不同催化劑-600℃之極化曲線圖(4)