中文摘要
英文摘要
誌謝
目錄
表目錄XI
圖目錄XIII
第一章 緒論1
1.1. 前言1
1.2. 研究動機與目的2
第二章 文獻回顧
2.1. 金屬 - 空氣電池6
2.1.1 金屬 - 空氣電池的發展簡史6
2.1.2 金屬 - 空氣電池的特性與優缺點6
2.2. 鋅 - 空氣電池之電化學反應11
2.2.1 空氣電極 - 陰極運作原理11
2.2.1.1 空氣陰極 - 還原之半反應12
2.2.1.2 空氣陰極 - 氧化之半反應15
2.2.2 金屬電極 - 陽極運作原理16

2.3. 空氣陰極 - 多孔氣體擴散電極26	
2.3.1 空氣陰極成分	
2.3.1.1 碳材	
2.3.1.2 黏結劑	
2.3.1.3 催化劑	
2.3.2 空氣陰極構造	
2.4. 催化反應動力學 - H ₂ O ₂ 分解反應40	
2.4.1 反應速率40	
2.4.2 Arrhenius 定律44	
2.4.3 補償作用	
2.5. 空氣電極反應動力學	
2.5.1 影響電極反應速率之因素49	
2.5.2 極化現象49	
2.5.3 電極反應動力學50	
2.6. 鋅 - 空氣電池之電性能55	
2.6.1 放電性能55	
2.6.2 貯存性能55	
2.7. 鋅 - 空氣電池的種類	
2.7.1 鈕扣式鋅 - 空氣一次電池	

2.7.2 雙功能電極電化學再充式之辞 - 空氣二次電池60
2.7.3 第三電極電化學再充式之鋅 - 空氣二次電池61
2.7.4 兩極式電解液固定之鋅 - 空氣二次電池62
2.7.5 管狀式電解液循環之鋅 - 空氣二次電池63
第三章 實驗程序65
3.1. 實驗流程65
3.2. 實驗試藥65
3.3. 實驗設備65
3.4. 實驗方法
3.4.1 催化劑製程
3.4.1.1 La-Ca-Co-O 系列催化劑粉末製備65
3.4.1.2 Y-Ba-Cu-O 催化劑粉末製備66
3.4.1.3 Ba-Ru-O 催化劑粉末製備67
3.4.1.4 Co-O催化劑粉末製備67
3.4.1.5 Cu-O催化劑粉末製備68
3.4.1.6 Ru-O催化劑粉末製備68
3.4.2 雙氧水分解反應測試69
3.4.2.1 反應裝置69
3.4.2.2 觸媒活性測試69

3.4.3 空氣陰極製程70
3.4.4 鋅陽極製程71
3.4.5 實驗用鋅空氣電池組裝
3.5. 實驗儀器72
第四章 結果與討論85
4.1. 觸媒之特性分析85
4.1.1 La-Ca-Co-O 系列催化劑之分析
4.1.2 Y-Ba-Cu-O 催化劑之分析87
4.1.3 Ba-Ru-O 催化劑之分析
4.1.4 Co-O、Cu-O和 Ru-O催化劑之分析
4.2. H ₂ O ₂ 分解反應之探討1896
4.2.1 在 350℃下鍛燒之催化劑以不同重量在 15℃下之試驗
103 4.2.2 在 350 下鍛燒之催化劑以 0.01g 在不同溫度下之試驗
104 4.2.3 在 600 下鍛燒之催化劑以不同重量在 15 下之試驗
105 4.2.4 在 600 下鍛燒之催化劑以 0.01g 在不同溫度下之試驗

4.3. 空氣陰極之電池性能分析115
4.3.1 空氣陰極之表面分析115
4.3.2 鋅 - 空氣一次電池放電測試116
4.3.3 空氣陰極之CV曲線126
4.3.4 空氣陰極之極化曲線132
第五章 結論與建議139
5.1. 結論139
5.2. 發展建議141
參考文獻142
附錄一:觸媒之特性分析146
附錄二:H ₂ O ₂ 分解反應前後之ICP-AES分析161
ALL DE LE CONTRACTOR DE LE

表目錄

表 1-1 USABC 電動車用發展目標4
表 2-1 各類金屬 - 空氣電池的特性比較8
表 2-2 金屬 - 空氣電池的主要優缺點8
表 2-3 氧還原反應之反應機制19
表 2-4 氧生成反應之反應機制19
表 2-5 空氣陰極通道種類、組成與功能32
表 2-6 碳有利於電化學領域的性質與特徵32
表 2-7 常用於空氣陰極之催化劑
表 3-1 藥品資料表
表 3-2 設備資料表
表 3-3 電鍍之電鍍條件
表 4-1 350℃下鍛燒之觸媒, Arrhenius 方程式之 Ea 值與 In A 值107
表 4-2 600℃下鍛燒之觸媒, Arrhenius 方程式之 Ea 值與 In A 值107
表 4-3 空氣極中以不同催化劑-350℃之電池性能(1)120
表 4-4 空氣極中以不同催化劑-600℃之電池性能(2)120
表 4-5 空氣極中以不同催化劑-350℃之電池性能(3)121
表 4-6 空氣極中以不同催化劑-600℃之電池性能(4)121
表 4-7 空氣極中以不同催化劑之 Tafel 曲線值134

圖目錄

圖 1-1	燃料電池基本原理	.5
圖 2-1	金屬 - 空氣電池發展史	10
圖 2-2	氧還原反應(機制一)之細部分解圖	20
圖 2-3	氧原子還原反應(機制一)之細部分解圖	21
圖 2-4	氧還原生成過氧化氫離子反應(機制二)之細部分解圖	22
圖 2-5	氧還原以 side-on 形式生成過氧化氫離子反應(機制二)之可	能
	機制	23
圖 2-6	氧分子與催化劑活性中心作用方式	23
圖 2-7	氧分子與催化劑活性中心的吸附模型	24
圖 2-8	氧生成反應(機制二)之細部分解圖	24
圖 2-9	各式鋅陽極的鋅-空氣電池結構圖	25
圖 2-10)pH值及電位對電極狀態的影響	25
圖 2-1]	1 多層黏結型氣體擴散電極之示意圖	34
圖 2-12	2 Cabot 公司生產的 Vulcan® XC72 碳的 SEM 照片	34
圖 2-13	3 Shawinigan Black® Acetylene Black AB50%的 SEM 照片	35
圖 2-14	4 催化層中不同 PTFE 用量的電極極化曲線	35
圖 2-1:	5 鈣鈦礦結構的氧化物	36
圖 2-16	5 酯化及聚酯反應	37

圖	2-17	利用熱分解檸檬酸凝膠合成金屬氧化物粉體之示意圖38
圖	2-18	空氣陰極的結構示意圖
圖	2-19	雙型態孔洞模型
圖	2-20	反應物濃度及生成物體積對時間的函數曲線46
圖	2-21	一次反應中 $\ln \frac{\theta_0}{\theta}$ 對時間作圖46
圖	2-22	U型管內壓力之變化47
圖	2-23	在不同催化劑質量下對所得之速率常數作圖48
圖	2-24	Arrhenius 作圖(ln k 對 1/T)48
圖	2-25	燃料電池典型的 I-V 極化曲線圖54
圖	2-26	陰極電極反應示意圖
圖	2-27	典型的 Tafel 曲線圖54
圖	2-28	各種電池之性能比較57
圖	2-29	不同放電電流和溫度對放電曲線的影響57
圖	2-30	在鈕扣式鋅空氣電池中,水氣在電池內外轉移的主要形式58
圖	2-31	電解液碳酸化對電池的影響58
圖	2-32	Duracell's Activair 鈕扣式鋅 - 空氣一次電池示意圖59
圖	2-33	AER Energy Resources'鋅 - 空氣二次電池的基本操作示意圖
圖	2-34	三極式電解液固定之鋅 - 空氣二次電池的示意圖61

圖 2-35 兩極式電解液固定之鋅-空氣二次電池的運作示意圖	.62
圖 2-36 循環法鋅-空氣電池流程圖	.63
圖 3-1 實驗流程圖	.64
圖 3-2 催化劑製程	.79
圖 3-3 H ₂ O ₂ 分解反應測試裝置圖	.80
圖 3-4 擴散層之製作	.81
圖 3-5 催化層之製作	.82
圖 3-6 空氣陰極製程	.83
圖 3-7 鋅陽極製程裝置圖	.83
圖 3-8 電池構造分解圖	.84
圖 3-9 CV 量測的三極架構圖	.84
圖 4-1 La-Ca-Co-O 系列前驅物之 TGA 圖形	.91
圖 4-2 La-Ca-Co-O 系列前驅物之 DTA 圖形	.91
圖 4-3 不同系列觸媒(600℃)進行程溫還原(TPR)反應之圖譜	.92
圖 4-4 La-Ca-Co-O 系列催化劑不同鍛燒時間之 XRD 比較圖	.93
圖 4-5 La-Ca-Co-O系列(350℃)經H2O2分解反應前後之EDS圖形94	ļ
圖 4-6 La-Ca-Co-O系列(600℃)經H2O2分解反應前後之EDS圖形96	5
圖 4-7 Y-Ba-Cu-O 前驅物之 TGA/DTA 圖形	.98
圖 4-8 Y-Ba-Cu-O 化合物催化劑不同鍛燒時間之 XRD 圖	.98

圖 4-9 Ba-Ru-O 前驅物之 TGA/DTA 圖形9
圖 4-10 Ba-Ru-O 化合物催化劑不同鍛燒時間之 XRD 圖
圖 4-11 Ba-Ru-O化合物(350℃)經H2O2分解反應前後之EDS圖形
圖 4-12 Co-O、Cu-O 和 Ru-O 催化劑不同鍛燒時間之 XRD 比較圖
圖 4-13 觸媒-350℃在 H_2O_2 分解反應中 $ln(\theta_0/\theta)$ 與時間的函數圖
108
圖 4-14 觸媒-350℃在H ₂ O ₂ 分解反應中k與W _{cat} 的函數圖形110
圖 4-15 觸媒-350℃之 Arrhenius 作圖11
圖 4-16 觸媒-600℃ 在 H_2O_2 分解反應中 $ln(\theta_0/\theta)$ 與時間的函數圖
圖 4-17 觸媒-600℃在H ₂ O ₂ 分解反應中k與W _{cat} 的函數圖形113
圖 4-18 觸媒-600℃之 Arrhenius 作圖11
圖 4-19 不同觸媒在H2O2分解反應中之補償作用114
圖 4-20 不同觸媒在H2O2分解反應中之Arrhenius作圖114
圖 4-21 製備之擴散層與催化層的 SEM 照片12
圖 4-22 以不同 PTFE 用量(35、40wt%)製備擴散層之 I-V 曲線圖12
圖 4-23 空氣極中以不同催化劑-350℃之 I-V 曲線圖(1)12
圖 4-24 空氣極中以不同催化劑-600℃之 I-V 曲線圖(2)12
圖 4-25 空氣極中以不同催化劑-350℃之 I-V 曲線圖(3)12

