
ings and bit rate are shown in Fig. 1. Assumptions used in the
calculation are as follows:.(1) An avalanche photodiode excess
noise factor less than 0-7, quantum efficiency greater than 80%,
and dark current negligible. (2) Average optical power of — 5
dBm is coupled into a monomode fibre or multimode fibre. (3)
Splicing point is every 2 km. Misalignment of fibre core at
splicing points is within 1 /un. (4) Required error rate is less
than 10"u . (5) A 4 dB degradation is allocated for the
repeater. Under these assumptions, allowable transmission-
line loss is 31-4 dB at 1 Gb/s. (6) Average full half-power width
of the laser emission spectrum is 2 nm. (7) Total loss of a
graded-index multimode fibre, consisting of P2O5-SiO2 clad-
ding and GeO2-P2O5-SiO2 core, is 0-33 dB/km. Its baseband
width Bo is 1-5 GHz km and the length dependency factor of
baseband width is 085, that is, B(L) = B0L~0SS. The L is the
fibre length in km and B(L) is the baseband width at L. (8) OH
concentration is 30 p.p.b.

Baseband transmission width is limited first by modal
dispersion due to multimode propagation through a fibre, and
then by mode partition noise3 due to multi-longitudinal-mode
oscillation of a laser, as shown in Fig. 1. Therefore, it seems
important to use a single-mode laser (a single-longitudinal and
single-transversal mode laser) as well as a monomode fibre, to
broaden the baseband width. In fact, if a laser oscillates in a
multi-longitudinal-mode, the repeater spacing attainable prac-
tically at 1-55 nm using fibre II is comparable to that attained
by using fibre I at 1-29 /im, as shown in Fig. 1. As a result, the
transmission system at 1-55 //m using fibre II cannot make
good use of ultimate low loss. This fact does not change with
slight modification of parameters or dopants for fibre I or II.

Conclusion: A practically attainable repeater spacing has been
calculated,, and systems m the 1-3 /im and 1-55 /im wavelength
regions have been compared. If a multi-longitudinal-mode
laser is used, attainable repeater spacings in the 1-3 /im and the
1-55 /im wavelength regions have no significant difference. If a
single-mode laser is usable, a repeater spacing becomes maxi-
mum in the 1-55 /im wavelength region, and a monomode fibre
with A «0-2% and Xc « 1-2 /on is applicable to both wave-
length regions.
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TRANSITION MATRICES IN MULTIPLE
PRESET EXPERIMENTS AND INITIAL STATE
IDENTIFICATION OF SYNCHRONOUS
SEQUENTIAL MACHINES

Indexing terms: Identification, Sequential machines

Recently, in connection with the measurement and control of
synchronous sequential machines, Das et al. proposed an
approach to the solution of the problems using the transition
matrix representation of the machine and its higher-order
forms. In the proposed approach, however, the authors res-
tricted themselves to only simple and preset experiments.
Generally speaking, a simple preset experiment is rather easy
to implement, though it suffers from the disadvantage that it
tends to be lengthy, and sometimes does not provide the ex-
perimenter with the desired information. The letter develops a
new approach to the solution of the initial state identification
problem or diagnosing problem, which happens to be an im-
portant measurement problem in sequential machines
through multiple preset experimentation, using the transition-
matrix representation of the machine and other related con-
cepts as provided in the paper by Das et al. The present
approach, like the one suggested before, is also very systema-
tic and completely algorithmic, and thus lends itself to easy
computer implementation.

Introduction: The response of a nontrivial sequential machine
to specified excitations becomes unpredictable if the state of
the machine is unknown. On the other hand, the response of
the machine can always be predicted if the initial state is
known. Hence one of the basic problems in the study of se-
quential machines is to identify the state of the machine under
investigation.1"6 Once the state is identified, the behaviour of
the machine under all future circumstances becomes predic-
table, and definite steps may then be taken to force the ma-
chine into various modes of operation at the discretion of the
investigator. The former class of problems comes under the
broad category usually termed measurement problems, whereas
the latter problem is commonly known as the control problem
in sequential machines.3 In a recent paper, Das et al.,1 instead
of resorting to the conventional procedure of using the transi-
tion table and the corresponding response tree, made use of
the transition-matrix representation of the machine and its
higher-order forms to solve the measurement and control

problems in sequential machines. The approach the authors
developed is not only simple but also very systematic and com-
pletely algorithmic, and thus lends itself to easy computer
implementation. However, the authors in their study restricted
themselves exclusively to simple preset experiments, that is, the
authors assumed that the experiments were conducted on a
single copy of the machine, and further, the input sequences to
be applied to the machine were supposed to be fixed in
advance. One of the obvious shortcomings of such simple ex-
periments is that they are inherently destructive. When only a
single copy of a given machine is available, there may be no
way, in general, of knowingly recovering the initial state of the
machine for conducting a new experiment, in case the previous
experiment proves to be a failure. If, however, a sufficient
number of copies of the given machine are available, it be-
comes possible to conduct a number of experiments, each of
which by itself may be unable to solve the initial state
identification problem or diagnosing problem, but all of which
jointly may supply sufficient information to identify the initial
state of the machine. As an illustration, consider the case of
machine M of Table 1. There is no simple experiment which
solves the diagnosing problem for machine M with admissible
set2 Su S2, S3, S4. We shall see later that the diagnosing prob-
lem for machine M and admissible set Su S2, S3, S4 is readily
solvable by a multiple preset experiment of multiplicity 2 and
length 3. In general, for every minimal machine M, there does
not exist a simple preset or adaptive experiment to solve the
diagnosing problem.1"5 Rather a preset or an adaptive multi-
ple experiment may have to be required. Thus every minimal
machine M, even if it does not possess a single input sequence
as its diagnosing sequence, does possess a set of input se-

Table 1 MEALY MACHINE M

Input
State

Si

s2
s3
S4

0

S2,0

Si, 0
s4 ,1
54, 1

S

s
s
s

1

4 ,0

2, 0
1, 0
3,0
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quences, termed the characterising sequences,41 that can be
used for the identification of the unknown initial state of the ma-
chine. A graphical exhaustive search procedure that makes use
of the state-response tree can be utilised to solve the character-
ising problem for any given sequential machine, just like the
diagnosing problem. In this letter the authors extend the tran-
sition matrix and other related concepts of Das et al. as
developed for simple preset experiments to the case of multiple
preset experiments, and propose a new approach to the solu-
tion of the initial state identification problem in synchronous
sequential machines. The suggested approach is simple, ex-
tremely systematic and completely algorithmic, and hence can
be very readily implemented on a computer as well.

Assumptions and basic concepts: Consider a finite, deter-
ministic, completely specified, synchronous sequential machine
M defined by the quintuple M = </, S, O,f, g>, where / = Iu
12, • • •, Iu denotes the input alphabet, S = Su S2,..., Sv denotes
the state alphabet, and O = Ox, O2, ..., Ow the output alpha-
bet, and / and g denote the two characterising functions of
machine M given by SN+, =f(Is, SN), and ON = g(IN, SN). For
a Mealy machine, ON is the corresponding output of Is, and
(IN, ON) forms an input-output pair, whereas for a Moore ma-
chine1 the output corresponding to Is is ON + i and (IN, 0N + 1)
forms an input-output pair. An input sequence Tt = In Ii2 ... IiL,
of length L, is a series of L inputs successively applied to the
machine M in a certain initial state Sj. An output sequence
0* = Okl 0k2 • • • Okv, of length L, is a series of £ outputs suc-
cessively produced by the machine M when an input sequence
is applied. An output sequence 0k is called the corresponding
output sequence of an input sequence T, if and only if L = L,
and (Iih, Okh), h = 1, 2, ..., L, is an input-output pair.6 We
assume further that the machine M under consideration is a
minimal machine. If we now allow T{ to represent any possible
input sequence of M, we can always evaluate the functions/(7j,
Sr) and g(Th Sr) for every state Sr in the state set S, f(Th Sr)
denoting the terminal state reached, and g(Th Sr) denoting the
output sequence produced, on application of T{ at S, of M.

A transition matrix is viewed as the mathematical counter-
part of the transition diagram of a sequential machine. For a
u-state machine M, the transition matrix is composed of v rows
and v columns, and is denoted by [M]. For ease of under-
standing, it is usual to attach the label of the fcth state Sk to the
/cth row and kth column, and refer to the row and column as
row Sk and column Sk, respectively. The (i, j) entry, that is, the
entry common to the ith row and jth column of [M], is b{j if
and only if there exists an input that takes the machine M from
the state 5, to the state 5, in the transition diagram of M, and is
zero otherwise. For a Mealy machine M, btJ = £»(/*, ON),
where IN is the present input that takes M from Sf to Sj, and ON
is its corresponding present output, whereas for a Moore ma-
chine M, btJ = £k(/*, ON+l), where Is is the present input that
takes M from S, to Sj as before, but 0N+1, its corresponding
output, is the next output, the summation being in either case
over all such input-output pairs. The transition matrix [M],
corresponding to the Mealy machine M of Table 1, is shown in
eqn. 1.

(1)

For transition matrices, multiplication is denned in the usual
way. If [M] represents the transition matrix of a y-state sequen-
tial machine M, with (i, j) entry bti, then the (i, j) entry of the
rth-order transition matrix, denoted by [M]r, is given by

Given the /cth-order transition matrix [M]\ the next higher-
order transition matrix [M]k+I can be formed as: [M]*+1 =
[M][M]*. The second-order transition matrix [M]2 = [Af][M],
corresponding to machine M in Table 1, is shown in eqn. 2.

1
2
3
4

1
• o
(0,0)
0,0)

. 0

2
(0,0)
(1,0)

0
0

3
0
0
0

(1,0)

4
(1,

0
(0,
(0,

o)-
1)
1)-

klk2

[M]2 =

1

2

3

4

1
"(00, 00)

(10, 00)

0

(11,00)

2
(01, 00)

(00,00)
+ (11,00)

(10, 00)

0

3
(11,

0

(01,

(01,

00)

10)

10)

4
(10,01)

(01, 00)

(11,00)
+ (00,11)

(10, 01)
+ (00, 11)_

k(r-l)=l

which vanishes if some of the fcM are zero. The rows and col-
umns of [M]r are also labelled as in [M]. Notice that [M]1 is
simply [M].

(2)

Multiple preset experimentation and characterising sequences
for initial state identification: The initial state identification
problem in a sequential machine consists of finding the un-
known initial state of the machine from external observation. In
solving the initial state identification problem for a machine
that does not possess diagnosing sequences, through multiple
preset experimentation, we need to find a set of input seq-
uences Tkp, (1=1, 2, ..., h, such that there exists a unique
relationship between the observed output sequences g(Tkp, Sj),
P = 1,2,..., h, and the unknown initial state of the machine Sj.
To solve the problem by using transition matrix representa-
tions, we make use of the following theorems.

Theorem 1: A set of input sequences TkU Tk2,..., Tkh of lengths
rur2,...,rh, respectively, represents a characterising sequence
for a sequential machine M with admissible set A(M) = Sal,
Sa2, ..., Sak c S, the set of states of M, provided in each of the
ad rows, 6=1, 2, ..., k, of all of the rath-order transition
matrices [M]r% a = 1, 2, ..., h, wherever the input sequences
hp, P = 1, 2, ..., h, appear in the entries of some columns j ,
1 <j < v, the corresponding output sequences of Tkfi, ft = 1, 2,
..., fi,*in the entries of all those columns of all the matrices
constitute a distinct set.

Theorem 2: A set of input sequences Tkl, Tk2, ...,Tkhof lengths
ru r2, •• •, rh, respectively, represents a characterising sequence
for a sequential machine M with admissible set A(M) = Sai,
Sa2, •••,Sak s S , the set of states of M, if and only if/u,7k2, • ••,
Tkh define partitions nu n2, ..., nh based on output responses
on the set of admissible states A(M) in the matrices [M]n,
[M]'2, ..., [M]ri>, respectively, such that the product of these
partitions nu n2,..., nh = <p, the trivial partition in which there
are ak blocks, each block containing exactly one state of A(M).

The above theorems readily follow from the definition of
characterising sequences, and theorem 13, and corollaries 13.1,
13.2 of Das et al. We next state the following important
theorem.27

Theorem 3: The initial state identification problem for a u-state
sequential machine M with k admissible states is always solv-
able by a multiple preset experiment of length Ls and multi-
plicity Cs, where Ls < (v - l)(k - 1) and C, < k - 1.

A formal algorithm for finding the characterising sequences
for initial state identification in sequential machines is given
next.

Algorithm: (a) Given the transition table of a minimal testate
synchronous sequential machine M, form the corresponding
transition matrix [M] for M. (b) Check the entries in different
rows and columns of the transition matrix [M] as obtained.
Select an input symbol /, such that /, defines a partition n on
the admissible set of states A(M) of machine M having a maxi-
mum number of blocks, each block fe, corresponding to a dis-
tinct output. For a machine M with the size of its output
alphabet w, the number of such partition blocks nt < w. (c)
Form the second-order transition matrix [M]2 = [M][M]. (d)
Check the entries in different rows and columns of [M]2, and
select an input sequence that defines partitions on the state sets
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of a maximum number of blocks in n and simultaneously for
each such block bh partitions its set of elements into a maxi-
mum number of disjoint subsets, based on output responses.
Stop if every block 6, of n is partitioned into single element
sets. If not, form successively higher-order transition matrices
[M]3 = [M][M]2,..., and in each case continue with (d), until
for some [M]r the process terminates, yielding the desired char-
acterising sequence (or sequences).

Example: Consider the machine M in Table 1. From the transi-
tion matrix [Af] of machine M in eqn. 1, we can select the input
symbol 0, while from the second-order transition matrix [M]2

in eqn. 2, we can select the input sequence 10, giving a charac-
terising sequence for the machine with admissible set Sls S2,
S3, S4 as: 0, 10, as observed before.

Acknowledgments: This research was supported in part by the
National Science Council of Taiwan.

The trap characterisation of the different m.cs.f.e.t. epitaxial
layers grown in our laboratories has been performed using a
d.l.t.s. method2 directly on our microwave f.e.t.s.3 All the epi-
taxial material used in our work has been v.p.e. AsCl3 grown
with buffer layers.

We have characterised two materials, each having one
predominant trap. The first one (hole trap, Ea = 0-53 eV and
(7 = 2 x 10"15 cm2) was obtained on conventional v.p.e.
material (Ga source, deposition temperature TD = 750°C),4

and the second one (electron trap, Ea = 0-43 eV and
a = 2 x 10"17 cm2) was obtained on low temperature v.p.e.
material (GaAs source, TD = 650°C).5

In each case, the preceding values of energy level and cap-
ture cross-section do not agree with previously published re-
sults. We believe this is due to the high doping level causing a
tunnelling effect, and consequently modifying values of Ea and
a.6

SUNIL R. DAS* 17th October 1979
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National Chiao Tung University, Hsinchu, Taiwan

* S. R. Das was formerly with the Department of Electrical Engineer-
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TRAP LOCALISATION IN THE ACTIVE
LAYER OF GaAs MICROWAVE F.E.T.S

Indexing terms: Electron traps, Hole traps, Schottky-gatefield-
effect transistors, Solid-state microwave devices

The localisation of traps in the active layer of GaAs micro-
wave m.cs.f.e.t^ has been effected for two different epitaxial
materials. The method used in this work was a transient
measurement of source-drain voltage associated with a simple
theoretical model. Our results indicate that electron traps are
localised in the bulk of the epilayer whereas hole traps are
localised at the epilayer/buffer-layer interface.

The realisation of reliable GaAs microwave field-effect tran-
sistors necessitates not only reliable metallisation but also
high-quality material. A difficulty frequently encountered has
been the existence of deep-level impurities in the active layers
grown on semi-insulating GaAs. The insertion of a buffer
layer1 can reduce these parasistic effects but does not entirely
eliminate them, since the results of d.c. and pulsed drain-
current characterisation are often quite different and some dev-
ices are still light-sensitive.

9

VGS to V

V D S O

time

electron
k,trap

SI*-
trapL

Fig. 1 Difference between VDS0 and VDSa> as a function ofVGsfor hole
trap. The dots correspond to experimental measurements, the full line to
the simulated bulk trap model, and the broken line to the simulated
interface trap model

Insert: VDS voltage transient with corresponding gate pulse

We have therefore tried to localise the position of these two
traps in the epilayer. During this process of localisation, the
temperature has been kept constant and we have recorded the
source-drain voltage transient for different values of gate vol-
tage pulse (see insert in Fig. 1). If the active layer contains
traps, the VDS voltage will not immediately return to its equili-
brium value (VDSoo) after the following edge of the gate pulse,
but will take another value (VDSO) whose amplitude and posi-
tion relative to VDSa0 depend on the density and nature of traps.

The amplitude of the gate pulses has been chosen such that
the source-drain voltage can be represented by the Shockley
equations for the linear region of the f.e.t.s static character-
istics. Thus, after some calculations:

= Kld -y/{Vu- VG)\

K is a constant depending on the geometrical and physical
parameters of the device, No, N^ are the doping levels at t = 0
and t = oo (each doping level is to be considered constant in
the active layer) and Vp0 and Vpao are the corresponding pinch-
off voltages.

The following two cases have been considered:

(a) Density of traps is constant in the active layer, which has a
fixed thickness. Then, in the above equation, No can be ex-
pressed as:

N0 = Noo± AN
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