AN KBFHEEFRERLER B2 74 P i &

Low Sampling Rate IMU-based Pedestrian Trajectory System

FERBE 102 & 1 R



FT BB O R B E 2 (T A Uk s
Low Sampling Rate IMU-based Pedestrian Trajectory System

o4 DwiRa Student : Pei-Liang Shih
hERR PR Advisor : Chih-Wei Yi
CINR T 4
BORLE ERF N E A2
AL o=
A Thesis

Submitted to College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master of Science

in
Computer Science

January 2013

Hsinchu, Taiwan, Republic of China

PEAR-FFEZ &



A ) TR SF KR

X1 -

—_—

A
m.g

~F
gz

Ris
%

L& P F 3

-rw&

e
EEREE R AR A FARRED S A T o et £ TR EE TR R Y =

- BB IR BT BRI LE K an RS P BHE ”‘ TR A R m/ﬁ FE oo

2

kB e 0L R B R B F A B At gk S
Betvid B RBE LA F IR S A R AR R R F R AR 2

Bl TORE R S oA R Sgbde) @ (7B TE B 0 A A o

N
NN
N

F1# R S o718 e BRI G S AR 0 R T A - BB R - RS R Y T R
BiEcmiEd e o
B AT SR BB A > S b IR R R B PR S B R RT h

£

AR o g R R RIRES 10HZ PO i vt 40HZ SR S 0 & B5%¢nit 4L -

F_*

Flpt A R SR e L Y A R F R BB A T e L



Mt @ i 7 AR B A




Low Sampling Rate IMU-based Pedestrian

Trajectory System

Student : Pei-Liang Shih Advisors : Prof. Chih-Wei Yi

Degree Program of Computer Science

National Chiao Tung University

Abstract

Prolonging battery lifetime of mobile devices is a hot study in recent years. According to
experiment measurement, it can reduce power consumption of mobile devices by lowering the
sampling rate of Inertial Measurement Unit (IMU). This thesis proposes a “Low Sampling
Rate IMU-based Pedestrian Trajectory System (LSR-PTS)” which extracts waveform features
of vertical acceleration to.come out the upper and lower-bound parameters of stride waveform
by statistical experiment result. By using.voting-based algorithm to verify stride waveform to
get stride count. A quadratic regression analysis equation of stride length is used to predict the
stride length. Finally, the walking direction is calculated by digital compass of smart phones.

We proposed LSR-PTS which uses features-based extraction method to keep similar
positioning accuracy and reduce power consumption by lowering sampling rate of IMU.
According to experiments, IMU with 10Hz sampling rate can reduce 55% power consumption
than IMU with 40Hz sampling rate. Therefore, this system is suitable to develop the
high-precision personal navigation system with power constraint on mobile devices.
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Chapter 1

Introduction

The diversified applications of smartphones improve the convenience of human daily lives.
People can not only communicate-with each other but also get interactive infotainment
from the Internet via.those applications. One of the fundamental revolutions is that smart-
phone applications can detect users’-behaviors and surrounding environments by utilizing
embedded sensors. Location Based Services (LLBSs) that rely oniaccurate positioning are an
important trend of smartphene applications. However, the accuracy of most popular posi-
tioning services no matter for indoor or outdoor environments are still not accurate enough
for pedestrian level applications. GPS is limited by weather condition and the amount of
satellites in line-of-sight. RF-based positioning systems are impacted by the Received Signal
Strength (RSS) drifting problem. In this work, we design a Pedestrian Trajectory System,
named PTS, for smartphones by dead reckoning each step. Our system utilizes the built-

in m-sensor and g-sensor to detect stepping, estimate stride length and calculate walking



direction. On the other hand, using additional sensors will consume more battery power.
To prolong lifetime between each charge, the proposed system is implemented under a low
sampling rate.

Besides the traditional GPS and RF-based system, IMU-based positioning techniques is
a new trend for pedestrians. In [1], NavShoe calculated stride length by Newton’s laws of
motion from the data collected from an external IMU mounted on a foot of the pedestrain.
The stance phase was detected for applying zero-velocity updates (ZUPTSs) to correct bias
errors. Extended Kalman Filter (EKE) was used to integrate the stride length with GPS
location information. In [2],a Personal Dead-Reckoning (PDR) system was implemented
based on similar techniques fo caleulate pedestrian trajectories in 3D space, e.g., walking
through a 4-story spiral staircase. However, the high drift rate of the gyros resulted in larger
errors. In [3], a Sensor-Aided Personal Navigation System for outdoor environments was
developed. Instead of Newton’sdaws of motion, the system extracted stepping features to
estimate stride length and walking direction.

The battery lifetime between charge is an important consideration of users for making a
selection of smartphones. Due to the limitation on dimension and weight of battery, instead
of increasing the battery capacity, reducing energy consumption is a reasonable approach
to increase the lifetime. The energy consumption of subsystems in smartphones, including
backlight, Bluetooth, CPU, WiFi, and cellular radio, was investigated in [4]. For reducing
energy consumption, offloading computation from smartphones to servers was suggested.

The energy consumption of LBSs was studied in [5] from different points of view, such



as LBS service types and features of smartphone. However, no clear energy consumption
models were given in [4, 5]. For IMU-based positioning systems, energy consumption can be
reduced by setting a lower IMU sampling rate. However, a lower sampling rate may reduce
the positioning accuracy.

The major task of this work is to develop a low-energy-consumption IMU-based PTS for
smartphones. The proposed PTS has three embedded IMU modules, including the Step-
ping Aware Module (SAM), Stride Length Module (SLM) and Walking Direction Module
(WDM). SAM detects the user’s stepping byra.feature-based voting algorithm, SLM esti-
mates the stride length of each step by regression, and WDM obtains the walking direction
by calculating the Eulersangles of the-smartphones. To understand the energy consumption
of various built-in modules in smartphones, such-as GPS; WiF1i, 3G, Bluetooth, and IMU, the
energy cost of enablingreach individual subsystem is measured. Especially, for the IMU sub-
system, higher sampling rate will inerease more energy consumption. Take ASUS Padfone
smartphone as an example.. The measured working current of the IMU subsystem is about
200 mA at FASTEST mode‘and GAME mode, 121-mA at Ul mode, 87 mA at NORMAL
mode, and 52 mA at idle state !. To reduce energy consumption, we implement the proposed
system based on a sampling rate of 10 Hz instead of 40 Hz. The average errors of the stride
length estimated by SLM under sampling rate 10 Hz, 20 Hz and 40 Hz are 4.4%, 4.59%
and 3.59%, respectively. The average errors of the walking direction calculated by WDM

under sampling rate 10 Hz, 20 Hz and 40 Hz are 12.14°, 13.78° and 14.3°, respectively. Our

'In ASUS Padfone smartphone, the sampling rates corresponding to the four modes are around 48 Hz,

48Hz, 14 Hz and 6 Hz, respectively.



experiment results show that the proposed PTS can achieve a similar positioning accuracy
even using lower sampling rate data.

The rest of this thesis is organized as follows. The related works are given in Chapter 2.
Chapter 3, we introduce the concept of mobile sensing and interpretation on sensing data.
In Chapter 4, the proposed system is introduced. In Chapter 5, experiment results are given

to evaluate the performance of the proposed system. Chapter 6 is our conclusions.




Chapter 2

Related Works

Positioning technologies can be categorized into outdoor and indoor systems. The GPS [6] is
the most popular outdoor positioning-system. Its positioning accuracy ranges from 10 m to
30 m. A GPS receiver.determines its position based on the pseuderanges to GPS satellites.
Some augmentation systems have been proposed to improve the accuracy of the GPS, such
as Assisted GPS (A-GPS), Differential GPS (DGPS) 7] and the Wide Area Augmentation
System (WAAS). Although $he GPS can provide wide coverage, it does not work well in
indoor environments or in poor weather conditions.

Due to the growth of various mobile devices, such like notebook, smart phone and tablet
PC, the need of wireless network infrastructure become more and more important. The most
popular wireless network solution is Wi-Fi solution, because it is easy to install with low
cost. Wi-Fi solution gives users the mobility to move around within a local area and access

to the network. Since this solution is so popular, it can be the most suitable candidate of



RF-based Positioning.

RADARI8| was based on empirical signal strength measurements to build a radio map.
Horus[9] used location-clustering techniques to reduce the computational requirements of
positioning algorithm. EZ[10] did not require pre-deployment effort at the cost of some
loss of accuracy relative to localization approaches such as RADAR and Horus that rely on
extensive measurement to map the RF environment. EZ yielded a median localization error
of 2 m and 7 m, respectively, in a small building and a large building, which is only somewhat
worse than the 0.7 m and 4 m yielded by the best-performing but calibration intensive
Horus scheme. Compared to use Reéceived Signal“Strength (RSS), PinLoc[11] used Intel
5300 wireless NIC to exposes channel-frequency response (CER) of Orthogonal frequency-
division multiplexing (OEDM) to estimate pesition with revised Horus algorithm. Since
Intel 5300 was the only available card that expoeses CFR information, the PinLoc can not
be implemented with smartphone or-tablet PC.

Augmented Reality (AR) techniques have been used to enhance positioning systems. For
example, in [12] and [13], AR tags.were treated as'location checkpoints. In [14], an AR
user interface was utilized to calculate view angles between POIs to get current location of
users. Paper [15] proposed a framework to use AR and hybrid positioning systems to provide
intuitive evacuation route.

To improve the position accuracy of outdoor and indoor positioning systems, some papers
use inertial measurement unit (IMU) to implement Pedestrian Tracking System (PTS) in

[1], [2], [16] and [17]. G-Constellations is proposed in [18], this framework can improve the



accuracy of dead reckoning systems. The major disadvantage of IMU-based positioning is
the accumulated error. In this work, our system only uses the built-in sensors of smart
phone, it can be a more practical solution with higher position accuracy.

Although UnLoc[19] claimed that they do not need war-drive to train positioning
database, they used multiple training traces aligned with ”"seed landmarks” such like stairs,
elevators, entrances and escalators on the floor plan of testbed. This training approach of
UnLoc is exactly another type of war-drive. The positioning accuracy of UnLoc can be
doubted if user did not walk aligned with-any:predefined path.

In order to overcome thesignal drift issue, inertial measurement units (IMU) have been
utilized to detect stepping information-from pedestrians.. The walking or halting status
can be used to relieve the drift problem, and their trajectories can be used to improve the
positioning accuracy.-Qur proposed PTS has80% positioning errors within 4.8 m than 11.7
m of the Dead-Reckoning accuracy in UnLoc. We design three modules to build our PTS
system which are composed with Stepping Aware Module (SAM), Stride Length Module
(SLM) and Walking Direction Module (WDM) [20]. - The detail of our proposed PTS is

given in Chapter 4.



Chapter 3

Mobile Sensing and Energy

Consumption

Mobile sensing utilizes:the smartphone built<in sensors to detect the environment and user
activities. The most common embedded sensors of smartphones include inertial measure-
ment sensors, light sensors, thermometers, pressure sensors; étc. In addition, GPS receivers,
cameras, microphones, NFC modules and wirelesssmodules can be broadly considered as

SEensors.

e [nertial Measurement Units (IMUs), which consists of accelerometers, magnetometers
and/or gyroscopes, can detect the change of a motion status, such as direction and
speed. Accelerometers also called g-sensors can measure the gravity and acceleration;
magnetometers also called m-sensors can measure the direction and magnitude of a

magnetic field; and gyroscopes can measure the angular velocity. The details of IMU



readings will be given in the next subsection.

e The Global Positioning System (GPS) is the most popular satellite-based positioning
technology. Clock, ephemeris and almanac information are broadcasted from GPS
satellites, and then received and decoded by GPS receivers for time synchronization
as well as for calculating the altitude, latitude, longitude and moving speed of the

receiver.

e Near Field Communication (NFC) is a short-range high frequency wireless communi-
cation technology, with a.centered frequency of 13.56 MHz and data transmission rate
of up to 424 kb/s within a distance of 10-centimeters (¢em). The NFC technology is
widely used in mobile payment;-authentication, aceess control, data transferring, and

ticketing.

e Cameras and Microphones; which can catch the real view and receive the voice, respec-
tively, can also be‘used in positioning.  Landmarks can be recognized from pictures to
be the reference points in pesitioning, and the magnitude of voice can be used in the

computing of distance and direction.

3.1 G-sensors and M-sensors

IMUs have a hardware-defined coordinate system called the sensor frame or s-frame in short.
The readings of g-sensors and m-sensors are in the form of vectors. The s-frame is the

coordinate convention used by the senosr readings. The information of the s-frame can



be known from the sensor specification. The relation between the x-axis, y-axis and z-
axis follows Fleming’s right hand rule. For example, Fig. 3.1 illustrates the s-frame of a

smartphone. The x-axis points to the right side of the panel, the direction of y-axis is

Figure 3.1: The s-frame of a smartphone.

the same as the heading of the smartphene...'The z-axis pointing out from the panel is
perpendicular to both the x-axis and y-axis.

Accelerometers, also called g-sensors;.can-measure the gravity and acceleration. The
readings of g-sensors are the sum of the acceleration and the negative of the gravity. Let g
denote the reading of a g-sensor, a denote the acceleration, and G denote the gravity. The

relation between them can be modeled as

g=a—G.

Fig. 3.2 illustrates a waveform of g-sensor readings. The x-axis denotes the sequence number
of the readings at sampling rate 40 Hz, and y-axis denotes the magnitude of acceleration in

10



m/s®. According to Fig. 3.2, the waveform in Block I is collected as the smartphone is placed
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Figure 3.2: A waveform of g-sensor readings.

horizontally; the waveform in Bloek-II-is collected after the smartphone is rotated clockwise
90°; and the waveform.in Block III is collected as the smartphone is placed vertically and
with y-axis pointing upward.

Magnetometers also called m-sensors can measure the ambient magnetic field. The ge-
omagnetic field points roughly to the north pole and has intensity around 600 mGauss.
The geomagnetic field is also influenced by-the surrounding environments such as electrical
equipments or magnetic materials. In addition, the geomagnetic field may have inclination
and declination that are different from place to place. However, the magnetic declination
and magnetic inclination can be ignored in low-latitude areas. Fig. 3.3 illustrates a wave-
form of m-sensor readings. The x-axis is the sequence number of the readings at sampling

rate 40 Hz, and y-axis is the magnitude of the magnetic field in u7.! The orientation of a

11 Gauss = 1 x 107* Tesla (or 100uT).
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smartphone can be calculated based on the readings of g-sensors and m-sensors.
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Figure 3.3: A waveform of m-sensor readings.

3.2 Energy Consumption of Smartphones

In this section, the energy consumption of smartphone built-in subsystems is measured to
investigate energy issue. -An ASUS Padfone smartphone and a power monitor, FTA22D
manufactured by Monsoon Solutions Inc., are used in the experiment. See Fig. 3.4. The
battery of the smartphone is removed, and the smartphone is driven by a 3.7 volts power
supply of the power monitor. The current of the power supply is measured to record the
energy consumption of the smartphone. See Fig. 3.5. Individual subsystems are alternatively
turned on/off to measure the incremental current. Fig. 3.6 depicts the average current over
50000 data samples. For communication subsystems, the bars marked with triangles are the

current incremental after turning on each subsystem, and the bars marked with circles are

12



Figure 3.4: The devieés for energy consumption measurement.

representing for after turning on and executing file transfer.The sampling rate of the IMU

subsystem can be set by:the "rate” parameter of the function call

android.hardware.SensorManager.registerListener(
SensorEventListener listener,
Sensor | sensor,
int¢ rate)

Possible values for the "rate” parameter includes

SensorManager.SENSOR_DELAY _FASTEST,
SensorManager.SENSOR_DELAY_GAME,
SensorManager.SENSOR_DELAY _UI, and
SensorManager.SENSOR_DELAY_NORMAL.
The parameter basically sets an extra delay before next sampling. The corresponding extra
delays are 0 ps, 20000 us, 60000 ps and 200000 ws, respectively, and the corresponding

13
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Table 3.1: The IMU sampling rates under various delay setting.

FASTEST GAME Ul NORMAL
HTC Hero 50 Hz 25 Hz 11 Hz 4 Hz
HTC Desire 50 Hz 25 Hz 11 Hz 4 Hz
SONY XperiaS 75 Hz 50 Hz 17 Hz 5 Hz
ASUS Padfone 48 Hz 48 Hz 14 Hz 6 Hz

sampling rates of HTC Hero, HT'C Desire, SONY Xperia S, and ASUS Padfone are listed in
Table 3.1.

The energy consumption of the accelerometer is measured under various sampling rates.
The incremental current of enabling the accelerometer of the HTC Desire and ASUS Padfone
smartphone is illustrated in Fig. 3.7 as an example. The average current of HTC Desire for
the FASTEST mode, GAME mode, UI, NORMAL mode,and idle state are 382 mA, 324 mA,
301 mA, 286 mA, and 261 mA respectively:-And the average current of ASUS Padfone for the
FASTEST mode, GAME mode, UI, NORMAL mode, and idle state are 209 mA, 202 mA,
121 mA, 87 mA, and 52 mA respectively. Therefore, the lower sampling rate is set, the less
energy is consumed. Actually, that is to say that around 55% power consumption can be
saved when reducing the sampling rate from FASTEST (48Hz) to UI (14Hz). Compared
with the energy consumption of other subsystems, the energy consumption of the IMU

subsystem should not be ignored.

15
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Figure 3.7: Incremental current of enabling the IMU of the HTC Desire and ASUS Padfone

smartphone.

3.2.1 Lifetime of Battery

Fig. 3.8 shows the eatimated lifetime and real lifetime of ASUS Padfone smartphone under
different frequency meodes as well as the incremental current. The battery lifetime (in hour)

is calculated in terms'of battery capacity(in mAh) and average current consumption (mA)

Battery capacity (mAh)

Battery lifetime (hr).=
attery Lifetimeniin Average-eurrent consumption (mA)

For ASUS Padfone smartphone, the battery capacity of ASUS Padfone Li-ion battery is
1520 mAh, the estimated lifetime of battery for the FASTEST mode, GAME mode, Ul
mode, NORMAL mode, and idle state are 7.26 hr, 7.5hr, 12.51 hr, 17.31 hr, and 29.19 hr, re-
spectively, as shown in the white bar. However, the real lifetime of battery for the FASTEST
mode, GAMFE mode, Ul mode, NORMAL mode, and idle state are 5.95 hr, 5.98 hr, 11.01 hr,

15.87 hr, and 27.35 hr, respectively, as shown in the gray bar. There is a slight gap between

16



the real lifetime and estimated lifetime, and generally people speculated that smartphone
always has self-protection mechanism for normally system shutting-down in the low-battery
condition, and it is possible and reasonable that the capacity of Li-ion battery usually can
not reach 100% usage. In the real situation, the real lifetime is around 1.5 hr lower than the

estimated lifetime.

35 250
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‘\\ I Real lifetime
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—e—Current
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w
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Figure 3.8: The lifetime of e 'S Padfone smartphone.
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Chapter 4

Proposed Low Sampling Rate
IMU-based‘Pedestrian Trajectory

System

A pedestrian trajectory can be sketched stride-by-stride based on the stride length and
walking direction of each step..To implement the idea; we not only need to be aware of the
occurances of stepping but also need to know the stride length and walking direction. A
Pedestrian Trajectory System is designed for handheld devices to sketch pedestrian trajec-
tories by detecting stepping and estimating the stride length and walking direction from the
output of embedded inertial sensors. The proposed PTS consists of three modules, including
the Stepping Aware Module (SAM), the Stride Length Module (SLM), and the Walking Di-

rection Module (WDM), to provide the three essential information respectively. Finally, the

18



Dead Reckoning Module (DRM) determines the pedestrian trajectory. Fig. 4.1 illustrates

the architecture of the proposed PTS.

X . Stepping Stride
Acceleration Aware Parameters . Length
N Module 77| Module
(SAM) (SLM)
Processed Stride
acceleration Length v
Step Count
Walking Dead )
Direction Reckoning | Trajectory
-~ .
Magnetic 1 Module g{a“f'_ng Module >
Y - (WDM) irection (DRM)
intensity | ———

Figure 4.1: The system architecture of the proposed PTS.

SAM scans and processes the output of the accelerometer to detect the occurrence of
stepping. If a stepping is detected, SLM and WDM are triggered to estimate the stride
length and calculate the walking direction: SLM estimates the stride length by regression
based on the parameters from SAM; and - WDM- caleulates the walking direction based on
the output of the magnetometer and processed data fromSAM. The details of each module
are going to be revealed in the following.subsections:  An example of the output of PTS is

illustrated in Fig. 5.7.

4.1 Stepping Aware Module (SAM)

Let g; be the i-th reading of the g-sensor for ¢ = 1,2,..., and g, especially denote the
gravity measured by the g-sensor at a static state. If the orientation of the g-sensor is
not changed during the measurement especially in the vertical direction, then a; = g; —

19



go is the acceleration experienced by the smartphone. In SAM, g; is decomposed into a
vertical component and a horizontal component, respectively denoted by g and gi. The
vertical component g is the projection of g; onto the direction of the gravity, and the
horizontal component g~ can be obtained by g7~ = g; — g;-. Let a denote the magnitude
of the acceleration in the vertical direction. The magnitude of the vertical direction can be
calculated from aj = ||gol| — g - 80/ ||go]|. A typical waveform of the vertical acceleration
is illustrated in Fig. 4.2 in which the x-axis represents time and the y-axis represents the

magnitude of the vertical acceleration.

6

% IV\'V{Z[’L’ %
’ < W =>
o pm
4 e . N N
3 N E
E‘J 5
£ 4 / \ 4, /
E o ™ \
£\ /
| \ /
2 g N
pie=T —>< T, —F
T
-4 1 ! ! ! !
0.01 019 037 055  -073 /091
Time (s)

Figure 4.2: A waveform of the vertical acceleration

For later discussion, we introduce some waveform features of vertical acceleration. Wy
and Wy are two system parameters. P™ = (t™,a™) in the waveform is called a local
maximum if a™ is the greatest value for ¢t € [t"™ — 1Wpeop, t™ + Wpear]. P = (t,d!)
in the waveform is called the left local minimum of P™ if a' is the least value for t €
[tm — %Wwave,tm]; and P" = (t",a") in the waveform is called the right local minimum of

20



P™ if a” is the least value for ¢t € [tm, tm + %Wwave]. Wpear 1s used to define local minimum,
and W4 should be large enough to contain a waveform. In most cases, a pedestrian takes
at most two steps per second even in running or going upstairs and downstairs. Therefore,
Wsave 18 set to 0.5 second, and Weq is set to 0.25 second. Let N = [%Wwwe X ﬂ — 1 where
f is the sampling frequency, and iy denote the time sequence index of P™. For a given
PL-P™_P" wave, we define some features for the recognition of stride waveform patterns,

including

Ty = t™ -t Ty =ttt =T, + T,

A1zam—al,Agzam—aT,A:Al—i—Ag,

0o+ N

1 g

n=ig—N

2N
. 1 21 _
Xl e E an+(i0—N)€ 2N+1 .
n=0

T, and T, are respectively the left and right time span from thelocal maximum to the nearby
local minima, and 7T is thetime.span of the waveform.<Aq and A, are respectively the left
and right amplitude of the waveform. [ is the average intensity of the horizontal acceleration
component. X is the magnitude of frequency 1 in the Discrete Fourier Transform (DFT).
The features of a stride waveform should fall in a reasonable range. Ay, A, Ty, T, T, I
and X, are selected to verify whether a waveform is caused by stepping. Let AJ™ and Ay*
(and respectively Amin, Amax, Tmin qumax, 7min imax, minpmax, pmin G pmax, grmin G §omax )
be the lower bound and upper bound of the range of A; (and respectively A, Ty, Ty, T, 1,

X1). A voting-based algorithm is applied to verify whether a waveform is caused by stepping.

21



In our algorithm, a local maximum P™ is first identified, and then the left local minimum
P! and right local minimum P” of P™ are found. The P'-P™-P" waveform is recognized as
a stepping waveform only if at least four out of the following seven conditions are satisfied,

including

Ar e [AP™, AP,
A e [Amn A
Ty € [T, 1]
Ty [T Tyes] |
T ef[Timgrae),
L[ TR 5 [S

Xy € [ X§P X7

The remaining issue-is how to decide those upper bounds and lower bounds. For each
feature, the values corresponding to 5% and 95% in the’Cumulative Distribution Function
(CDF) are chosen to be the lower bound and the upper bound. To depict the CDFs, nine
experiments were implemented to collect the data. In each experiment, the data of 15 steps
were collected. So, totally, 135 stepping records were collected to depict the CDFs. The
experiment includes walking on ground with stride length about 40 cm, 50 cm, 60 cm, 70 cm
and 80 cm. For sampling rate 10 Hz, 20 Hz and 40 Hz, the CDF's of A;, Ay, A are plotted
in Fig. 4.3, Fig. 4.4 and Fig. 4.5; the CDFs of T}, T,, T are plotted in Fig. 4.6, Fig. 4.7 and

Fig. 4.8; and the CDF's of I are respectively plotted in Fig. 4.9, Fig. 4.10 and Fig. 4.11; and
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the CDFs of X are respectively plotted in Fig. 4.12, Fig. 4.13 and Fig. 4.14.
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Figure 4.3: The CDFs of the amplitude of vertical.acceleration at sampling rate 10 Hz.
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Figure 4.4: The CDFs of the amplitude of vertical acceleration at sampling rate 20 Hz.

For example, from Fig. 4.3, we can see A[n AWbax Amin - gmax  gmin and Amax ape
1.55, 7.76, 1.52, 7.42, 3.48 and 14.57, respectively. The thresholds (lower bounds and upper

bounds) obtained from our experiments are listed in Table 4.1.
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Figure 4.6: The CDF's of the time duration of vertical acceleration waveforms at sampling

rate 10 Hz.
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Figure 4.7: The CDFs of the tj leration waveforms at sampling
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Figure 4.8: The CDFs of the time duration of vertical acceleration waveforms at sampling

rate 40 Hz.
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Figure 4.10: The CDF of the average intensity of the horizontal acceleration component at

sampling rate 20 Hz.
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Figure 4.12: The CDF of the magnitude of DF'T on frequency of 1 at sampling rate 10 Hz.
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Figure 4.14: The CDF of the magnitude of DF'T on frequency of 1 at sampling rate 40 Hz.
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Table 4.1: The thresholds used in SAM.

10(Hz) 20(Hz) 40(Hz)
max | min | max
A; (m 7.76 |20 15 | 8.98
Ao ) 37 8.37
A 2 16.77
7™ (s) 0.37 ) 0,08  0.35
T ) ( 3 0.4
T 4 038 | 6 | 0.62
I (m/s 06 |1.8
X1 (m/s?) | 1.30 | 10.34 | 2.24 | 20.12 | 3.79 | 38
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Table 4.2: The covariance between the stride length and waveform features.

10(Hz) | 20(Hz) | 40(Hz)

Ay 0.5 0.55 0.53

Ay | 0.46 0.53 0.5

A 0.52 0.56 0.55

Ty 0.19 0.24 0.25

15 | 0.08 0.07 0.06

T 0:26 0.32 0.32

I 0.38 0.38 0.37

X055 0.61 0.61

4.2 Stepping Length Module (SLM)

The features calculated:by SAM will be used for SLM to ‘estimate the stride length by
regression methods. The two most related features to the stride length are figured out
first. Let D denote the stride length. The covariance between the stride length D and the
features Ay, As, A, T1, T5, T, I and X, are calculated from the data collected in the previous
subsection. Note that since the stride length is not meaningful in the upstairs and downstairs
experiments, the data collected in the two cases are not considered in the analysis. According
to the covariance listed in Table 4.2, A and X; are the two most correlated parameters to

the stride length. Therefore, A and X; are chosen to be used in the regression analysis.
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We apply double variable linear regression and double variable quadratic regression on A
and X; to estimate the stride length D. Let D* and D® denote the estimated stride length

obtained by the linear regression and quadratic regression. The linear regression equation is
D* = py + p3 A+ py Xy,
and the quadratic regression equation is

D = p%@ 4+ pIA + p¥ X, + pYAX, + pP A% + pE X2,

Table 4.3 gives the coefficients obtained in the regression analysis based on our experiment
data. The RMSEs under sampling rate 10 Hz in the regression analysis are 13.03 and 12.99
for the linear equation and quadratic equation respectively; the RMSEs under sampling rate
20 Hz in the regression analysis are 12:33 and 12.21 for the linear equation and quadratic
equation, and the RMSEs under sampling rate 40 Hz in the regression analysis are 12.32 and
12.15 for the linear equation and.quadratic equation, respectively. Fig. 4.15, Fig. 4.16, and
Fig. 4.17 illustrate all the experiment data and the regression equations in which the x-axis,
y-axis and z-axis represent the magnitude of DFT on frequency of 1 for sampling rate 10 Hz,
20 Hz and 40 Hz, the amplitude of vertical acceleration and the experiment of different stride
length, respectively. The circles represent the experiment data, the dashed line depicts the

linear regression equation, and the solid curve depicts the quadratic regression equation.
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Table 4.3: Coefficients obtained in the regression analysis.

Linear regression

40(Hz) | 54.49 | -2.90 | 1.50 | -0.02 | 0.15 | -0.01
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Figure 4.16: The regression analysis of SLM at 20 Hz.
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Figure 4.17: The regression analysis of SLM at 40 Hz.

4.3 Walking Direction Module (WDM)

The coordinate system used in the readings of sensors is called the sensor frame or s-frame in
short and is defined by hardware manufacturers. The definition of the s-frame can be found
from hardware specification and usually follows the right hand rule. The tangent frame
or local level horizontal frame is ealled the Earth frame or e-frame in short and is used in
tracking objects moving on the ground and depicting pedestrian trajectories on maps. The
x-axis, y-axis and z-axis of the e-frame respectively point to the north, east and center of the
Earth. If the walking direction of a pedestrian is aligned with the heading of the handheld
device, the walking direction is the yaw angle from the e-frame to the s-frame. The angle is
also called the heading angle.

Let g and m denote the reading of the g-sensor and m-sensor in a static state, and Tg_.g
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denotes the coordinate transformation matrix that transforms the reading of the sensor from

the s-frame to the e-frame. In other words, if v is a vector, we have

Vg = Ts-e vl
where [v]4 is the coordinate of v observed from the s-frame and [v], is the coordinate of
v observed from the e-frame. Assume the gravity points exactly to the center of the Earth

and the magnetic field points exactly to the north and maybe with some inclination. Then,

we have

I=Tg,p| &x(mxg = mxg _ g |,
lgx(mxg)ll  [lmxg] gl

and therefore

-1
T = gx (mxg) mxg . . g
S { fex @mxg)ll.fmxgl el }
T
— gX(mxg) mxg g .
lgx(mxg)| « [[mxg] llgll

Let ¢, 6 and ¢ respectively denote the yaw angle, pitch angle and.roll angle of Euler angles.

Based on the Yaw-Pitch-Roll conversion, we have

TS—>E

cpel)  —sihco + cpsfsgp  syso + csbed
= | syl cvcg + sshsp  —cso + sysbeo

—st cls¢p clco

where ¢ is shorthand for cos and s is shorthand for sin. Therefore, the yaw angle can be

obtained from

1) = arctan —[TS_)E]z’l
[TS—>E]1,1'
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Chapter 5

Experiment Results

5.1 Performance Evaluation of Individual Modules

SAM was evaluated first. Eight people were invited to join in the experiment. Testers held
the device and then took 100 steps casually. Each tester did the experiment three times.
One is for the IMU running at 10 Hz, another is for the IMU running at 20 Hz and the other
is for the IMU running at 40 Hz. The number of detected steps for each person are listed
in Fig. 5.1. Based on the result, the inaccuracy rates under sampling rate 10 Hz, 20 Hz and
40 Hz are 2.63%, 4.13% and 4.13% respectively.

Then, we evaluated the performance of SLM. In the experiment, people were asked to
walk with a fixed stride length, including 40 cm, 50 c¢m, 60 cm, 70 cm and 80 cm. SLM
estimated the stride length of each step. Data were grouped by the real stride length. The

result is illustrated in Fig. 5.2 in which x-axis denotes the real stride length and y-axis
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Figure 5.1: The number of detected steps out of 100 steps.

denotes the estimated stride length. In each group; the black box denotes the interquartile
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Figure 5.2: The error ‘box of estimated stride length.

range (IQR) of estimated stride length at sampling rate 10 Hz, the gray box denotes the
(IQR) of estimated stride length at sampling rate 20 Hz, the white box denotes the IQR
of the estimated stride length at sampling rate 40 Hz, and the lines mark the range of the
estimated stride length. Based on the result, the average errors of SLM under sampling rate

10 Hz, 20 Hz and 40 Hz are 20.66%, 18.72% and 18.43% respectively. In addition, eight
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people used our PTS to walk along one 20 m straight line. The total distance estimated by

SLM for each person is shown in Fig. 5.3.
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Figure 5.3: Total estimated distance by SLM under 20 m walk.

According to the resulf, the overall aceuracy rate ‘of SLM under sampling rate 10 Hz,
20 Hz and 40 Hz are 4.4%, 4.59% and 3.59% respectively.
The performance of WDM is also verified. Fig. 5.4, Fig. 5.57and Fig. 5.6 illustrate the

walking direction of each step in a PTS experiment with different sampling rate.
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Figure 5.4: The walking direction of each step at 10 Hz.
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Figure 5.6: The walking direction of each step at 40 Hz.
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In Fig. 5.4, Fig. 5.5 and Fig. 5.6, the x-axis is the sequence number of each step and
y-axis is the azimuth of each step. The solid line denotes the real walking direction, and
the dashed line denotes the estimated walking direction. Based on the result, the errors of
WDM under sampling rate 10 Hz, 20 Hz and 40 Hz are 11.43 degrees, 11.96 degrees and

13.87 degrees in average, respectively.

5.2 Implementation of the Proposed PTS

A PTS with graphic user interfaces was implemented on Android smartphones. To evaluate
the performance of the protetype system, testers held the smartphone and walked in the
building. 24 reference points were-marked on the floor, and the average distance between
two neighboring reference points is around 5 m: The positioning errors at these reference

points were recorded. Fig. 5.7, Fig. 5.8 and Fig. 5.9 illustrate the experiment environment.
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Figure 5.7: A experiment result of the proposed PTS at 10 Hz.

In the figure, the red line is the real trajectory, and the red dots denote the location of
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Figure 5.9: A experiment result of the proposed PTS at 40 Hz.
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the reference points. In addition, the green line is an example of the trajectory calculated
by the system, and the green dots denote the estimated position of these reference points.

Fig. 5.10 is the CDF's of the positioning errors at these reference points.
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Figure 5.10: Tk g roposed PTS.

According to our orrors are within 4.8 m,

5.8 m and 5.2 m.
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Chapter 6

Conclusions

Energy consumption is an important. issue for battery-powered -handheld devices. Applica-
tions developed for smartphones should keep energy consumption as a major consideration.
The energy consumption of various embedded subsystems of smartphones was measured,
and the results show that the energy consumption of the IMU subsystem should not be ig-
nored. Based on this observation, inthis work, we developed a low sampling rate IMU-based
pedestrian trajectory system for.smartphones. Theproposed PTS was implemented with
a graphic user interface on an Android platform. Based on our experiment results, if the
starting position of a pedestrian trajectory is given, applying dead reckoning, 80% of the
positioning errors are within 4.8 m, 5.8 m and 5.2 m under sampling rate 10 Hz, 20 Hz and
40 Hz respectively. In addition, the results show that reducing the sampling rate of the IMU
from FASTEST (48Hz) to Ul (14Hz) can not only get about 55% lower power consumption

but still achieve similar positioning accuracy.
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