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摘要 

在行動裝置和現代人生活越來越密切的趨勢下，如何延長行動裝置電源之使用壽命是

一個很熱門的議題，經過實際量測確認降低慣性感測器頻率可以有效減少能源的消耗。

因此本篇論文提出『基於低取樣頻率慣性感測器之行人軌跡系統』，此系統以特徵值萃

取加速度計投影過後的波形，並藉由統計一般大眾行走數據以設定正常行走時所產生波

形的參數上下限值。依照多數決的投票方式來判定步行動作，以計算出行人移動步數。

利用實驗所得的步距二次迴歸方程式，推測行人一步移動的距離。最後使用電子羅盤計

算行人的行走方向。 

此系統利用特徵值萃取的特性，成功地降低慣性感測器的取樣頻率，並維持接近的定

位精準度。經由實際量測確認 10Hz 取樣頻率能比 40Hz 取樣頻率，節省 55%的能耗。

因此本系統提出的軌跡定位技術，非常適合用來發展高精確的個人導覽系統並且整合在

能源有限的行動裝置設備上。 
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Abstract 

Prolonging battery lifetime of mobile devices is a hot study in recent years. According to 
experiment measurement, it can reduce power consumption of mobile devices by lowering the 
sampling rate of Inertial Measurement Unit (IMU). This thesis proposes a “Low Sampling 
Rate IMU-based Pedestrian Trajectory System (LSR-PTS)” which extracts waveform features 
of vertical acceleration to come out the upper and lower bound parameters of stride waveform 
by statistical experiment result. By using voting-based algorithm to verify stride waveform to 
get stride count. A quadratic regression analysis equation of stride length is used to predict the 
stride length. Finally, the walking direction is calculated by digital compass of smart phones. 
  We proposed LSR-PTS which uses features-based extraction method to keep similar 
positioning accuracy and reduce power consumption by lowering sampling rate of IMU. 
According to experiments, IMU with 10Hz sampling rate can reduce 55% power consumption 
than IMU with 40Hz sampling rate. Therefore, this system is suitable to develop the 
high-precision personal navigation system with power constraint on mobile devices. 
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Chapter 1

Introduction

The diversified applications of smartphones improve the convenience of human daily lives.

People can not only communicate with each other but also get interactive infotainment

from the Internet via those applications. One of the fundamental revolutions is that smart-

phone applications can detect users’ behaviors and surrounding environments by utilizing

embedded sensors. Location Based Services (LBSs) that rely on accurate positioning are an

important trend of smartphone applications. However, the accuracy of most popular posi-

tioning services no matter for indoor or outdoor environments are still not accurate enough

for pedestrian level applications. GPS is limited by weather condition and the amount of

satellites in line-of-sight. RF-based positioning systems are impacted by the Received Signal

Strength (RSS) drifting problem. In this work, we design a Pedestrian Trajectory System,

named PTS, for smartphones by dead reckoning each step. Our system utilizes the built-

in m-sensor and g-sensor to detect stepping, estimate stride length and calculate walking
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direction. On the other hand, using additional sensors will consume more battery power.

To prolong lifetime between each charge, the proposed system is implemented under a low

sampling rate.

Besides the traditional GPS and RF-based system, IMU-based positioning techniques is

a new trend for pedestrians. In [1], NavShoe calculated stride length by Newton’s laws of

motion from the data collected from an external IMU mounted on a foot of the pedestrain.

The stance phase was detected for applying zero-velocity updates (ZUPTs) to correct bias

errors. Extended Kalman Filter (EKF) was used to integrate the stride length with GPS

location information. In [2], a Personal Dead-Reckoning (PDR) system was implemented

based on similar techniques to calculate pedestrian trajectories in 3D space, e.g., walking

through a 4-story spiral staircase. However, the high drift rate of the gyros resulted in larger

errors. In [3], a Sensor-Aided Personal Navigation System for outdoor environments was

developed. Instead of Newton’s laws of motion, the system extracted stepping features to

estimate stride length and walking direction.

The battery lifetime between charge is an important consideration of users for making a

selection of smartphones. Due to the limitation on dimension and weight of battery, instead

of increasing the battery capacity, reducing energy consumption is a reasonable approach

to increase the lifetime. The energy consumption of subsystems in smartphones, including

backlight, Bluetooth, CPU, WiFi, and cellular radio, was investigated in [4]. For reducing

energy consumption, offloading computation from smartphones to servers was suggested.

The energy consumption of LBSs was studied in [5] from different points of view, such
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as LBS service types and features of smartphone. However, no clear energy consumption

models were given in [4, 5]. For IMU-based positioning systems, energy consumption can be

reduced by setting a lower IMU sampling rate. However, a lower sampling rate may reduce

the positioning accuracy.

The major task of this work is to develop a low-energy-consumption IMU-based PTS for

smartphones. The proposed PTS has three embedded IMU modules, including the Step-

ping Aware Module (SAM), Stride Length Module (SLM) and Walking Direction Module

(WDM). SAM detects the user’s stepping by a feature-based voting algorithm, SLM esti-

mates the stride length of each step by regression, and WDM obtains the walking direction

by calculating the Euler angles of the smartphones. To understand the energy consumption

of various built-in modules in smartphones, such as GPS, WiFi, 3G, Bluetooth, and IMU, the

energy cost of enabling each individual subsystem is measured. Especially, for the IMU sub-

system, higher sampling rate will increase more energy consumption. Take ASUS Padfone

smartphone as an example. The measured working current of the IMU subsystem is about

200 mA at FASTEST mode and GAME mode, 121 mA at UI mode, 87 mA at NORMAL

mode, and 52 mA at idle state 1. To reduce energy consumption, we implement the proposed

system based on a sampling rate of 10 Hz instead of 40 Hz. The average errors of the stride

length estimated by SLM under sampling rate 10 Hz, 20 Hz and 40 Hz are 4.4%, 4.59%

and 3.59%, respectively. The average errors of the walking direction calculated by WDM

under sampling rate 10 Hz, 20 Hz and 40 Hz are 12.14◦, 13.78◦ and 14.3◦, respectively. Our

1In ASUS Padfone smartphone, the sampling rates corresponding to the four modes are around 48 Hz,

48Hz, 14 Hz and 6 Hz, respectively.
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experiment results show that the proposed PTS can achieve a similar positioning accuracy

even using lower sampling rate data.

The rest of this thesis is organized as follows. The related works are given in Chapter 2.

Chapter 3, we introduce the concept of mobile sensing and interpretation on sensing data.

In Chapter 4, the proposed system is introduced. In Chapter 5, experiment results are given

to evaluate the performance of the proposed system. Chapter 6 is our conclusions.
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Chapter 2

Related Works

Positioning technologies can be categorized into outdoor and indoor systems. The GPS [6] is

the most popular outdoor positioning system. Its positioning accuracy ranges from 10 m to

30 m. A GPS receiver determines its position based on the pseudoranges to GPS satellites.

Some augmentation systems have been proposed to improve the accuracy of the GPS, such

as Assisted GPS (A-GPS), Differential GPS (DGPS) [7] and the Wide Area Augmentation

System (WAAS). Although the GPS can provide wide coverage, it does not work well in

indoor environments or in poor weather conditions.

Due to the growth of various mobile devices, such like notebook, smart phone and tablet

PC, the need of wireless network infrastructure become more and more important. The most

popular wireless network solution is Wi-Fi solution, because it is easy to install with low

cost. Wi-Fi solution gives users the mobility to move around within a local area and access

to the network. Since this solution is so popular, it can be the most suitable candidate of

5



RF-based Positioning.

RADAR[8] was based on empirical signal strength measurements to build a radio map.

Horus[9] used location-clustering techniques to reduce the computational requirements of

positioning algorithm. EZ[10] did not require pre-deployment effort at the cost of some

loss of accuracy relative to localization approaches such as RADAR and Horus that rely on

extensive measurement to map the RF environment. EZ yielded a median localization error

of 2 m and 7 m, respectively, in a small building and a large building, which is only somewhat

worse than the 0.7 m and 4 m yielded by the best-performing but calibration intensive

Horus scheme. Compared to use Received Signal Strength (RSS), PinLoc[11] used Intel

5300 wireless NIC to exposes channel frequency response (CFR) of Orthogonal frequency-

division multiplexing (OFDM) to estimate position with revised Horus algorithm. Since

Intel 5300 was the only available card that exposes CFR information, the PinLoc can not

be implemented with smartphone or tablet PC.

Augmented Reality (AR) techniques have been used to enhance positioning systems. For

example, in [12] and [13], AR tags were treated as location checkpoints. In [14], an AR

user interface was utilized to calculate view angles between POIs to get current location of

users. Paper [15] proposed a framework to use AR and hybrid positioning systems to provide

intuitive evacuation route.

To improve the position accuracy of outdoor and indoor positioning systems, some papers

use inertial measurement unit (IMU) to implement Pedestrian Tracking System (PTS) in

[1], [2], [16] and [17]. G-Constellations is proposed in [18], this framework can improve the

6



accuracy of dead reckoning systems. The major disadvantage of IMU-based positioning is

the accumulated error. In this work, our system only uses the built-in sensors of smart

phone, it can be a more practical solution with higher position accuracy.

Although UnLoc[19] claimed that they do not need war-drive to train positioning

database, they used multiple training traces aligned with ”seed landmarks” such like stairs,

elevators, entrances and escalators on the floor plan of testbed. This training approach of

UnLoc is exactly another type of war-drive. The positioning accuracy of UnLoc can be

doubted if user did not walk aligned with any predefined path.

In order to overcome the signal drift issue, inertial measurement units (IMU) have been

utilized to detect stepping information from pedestrians. The walking or halting status

can be used to relieve the drift problem, and their trajectories can be used to improve the

positioning accuracy. Our proposed PTS has 80% positioning errors within 4.8 m than 11.7

m of the Dead-Reckoning accuracy in UnLoc. We design three modules to build our PTS

system which are composed with Stepping Aware Module (SAM), Stride Length Module

(SLM) and Walking Direction Module (WDM) [20]. The detail of our proposed PTS is

given in Chapter 4.
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Chapter 3

Mobile Sensing and Energy

Consumption

Mobile sensing utilizes the smartphone built-in sensors to detect the environment and user

activities. The most common embedded sensors of smartphones include inertial measure-

ment sensors, light sensors, thermometers, pressure sensors, etc. In addition, GPS receivers,

cameras, microphones, NFC modules and wireless modules can be broadly considered as

sensors.

• Inertial Measurement Units (IMUs), which consists of accelerometers, magnetometers

and/or gyroscopes, can detect the change of a motion status, such as direction and

speed. Accelerometers also called g-sensors can measure the gravity and acceleration;

magnetometers also called m-sensors can measure the direction and magnitude of a

magnetic field; and gyroscopes can measure the angular velocity. The details of IMU

8



readings will be given in the next subsection.

• The Global Positioning System (GPS) is the most popular satellite-based positioning

technology. Clock, ephemeris and almanac information are broadcasted from GPS

satellites, and then received and decoded by GPS receivers for time synchronization

as well as for calculating the altitude, latitude, longitude and moving speed of the

receiver.

• Near Field Communication (NFC) is a short-range high frequency wireless communi-

cation technology, with a centered frequency of 13.56 MHz and data transmission rate

of up to 424 kb/s within a distance of 10 centimeters (cm). The NFC technology is

widely used in mobile payment, authentication, access control, data transferring, and

ticketing.

• Cameras and Microphones, which can catch the real view and receive the voice, respec-

tively, can also be used in positioning. Landmarks can be recognized from pictures to

be the reference points in positioning, and the magnitude of voice can be used in the

computing of distance and direction.

3.1 G-sensors and M-sensors

IMUs have a hardware-defined coordinate system called the sensor frame or s-frame in short.

The readings of g-sensors and m-sensors are in the form of vectors. The s-frame is the

coordinate convention used by the senosr readings. The information of the s-frame can

9



be known from the sensor specification. The relation between the x-axis, y-axis and z-

axis follows Fleming’s right hand rule. For example, Fig. 3.1 illustrates the s-frame of a

smartphone. The x-axis points to the right side of the panel, the direction of y-axis is

Y

Z

X

Figure 3.1: The s-frame of a smartphone.

the same as the heading of the smartphone. The z-axis pointing out from the panel is

perpendicular to both the x-axis and y-axis.

Accelerometers, also called g-sensors, can measure the gravity and acceleration. The

readings of g-sensors are the sum of the acceleration and the negative of the gravity. Let g

denote the reading of a g-sensor, a denote the acceleration, and G denote the gravity. The

relation between them can be modeled as

g = a−G.

Fig. 3.2 illustrates a waveform of g-sensor readings. The x-axis denotes the sequence number

of the readings at sampling rate 40 Hz, and y-axis denotes the magnitude of acceleration in

10



m/s2. According to Fig. 3.2, the waveform in Block I is collected as the smartphone is placed
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Figure 3.2: A waveform of g-sensor readings.

horizontally; the waveform in Block II is collected after the smartphone is rotated clockwise

90◦; and the waveform in Block III is collected as the smartphone is placed vertically and

with y-axis pointing upward.

Magnetometers also called m-sensors can measure the ambient magnetic field. The ge-

omagnetic field points roughly to the north pole and has intensity around 600 mGauss.

The geomagnetic field is also influenced by the surrounding environments such as electrical

equipments or magnetic materials. In addition, the geomagnetic field may have inclination

and declination that are different from place to place. However, the magnetic declination

and magnetic inclination can be ignored in low-latitude areas. Fig. 3.3 illustrates a wave-

form of m-sensor readings. The x-axis is the sequence number of the readings at sampling

rate 40 Hz, and y-axis is the magnitude of the magnetic field in µT.1 The orientation of a

11Gauss = 1× 10−4 Tesla (or 100µT ).
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smartphone can be calculated based on the readings of g-sensors and m-sensors.
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Figure 3.3: A waveform of m-sensor readings.

3.2 Energy Consumption of Smartphones

In this section, the energy consumption of smartphone built-in subsystems is measured to

investigate energy issue. An ASUS Padfone smartphone and a power monitor, FTA22D

manufactured by Monsoon Solutions Inc., are used in the experiment. See Fig. 3.4. The

battery of the smartphone is removed, and the smartphone is driven by a 3.7 volts power

supply of the power monitor. The current of the power supply is measured to record the

energy consumption of the smartphone. See Fig. 3.5. Individual subsystems are alternatively

turned on/off to measure the incremental current. Fig. 3.6 depicts the average current over

50000 data samples. For communication subsystems, the bars marked with triangles are the

current incremental after turning on each subsystem, and the bars marked with circles are

12



Figure 3.4: The devices for energy consumption measurement.

representing for after turning on and executing file transfer.The sampling rate of the IMU

subsystem can be set by the ”rate” parameter of the function call

android.hardware.SensorManager.registerListener(

SensorEventListener listener,

Sensor sensor,

int rate)

Possible values for the ”rate” parameter includes

SensorManager.SENSOR DELAY FASTEST,

SensorManager.SENSOR DELAY GAME,

SensorManager.SENSOR DELAY UI, and

SensorManager.SENSOR DELAY NORMAL.

The parameter basically sets an extra delay before next sampling. The corresponding extra

delays are 0 µs, 20000 µs, 60000 µs and 200000 µs, respectively, and the corresponding

13
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Table 3.1: The IMU sampling rates under various delay setting.

FASTEST GAME UI NORMAL

HTC Hero 50 Hz 25 Hz 11 Hz 4 Hz

HTC Desire 50 Hz 25 Hz 11 Hz 4 Hz

SONY XperiaS 75 Hz 50 Hz 17 Hz 5 Hz

ASUS Padfone 48 Hz 48 Hz 14 Hz 6 Hz

sampling rates of HTC Hero, HTC Desire, SONY Xperia S, and ASUS Padfone are listed in

Table 3.1.

The energy consumption of the accelerometer is measured under various sampling rates.

The incremental current of enabling the accelerometer of the HTC Desire and ASUS Padfone

smartphone is illustrated in Fig. 3.7 as an example. The average current of HTC Desire for

the FASTEST mode, GAME mode, UI, NORMALmode, and idle state are 382 mA, 324 mA,

301 mA, 286 mA, and 261 mA respectively. And the average current of ASUS Padfone for the

FASTEST mode, GAME mode, UI, NORMAL mode, and idle state are 209 mA, 202 mA,

121 mA, 87 mA, and 52 mA respectively. Therefore, the lower sampling rate is set, the less

energy is consumed. Actually, that is to say that around 55% power consumption can be

saved when reducing the sampling rate from FASTEST (48Hz) to UI (14Hz). Compared

with the energy consumption of other subsystems, the energy consumption of the IMU

subsystem should not be ignored.
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Figure 3.7: Incremental current of enabling the IMU of the HTC Desire and ASUS Padfone

smartphone.

3.2.1 Lifetime of Battery

Fig. 3.8 shows the eatimated lifetime and real lifetime of ASUS Padfone smartphone under

different frequency modes as well as the incremental current. The battery lifetime (in hour)

is calculated in terms of battery capacity (in mAh) and average current consumption (mA)

Battery lifetime (hr) =
Battery capacity (mAh)

Average current consumption (mA)

For ASUS Padfone smartphone, the battery capacity of ASUS Padfone Li-ion battery is

1520 mAh, the estimated lifetime of battery for the FASTEST mode, GAME mode, UI

mode, NORMAL mode, and idle state are 7.26 hr, 7.5hr, 12.51 hr, 17.31 hr, and 29.19 hr, re-

spectively, as shown in the white bar. However, the real lifetime of battery for the FASTEST

mode, GAME mode, UI mode, NORMAL mode, and idle state are 5.95 hr, 5.98 hr, 11.01 hr,

15.87 hr, and 27.35 hr, respectively, as shown in the gray bar. There is a slight gap between
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the real lifetime and estimated lifetime, and generally people speculated that smartphone

always has self-protection mechanism for normally system shutting-down in the low-battery

condition, and it is possible and reasonable that the capacity of Li-ion battery usually can

not reach 100% usage. In the real situation, the real lifetime is around 1.5 hr lower than the

estimated lifetime.
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Figure 3.8: The lifetime of enabling the IMU of the ASUS Padfone smartphone.
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Chapter 4

Proposed Low Sampling Rate

IMU-based Pedestrian Trajectory

System

A pedestrian trajectory can be sketched stride-by-stride based on the stride length and

walking direction of each step. To implement the idea, we not only need to be aware of the

occurances of stepping but also need to know the stride length and walking direction. A

Pedestrian Trajectory System is designed for handheld devices to sketch pedestrian trajec-

tories by detecting stepping and estimating the stride length and walking direction from the

output of embedded inertial sensors. The proposed PTS consists of three modules, including

the Stepping Aware Module (SAM), the Stride Length Module (SLM), and the Walking Di-

rection Module (WDM), to provide the three essential information respectively. Finally, the
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Dead Reckoning Module (DRM) determines the pedestrian trajectory. Fig. 4.1 illustrates

the architecture of the proposed PTS.
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Figure 4.1: The system architecture of the proposed PTS.

SAM scans and processes the output of the accelerometer to detect the occurrence of

stepping. If a stepping is detected, SLM and WDM are triggered to estimate the stride

length and calculate the walking direction. SLM estimates the stride length by regression

based on the parameters from SAM; and WDM calculates the walking direction based on

the output of the magnetometer and processed data from SAM. The details of each module

are going to be revealed in the following subsections. An example of the output of PTS is

illustrated in Fig. 5.7.

4.1 Stepping Aware Module (SAM)

Let gi be the i-th reading of the g-sensor for i = 1, 2, ..., and g0 especially denote the

gravity measured by the g-sensor at a static state. If the orientation of the g-sensor is

not changed during the measurement especially in the vertical direction, then ai = gi −
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g0 is the acceleration experienced by the smartphone. In SAM, gi is decomposed into a

vertical component and a horizontal component, respectively denoted by g⊥
i and g=

i . The

vertical component g⊥
i is the projection of gi onto the direction of the gravity, and the

horizontal component g=
i can be obtained by g=

i = gi − g⊥
i . Let a⊥i denote the magnitude

of the acceleration in the vertical direction. The magnitude of the vertical direction can be

calculated from a⊥i = ∥g0∥ − gi · g0/ ∥g0∥. A typical waveform of the vertical acceleration

is illustrated in Fig. 4.2 in which the x-axis represents time and the y-axis represents the

magnitude of the vertical acceleration.
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Figure 4.2: A waveform of the vertical acceleration

For later discussion, we introduce some waveform features of vertical acceleration. Wpeak

and Wwave are two system parameters. Pm = (tm, am) in the waveform is called a local

maximum if am is the greatest value for t ∈
[
tm − 1

2
Wpeak, t

m + 1
2
Wpeak

]
. P l = (tl, al)

in the waveform is called the left local minimum of Pm if al is the least value for t ∈[
tm − 1

2
Wwave, t

m
]
; and P r = (tr, ar) in the waveform is called the right local minimum of
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Pm if ar is the least value for t ∈
[
tm, tm + 1

2
Wwave

]
. Wpeak is used to define local minimum,

and Wwave should be large enough to contain a waveform. In most cases, a pedestrian takes

at most two steps per second even in running or going upstairs and downstairs. Therefore,

Wwave is set to 0.5 second, and Wpeak is set to 0.25 second. Let N =
⌈
1
2
Wwave × f

⌉
−1 where

f is the sampling frequency, and i0 denote the time sequence index of Pm. For a given

P l-Pm-P r wave, we define some features for the recognition of stride waveform patterns,

including

T1 = tm − tl, T2 = tr − tm, T = T1 + T2,

A1 = am − al, A2 = am − ar, A = A1 + A2,

I =
1

2N + 1
(

i0+N∑
n=i0−N

∥g=
n ∥),

X1 =

∣∣∣∣∣
2N∑
n=0

a⊥n+(i0−N)e
−i 2π

2N+1
n

∣∣∣∣∣ .
T1 and T2 are respectively the left and right time span from the local maximum to the nearby

local minima, and T is the time span of the waveform. A1 and A2 are respectively the left

and right amplitude of the waveform. I is the average intensity of the horizontal acceleration

component. X1 is the magnitude of frequency 1 in the Discrete Fourier Transform (DFT).

The features of a stride waveform should fall in a reasonable range. A2, A, T1, T2, T , I

and X1 are selected to verify whether a waveform is caused by stepping. Let Amin
2 and Amax

2

(and respectively Amin, Amax; Tmin
1 , Tmax

1 ; Tmin
2 , Tmax

2 ; Tmin, Tmax; Imin, Imax; Xmin
1 , Xmax

1 )

be the lower bound and upper bound of the range of A1 (and respectively A, T1, T2, T , I,

X1). A voting-based algorithm is applied to verify whether a waveform is caused by stepping.
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In our algorithm, a local maximum Pm is first identified, and then the left local minimum

P l and right local minimum P r of Pm are found. The P l-Pm-P r waveform is recognized as

a stepping waveform only if at least four out of the following seven conditions are satisfied,

including

A1 ∈
[
Amin

1 , Amax
1

]
,

A ∈
[
Amin, Amax

]
,

T1 ∈
[
Tmin
1 , Tmax

1

]
,

T2 ∈
[
Tmin
2 , Tmax

2

]
,

T ∈
[
Tmin, Tmax

]
,

I ∈
[
Imin, Imax

]
,

X1 ∈
[
Xmin

1 , Xmax
1

]
.

The remaining issue is how to decide those upper bounds and lower bounds. For each

feature, the values corresponding to 5% and 95% in the Cumulative Distribution Function

(CDF) are chosen to be the lower bound and the upper bound. To depict the CDFs, nine

experiments were implemented to collect the data. In each experiment, the data of 15 steps

were collected. So, totally, 135 stepping records were collected to depict the CDFs. The

experiment includes walking on ground with stride length about 40 cm, 50 cm, 60 cm, 70 cm

and 80 cm. For sampling rate 10 Hz, 20 Hz and 40 Hz, the CDFs of A1, A2, A are plotted

in Fig. 4.3, Fig. 4.4 and Fig. 4.5; the CDFs of T1, T2, T are plotted in Fig. 4.6, Fig. 4.7 and

Fig. 4.8; and the CDFs of I are respectively plotted in Fig. 4.9, Fig. 4.10 and Fig. 4.11; and

22



the CDFs of X1 are respectively plotted in Fig. 4.12, Fig. 4.13 and Fig. 4.14.
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Figure 4.3: The CDFs of the amplitude of vertical acceleration at sampling rate 10 Hz.
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Figure 4.4: The CDFs of the amplitude of vertical acceleration at sampling rate 20 Hz.

For example, from Fig. 4.3, we can see Amin
1 , Amax

1 , Amin
2 , Amax

2 , Amin and Amax are

1.55, 7.76, 1.52, 7.42, 3.48 and 14.57, respectively. The thresholds (lower bounds and upper

bounds) obtained from our experiments are listed in Table 4.1.
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Figure 4.5: The CDFs of the amplitude of vertical acceleration at sampling rate 40 Hz.
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Figure 4.6: The CDFs of the time duration of vertical acceleration waveforms at sampling

rate 10 Hz.
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Figure 4.7: The CDFs of the time duration of vertical acceleration waveforms at sampling

rate 20 Hz.
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Figure 4.8: The CDFs of the time duration of vertical acceleration waveforms at sampling

rate 40 Hz.
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Figure 4.9: The CDF of the average intensity of the horizontal acceleration component at

sampling rate 10 Hz.

0%

20%

40%

60%

80%

100%

0 0.6 1.2 1.8 2.4 3 3.6

I ( / 2)

95%

5 %

Figure 4.10: The CDF of the average intensity of the horizontal acceleration component at

sampling rate 20 Hz.
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Figure 4.11: The CDF of the average intensity of the horizontal acceleration component at

sampling rate 40 Hz.

0%

20%

40%

60%

80%

100%

0 6 12 18

X1 ( / 2)

95%

5%

Figure 4.12: The CDF of the magnitude of DFT on frequency of 1 at sampling rate 10 Hz.
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Figure 4.13: The CDF of the magnitude of DFT on frequency of 1 at sampling rate 20 Hz.
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Figure 4.14: The CDF of the magnitude of DFT on frequency of 1 at sampling rate 40 Hz.
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Table 4.1: The thresholds used in SAM.

10(Hz) 20(Hz) 40(Hz)

min max min max min max

A1 (m/s2) 1.55 7.76 2.06 8.61 2.15 8.98

A2 (m/s2) 1.52 7.42 1.82 8.37 1.72 8.37

A (m/s2) 3.48 14.57 4.19 16.53 4.24 16.77

T1 (s) 0.1 0.41 0.1 0.37 0.08 0.35

T2 (s) 0.1 0.51 0.16 0.43 0.1 0.4

T (s) 0.4 0.71 0.38 0.65 0.36 0.62

I (m/s2) 0.58 2.23 0.60 1.8 0.6 1.8

X1 (m/s2) 1.30 10.34 2.24 20.12 3.79 38
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Table 4.2: The covariance between the stride length and waveform features.

10(Hz) 20(Hz) 40(Hz)

A1 0.5 0.55 0.53

A2 0.46 0.53 0.5

A 0.52 0.56 0.55

T1 0.19 0.24 0.25

T2 0.08 0.07 0.06

T 0.26 0.32 0.32

I 0.38 0.38 0.37

X1 0.55 0.61 0.61

4.2 Stepping Length Module (SLM)

The features calculated by SAM will be used for SLM to estimate the stride length by

regression methods. The two most related features to the stride length are figured out

first. Let D denote the stride length. The covariance between the stride length D and the

features A1, A2, A, T1, T2, T , I and X1 are calculated from the data collected in the previous

subsection. Note that since the stride length is not meaningful in the upstairs and downstairs

experiments, the data collected in the two cases are not considered in the analysis. According

to the covariance listed in Table 4.2, A and X1 are the two most correlated parameters to

the stride length. Therefore, A and X1 are chosen to be used in the regression analysis.
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We apply double variable linear regression and double variable quadratic regression on A

and X1 to estimate the stride length D. Let DL and DQ denote the estimated stride length

obtained by the linear regression and quadratic regression. The linear regression equation is

DL = pL1 + pL2A+ pL3X1,

and the quadratic regression equation is

DQ = pQ1 + pQ2 A+ pQ3 X1 + pQ4 AX1 + pQ5 A
2 + pQ6 X

2
1 .

Table 4.3 gives the coefficients obtained in the regression analysis based on our experiment

data. The RMSEs under sampling rate 10 Hz in the regression analysis are 13.03 and 12.99

for the linear equation and quadratic equation respectively; the RMSEs under sampling rate

20 Hz in the regression analysis are 12.33 and 12.21 for the linear equation and quadratic

equation, and the RMSEs under sampling rate 40 Hz in the regression analysis are 12.32 and

12.15 for the linear equation and quadratic equation, respectively. Fig. 4.15, Fig. 4.16, and

Fig. 4.17 illustrate all the experiment data and the regression equations in which the x-axis,

y-axis and z-axis represent the magnitude of DFT on frequency of 1 for sampling rate 10 Hz,

20 Hz and 40 Hz, the amplitude of vertical acceleration and the experiment of different stride

length, respectively. The circles represent the experiment data, the dashed line depicts the

linear regression equation, and the solid curve depicts the quadratic regression equation.
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Table 4.3: Coefficients obtained in the regression analysis.

Linear regression

pL1 pL2 pL3

10(Hz) 52.15 0.08 1.81

20(Hz) 50.01 -0.10 1.23

40(Hz) 50.66 -0.42 0.75

Quadratic regression

pQ1 pQ2 pQ3 pQ4 pQ5 pQ6

10(Hz) 54.56 -1.12 2.64 0.03 0.06 -0.11

20(Hz) 51.95 -1.89 2.42 -0.07 0.14 -0.02

40(Hz) 54.49 -2.90 1.50 -0.02 0.15 -0.01
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Figure 4.15: The regression analysis of SLM at 10 Hz.
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Figure 4.16: The regression analysis of SLM at 20 Hz.
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Figure 4.17: The regression analysis of SLM at 40 Hz.

4.3 Walking Direction Module (WDM)

The coordinate system used in the readings of sensors is called the sensor frame or s-frame in

short and is defined by hardware manufacturers. The definition of the s-frame can be found

from hardware specification and usually follows the right hand rule. The tangent frame

or local level horizontal frame is called the Earth frame or e-frame in short and is used in

tracking objects moving on the ground and depicting pedestrian trajectories on maps. The

x-axis, y-axis and z-axis of the e-frame respectively point to the north, east and center of the

Earth. If the walking direction of a pedestrian is aligned with the heading of the handheld

device, the walking direction is the yaw angle from the e-frame to the s-frame. The angle is

also called the heading angle.

Let g and m denote the reading of the g-sensor and m-sensor in a static state, and TS→E
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denotes the coordinate transformation matrix that transforms the reading of the sensor from

the s-frame to the e-frame. In other words, if v is a vector, we have

[v]E = TS→E [v]S

where [v]S is the coordinate of v observed from the s-frame and [v]E is the coordinate of

v observed from the e-frame. Assume the gravity points exactly to the center of the Earth

and the magnetic field points exactly to the north and maybe with some inclination. Then,

we have

I = TS→E

[
g×(m×g)

∥g×(m×g)∥
m×g

∥m×g∥ − g
∥g∥

]
,

and therefore

TS→E =

[
g×(m×g)

∥g×(m×g)∥
m×g

∥m×g∥ − g
∥g∥

]−1

=

[
g×(m×g)

∥g×(m×g)∥
m×g

∥m×g∥ − g
∥g∥

]T
.

Let ψ, θ and ϕ respectively denote the yaw angle, pitch angle and roll angle of Euler angles.

Based on the Yaw-Pitch-Roll conversion, we have

TS→E

=


cψcθ −sψcϕ+ cψsθsϕ sψsϕ+ cψsθcϕ

sψcθ cψcϕ+ sψsθsϕ −cψsϕ+ sψsθcϕ

−sθ cθsϕ cθcϕ


where c is shorthand for cos and s is shorthand for sin. Therefore, the yaw angle can be

obtained from

ψ = arctan
[TS→E]2,1
[TS→E]1,1

.
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Chapter 5

Experiment Results

5.1 Performance Evaluation of Individual Modules

SAM was evaluated first. Eight people were invited to join in the experiment. Testers held

the device and then took 100 steps casually. Each tester did the experiment three times.

One is for the IMU running at 10 Hz, another is for the IMU running at 20 Hz and the other

is for the IMU running at 40 Hz. The number of detected steps for each person are listed

in Fig. 5.1. Based on the result, the inaccuracy rates under sampling rate 10 Hz, 20 Hz and

40 Hz are 2.63%, 4.13% and 4.13% respectively.

Then, we evaluated the performance of SLM. In the experiment, people were asked to

walk with a fixed stride length, including 40 cm, 50 cm, 60 cm, 70 cm and 80 cm. SLM

estimated the stride length of each step. Data were grouped by the real stride length. The

result is illustrated in Fig. 5.2 in which x-axis denotes the real stride length and y-axis
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Figure 5.1: The number of detected steps out of 100 steps.

denotes the estimated stride length. In each group, the black box denotes the interquartile
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Figure 5.2: The error box of estimated stride length.

range (IQR) of estimated stride length at sampling rate 10 Hz, the gray box denotes the

(IQR) of estimated stride length at sampling rate 20 Hz, the white box denotes the IQR

of the estimated stride length at sampling rate 40 Hz, and the lines mark the range of the

estimated stride length. Based on the result, the average errors of SLM under sampling rate

10 Hz, 20 Hz and 40 Hz are 20.66%, 18.72% and 18.43% respectively. In addition, eight
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people used our PTS to walk along one 20 m straight line. The total distance estimated by

SLM for each person is shown in Fig. 5.3.

12

14

16

18

20

22

24

26

28

A B C D E F G H

E
s

ti
m

a
te

d
 d

is
ta

n
c

e
 (

m
)

Testers

10 Hz

20 Hz

40 Hz

Figure 5.3: Total estimated distance by SLM under 20 m walk.

According to the result, the overall accuracy rate of SLM under sampling rate 10 Hz,

20 Hz and 40 Hz are 4.4%, 4.59% and 3.59% respectively.

The performance of WDM is also verified. Fig. 5.4, Fig. 5.5 and Fig. 5.6 illustrate the

walking direction of each step in a PTS experiment with different sampling rate.

0

90

180

270

360

1 51 101 151 201 251

A
z
im

u
th

 (
d

e
g

)

Steps

Expriment Direction

Real Direction

Figure 5.4: The walking direction of each step at 10 Hz.
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Figure 5.5: The walking direction of each step at 20 Hz.
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Figure 5.6: The walking direction of each step at 40 Hz.
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In Fig. 5.4, Fig. 5.5 and Fig. 5.6, the x-axis is the sequence number of each step and

y-axis is the azimuth of each step. The solid line denotes the real walking direction, and

the dashed line denotes the estimated walking direction. Based on the result, the errors of

WDM under sampling rate 10 Hz, 20 Hz and 40 Hz are 11.43 degrees, 11.96 degrees and

13.87 degrees in average, respectively.

5.2 Implementation of the Proposed PTS

A PTS with graphic user interfaces was implemented on Android smartphones. To evaluate

the performance of the prototype system, testers held the smartphone and walked in the

building. 24 reference points were marked on the floor, and the average distance between

two neighboring reference points is around 5 m. The positioning errors at these reference

points were recorded. Fig. 5.7, Fig. 5.8 and Fig. 5.9 illustrate the experiment environment.

10 Hz

Real Path

PTS Path

Figure 5.7: A experiment result of the proposed PTS at 10 Hz.

In the figure, the red line is the real trajectory, and the red dots denote the location of

40



20 Hz

Real Path

PTS Path

Figure 5.8: A experiment result of the proposed PTS at 20 Hz.

40 Hz

Real Path

PTS Path

Figure 5.9: A experiment result of the proposed PTS at 40 Hz.
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the reference points. In addition, the green line is an example of the trajectory calculated

by the system, and the green dots denote the estimated position of these reference points.

Fig. 5.10 is the CDFs of the positioning errors at these reference points.
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Figure 5.10: The CDFs of positioning errors of the proposed PTS.

According to our experiment results, 80% of the positioning errors are within 4.8 m,

5.8 m and 5.2 m.
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Chapter 6

Conclusions

Energy consumption is an important issue for battery-powered handheld devices. Applica-

tions developed for smartphones should keep energy consumption as a major consideration.

The energy consumption of various embedded subsystems of smartphones was measured,

and the results show that the energy consumption of the IMU subsystem should not be ig-

nored. Based on this observation, in this work, we developed a low sampling rate IMU-based

pedestrian trajectory system for smartphones. The proposed PTS was implemented with

a graphic user interface on an Android platform. Based on our experiment results, if the

starting position of a pedestrian trajectory is given, applying dead reckoning, 80% of the

positioning errors are within 4.8 m, 5.8 m and 5.2 m under sampling rate 10 Hz, 20 Hz and

40 Hz respectively. In addition, the results show that reducing the sampling rate of the IMU

from FASTEST (48Hz) to UI (14Hz) can not only get about 55% lower power consumption

but still achieve similar positioning accuracy.
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[11] S. Sen, R. R. Choudhury, B. Radunović, and T. Minka, “You are Facing the Mona Lisa:

Spot Localization using PHY Layer Information,” in Proceedings of the 10th Interna-

45



tional Conference on Mobile Systems, Applications and Services (ACM MobiSys 2012),

25-29 June 2012, pp. 183–196.

[12] J. Kim and H. Jun, “Vision-based location positioning using augmented reality for

indoor navigation,” IEEE Transactions on Consumer Electronics, vol. 54, no. 3, pp.

954–962, August 2008.

[13] L. C. Huey, P. Sebastian, and M. Drieberg, “Augmented reality based indoor positioning

navigation tool,” in Proceedings of the 2011 IEEE Conference on Open Systems (ICOS

2011), 25-28 September 2011, pp. 256–260.

[14] Y.-C. Cheng, J.-Y. Lin, C.-W. Yi, Y.-C. Tseng, L.-C. Kuo, Y.-J. Yeh, and C.-W.

Lin, “AR-based positioning for mobile devices,” in Proceeding of the 40th International

Conference on Parallel Processing Workshops (ICPPW 2011), 13-16 September 2011,

pp. 63–70.

[15] J.-Y. Lin, Y.-C. Tseng, and C.-W. Yi, “PEAR: personal evacuation and rescue sys-

tem,” in Proceedings of the 6th ACM workshop on Wireless multimedia networking and

computing (WMuNeP 2011), 31 October - 4 November 2011.

[16] C.-C. Lo, C.-P. Chiu, Y.-C. Tseng, S.-A. Chang, and L.-C. Kuo, “A walking velocity

update technique for pedestrian dead-reckoning applications,” in Proceeding of the 22nd

Annual IEEE International Symposium on Personal Indoor and Mobile Radio Commu-

nications (PIMRC 2011), 11-14 September 2011, pp. 1249–1253.

46



[17] I. Constandache, R. Choudhury, and I. Rhee, “Towards mobile phone localization with-

out war-driving,” in Proceedings of the 29th Conference on Computer Communications

(IEEE INFOCOM 2010), 14-19 March 2010, pp. 1–9.

[18] C.-W. Yi, C.-M. Su, W.-T. Chai, J.-L. Huang, and T.-C. Chiang, “G-constellations: G-

sensor motion tracking systems,” in Proceeding of the IEEE 71st Vehicular Technology

Conference (VTC 2010-Spring), 16-19 May 2010, pp. 1–5.

[19] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. R. Choudhury, “No need to

war-drive: Unsupervised Indoor Localization,” in Proceedings of the 10th International

Conference on Mobile Systems, Applications and Services (ACM MobiSys 2012), 25-29

June 2012, pp. 197–210.

[20] P.-L. Shih, P.-J. Chiu, Y.-C. Cheng, J.-Y. Lin, and C.-W. Yi, “Energy-Aware Pedestrian

Trajectory System,” in Proceeding of the 41th International Conference on Parallel

Processing Workshops (ICPPW 2012), 10-13 September 2012, pp. 514–523.

47


	1.cover
	2.innegpage
	3.Abstract
	4.L-PTS

