摘要	i
Abstract	ii
誌 謝	iv
目 錄	vi
圖目錄	viii
表目錄	X
第一章 前 言	1
2.1. 元件與電路板的組裝技術	3
2.2. 選擇性銲接技術	5
2.3. 雷射選擇性迴銲	8
2.4. 雷射迴銲技術研究之回顧	10
2.5. 介金屬化合物之形成	12
2.5.1. 傳統迴銲技術	13
2.5.2. 雷射迴銲技術	13
2.7. 研究動機	15
第三章 實驗方法	18
3.1. 實驗方法	18
3.1.1. 銲點製備	18
3.1.2. 銲點界面分析	20
3.1.3. 銲點接合強度分析	20
3.2. 實驗設備	20
3.2.1. NEWPORT LW4200 型雷射銲接系統	20
3.2.2. 推球系統	21
第四章 結果與討論	22
4.1. 雷射迴銲條件對銲點外觀與內部形貌的影響	22
4.1.1. 脈衝寬度	22
4.1.2. 雷射功率	22
4.1.3. 迴銲次數	24
4.2. 界面介金屬化合物(IMC)形貌之觀察	25
4.2.1. 傳統迴銲	25
4.2.2. 一次迴銲之界面形貌	25
4.2.3. 二次迴銲之微觀結構	29
4.3. 推力試驗	31
4.3.1. 推力試驗結果	32
4.3.2. 推力試驗破斷面觀察	36
4.3.2.1. 有效銲點一之破斷面觀察	36

4.3.2.2. 不良銲點之破斷面觀察	
第五章 結 論	43
第六章 未來研究與展望	45
附錄	46
參考文獻	

圖目錄

圖 2-1. 電子封裝的層次區分[3]	3
圖 2-2. PTH 與 SMT 之接合方式:(a) PTH;(b) SMT[3]	4
圖 2-3. 波銲程序示意圖[3]	4
圖 2-4. Drag Soldering 及 Dip Soldering。(a) Drag Soldering 之單一噴嘴及(b))
Dip Soldering 特製噴嘴板[6]。	6
圖 2-5. 感應式加熱法示意圖 [7]	7
圖 2-6. Panasonic Soft Beam 系統示意圖	8
圖 2-7. 可程式控制之雷射迴銲系統	8
圖 2-8. UV 雷射光從玻璃背面加熱錫球示意圖	.12
圖 2-9. 脈衝式雷射加熱後之錫球外觀	.12
圖 2.10. 錫-銅相圖[31]	13
圖 2-11. 錫球推力測試法示意圖[32]	.14
圖 2-12. 六種破裂模式[32]	15
圖 2-13. 銲接的兩種型態	.17
圖 3-1. 實驗流程	.19
圖 3-2 多次脈衝加熱式意圖 · · · · · · · · · · · · · · · · · · ·	.20
圖 3-3. Newport LW4200 型雷射銲接系統。	.21
圖 4-1. 不同迴銲時間的銲點外觀	.23
圖 4-2. 不同的迴銲功率的銲點外觀	.24
圖 4-3. 200 V-7 msec-2.0 J, 二次迴銲的銲點。	.25
圖 4-4. 錫球置於銅墊上經 260°C, 10 分鐘後所得的界面結構。	.25
圖 4-5. 不同的脈衝寬度之銲點界面形貌	.26
圖 4-6.205 V-10 msec-2.8 J 銲點之界面形貌	.27
圖 4-7. (a) 210 V-10 msec-3.2 J 與 (b) 220 V-10 msec-3.9 J 之銲點之界面形貌	Ē
	28
圖 4-8. 220 V-10 msec-3.9 J 之銲點微觀結構	.29
圖 4-9. (a) 215 V-10 msec-3.5 J 之銲點微觀結構	30
圖 4-10.(a) 220 V-10 msec-3.9 J 之銲點微觀結構;(b) 爲(a) 圖圈起處之放大	く。
	.30
圖 4-11. (a) 200 V-7 msec-2.0 J,兩次脈衝銲點微觀結構,圈起處為裂縫。(b)
爲(a)圖界面處之放大。	.31
圖 4-12. (a) 200 V-10 msec-4.8 J, 二次迴銲之銲點斷面形貌及(b) 圈起處	之
EDX 成分分析。	.32
圖 4-13. (a) 200 V-10 msec-7.2 J, 三次迴銲銲點之破斷表面形貌及(b) 橫截	面
形貌。	32

圖 4-14.	(a) 200 V-7 msec-2.0 J, 一次迴銲, (b) 200 V-10 msec-2.4 J	,一次迥
	銲及(c)200 V-7 msec-2.0 J,兩次迴銲之銲點推力強度分佈圖	<u>I</u> °35
圖 4-15.	(a) 200 V-7 msec-2.0 J, 一次迴銲; (b) 200 V-10 msec-2.4 J,	一次迴銲
	與(c)200 V-7 msec-2.0 J,二次迴銲有效銲點發生韌性斷裂。	之銲點橫
	截面形貌。	37
圖 4-16.	各雷射迴銲條件下有效銲點之斷裂表面	38
圖 4-17.	不良銲點的斷裂之五種表面型態	41
圖 4-18.	各雷射迴銲條件下不良銲點常見的破斷面	42

表目錄

表	2-1.	材料對 YAG 雷射光的吸收效率[15]。	16
表	3-1.	雷射迴銲實驗參數表 (離焦距離 = 1.5 mm)。	19
表	4-1.	不同的迴銲功率的銲點高度與寬度。	24
表	4-2.	圖 4.5 之界面 IMC 成分 EDX 分析結果。	27
表	4-3.	200 V-10 msec-7.2 J,三次迴銲截面觀察的 EDX 成分分析	32
表	4-4	(a). 200 V-7 msec-2.0 J, 一次迴銲之銲點推力測試結果	34
表	4-4	(b).200 V-10 msec-2.4 J, 一次迴銲之銲點推力測試結果	34
表	4-4	(c). 200 V-7 msec-2.0 J,兩次迴銲之銲點推力測試結果	34
表	4-5.	破裂模式一之推力強度分析結果。	36

