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PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 75, Number 1, June 1979

HYPERINVARIANT SUBSPACES OF C,;, CONTRACTIONS
PEI YUAN WU

ABSTRACT. For an operator T on a Hilbert space let Hyperlat T denote its
hyperinvariant subspace lattice. Assume that T is a completely nonunitary
C), contraction with finite defect indices. In this note we characterize the
elements of Hyperlat T among invariant subspaces for T in terms of their
corresponding regular factorizations and show that elements in Hyperlat T
are exactly the spectral subspaces of T defined by Sz.-Nagy and Foias. As a
corollary, if T, T, are two such operators which are quasi-similar to each
other, then Hyperlat T, is (lattice) isomorphic to Hyperlat T,.

1. Introduction. Let T be a bounded linear operator acting on a complex
separable Hilbert space H. A subspace K of H is hyperinvariant for T if K is
invariant for every operator that commutes with 7. We denote by Hyperlat T
the lattice of all hyperinvariant subspaces of T. Recently several authors
studied Hyperlat T for certain classes of contractions. Uchiyama showed that
Hyperlat T is preserved, as a lattice, for quasi-similar Cy(N) contractions and
for completely injection-similar C,, contractions with finite defect indices (cf.
[6] and [7]). As a result he was able to determine Hyperlat T indirectly for
such contractions. Wu, in [8], determined Hyperlat 7 when T is a completely
nonunitary (c.n.u.) contraction with a scalar-valued characteristic function or
a direct sum of such contractions. In this note we investigate Hyperlat T for
c.n.u. C;, contractions with finite defect indices. Our main result (Theorem 1)
says that for such contractions elements in Hyperlat T are exactly the spectral
subspaces Hj defined by Sz.-Nagy and Foias in [S]. Thus we can completely
determine Hyperlat T in terms of the well-known structure of the hyper-
invariant subspace lattice of normal operators. As a corollary, we show that
for such contractions Hyperlat T is preserved, as a lattice, under quasi-simi-
larities.

2. Preliminaries. A contraction T is completely nonunitary (c.n.u.) if there
exists no nontrivial reducing’ subspace on which T is unitary. The defect
indices of T are, by definition,

dy = rank(I — T*T)? and d. = rank(I — TT*)i.
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54 P.Y.WU

T € C, (resp. C,) if T*"x » 0 (resp. T"x +0) for all x #0; C;;, = C, N
C,.. For a C,, contraction T, dy = dj.. Let O, denote the characteristic
function of an arbitrary contraction 7. There is a one-to-one correspondence
between the invariant subspaces of T and the regular factorizations of ;. If
K C H is invariant for T with the corresponding regular factorization 0, =
0,0, and T =[g'7] is the triangulation on H = K @ K*, then the
characteristic functions of T, T, are the purely contractive parts of ©,, ©,,
respectively. For more details the readers are referred to [5].

For arbitrary operators T,, T, on H,, H,, respectively, T, < T, denotes
that there exists a one-to-one operator X from H, onto a dense linear
manifold of H, (called quasi-affinity) such that XT, = T,X. T,, T, are quasi-
similar (T; ~ T,) if T, < T, and T, < T,. For any subset E of the unit
circle C, let M, denote the operator of multiplication by e” on the space
L*(E) of square-integrable functions on E. It was proved in [9] that any c.n.u.
C,, contraction T with finite defect indices is quasi-similar to a uniquely
determined operator, called the Jordan model of T, of the foom My & - - - &
Mg, where E,, . .., E, are Borel subsets of C satisfying E, D E, D - - - D
E,. In this case E| = {¢: © () not isometric}.

We use ¢ to denote the argument of a function defined on C. A statement
involving 7 is said to be true if it holds for almost all ¢ with respect to the
Lebesgue measure. In particular, for E, F C C, E = F means that (E \ F) U
(F \ E) has Lebesgue measure zero. For any subset F of C, F' = C \ F.

3. Main results. We start with the following

LEMMA 1. Let T be a C,, contraction on H and U be a unitary operator on K.
If there exists a one-to-one operator X: H — K such that XT = UX, then T is
quasi-similar to the unitary operator U |ﬁ

Proor. Since T, being a C,, contraction, is quasi-similar to a unitary
operator, the assertion follows from Lemma 4.1 of [2] immediately.

Let T be a c.n.u. C;; contraction on H with finite defect indices and let
U=M; ®--- @M, acting on K=L¥E)®D - - & LYE,) be its
Jordan model. Let X: H — K and Y: K — H be quasi-affinities intertwining
T and U. For any Borel subset F C E|, let

Ke=L*(E,NF)®--- ®L*(E,NF)

be the spectral subspace of K associated with F. For the contraction T we
considered, o(7T) C C holds and there has been developed a spectral
decomposition (cf. [S, p. 318 and pp. 315-316, resp.]). Let H. denote the
spectral subspace associated with F C C. Indeed, H is the (unique) maximal
subspace of H satisfying (i) TH, C Hp, (i) Tr = T| 1, € Cyy and (iii) O, (1)
is isometric for 7 in F’. Moreover Hj is hyperinvariant for T. We shall show
that such subspaces Hj give all the elements in Hyperlat T. We prove this in
a series of lemmas.
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LEMMA 2. For any Borel subset F C E,, XHp= K.

PROOF. Let K; =XHy. Since Ty = T|_is of class C,;, Lemma 1 implies
that 7, is quasi-similar to the unitary operator Ul . Consider K as a
subspace of L? in the natural way. Hence K| is a reducing subspace for the
bilateral shift M on L2. From the well-known structure of reducing subspaces
of M, we obtain that K, = PL,%, where P is a measurable function from C to
the set of (orthogonal) projections on C*. Since

K, CK=L*E)®--- ®L*YE,),

we have
PO)CkCcO®OD - - - @0
\-——I:_r}\_/
fortmENE,,,j=1,...,k —1,and P(f) = O for ¢ in E{. For almost all 7,

let {t{/j(t)}’f be an orthonormal base of C* consisting of eigenvectors of P(¢),
that is, such that

P(OW,()=8;(;(1), j=1,...,k

where the eigenvalues §;(f) are arranged in nonincreasing order: 1 > §,(¢)
>0 2> 8,.(0) > 0(ctf. [5, p. 272]). Let

F={trank P(t) > j} = {:§;() >0} forj=1,... k.

Then Fi\ 2 F,D -+ 2D F, E; D F; and P(0)y;(1) = ij(t)xpj(t) for each j.
Setting x;(¢) = (v(?), Y;(2)) for v € L? where (,) denotes the usual inner
product in C¥, we have v(7) = =f x,(1)y;(¢). Since for v € K,

k
o(r) = P(5)o(1) = ; Xz, (0% (0; (1),

the induced transformation
v xixp, D+ - - B xexp

maps K, isometrically onto L%(F,) ® - - - ®L*(F,) (cf. [S, p. 272]). More-
over U|y, will be carried over by this transformation to My @ - - - @M.
We infer that F; = {7: ©r,(¢) not isometric} C F (cf. the remark in §2). Thus
for v € K, v(r) = Zf x5())x(1)§;(1) = 0 on F’, which shows that v € K,
and hence K, C K.

To show the other inclusion, let x € K, and K, =XH,.. Since H = H, \/
Hp., we have K = K, \/ K,. Hence there exist sequences {y,} C K, and
{z,} C K, such that y, + z, > x. From what we proved above, {y,} C K,
and {z,} C K. Since K = K, ® K, by applying the (orthogonal)
projection onto K on both sides of y, + z, —» x we obtain y, — x. This
shows that x € K, completing the proof.

For any Borel subset F C E|, let ¢(K;) = \/ g;_ 15 SYKj. It is known that
q(Kp) is hyperinvariant for T and Xq(Ky)= K (cf. [5, pp. 76-78]).
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LEMMA 3. For any Borel subset F C E,, let q(Ky) be defined as above. Then
q(Kp) = Hp.

PrOOF. Let O, = 0,0, be the regular factorization corresponding to g(Kj).
To complete the proof it suffices to show that (i) ®, is outer, (i) ©,(¢) is
isometric for ¢ in F’ and (iii) ©,(¢) is isometric for ¢ in F (cf. [S, pp. 312 and
205]). Since q(Ky) € Hyperlat T, o(T|,x,)) C o(T) (cf. [1, Lemma 3.1]). Tt
follows that T/, , is also of class Cy; (cf. [S, p. 318]), and hence ©, is outer
(from both sides). This proves (i).

Since Xq(Ky)= Ky and YK C q(Ky), on the decompositions H = q(K)
® q(Kp)* and K = K ® K, X, Y, T and U can be triangulated as

X, = Y, = T, = u o0
X = , Y= , T= , U= .
RS M RS
It is easily seen that X, is a quasi-affinity intertwining T, U;, so that
T, < U,. Since T} = T|,, is a Cy, contraction, we conclude from Lemma
1 that T, ~ U,. This shows that U, = 3%_, @ Mg p is the Jordan model of
T, and hence F = E; N F = {t: ©,(?) not isometric}. Therefore F’ = {t:
©,(¢) isometric}, which proves (ii). On the other hand, X3 and Y} are
one-to-one operators intertwining 75, Us. Note that T, is also of class C,,.
(This follows from the fact that det ®, = 0 and [5, p. 318].) Let V" be the
unitary operator quasi-similar to 7,. We infer that there are one-to-one
operators intertwining V*, U¥. It follows from Lemma 4.1 of [2] that V* and
Uy are unitarily equivalent to direct summands of each other. By the third
test problem in [4] we conclude that V*, U¥, and hence ¥, U,, are unitarily
equivalent. So T, ~ U,. A similar argument as above shows that E, N F' =
{t: ©4(¢) not isometric}. Hence E| U F = {t: ©,(¢) isometric}, which proves
(iii) and completes the proof.

LemMa 4. Let 9 C H be hyperinvariant for T with the corresponding
factorization ®; = 0,0, and let F = {t: ©,(¢) not isometric}. Then M = Hy.

PROOF. As proved in Lemma 3, for hyperinvariant 9, T|e, is of class Cy;.
Since Oy, (7) is isometric for ¢ in F’, the maximality of H implies that
M C Hpg; cf. the remark before Lemma 2. Hence X %CXH = Ky, by
Lemma 2. We claim that K, = \/ g, ;s SX 9. Indeed, using Lemma 1 we
can show that T'|o; is quasi-similar to U |;=;. Now we proceed as in the proof
of Lemma 2 with X9 in the role of K;. Let P be a projection-valued
function defined on C such that x9T = PL2. Choose the orthonormal base
{ \]/j(t)}’f of C* consisting of eigenvectors of P(f), and let F, = {t: rank P(t) >

j} for j=1,...,k Note that for v € L2, v = Ekxlpj, where x;(f) =
(v(0), Y;(1)) for eachj and v = 21 xgX¥; if v € XON. As shown before, the
transformation v — xpx; @ - - -+ © x5 X, maps XON isometrically onto

LA(F)®--- & L2(Fk) and hence Mg & - - - @ M, is the Jordan model
of T|or. We have F, = {: O_(¢) not isometn'c} = F = E, N F. For each j,
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let S; be the operator on K defined by
S;(0) =00 - Oxgrrx ®--- SO
forv = =¥ xy; € K. It is easily seen that S;U = US; and
SXM =08 - BLAENF)D--- &0
for each j. It follows that K = \/ g, _ s SX 9N, as asserted. By Lemma 3,

_ _ - VYSXOT .
He=a(Kp)= NV VYK = V), SU\=/US S X

Since VYSX commutes with 7 and 9N is hyperinvariant for T, we have
H, C 9. This, together with 9 C Hp, completes the proof.
Now we have the following main theorem.

THEOREM 1. Let T be a c.n.u. Cy, contraction on H withdy = dp» = n < 0.
Let K C H be an invariant subspace with the corresponding regular
factorization ©, = 0,0, and let E = {t: O, (t) not isometric}. Then the
Jollowing are equivalent:

(1) K € Hyperlat T;

(2) K = Hg for some Borel subset F C E;

(3) the intermediate space of ©; = 0,0, is of dimension n and for almost all
t, either ©,(t) or ©,(t) is isometric.

PrOOF. (1) = (2). That K = H,, where F = {z: ©,(¢) not isometric}, is
proved in Lemma 4. It is a simple matter to check that F C E.

(2)= (3). Since T|y, € Cy;, the intermediate space of O = 0,0, is of
dimension n (cf. [5, p. 192]). The rest is proved in [5, p. 312].

(3) = (1). Since the intermediate space of ©, = 0,0, is of dimension n and
det ©, = 0 (otherwise det ®,. = 0), we conclude that T|k is of class C}; (cf.
[S, p. 318]). Therefore, ©, is outer (from both sides). This, together with the
other condition in (3), implies that K = H,, where F = {s: ©,(f) not
isometric} (cf. [5, p. 312]). Thus K € Hyperlat T.

COROLLARY 1. Let T be as in Theorem | and let U = Mg @ - - © Mg,
acting on K, be its Jordan model. Then Hyperlat T is (lattice) isomorphic to
Hyperlat U. Moreover, if X: H— K and Y: K— H are quasi-affinities
intertwining T, U, then the mapping O —XOWU implements the lattice
isomorphism from Hyperlat T onto Hyperlat U, and its inverse is given by
N - q(N) = \/gr=rs SYI. In this case, T|oy and U |57 are quasi-similar
to each other.

PROOF. The first assertion follows from Theorem 1, [5, pp. 315-316] and the

well-known structure of Hyperlat U [3]. The rest are immediate consequences
of Lemmas 1, 2 and 3.

COROLLARY 2. Let Ty, T, be c.n.u. C,, contractions with finite defect indices.
If T, is quasi-similar to T,, then Hyperlat T, is (lattice) isomorphic to
Hyperlat T,.
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COROLLARY 3. Let T be a c.n.u. Cy, contraction with finite defect indices. If
K, K, € Hyperlat T and T |y, is quasi-similar to T|g , then K, = K,.

PROOF. T|x ~ T|, implies that they have the same Jordan model, say,
U= My ®--- ©Mg.By Theorem |, K; = Hy = K,.

ADDED IN PROOF. After submitting this paper, the author was notified that
the main result here was independently obtained by R. I. Teodorescu
(Factorisations réguliéres et sous-espaces hyperinvariants, to appear in Acta Sci.
Math. (Szeged)) for arbitrary c.n.u. C;; contractions. However the approaches
are completely different.
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