Hyperinvariant Subspaces of \$C_\{11\}\$ Contractions
Author(s): Pei Yuan Wu
Source: Proceedings of the American Mathematical Society, Vol. 75, No. 1 (Jun., 1979), pp. 5358
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2042670
Accessed: 28/04/2014 17:08

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support @jstor.org.

[^0]
HYPERINVARIANT SUBSPACES OF C_{11} CONTRACTIONS

PEI YUAN WU ${ }^{1}$

Abstract

For an operator T on a Hilbert space let Hyperlat T denote its hyperinvariant subspace lattice. Assume that T is a completely nonunitary C_{11} contraction with finite defect indices. In this note we characterize the elements of Hyperlat T among invariant subspaces for T in terms of their corresponding regular factorizations and show that elements in Hyperlat T are exactly the spectral subspaces of T defined by Sz.-Nagy and Foias. As a corollary, if T_{1}, T_{2} are two such operators which are quasi-similar to each other, then Hyperlat T_{1} is (lattice) isomorphic to Hyperlat T_{2}.

1. Introduction. Let T be a bounded linear operator acting on a complex separable Hilbert space H. A subspace K of H is hyperinvariant for T if K is invariant for every operator that commutes with T. We denote by Hyperlat T the lattice of all hyperinvariant subspaces of T. Recently several authors studied Hyperlat T for certain classes of contractions. Uchiyama showed that Hyperlat T is preserved, as a lattice, for quasi-similar $C_{0}(N)$ contractions and for completely injection-similar $C_{.0}$ contractions with finite defect indices (cf. [6] and [7]). As a result he was able to determine Hyperlat T indirectly for such contractions. Wu, in [8], determined Hyperlat T when T is a completely nonunitary (c.n.u.) contraction with a scalar-valued characteristic function or a direct sum of such contractions. In this note we investigate Hyperlat T for c.n.u. C_{11} contractions with finite defect indices. Our main result (Theorem 1) says that for such contractions elements in Hyperlat T are exactly the spectral subspaces H_{F} defined by Sz.-Nagy and Foiaş in [5]. Thus we can completely determine Hyperlat T in terms of the well-known structure of the hyperinvariant subspace lattice of normal operators. As a corollary, we show that for such contractions Hyperlat T is preserved, as a lattice, under quasi-similarities.
2. Preliminaries. A contraction T is completely nonunitary (c.n.u.) if there exists no nontrivial reducing subspace on which T is unitary. The defect indices of T are, by definition,

$$
d_{T}=\operatorname{rank}\left(I-T^{*} T\right)^{\frac{1}{2}} \text { and } d_{T^{*}}=\operatorname{rank}\left(I-T T^{*}\right)^{\frac{1}{2}} .
$$

[^1]$T \in C_{.1}$ (resp. $C_{1 .}$) if $T^{* n} x \nrightarrow 0$ (resp. $\left.T^{n} x \nrightarrow 0\right)$ for all $x \neq 0 ; C_{11}=C_{.1} \cap$ $C_{1 .}$. For a C_{11} contraction $T, d_{T}=d_{T^{*}}$. Let Θ_{T} denote the characteristic function of an arbitrary contraction T. There is a one-to-one correspondence between the invariant subspaces of T and the regular factorizations of Θ_{T}. If $K \subseteq H$ is invariant for T with the corresponding regular factorization $\Theta_{T}=$ $\Theta_{2} \Theta_{1}$ and $T=\left[\begin{array}{cc}T_{1} & { }_{T} \\ 0\end{array}\right]$ is the triangulation on $H=K \oplus K^{\perp}$, then the characteristic functions of T_{1}, T_{2} are the purely contractive parts of Θ_{1}, Θ_{2}, respectively. For more details the readers are referred to [5].

For arbitrary operators T_{1}, T_{2} on H_{1}, H_{2}, respectively, $T_{1} \prec T_{2}$ denotes that there exists a one-to-one operator X from H_{1} onto a dense linear manifold of H_{2} (called quasi-affinity) such that $X T_{1}=T_{2} X . T_{1}, T_{2}$ are quasisimilar ($T_{1} \sim T_{2}$) if $T_{1} \prec T_{2}$ and $T_{2} \prec T_{1}$. For any subset E of the unit circle C, let M_{E} denote the operator of multiplication by $e^{i t}$ on the space $L^{2}(E)$ of square-integrable functions on E. It was proved in [9] that any c.n.u. C_{11} contraction T with finite defect indices is quasi-similar to a uniquely determined operator, called the Jordan model of T, of the form $M_{E_{1}} \oplus \cdots \oplus$ $M_{E_{k}}$, where E_{1}, \ldots, E_{k} are Borel subsets of C satisfying $E_{1} \supseteq E_{2} \supseteq \cdots \supseteq$ E_{k}. In this case $E_{1}=\left\{t: \Theta_{T}(t)\right.$ not isometric $\}$.
We use t to denote the argument of a function defined on C. A statement involving t is said to be true if it holds for almost all t with respect to the Lebesgue measure. In particular, for $E, F \subseteq C, E=F$ means that $(E \backslash F) \cup$ ($F \backslash E$) has Lebesgue measure zero. For any subset F of $C, F^{\prime} \equiv C \backslash F$.
3. Main results. We start with the following

Lemma 1. Let T be a C_{11} contraction on H and U be a unitary operator on K. If there exists a one-to-one operator $X: H \rightarrow K$ such that $X T=U X$, then T is quasi-similar to the unitary operator $\left.U\right|_{\overline{X H}}$.

Proof. Since T, being a C_{11} contraction, is quasi-similar to a unitary operator, the assertion follows from Lemma 4.1 of [2] immediately.

Let T be a c.n.u. C_{11} contraction on H with finite defect indices and let $U=M_{E_{1}} \oplus \cdots \oplus M_{E_{k}}$ acting on $K=L^{2}\left(E_{1}\right) \oplus \cdots \oplus L^{2}\left(E_{k}\right)$ be its Jordan model. Let $X: H \rightarrow K$ and $Y: K \rightarrow H$ be quasi-affinities intertwining T and U. For any Borel subset $F \subseteq E_{1}$, let

$$
K_{F}=L^{2}\left(E_{1} \cap F\right) \oplus \cdots \oplus L^{2}\left(E_{k} \cap F\right)
$$

be the spectral subspace of K associated with F. For the contraction T we considered, $\sigma(T) \subseteq C$ holds and there has been developed a spectral decomposition (cf. [5, p. 318 and pp. 315-316, resp.]). Let H_{F} denote the spectral subspace associated with $F \subseteq C$. Indeed, H_{F} is the (unique) maximal subspace of H satisfying (i) $T H_{F} \subseteq H_{F}$, (ii) $\left.T_{F} \equiv T\right|_{H_{F}} \in C_{11}$ and (iii) $\Theta_{T_{F}}(t)$ is isometric for t in F^{\prime}. Moreover H_{F} is hyperinvariant for T. We shall show that such subspaces H_{F} give all the elements in Hyperlat T. We prove this in a series of lemmas.

Lemma 2. For any Borel subset $F \subseteq E_{1}, \overline{X H_{F}}=K_{F}$.
Proof. Let $K_{1}=\overline{X H_{F}}$. Since $\left.T_{F} \equiv T\right|_{H_{F}}$ is of class C_{11}, Lemma 1 implies that T_{F} is quasi-similar to the unitary operator $\left.U\right|_{K_{1}}$. Consider K as a subspace of L_{k}^{2} in the natural way. Hence K_{1} is a reducing subspace for the bilateral shift M on L_{k}^{2}. From the well-known structure of reducing subspaces of M, we obtain that $K_{1}=P L_{k}^{2}$, where P is a measurable function from C to the set of (orthogonal) projections on \mathbf{C}^{k}. Since

$$
K_{1} \subseteq K=L^{2}\left(E_{1}\right) \oplus \cdots \oplus L^{2}\left(E_{k}\right)
$$

we have

$$
P(t) \mathbf{C}^{k} \subseteq \mathbf{C}^{j} \oplus \underbrace{0 \oplus \cdots \oplus 0}_{k-j}
$$

for t in $E_{j} \backslash E_{j+1}, j=1, \ldots, k-1$, and $P(t)=0$ for t in E_{1}^{\prime}. For almost all t, let $\left\{\psi_{j}(t)\right\}_{1}^{k}$ be an orthonormal base of \mathbf{C}^{k} consisting of eigenvectors of $P(t)$, that is, such that

$$
P(t) \psi_{j}(t)=\delta_{j}(t) \psi_{j}(t), \quad j=1, \ldots, k
$$

where the eigenvalues $\delta_{j}(t)$ are arranged in nonincreasing order: $1 \geqslant \delta_{1}(t)$ $\geqslant \cdots \geqslant \delta_{k}(t) \geqslant 0$ (cf. [5, p. 272]). Let

$$
F_{j}=\{t: \operatorname{rank} P(t) \geqslant j\}=\left\{t: \delta_{j}(t)>0\right\} \quad \text { for } j=1, \ldots, k
$$

Then $F_{1} \supseteq F_{2} \supseteq \cdots \supseteq F_{k}, E_{j} \supseteq F_{j}$ and $P(t) \psi_{j}(t)=\chi_{F_{1}}(t) \psi_{j}(t)$ for each j. Setting $x_{j}(t)=\left(v(t), \psi_{j}(t)\right)$ for $v \in L_{k}^{2}$ where (,) denotes the usual inner product in \mathbf{C}^{k}, we have $v(t)=\sum_{1}^{k} x_{j}(t) \psi_{j}(t)$. Since for $v \in K_{1}$,

$$
v(t)=P(t) v(t)=\sum_{1}^{k} \chi_{F_{j}}(t) x_{j}(t) \psi_{j}(t)
$$

the induced transformation

$$
v \rightarrow x_{1} \chi_{F_{1}} \oplus \cdots \oplus x_{k} \chi_{F_{k}}
$$

maps K_{1} isometrically onto $L^{2}\left(F_{1}\right) \oplus \cdots \oplus L^{2}\left(F_{k}\right)$ (cf. [5, p. 272]). Moreover $\left.U\right|_{K_{1}}$ will be carried over by this transformation to $M_{F_{1}} \oplus \cdots \oplus M_{F_{k}}$. We infer that $F_{1}=\left\{t: \Theta_{T_{F}}(t)\right.$ not isometric $\} \subseteq F$ (cf. the remark in $\S 2$). Thus for $v \in K_{1}, v(t)=\sum_{1}^{k} \chi_{F_{j}}(t) x_{j}(t) \psi_{j}(t)=0$ on F^{\prime}, which shows that $v \in K_{F}$, and hence $K_{1} \subseteq K_{F}$.

To show the other inclusion, let $x \in K_{F}$ and $K_{2}=\overline{X H_{F}}$. Since $H=H_{F} \vee$ $H_{F^{\prime}}$, we have $K=K_{1} \vee K_{2}$. Hence there exist sequences $\left\{y_{n}\right\} \subseteq K_{1}$ and $\left\{z_{n}\right\} \subseteq K_{2}$ such that $y_{n}+z_{n} \rightarrow x$. From what we proved above, $\left\{y_{n}\right\} \subseteq K_{F}$ and $\left\{z_{n}\right\} \subseteq K_{F^{\prime}}$. Since $K=K_{F} \oplus K_{F^{\prime}}$, by applying the (orthogonal) projection onto K_{F} on both sides of $y_{n}+z_{n} \rightarrow x$ we obtain $y_{n} \rightarrow x$. This shows that $x \in K_{1}$, completing the proof.
For any Borel subset $F \subseteq E_{1}$, let $q\left(K_{F}\right)=\bigvee_{S T=T S} S Y K_{F}$. It is known that $q\left(K_{F}\right)$ is hyperinvariant for T and $\overline{X q\left(K_{F}\right)}=K_{F}$ (cf. [5, pp. 76-78]).

Lemma 3. For any Borel subset $F \subseteq E_{1}$, let $q\left(K_{F}\right)$ be defined as above. Then $q\left(K_{F}\right)=H_{F}$.

Proof. Let $\Theta_{T}=\Theta_{2} \Theta_{1}$ be the regular factorization corresponding to $q\left(K_{F}\right)$. To complete the proof it suffices to show that (i) Θ_{1} is outer, (ii) $\Theta_{1}(t)$ is isometric for t in F^{\prime} and (iii) $\Theta_{2}(t)$ is isometric for t in F (cf. [5, pp. 312 and 205]). Since $q\left(K_{F}\right) \in$ Hyperlat $T, \sigma\left(\left.T\right|_{q\left(K_{F}\right)}\right) \subseteq \sigma(T)$ (cf. [1, Lemma 3.1]). It follows that $\left.T\right|_{q\left(K_{F}\right)}$ is also of class C_{11} (cf. [5, p. 318]), and hence Θ_{1} is outer (from both sides). This proves (i).

Since $\overline{X q\left(K_{F}\right)}=K_{F}$ and $Y K_{F} \subseteq q\left(K_{F}\right)$, on the decompositions $H=q\left(K_{F}\right)$ $\oplus q\left(K_{F}\right)^{\perp}$ and $K=K_{F} \oplus K_{F^{\prime}}, X, Y, T$ and U can be triangulated as

$$
X=\left[\begin{array}{cc}
X_{1} & * \\
0 & X_{2}
\end{array}\right], \quad Y=\left[\begin{array}{cc}
Y_{1} & * \\
0 & Y_{2}
\end{array}\right], \quad T=\left[\begin{array}{cc}
T_{1} & * \\
0 & T_{2}
\end{array}\right], \quad U=\left[\begin{array}{cc}
U_{1} & 0 \\
0 & U_{2}
\end{array}\right]
$$

It is easily seen that X_{1} is a quasi-affinity intertwining T_{1}, U_{1}, so that $T_{1} \prec U_{1}$. Since $T_{1}=\left.T\right|_{q\left(K_{F}\right)}$ is a C_{11} contraction, we conclude from Lemma 1 that $T_{1} \sim U_{1}$. This shows that $U_{1}=\sum_{j=1}^{k} \oplus M_{E, \cap F}$ is the Jordan model of T_{1}, and hence $F=E_{1} \cap F=\left\{t: \Theta_{1}(t)\right.$ not isometric $\}$. Therefore $F^{\prime}=\{t$: $\Theta_{1}(t)$ isometric $\}$, which proves (ii). On the other hand, X_{2}^{*} and Y_{2}^{*} are one-to-one operators intertwining T_{2}^{*}, U_{2}^{*}. Note that T_{2} is also of class C_{11}. (This follows from the fact that $\operatorname{det} \Theta_{2} \not \equiv 0$ and [5, p. 318].) Let V be the unitary operator quasi-similar to T_{2}. We infer that there are one-to-one operators intertwining V^{*}, U_{2}^{*}. It follows from Lemma 4.1 of [2] that V^{*} and U_{2}^{*} are unitarily equivalent to direct summands of each other. By the third test problem in [4] we conclude that V^{*}, U_{2}^{*}, and hence V, U_{2}, are unitarily equivalent. So $T_{2} \sim U_{2}$. A similar argument as above shows that $E_{1} \cap F^{\prime}=$ $\left\{t: \Theta_{2}(t)\right.$ not isometric $\}$. Hence $E_{1}^{\prime} \cup F=\left\{t: \Theta_{2}(t)\right.$ isometric $\}$, which proves (iii) and completes the proof.

Lemma 4. Let $\mathfrak{T} \subseteq H$ be hyperinvariant for T with the corresponding factorization $\Theta_{T}=\Theta_{2} \Theta_{1}$ and let $F=\left\{t: \Theta_{1}(t)\right.$ not isometric $\}$. Then $\mathfrak{N}=H_{F}$.

Proof. As proved in Lemma 3, for hyperinvariant $\mathfrak{N},\left.T\right|_{\mathscr{R}}$ is of class C_{11}. Since $\Theta_{\left.T\right|_{0 x}}(t)$ is isometric for t in F^{\prime}, the maximality of H_{F} implies that $\mathfrak{T} \subseteq H_{F}$; cf. the remark before Lemma 2 . Hence $\overline{X \Re} \subseteq \overline{X H}_{F}=K_{F}$, by Lemma 2. We claim that $K_{F}=\bigvee_{S U=U S} S \overline{X \mathscr{M}}$. Indeed, using Lemma 1 we can show that $\left.T\right|_{\Re \pi}$ is quasi-similar to $\left.U\right|_{\bar{X} \pi}$. Now we proceed as in the proof of Lemma 2 with $\overline{X \mathscr{T}}$ in the role of K_{1}. Let P be a projection-valued function defined on C such that $\overline{x \mathscr{T}}=P L_{k}^{2}$. Choose the orthonormal base $\left\{\psi_{j}(t)\right\}_{1}^{k}$ of \mathbf{C}^{k} consisting of eigenvectors of $P(t)$, and let $F_{j}=\{t: \operatorname{rank} P(t) \geqslant$ $j\}$ for $j=1, \ldots, k$. Note that for $v \in L_{k}^{2}, v=\sum_{1}^{k} x_{j} \psi_{j}$, where $x_{j}(t)=$ $\left(v(t), \psi_{j}(t)\right)$ for each j and $v=\Sigma_{1}^{k} \chi_{F} x_{j} \psi_{j}$ if $v \in \overline{X \Re \text { 亿. As shown before, the }}$ transformation $v \rightarrow \chi_{F_{1}} x_{1} \oplus \cdots \oplus \chi_{F_{k}} x_{k}$ maps $\overline{X \Re}$ isometrically onto $L^{2}\left(F_{1}\right) \oplus \cdots \oplus L^{2}\left(F_{k}\right)$, and hence $M_{F_{1}} \oplus \cdots \oplus M_{F_{k}}$ is the Jordan model of $\left.T\right|_{\Re}$. We have $F_{1}=\left\{t: \Theta_{\left.T\right|_{श R}}(t)\right.$ not isometric $\}=F=E_{1} \cap F$. For each j,
let S_{j} be the operator on K defined by

$$
S_{j}(v)=0 \oplus \cdots \oplus \chi_{E_{j} \cap F} x_{1} \oplus \cdots \oplus 0
$$

for $v=\Sigma_{1}^{k} x_{j} \psi_{j} \in K$. It is easily seen that $S_{j} U=U S_{j}$ and

$$
\overline{S_{j} \overline{X \Re}}=0 \oplus \cdots \oplus L^{2}\left(E_{j} \cap F\right) \oplus \cdots \oplus 0
$$

for each j. It follows that $K_{F}=\bigvee_{S U=U S} S \overline{X \mathscr{T}}$, as asserted. By Lemma 3,

$$
H_{F}=q\left(K_{F}\right)=\bigvee_{V T} \bigvee_{T V} V Y K_{F}=\bigvee_{V T} \underline{=}_{T V} \quad \bigvee_{U U} \underline{\underline{U S}} V Y S \overline{X গ \pi}
$$

Since VYSX commutes with T and \mathfrak{M} is hyperinvariant for T, we have $H_{F} \subseteq \mathfrak{R}$. This, together with $\mathfrak{N} \subseteq H_{F}$, completes the proof.

Now we have the following main theorem.
Theorem 1. Let T be a c.n.u. C_{11} contraction on H with $d_{T}=d_{T^{*}}=n<\infty$. Let $K \subseteq H$ be an invariant subspace with the corresponding regular factorization $\Theta_{T}=\Theta_{2} \Theta_{1}$ and let $E=\left\{t: \Theta_{T}(t)\right.$ not isometric $\}$. Then the following are equivalent:
(1) $K \in$ Hyperlat T;
(2) $K=H_{F}$ for some Borel subset $F \subseteq E$;
(3) the intermediate space of $\Theta_{T}=\Theta_{2} \Theta_{1}$ is of dimension n and for almost all t, either $\Theta_{2}(t)$ or $\Theta_{1}(t)$ is isometric.

Proof. (1) \Rightarrow (2). That $K=H_{F}$, where $F=\left\{t: \Theta_{1}(t)\right.$ not isometric $\}$, is proved in Lemma 4. It is a simple matter to check that $F \subseteq E$.
(2) \Rightarrow (3). Since $\left.T\right|_{H_{F}} \in C_{11}$, the intermediate space of $\Theta_{T}=\Theta_{2} \Theta_{1}$ is of dimension n (cf. [5, p. 192]). The rest is proved in [5, p. 312].
(3) \Rightarrow (1). Since the intermediate space of $\Theta_{T}=\Theta_{2} \Theta_{1}$ is of dimension n and $\operatorname{det} \Theta_{1} \not \equiv 0$ (otherwise $\operatorname{det} \Theta_{T} \equiv 0$), we conclude that $\left.T\right|_{K}$ is of class C_{11} (cf. [5, p. 318]). Therefore, Θ_{1} is outer (from both sides). This, together with the other condition in (3), implies that $K=H_{F}$, where $F=\left\{t: \Theta_{1}(t)\right.$ not isometric $\}$ (cf. [5, p. 312]). Thus $K \in$ Hyperlat T.
Corollary 1. Let T be as in Theorem 1 and let $U=M_{E_{1}} \oplus \cdots \oplus M_{E_{k}}$, acting on K, be its Jordan model. Then Hyperlat T is (lattice) isomorphic to Hyperlat U. Moreover, if $X: H \rightarrow K$ and $Y: K \rightarrow H$ are quasi-affinities intertwining T, U, then the mapping $\mathfrak{M} \rightarrow \overline{X \Re}$ implements the lattice isomorphism from Hyperlat T onto Hyperlat U, and its inverse is given by $\Re \rightarrow q(\mathcal{\Re})=\bigvee_{S T=T S} S Y \Re$. In this case, $\left.T\right|_{\Re}$ and $\left.U\right|_{\bar{X} \Re}$ are quasi-similar to each other.

Proof. The first assertion follows from Theorem 1, [5, pp. 315-316] and the well-known structure of Hyperlat U [3]. The rest are immediate consequences of Lemmas 1,2 and 3.

Corollary 2. Let T_{1}, T_{2} be c.n.u. C_{11} contractions with finite defect indices. If T_{1} is quasi-similar to T_{2}, then Hyperlat T_{1} is (lattice) isomorphic to Hyperlat T_{2}.

Corollary 3. Let T be a c.n.u. C_{11} contraction with finite defect indices. If $K_{1}, K_{2} \in$ Hyperlat T and $\left.T\right|_{K_{1}}$ is quasi-similar to $\left.T\right|_{K_{2}}$, then $K_{1}=K_{2}$.

Proof. $\left.\left.T\right|_{K_{1}} \sim T\right|_{K_{2}}$ implies that they have the same Jordan model, say, $U=M_{E_{1}} \oplus \cdots \oplus M_{E_{k}}$. By Theorem 1, $K_{1}=H_{E_{1}}=K_{2}$.

Added in proof. After submitting this paper, the author was notified that the main result here was independently obtained by R. I. Teodorescu (Factorisations régulières et sous-espaces hyperinvariants, to appear in Acta Sci. Math. (Szeged)) for arbitrary c.n.u. C_{11} contractions. However the approaches are completely different.

References

1. C. Apostol, Spectral decompositions and functional calculus, Rev. Roumaine Math. Pures Appl. 13 (1968), 1481-1528.
2. R. G. Douglas, On the operator equation $S^{*} X T=X$ and related topics, Acta Sci. Math. Szeged 30 (1969), 19-32.
3. R. G. Douglas and C. Pearcy, On a topology for invariant subspaces, J. Functional Analysis 2 (1968), 323-341.
4. R. V. Kadison and I. M. Singer, Three test problems in operator theory, Pacific J. Math. 7 (1957), 1101-1106.
5. B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam; Akadémiai Kiadó, Budapest, 1970.
6. M. Uchiyama, Hyperinvariant subspaces of operators of class $C_{0}(N)$, Acta Sci. Math. (Szeged) 39 (1977), 179-184.
7. _, Hyperinvariant subspaces of contractions of class C.0, Hokkaido Math. J. 6 (1977), 260-272.
8. P. Y. Wu, Hyperinvariant subspaces of the direct sum of certain contractions, Indiana Univ. Math. J. 27 (1978), 267-274.
9. ___ Jordan model for weak contractions, Acta Sci. Math. (Szeged) 40 (1978), 189-196.

Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan, Republic of China

[^0]:

 American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

[^1]: Received by the editors March 27, 1978.
 AMS (MOS) subject classifications (1970). Primary 47A15, 47A45.
 Key words and phrases. Hyperinvariant subspace, C_{11} contraction, quasi-similarity, Jordan model for C_{11} contractions.
 ${ }^{1}$ This research was partially supported by National Science Council of Taiwan, Republic of China.

