Ton with Ciouda SIio

1896

A T
RERE AT E K
PE AR - F F - F =

]

e R]
File Deduplication with Cloud Storage File System

By 2icRA Student : Chan-I Ku
hERERE 2T Advisor : Shyan-Ming Yuan
2 T AR +

A Thesis
Submitted to College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master of Science

in
Computer Science

Mar 2013

Hsinchu, Taiwan, Republic of China

PE AR - F OF - & = F

e e Y]
B TR hERE R T K

Rz~ F T FAFEmMmLis

3 &

Hadoop Distributed File System (HDFS)#. & * i f# i~ € engilfd s 4 > & 4.1

X W EAT AR PRIL s 100 7 3 1L HBASE % HEEHEY 4 & % 4 (Middle layer

file system) » . HDFS ¥ i£ 3] File Deduplication &7 it » & RJE * 7 Feh® FL & & § 7

i o fEIEHE 0 - ﬁ = AzFE.g i P45 3% RED-HDFES(Reliable File Deduplicated

HDFS)» ¥ - & 5 ¥ % % & 4 3% FD-HDFS (File Deduplicated HDFS)# fé i+~ %
R AR RS AR S SRS B AR L LA

BR- Bp 3222k RE Y4 - 7 g B* = 31| HDFS » %3 Hadoop

replication = = § & Bfhx Ktz > &

EAAFRFRPFZF s o H) ZAG 2 LA
1 a7 éi%i‘ s bR PR 3 BAAESRE 2 iﬁ{g#ﬁ@ﬁi‘%ﬁjﬁ;}%ﬁﬁﬂéi? o
F

SR = B2 gk kst o 4y EndNote Cloud 3= o Bgsr § 4 #-3 &
P 21s F BRI O o

B 4= 3 HDFS, Data Deduplication, Cloud Computing, Single instance storage.

File Deduplication with Cloud Storage File System

Student : Chan-1 Ku Advisor : Dr. Shyan-Ming Yuan

Degree Program of Computer Science

National Chiao Tung University
ABSTRACT

The Hadoop Distributed File System (HDFS) is used to solve the storage problem of
huge data, but does not provide a handling mechanism of duplicate files. In this study, the
middle layer file system in the HBASE virtual architecture is used to do File Deduplicate in
HDFS, with two architectures-proposed according to different requires of the applied
requirement reliability, therein one is RFD-HDFS (Reliable File Deduplicated HDES) which
is not permitted to have any errors and the other is FD-HDFS (File Deduplicated HDFS)
which can tolerate very few errors. In addition to the advantage of the space complexity, the
marginal benefits from it are explored. Assuming a popular video-is uploaded to HDFS by one
million users, through the Hadoop replication, they are divided into three million files to store,
that is a practice wasting disk space very much and only by the cloud to remove repeats for
effectively loading. By.that, only three file spaces are takenup, namely the 100% utility of
removing duplicate files reaches. The experimental architecture isa cloud based
documentation system, like the version of EndNote Cloud, to simulate the cluster effect of
massive database when the researcher synchronized the data with cloud storage.

Key Words: HDFS, Data Deduplication, Cloud Computing, Single instance storage.

Acknowledgements

HOL R R R TR A s P ABOR o RIS F
imlkﬁim’wuf%vN“fﬁﬁ YA (e - — fRAT AP R { R EF S
F’gfmfm% HA LR R R R A

U RFADPTIHELE RPUFE L RS RRENF I TR L @
AL FrRhREFAG kg o R A IR R T § L iR anR e fofe AR T o R A AT
TR AER AL 2 B HENE LR F A @l B afll o Bl R B R AR E
o5 i s AN e g o gk

EEEFEETEEN KT BT R AT AT XL N B ER P 2 X
BRric 4 AR et R A e A S A BE 5 AT B LSRG 2 R L
W pe AR 2t BN R AR LE R T @Y B LA L DB e 2 LT
Bt o N AP P e o A D R TN R ERMS R S

ﬁﬁmﬁﬁihhmuﬁ:?ﬁ%ﬁ’ﬁﬁéﬁﬁﬁﬁiﬁﬁkﬁﬁﬁo

List of Contents

ACKNOWIEAGEMENTS ...ttt e e nae e Il
LISE OF CONTENTS ... v
LIS OF FIQUIE .o ettt sttt sttt st e sbe e be e e sbeenbeeneenreas VI
List of Tablesq% - W . NN . Bcooceneeecnns VI
1 INEFOTUCHION . oot citieni ettt E b h it ekttt 1
1.1 MOUIVATION ..o o SRR ket b amt e e 1

. 4 NG cpvrveeeerer B gom B oo B VR % WSRO 3

1.3 Importance and ContribULION............cc.....o oo cctinsani e sre e cae i e, 4

1.4/ 'Outline of the thesis. ...l e 5

2 Background And Related WOIKcoooo. it bt aas et 6
2.1 Data DedUPIICAIION ..iiuev. ittt st et de bt e e snee e 6
2.1.1 Detection of the Same Data / Similar Datacoeievmmeiiineeenn 6

2.1.2 Source Deduplication(Client)/ Target Deduplication (Storage Devices)7

2.1.3 " In-line Processing/POSt ProCESSING.........c.evuveiitaresisasnsesiassseeseesseessnnseesnes 7
2.1.4 Keep 0ld data/New data..............ccueweaiiinaibanmeie e ieabeseseeseseeee e 8
2.1.5 Whole File Deduplication vs. Chunk Data Deduplication..................... 8
2.1.6 ClOU STOMAGEiieuee s teee ettt ittt nb e nreas 9
2.2 HDFS e 9
2.3 HESN-SHAZ......ooi e 10
2.4 HBASE ... 11
System Design and Implementationccoceieiiiin e 12
Bl OVEIVIBW .ttt 12

.11 HDFES 12

3.1.2 RFD-HDFS ... 12
3.1.3 FD-HDFS ..o 13
3.2 ATCHITECTUIE ..o 14
.21 HDFS s 14
3.2.2 RFD-HDFS. ... i i i bt 16
3.2.3 EDE DGR I A B s 19
1 T0C TR AN [0 0] 01111 1 1 o SRR 21
B3l dFTle Writing........ S D T ™ 21
Y Fillcading..mn . N B W ... AW e 22
3.3.3 BaCKgrouNG-WOIKENcioueiiiueeeeieeeiieis daaianesie e inas nannastee e enee e 22
3.3.4 FD-HDFS Function PreSentationccoceourereiinenreesnssiesmssssseseenenns 23
K EEriments . T C) . NN 26
4.1 Environment, N0 SEIEING .iiveieeireaieieeseereiee e seesieeee s bane snssmnssseeeeseees 26
4.2 EXPErIMENE L ... oeuessmesmnsunssuss s susss s s s a0 a0 T e nveseee b an b aneesbanneesseeneeans 27
4.3 Result of EXPEriMENt L.........ooceir i iiiie e eiinneeeianaesieeneeshan e shannashneseeeseesneessnnns 28
4.4 The Setting of EXPeriment 2cooieiiiiiiieiesstbee e sfanie i e 30
45 ReSUlt Of EXPEFIMENT 2........oiieieieieiveeesiiinneeeaiinneanasieesnnesseeneesseeseaessesseesseans 31
4.6 The setting Of EXPErIMENt:3 it ittt 33
4.7 Result of EXPeriment 3.ot 34
4.8 OVEINEA......c.eiiiiiiieii e 35
4.9 Multi-Threading(MUIti-USEIS)........coiverieiieiieie e e 37
CONCIUSION ...ttt 38
FULUIE WWOTK ...t 40
RETEIENCE ... 41

List of Figure

Figure 1: The DFS Usage in duplicate filesc.ccoooeiiiiiiiinenieniece e, 3
Figure 2 : Use Case Of HDFSooiii i i iree e 15
Figure 3: HDES WIITE...eeiiiiie it i iismnns e nennens e sneessdiie e eeeeesieesiee e snessneeeesnes 15
Figure 4: HDFES REAUcoviiieiiece ek aanne st e ee e nna e ens 16
Figure 5: The architecture of RED-HDFS ... i 17
Figure 6: Use case 0f RFD-HDFS ciaetie e sni s ssiianain e see e 17
Figure 7: RFD-HDFES WITEE ..ot o iiiihens el et sinesannbene e ane e e 18
Figure 8: RFD-HDFS REAMcceoiuiiee s citiieine e ciiiueanaesaesneanaesnaeeeeensaabessssannesseeseeanes 18
Figure 9: Use case 0f FD-HDES ..ii. ... ittt s 19
Figure 10: FD-HDFS WIIEitceeiueaueieasuesuesnaesssineeseesueseesseessessnesssanssssiiioneseennes 20
Figure 11: FD-HDFES REAU..........ciiiiiiiiiiiiieiciie it ban bt nn e 20
Figure 12: The writing of RED-HDFES ..ccciii i ittt caa st 21
Figure 13: The write of FD-HDFSccooiiiiie i it snnetbe e 21
Figure 14: The reading of RFD-HDFS ... ittt 22
Figure 15: The reading of FD-HDFESot 22
Figure 16: The background worker of RFD-HDFS..........ccccccoiiviiiiiiiece e 23
Figure 17: File LISt PrEVIEBWccviiiiiiiiee et s 24
Figure 18: The actual files in HDFS..........cccooi i 24
Figure 19: The file information in HBASE table ... 25
Figure 20: Two rows in table and a single file stored...........cccooeveiveiiencvccc e 25
Figure 21: The column Family was delete, but not file in HDFSccccoeie, 26

VI

FIgure 22: EXL1-DFS USAQEcoeeiieiiiriiesiieiesiie sttt s sre e 30

FIgUre 23: EX2-DFS USAQJEveceeieeieeiieitieite e e stessee e ste e sta e snaesaesneesnaeeeanes 33
FIgUre 24: EX3-DFS USAQEooeeieeiiniiesiieie ettt 35
Figure 25: Time usage for Hash and Comparisonccccvevvvvevesieseesnsie e 37

List of Tables

Table 1: HAad00P NOUES ...t et ire et onba e vaearae et s teeenteesneeens 26
Table 2: The schema and samples of HBase Table..........cc..ooooviiivitin i, 27
Table 3: EX1-USEr 118 TISt...... oo ittt et sk st e 27
TaADIE 4: EXL-DFS USAQE . .cvveiveereaseeisueseeasisnnnesseasiensaesssssssssasssesssesseessasssestassnnsseesseens 29
Table 5: EX2-USEr il HSt........... it it e 30
TabIE 6: EX2-DFS USAQE ..iteuurr v eiianeesseesuaanaessnesseasssasieneesseesseessesseessesiasetanssasibieneenseens 32
Table 7: EX3-HDES LISt iiiiiiiiiiiiiiisitieiiiaiasstiensasnsssneansesnseseeeseeenesbnne danansesseeseesneessens 33
Table 8: EX3-DIFS USAQE . .veerverrerrearsianeestaissssnaiissisnesiasitennneseeesesaneeshanssansatinnensesseessenns 34
Table 9: Sample files for overhead tesStingccooveieisitiresibescesitin e, 36
Table 10: Result of OVerhead testocuiiiereisiiinieiaeise e 36
Table 11: Compare With HDFES 38

VII

1 Introduction

As to solving the problems of massive data storage and computing, Google's distributed
Google file system (GFS) at 2003[1], proposed a large number of data processing model
MapReduce at 2004, and a large structured data storage system based on GFS: BigTable at
2006[2], Corresponds to Google, an open-sourced organization- Apache Also continued to
establish incorporating the corresponding GFS's HDFS[3], corresponding BigTable of

HBase[4].

1.1 Motivation

The enterprise has gradually begun to test and apply analytical uses Hadoop as the
storage of large amounts of data and information. However, we found that the growth rate of
the data is much larger than the default value of the 3 time DFS Replication.

The Data Deduplication technology is widely used in business File Server, Database,
NAS (RAID), Backup Devices or lots storage devices, but there 1s-no any implement in
Hadoop.

Hadoop is widely used in the kinds of distributed computing and massive data storage,
through the following simple experiment that, HDFS did not apply any Common Data
Deduplication technology.

When we uploaded three files to the Hadoop Distributed File System (HDFS), which the
file’s name is different but content is the same..

To exclude the deliberately manufactured to ensure reliability(HDFS Replication) of the

1

data copy of file duplication, three different file names with the same file contents are
generated in a duplicate copy of files. However, the confirmed HDFS does not have any
mechanism to deal with file duplication and it wastes storage space. Here is the Hash sum by
SHA-2[5] from the file apache-solr-4.0.x.tgz, in which we can deduce the three files are
identical, and only their file names are different since the three values of hash sum are the

same.

[root@na % od

e37¢36f910f9 ‘ 6C9 ad6ch4cec3f

01b309

83587 !31e44b77f3a03504ce47bdf78ff -
01h3093f886099688a3690603f5c879d03cf6296218618 C63
/root/Downloads/apac -4.0.2

Copy these 3 files to HDFS by shell command:
Hadoop dfs -copyFromLocal ~/Downloads/apache-solr-4.0.0.tgz test

Hadoop dfs -copyFromLocal ~/Downloads/apache-solr-4.0.1.tgz test

Hadoop dfs -copyFromLocal ~/Downloads/apache-solr-4.0.2.tgz test

DFS Usage(GB)

1.6

14 —
1.2 /
1 /

—

0.8 —o—DFS Usage(GB)

0.6

0.4

0.2

Initail File 1 upload File 2 upload File 3 upload

Figure 1: The DFS Usage in duplicate files
By DFS Usage, the three-each-0.2G identical-contented files occupy a 0.6G DFS use of

space, Obviously HDFS is occupied by duplicate files.

1.2 'Objectives

In this thesis, we will use the tree view of the file system architecture based on HBASE
Table, In the following, we will create the Mapping table between virtual path and Hash sum,
The underlying Key-Value(NoSQL) storage[6] query mechanism has been packaged into the
tree file folder access concept, by which the users can access FD-HDFS by the original tree
folder concept file.

However, due to the presence of Hash, there are possibly the Hash Table balance
problems and birthday attack[7]. MD5 and SHAL can develop the same HASH file by violent
calculation[8]. However, the SHA2 and SHA3 method of artificially repeating the HASH
value are still not found but the Collision cannot be avoided. Therefore, two architectures are

proposed in accordance with the reliability of application requirements: One is the
3

RFD-HDFS (Reliable File Deduplicated HDFS) which does not allow any error. The other is
FD-HDFS (File Deduplicated HDFS) which can tolerate very few errors. In addition to reduce
of space complexity, the marginal benefits will be explored and compared.

In the normal distribution of user file holdings; there is inevitably the intersection in the
files held by different users and even multiple intersections. In a variety of environments, the
probability of different intersections is-higher forvideos, music, documents, and e-books, that
user repeat cross-holdings, and the unique probability for the machine-generated files is
generally lower.

For example, If time is frozen, there is limited number of video files all over the world to
be load by Hadoop, such as. Google YouTube using GFS. As for the technical documents,
reports, patents, journals, research-reports, test reports, assessment data, procurement
reference documents, pictures and other electronic files are centralized and provide query
interface. Or, the cloud based EndNote can be constructed. When the graduate student
synchronizes the paper to the cloud terminal, through the Deduplication technology, massive
data storage becomes possible and efficient that the MapReduce computing capability can be
used more to-construct the data document Meta-Data so as to achieve the efficacy of quick
searches and optimize Data-Mining. The premise of these benefits, however, is framed in the

effectively-used storage space system, which is the purpose to achieve in this study.

1.3 Importance and Contribution

Although the architectures in the traditional hard disk array has the higher characteristics
of reducing data and the use of cutting and version stack, these algorithms cannot be applied
to the Hadoop since Hadoop has its unique cut demand. The traditional hard disk array cannot

be elastic expanded and has no clustering effect of mass data, therefore, this framework

4

maintains the Replication that HDFS maintains the reliability and there is no side effects
sacrificing reliability in exchange for space-saving and no the Over Head brought by
complicated algorithm.

Assuming a popular video is uploaded to HDFS by one million users and stored by
cutting into three million files through Hadoop replication, it is a practice very wasting disk
space. Only after the cloud removes duplicate files-.can. all files be effectively loaded. Through
this system, only three file spaces are occupied, namely reaching the utility of completely
removing duplicate files.

In the FD-HDFS architecture, the Client terminal can achieve the effect of Source
Deduplication by HASH sum, so as to save upload time and bandwidth. The RFD-HDFS can

completely ensure data accuracy-and achieve the benefits of de-duplication.

1.4 "Outline of the thesis

Chapter 1 has presented a brief introduction to the concepts of uncertainty, and the
importance of uncertainty analysis in the context of transport-transformation models. It has
also discussed the steps involved in a systematic uncertainty analysis, and the associated
limitations. Additionally, Chapter 1 summarizes the objectives and presents a brief overview
of this thesis.

Chapter 2 presents the relevant background information in the following order: Data
Deduplication, HDFS, Hash-SHA2, Hash Collision and HBase.

Chapter 3 shows the original HDFS model architecture, the RFD-HDFS model
architecture, and the FD-HDFS model architecture.

Chapter 4, the experiment environment set with: 1. 20 users upload the folders when

there is no data in the cloud. 2. 20 users upload data when the database has a certain amount

5

of data. 3. The crossover experiment, in which the same user samples 10-100% of the
precursor in the database.

Chapter 5 presents the conclusions of this thesis, and recommendations for future work.
This is followed by bibliography.

Chapter 6 future works of the thesis.

2 Background And Related \Work

2.1 Data Deduplication

The hard disk drive, Disk RAID, NAS, Type storage or Storage Server..., we can do broadly

the data deduplication job to do the following classification.

2.1.1 . Detection of the Same Data / Similar Data

The same data detection mainly includes two levels, the same File and the same Data
Block. In the technology of the whole file detection[9], the Data Mining is conducted through
the hash technology[5]. In the same Data Block detection, the fingerprint is checked through
the fixed-sized partition or the check and deletion of duplicate data are conducted through the
detection technology of content-defined chunking and the sliding block technology.

The similar data detection uses similar data characteristics, through the shingle
technology and the bloom filter technology, the duplicate data which the same data detection
cannot detect is found out. For similar data, the delta technology is used to encode, minimize,

and compress similar data, further reducing the storage space and the network bandwidth

6

usage.

2.1.2 Source Deduplication(Client)/ Target Deduplication

(Storage Devices)

In typical storage applications such as backup and replication, data is moved from
Source to the target storage devices through the network. Therefore, the source end is the
front-end application Host or the Backup server to produce the raw data. The target end is the
ultimate storage equipment;-such-as-\V/TL or disk arrays.

But at the front end where the-data-deletion calculus is conducted, the deletion computing is
first conducted before the data is sent to the network. Therefore, it has the advantage of saving
the network bandwidth and the upload time, but the deletion computing will occupy the
computing resources in the front end of the host. As for the advantages and disadvantages of
Target Deduplication, although the network bandwidth cannot be saved, the resources of the

front-end host will not be consumed.

2.1.3 In-line Processing/Post Processing

Online In-line processing means the deletion computing is synchronously executed when
the data is performed with backup, copy or writing to the disk. In other words, when the data
is copied for the preparation of sending it to the Destination through the network, or the
back-end storage device receives the Source data via the Internet and prepare to write to the
disk, the De-Dupe system will conduct data content comparison and deletion computing at the

same time. Processing after writing in means after the data is written to the disk, it is started

by instruction, or the deletion computing is conducted for the data stored on the disc in the
customized scheduled startup De-Dupe system.

The advantages and disadvantages of online In-line processing and processing after
writing are just at the opposite. Since data comparison and deletion computing quite consume
processor resources, if the online real-time processing architecture is adopted, the system
performance will be clearly temporized so that the-backup speed will be delayed. But
relatively, since the deletion computing has been conducted before the data is written to the
disc, it occupies less space. In comparison, although the system performance will not be
affected in processing after writing in, we can choose off-peak hours to start the De-Dupe. But
when the data is written to the disc, the original form without deletion is maintained, so that
the same storage space is occupied-like the front-end and the reduction effect is shown after
the De-Dupe is started up. Therefore, the De-dupe products in processing after writing in; the

users must prepare a larger temporary storage space.

2.1.47 Keep old data/new data

De-Dupe technology will delete duplicate data, and there are two deletion ways:

One is to retain old data. When new information is determined to be the repeat of the old
data, the system will remove new data and create an index pointing to the old data. The other
is to retain new information. When the new data is determined as the repeat with the old data, the

old data will be deleted and the index will be pointed to the new location.

2.1.5 Whole File Deduplication / Chunk Data

Deduplication

DUTCH T. MEYER]10] find that whole-file deduplication together with sparseness is a
highly efficient means of lowering storage consumption, even in a backup scenario. It
approaches the effectiveness of conventional deduplication at a much lower cost in
performance and complexity. The environment we studied, despite being homogeneous,
shows a large diversity in file systems and file sizes. These challenges, the increase in
unstructured files and an ever-deepening and:more populated namespace pose significant
challenge for future file system designs. However, at least one problem — that of file
fragmentation, appears to be solved, provided that a machine has periods of inactivity in
which defragmentation can be run.

There should be more trouble. in reliability and compatibility at the peer project of

Hadoop: Nutch, Hive, Pig ...

2.1.6 Cloud Storage

These above-mentioned technologies are widely used in the storage devices of enterprise
File Server, Database, NAS (RAID), and Backup Devices. However, there is no related
implementation in Hadoop since HDFS has its special block mode and network Topology[11]
demand to ensure the reliability of the copy. So, the similar data detection is not the
conditions to remove duplicate files. In too much emphasizing on the space use of algorithm,
the questions of reliability and the hard error reversion will be relatively occur and the
overhead will be produced in effect. Therefore, here the same data detection is used to apply
the detection technology for the same file data in HDFS, and the File Level Deduplication is

conducted in the methods of HASH and Stream Compare.

2.2 HDFS

The Hadoop Distributed File System (HDFS) is a distributed file system designed to run
on commodity hardware[3], and be used to replace the high-priced server; HDFS is highly
Fault-tolerant and designed to be deployed on low-cost hardware. Used to replace the
high-priced Disk Raid, HDFS provides application data with high throughput access, to
replace the hardware routing shunt dispersed bandwidth and server load. There are automatic
propagation and flexibility to increase or decrease for.mass storage.

MapReduce may analyze the data and create the meta-data of file for file searching, and
HDFS is base storage for MapReduce.

HDFS File access can be achieved through the native Java API, the Thrift API to
generate aclient in the language of the users’ choosing (C++, Java, Python, PHP, Ruby, Erlang,
Perl, Haskell, C#, Cocoa, Smalltalk; and OCaml), the command-line interface, or browsed

through the HDFS-UI webapp over HTTP.

2.3 Hash-SHA?

In cryptography, SHA-2 is a set of cryptographic hash functions (SHA-224, SHA-256, SHA-384, SHA-512)
designed by the National Security Agency (NSA) and published in 2001 by the NIST'as a U.S. Federal
Information Processing Standard[5]. SHA stands for Secure Hash Algorithm: SHA-2 includes a significant
number of changes from its predecessor, SHA-1. SHA-2 consists of a set of four hash functions with digests that
are 224, 256, 384 or 512 bits.

In 2005, security flaws were identified in SHA-1, namely that a mathematical weakness might exist,
indicating that a stronger hash function would be desirable. Although SHA-2 bears some similarity to the SHA-1
algorithm, these attacks have not been successfully extended to SHA-2.

In computer science, a collision or clash is a situation that occurs when two distinct

pieces of data have the same hash value, checksum, fingerprint, or cryptographic digest.[12]

10

Collisions are unavoidable whenever members of a very large set (such as all possible
person names, or if this was sent to other people, or all possible computer files) are mapped to
a relatively short bit string. This is merely an instance of the pigeonhole principle.

The impact of collisions depends on the application. When hash functions and
fingerprints are used to identify similar data, such as homologous DNA sequences or similar
audio files, the functions are designed soas to-maximize the probability of collision between
distinct but similar data. Checksums, on the other hand, are designed to minimize the
probability of collisions between similar inputs, without regard for collisions between very
different inputs
How big is SHA2-512? How. often does the hash collision happen?

Total Bits of SHA512 = 2°12.~-10'°Bit
If we store 1 Million files into hash table, the chance of hash collision for next store operation

should be 106/101°°=107149

2.4 HBase

Apache HBase: random, real-time read/write access to your Big Data[4]. This project's
goal is the hosting of very large tables -- billions of rows X millions of columns -- atop
clusters of commodity hardware. Apache HBase is an open-source, distributed, versioned,
column-oriented store modeled after Google's Bigtable: A Distributed Storage System for
Structured Data by Chang et al. Just as Bigtable leverages the distributed data storage
provided by the Google File System, Apache HBase provides Bigtable-like capabilities on top
of Hadoop and HDFS.

HBase uses a data model very similar to that of Bigtable. Users store data rows in

labeled tables. A data row has a sortable key and an arbitrary number of columns. The table is

11

stored sparsely, so that rows in the same table can have crazily-varying columns, if the user
likes. At its core, HBase/BigTable is a map. Depending on your programming language
background, you may be more familiar with the terms associative array (PHP), dictionary
(Python), Hash (Ruby), or Object (JavaScript).

Atable's column families are specified when the table is created, and are difficult or
impossible to modify later. It can also.be expensive to.add new column families, so it's a good
idea to specify all the ones you'll need up front.

Fortunately, a column family may have any number of columns, denoted by a column
"qualifier" or"label".

All data 1s versioned either using an integer timestamp (seconds since the epoch), or

another integer of your choice. The-client may specify the timestamp when inserting data.

3 . System Design and Implementation

3.1 Overview

3.1.1 HDFS

In uploading files directly to HDFS, it is the original architecture of HDFS[13]. The
Hadoop API provides a Shell command and Java API as a file management interface.

The version of Hadoop is 1.03; the version of HBase is 0.94.3.

3.1.2 RFD-HDFS

In the applications which require precise calculation without any errors, such as financial
computing, errors are definitely not allowed in the computing system. Due to the SHA Hash
Collision, the conflict probability still cannot be ignored even though it is very low
(depending on the algorithm). In binary comparison, in order to ensure data accuracy, time
and resources will be wasted for the file comparison. Therefore, the binary comparison circuit
or the MapReduce cluster computing capacity[14]-can be used to speed up file comparison. At
the same time, the Post Processing method is adopted to reduce user’s time for waiting- files
are first uploaded to the temporary storage pool, waiting for the background worker for the
implementation of file comparison. In this study, the Stream Comparison is used to partially
retrieve data fragments to conduct Binary Compare in the sequential serial method.

Three phases are divided-to-determine whether the files are the same:

1. If the Hash value exists.
2. If the File Sizes are the same.
3. Gradually and sequentially executing Stream Comparison.

Once any difference is found in the comparison work in-each-phase, the comparison will
be immediately stopped so as not to consume computing power and occupy resources. For the
Collision policy of the Duplicate files, if the SHA value of the file is the same, the file size is
the same. At the time, it Is necessary to first put the files in the Storage Pool, waiting for the
Background Process to conduct the Stream comparison to decide whether the hash collision
policy is started. Therein, the used file path is appended after the file name as a handling

strategy of hash collision.

3.1.3 FD-HDFS

In the application where little errors can be tolerated, such as Web information extraction

13

(for search engine use) and vocabulary and semantic analysis, the repeat Collision less likely
occurs and the judgment result application will not be affected. The HASHs with the same
fingerprints are regarded as the duplicate files. Thus, the effect of Source Deduplication can
be reached, the effect of reducing the network bandwidth and saving upload time is achieved,
and even the burden of NameNode and HBase can be reduced.

For example, web crawler software Nutch[15] daily needs to capture page files to HDFS.
In accordance with the comparison of the HASH value and the HBASE database, it can
quickly learn if the website content changes so that the time for Binary Compare can be saved
and the target can be retrieved, such as directly generating the SHA value from the source end.
If the source SHA does not change, the time of uploading Full Content will be saved further.
If Hash generates program to-implant the Host from source, the leading of NameNode and
HMaster can be eased so that a crawl for a website becomes the crawl for new added and

changed files, which saves not only upload time and the bandwidth but server side Loading.

3.2 Architecture

3.2.1 HDES

In the use case of HDFS, users may access file by the Hadoop shell command or Hadoop
API.

HDFS: Hadoop Distributed file system.

Write: The API of file write into HDFS (Upload).

Read: The API of file read from HDFS (Download).

14

Write Read

d T

HDFS

Figure 2 : Use Case of HDFS

. 2:create
1l:create ¥ ' PO
H [o > 7:complete
PFS 3:-write H CECEEETRECRRLEETTERERETEY
client [,
tes ._i namenode
6:close
A
client JVM :
client node | !
4:write packagei i 5:ack package
Y ¢ 4 4
..... > ™ N
-1 —
5 <‘5
datanode datanode datanode

HDFS write

Figure 3: HDFS Write

15

1:open " .,....2.:3?:?:(,'.:'.[.9?.[5
T > locations
: 3:read
client [..,
......... > namenode
D)
6:close
client JVM
client node
4:read i 5:read
v
datanode datanode datanode
HDFS read

Figure 4: HDES Read

3.2.2° RED-HDES

RFD-HDFS: A middle layer between the client and HDFS, Provide a viewpoint of visual
HDFS, if client try to access the file over RFD-HDFS, the files Deduplication is enabled.

HBase: The HBase table records the mapping between Hash key and Full Path of file.

Hash Generator: In the hash key generator function for file, it could be present by SHA2,
SHAS...

Binary comparer: The comparer could be a circuit of hardware or MapReduce function
of Hadoop.

Storage Pool: A Temporary file pool for post processing, the binary comparer will load

the file and do comparisons in background. All files store into pool will be log for tracking,

16

and file could be roll back for fail over.

Write Read

4 1

RFD-HDFS

Hash Generator

HBASE

Storage Pool

HDFS

Binary Comparer

Figure 6: Use case of RFD-HDFS

17

1:write Request 2:Hash generate 3:Check File Exist/Add row

erte P SHA2_512 (E LY) HMaSter
Controller

RFD-HDFS Hash Generator

S:Write into poo' "u-uuu-nl""""' '.'

*
Ll
pannt®
‘"“-

a:Get|File R
4:write into HDFS,." d:Update HBase

't' "0'
anst -— 1
" istri 2ereate -
sxdooo e
Storage{Poo X e
b:Compare:with exis o - —

4write package S:ack package

Streamkom rer

c:Collisiof happen j ‘

2:Check Exist

Controller Ml 522212 HEERE. HMaster

RFD-HDFS

Hash Generator HBase

_uq"c,é.: Read from HDFS

s
*x
.
‘e
s
.
.
o,”
s
]
.
.
‘.
*a

‘loeatlons Nametiode

""" OutPutsiream

,
"
chent node ,\'
o
H"h
4read '-.Ms:nnd
'\,‘H.
m \m
datanode. datancde. datanode
HDFS read

RFD-HDFS read

Figure 8: RFD-HDFS Read

18

3.2.3 FD-HDFS

FD-HDFS: If the Error Torrance is acceptable, we can ignore the collision of Hash; let’s
move the Hash generator to the side of client. And the binary comparer and storage pool is

removed.

Writ Read
Client FD-HDFS
Hash Generator
HBASE
HDEFS

Figure 9: Use case of FD-HDFS

19

3:Check File Exist

=

write

Controller

2:write Request .+
o FD-HDFS

1:Hash g'enerate

e LEEEELLES
o -

o .

0
o" ¥

4:write into HDFS 4:Add row

ar

Hash Generator

FD-HDFS Client

dwrite package S:ack package

. 4 2
Datahode i . DataNode “
: gy
atanade dnnde dtanade

3:Check File Exist

read -
CEEEEEEEE HMaster
o controlier | -
HBase

L
FD-HDFs

1:Checkifile Hash
Atlocal i

T m

FsData

Local Table OutPutstream

FD-HDFS Client e rase

HDFS write

FD-HDFS read

Figure 11: FD-HDFS Read

20

3.3 Algorithm

3.3.1 File Writing

Figure 12: The writing of RFD-HDFS

JUSER

IClient Hash Generator

JFO-HDFS

iHEase

IHDFS

Generate Hash(File)

.
1
|
Wiite(File, FullPath,Hask)

Figure 13: The write of FD-HDFS

21

ILSER IFO-HDFS IServer HASH Generator IHBase IHDFS I8torage Pool
i i i i i
1 1 1 1 1

‘Wirite(File, FullP ath) : : : : :
1 1 1 1
Generate Hash(Filey | | | |
'A 1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
{ 7777777777777 1 1 1
1 1 1 1
1 1 1 1
Check Hash Exist(Hash) I I 1
1 B | 1 1
1 1 1
1 1 1
1 1 1
]] 1
< ——————————————— P N Ry R B U | |
1 1 1 1
I Hash not exist, write fila(File) I 1
1 f By L 1
1 1 F 1
1 1 1
1 1 1
] 1 1
<_ ______________ e e e e e e 1
1 Hash exist, write file(File) | |
1 1 1 By !
1 1 1
1 1 1
1 1 1
1 1 1
be oo Lo o __ e oo s e oMo e e e
Insert nfw file row inta Table(HasthllFath) [|
i i i
1 1 1
1 1 1
< _______________ ' _____ 1 1
Wirite: Finish s " : :
1 1 1
1 1 1

3.3.2 File reading

IUSER IFO-HOFS HBase HDFS IStorage Pool

| | | |
I I I I
Read(FullPath) | | | |
] GetHash key (FulP ath)! ! !
1 1
I]
I I
e . : :
I I I
Retriev the file fror HOF S(HASH) | b
i i
i i
s R :
I I I
| Retrieve the file fram Starage PookHASH) |

I I

1 1
(SRERREEEEEEE booooomooooooee R .
I I I
I I I
I I I
I I I
<_ _____________ T I I I
I I I I
L1 | I I I

Figure 14: The reading of RFED-HDFS
JUSER IFD-HDFS HBase HDFS

Read(FullPath;)

et Hash key(FuIIF’ath)I

Retrievi the file from HOF S{HASH

3.3.3 Background Worker

Figure 15: The reading of FD-HDFS

22

IBinary Comparer IStorage Pool JHDFS JHBaze

Retrieve File [

|
Get the Hash from File(File)
h

Content is the same,E_Ellete File(File)

<_ ______________
Contentis nat the same, Mave file(F ig)
1
i
1
< 7777777777777777 :’777777777777?777 I
1 Undate the Link of file in Table
-
1 I
1 I
1 I
1 I
R ittt dooocoocooooooooooood fpoooocoocoooooooooosoo
u o = L u u L} L] 1 L}

Figure 16: The background worker of RFD-HDFS

3.3.4 FD-HDFS Function Presentation

Upload folder preview

command: Is /datadisk/pic

[root@namenode ~]# 1s /fdatadisk/pic

Upload folder to FD-HDFS

command: java -jar FD.jar writefolder /datadisk/pic pic

List Files in FD-HDFS

command: java -jar FD.jar Is pic

23

root@localhost:~

File Edit VWiew Search Terminal Help

<folderl=
<folder2>

DSCF1717.JPG 748999

DSCF1715.JPG 799718

DSCF1892.JPG 609193

DSCF1890.JPG 824796

DSCF1712.JPG 735477

DSCF1893.JPG 1050498

DSCF1972.JPG 928098

DSCF1998.JPG 1217653

DSCF1894.JPG 1838586

DSCF1714.JPG 858168

DSCF1897.JPG a@7878

DSCF1999.JPG 1254858

DSCF1895.JPG 8590089

.456.,JPG.crc 5876

DSCF1882.JPG 913482

DSCF1716.JPG 7301683

.12345.JPG.crc 7300

DSCF1898.JPG 1058800

DSCF1891.JPG 881013

DSCF1886.JPG 971512

DSCF1997.JPG 949527 [:
.picasa.ini 19564

Figure 17: File List Preview

The actual files in HDFS

root@localhost:~

File Edit View Search Terminal Help

[root@namenode ~]# hadoop fs -1s FD HDFS
Found 129 items

-rw-r--r-- 3 root supergroup 782455 2013-01-07 15:56 /user/root/FD HDF5/89232428184a66d7d%9a9f765a8T5Ta73b83445ThcoT6
-rW-r--r-- 3 root supergroup 914127 2013-01-87 15:56 /user/root/FD HDFS/8f263cd6493d11328bal3fd635880aa78de73978b35
-MW-r--r-- 3 root supergroup 855664 2013-01-07 15:56 /user/root/FD HDFS/11af25f78b8T27a8cd2bcfBabe380cb5f6e43b88a243
-rw-r--r-- 3 root supergroup 963419 2013-01-07 15:56 /user/root/FD HDF5/13d73d59aa3c5b8c56476d169d1cTe5ae355af89e97b
-MW-r--r-- 3 root supergroup 1017567 2813-01-07 15:56 /user/root/FD_HDFS/14719b48247a12886c255853d3efab5007a5e982eeab
-MW-r--r-- 3 root supergroup 860030 2013-01-07 15:56 /user/root/FD HDFS/1702f1e67487a5b8c7624a4785e6a512343c9d763c5e
-rw-r--r-- 3 root supergroup 942825 2013-01-07 15:56 /user/root/FD HDF5/19b9c2eB89ccddf665d75d98258519422bcd92b829ceb
-rW-r--r-- 3 root supergroup 869462 2013-01-07 15:56 /user/root/FD HDFS/lbefe@17d10bc531db28a892e88b637ecb2cl2a7fafs
-rW-r--r-- 3 root supergroup 1130178 2013-01-07 15:56 /user/root/FD_HDFS/22b@leclcc7act381dbcl66573efb27828581d9025d
-rw-r--r-- 3 root supergroup 1158891 20813-01-07 15:56 /user/root/FD_HDF5/24d4767a9c969da554cdafc9636c0befb42e9c2c715¢
-rW-r--r-- 3 root supergroup 1000880 2013-01-07 15:56 /user/root/FD_HDFS/2549e5f751e51335el6e35e9afbld846fda322f1e5a7
-rW-r--r-- 3 root supergroup 762449 2013-01-07 15:56 /user/root/FD HDFS/2al13d957d2T4693ad293fa278bbdT8cab0c8d52d1145
-rwW-r--r-- 3 root supergroup 1127594 2013-81-87 15:56 /user/root/FD HDFS/2b4b2b4d232ceb4elc9d27aa53cc1fBfbI5657c137ea
-rW-r--r-- 3 root supergroup 9718061 2013-01-07 15:56 /user/root/FD HDFS/2c657a8583bc2220892ed99531161b73dfa5d477c4af
-rW-r--r-- 3 root supergroup 884614 2013-01-07 15:56 /user/root/FD HDFS/2ccfd51lee314df5588eea5973547ae6c50c42501c3T1
-rW-r--r-- 3 root supergroup 689193 2013-81-87 15:56 /user/root/FD HDFS/2df245804e7943fa2113d651fcb7ba755d3e8e7b8368
-rW-r--r-- 3 root supergroup 914322 2013-01-07 15:56 /user/root/FD HDFS/2el@81c978efa3febcef8b22653963e31a576d5dffo9b
-rW-r--r-- 3 root supergroup 1205224 2013-01-07 15:56 /user/root/FD_HDFS/311e2ba7b46T7677623Tb295432bebd016172b180e8c
-rW-r--r-- 3 root supergroup 1784214 2813-01-07 15:56 /user/root/FD HDFS/323320212c5f11415e396d2a2d043d853f5chleddf7c
-rW-r--r-- 3 root supergroup 1092913 2013-01-87 15:56 /user/root/FD_HDFS/3378a4ba5d4d40f67e7ddd535a1d7138b1d2df f89ddf
-rW-r--r-- 3 root supergroup 1373323 2013-01-07 15:56 /user/root/FD_HDFS/3af93859134459de214bff15c4ab6c902816807295b5
-rW-r--r-- 3 root supergroup 814168 2013-01-87 15:56 /user/root/FD HDFS/3bleaad7c6bdB6febac86a37de7912a4c09013638be3(|

Figure 18: The actual files in HDFS

The file information in HBASE table

24

root@localhost:~

File Edit View Search Terminal Help

hbase(main) :021:0> scan 'hash2file’
ROW COLUMN+CELL

09232428184a66d7d9a9f765a8f5fa73b column=path:pic/folderl/DSCF1865.]PG, timestamp=1357545382263, value=782455
83445fbcof65975375ece3fa40

0f263cd6493d11328bal3fd635880aa78 column=path:pic/folderl/DSCF1858.JPG, timestamp=1357545384820, value=914127
de73978b35fbf62c8d7c5bad19f4cl

11af25f78b8f27a8cd2bcf8abc380ch5f column=path:pic/folder2/folder4/DSCF1916.JPG, timestamp=1357545396849, value=855664
6e43b88a24381e26d3ddo48cd9a7

13d73d59%aa3c5b8c56476d169d1cfesae column=path:pic/folderl/DSCF1859.JPG, timestamp=1357545381647, value=983419
355af89e97b4fd9b42cfe6fb790287

14719b48247a126886c255853d3efa6500 column=path:pic/folderl/DSCF1856.JPG, timestamp=1357545385155, value=1017567
Ta5e982eeab43a4830532ae655c412

1702f1e67487a5b8c7624a4185e6a5123 column=path:pic/folder2/folder4/DSCF1909.JPG, timestamp=1357545392099, value=860830
43c9d763c5edbadBed18e4badccas

19b9c2e89ccddf665d75d98258519422b column=path:pic/folder2/folder4/DSCF1911.JPG, timestamp=1357545389402, value=9420825
cd92b829ceb5f22dage8raT3i5b12

1be6e@17d10bc531db28a892e88b637ec column=path:pic/folder2/DSCF1876.JPG, timestamp=1357545387930, value=869462
b2c12a7fef5efc4ab7958c8cf89

22bBleclcc7act381dbcb166573efb278 column=path:pic/folder2/folder4/DSCF1902.JPG, timestamp=1357545396571, value=1130178
28581d9025d2fecb501ae0311064b2

24d4767a9c969da554cdalc9636cBbefb column=path:pic/folder2/folderd4/DSCF1901.JPG, timestamp=1357545391307, value=1158891
42e9c2c715c758ef95a026a05e b3

2549e5f751e51335el6e35e9afbld846f column=path:pic/folder2/folderd4/DSCF1903.JPG, timestamp=1357545392393, value=1800880

Figure 19: The file information in HBASE table

Let’s truncate table and clear-hdfs

Upload 2 files which the content-of files both the same

command: java -jar FD.jar write /datadisk/pic/DSCF1715.JPG pic/file1.JPG
command: java -jar FD.jar write /datadisk/pic/DSCF1715.JPG pic/file2.JPG

We’ll found two rows in table of hbase and a single file stored in HDFS.

hbase(main):824:0> scan 'hash2file’

ROW COLUMN+CELL

4al1753c628b9a%e68e754df562146120F column=path:pic/filel.JPG, timestamp=1357546497889, value=799718
BDabb2edf867e753762625ac6ed03283

4a1753c628b9a%e68e754df562746120F column=path:pic/file2.JPG, timestamp=1357546502231, value=799718
BDabb2edf867e753762625ac6ed03283

1 row(s) in ©.8340 seconds

hbase (main):025:0> [

[root@namenode ~]# hadoop fs -1s FD_HDFS

Found 1 items

-rw-r--r-- 3 root supergroup 799718 2013-01-07 16:14 /user/root/FD HDFS/4al753c628b9a%e68e754df562746120f0a0
e?53?626256cﬁed@32§§

Figure 20: Two rows in table and a single file stored

Read file from FD-HDFS

command: java -jar FD.jar read pic/file1l.JPG /datadisk/pic/file1.JPG

Delete filel from FD-HDFS

command: java -jar FD.jar delete pic/filel.JPG

25

hbase(main):029:0> scan 'hash2file’

ROW COLUMN+CELL

431753c628b%9a39e68e754dT562146120T column=path:pic/file2.JPG, timestamp=1357546502231, value=799718
B82a0b2edf867e753762625ac6ed03283

1 row(s) in 8.02608 seconds

hbase(main):030:0>

-rw-r--r-- 3 root supergroup 799718 2813-81-87 16:14 /user/root/FD _HDFS/4a1753c628b%a%e68e754df562f46120T0aBb2ed f867
e753762625ac6edd3283
You have new mail in /var/spool/mail/root

Figure 21: The column Family was delete, but not file in HDFS

Delete file2 from FD-HDFS

command: java -jar FD.jar delete pic/file2.JPG

If the setting of delete‘option is true, the file will be removing from HDFS, and nothing exists
in table and hdfs,

But the default value is false,.the file is.no use right now, but it may be uploading by the other

user in the future.

4 EXxperiments

Try to build up an EndNote[16] storage over cloud, import the collection of papers from
20 student, and simulate the user upload all the files to cloud.

The setting of Hadoop dfs.replication is 3.

4.1 Environment, and Setting

Table 1: Hadoop Nodes

Host Name ON) IP HBase Process

NameNode | CentOS 6.3 | 192.168.74.100 | HMaster FD.jar& RFD.jar

DataNodel | CentOS 6.3 | 192.168.74.101 | HRegion

DataNode2

Cent0S 6.3

192.168.74.102

HRegion

DataNode3

CentOS 6.3

192.168.74.103

HRegion

Table 2: The schema and samples of HBase Table

Row Key | Time Stamp | FullPath File Attributes
Permissions | Size | Update Time
File HASH Tl Test/apache-solr-4.0.0.tgz | -rwxr-xr-x 200M | T11
File HASH T2 Test/apache-solr-4.0.1.tgz | -rwxr-xr-x 200M | T12
File HASH T3 Test/apache-solr-4.0.2.tgz | -rwxr-xr-x 200M | T13

4.2 'Experiment 1

The experiment 1, FD-HDFS is empty, there is a little duplicated file between user and

user, and no-duplicate between user and FD-HDFS before user upload.

The flow of experiment 1:

a. Truncate HBase table and delete all files from FD-HDFS.

b. Upload user# files.

c. Write down the space usage.

Repeat b and c.

Table 3: Ex1-User file list

File

Size(MB)

File

Count

Duplicate

(%)

File Size*3

27

USERO01 7.2 18 0 21.6
USERO02 141 25 0 42.3
USERO03 6.3 30 0 18.9
USERO04 8.3 22 0 24.9
USERO05 68.9 24 0.29 206.7
USERO06 10 22 0 30
USERO7 23.2 38 10.3 69.6
USERO08 101.6 184 2.2 304.8
USERO09 70.3 80 2.5 210.9
USER10 15.6 33 23.7 46.8
USER11 419 62 3.8 125.7
USER12 94.3 164 6.3 282.9
USER13 61.1 108 7.6 183.3
USER14 25,3 38 11.8 75.9
USER15 34.7 62 8.9 104.1
USER16 24.4 42 2 73.2
USER17 3.6 15 0 10.8
USER18 20.1 31 8.4 60.3
USER19 121 20 28 36.3
USER20 3.7 18 135 111
Total 646.7 1036 2% per user 1904.1

4.3 Result of Experiment 1

28

Table 4: Ex1-DFS usage

HDFS(MB) FD-HDFS(MB) RFD-HDFS(MB)

Initial 2.25 9.05 8
USERO1 24 24.59 24.12
USER02 66.63 67.22 66.75
USER03 85.66 86.25 85.78
USER04 110.9 1115 111.45
USER05 319.22 319.22 318.75
USER06 351.27 349.46 348.99
USER07 42129 414.15 413.68
USER08 728.57 714.81 714.34
USER09 941.12 921.94 921.47
USER10 988.21 958.16 957.69
USER11 1090 1060 1060
USER12 1370 1320 1320
USER13 1550 1490 1490
USER14 1690 1550 1550
USER15 1730 1650 1650
USER16 1800 1720 1720
USER17 1810 1730 1730
USER18 1870 1790 1790
USER19 1910 1810 1810
USER20 1920 1820 1820

29

DFS Usage, HDFS Empty

2500
2000
1500
1000
500
0
LA PR T LI RPROINN NN ANNDADLNND DA
NN TN SRR G\ TN SN SN SN SN SN SN SN SN SN SN TN SN CHEEN TN

=@=—HDFS =@=FD-HDFS ==@=RFD-HDFS

4.4 The setting

Let’s fi ilesw '

Simulating the 'o:ili _______
The flow o \u 1t 2:

a. Truncate HE -

b. Upload user# files.

c. Write down the space usage.
Repeat b to c.

Table 5: Ex2-User file list

File File Count Duplicate File

Size(MB) (%) Size*3

30

USERO01 7.2 18 66 21.6
USERO02 141 25 76 42.3
USERO03 6.3 30 30 18.9
USERO04 8.3 22 59 24.9
USERO05 68.9 24 58 206.7
USERO06 10 22 13 30
USERO7 23.2 38 42 69.6
USERO8 101.6 144 41 304.8
USERQ09 70.3 120 50 210.9
USER10 15.6 33 57 46.8
USER11 41.9 62 38 125.7
USER12 943 164 17 282.9
USER13 61.1 108 26 183.3
USER14 25,3 38 73 75.9
USER15 34.7 62 74 104.1
USER16 244 42 83 73.2
USER17 3.6 15 33 10.8
USER18 20.1 31 61 60.3
USER19 12.1 20 75 36.3
USER20 3.7 18 72 11.1
Total 646.7 1036 40.9 1904.1

4.5 Result of Experiment 2

31

Table 6: Ex2-DFS usage

HDFS(GB) FD-HDFS(GB) RFD-HDFS(
GB)
Initial 44.81 44.82 44.82
USERO1 44.83 44.83 44.83
USER02 44.87 44.83 44.83
USERO03 44.89 44.84 44.84
USER04 44.91 44.84 44.84
USERO05 45.12 44.86 44.86
USERO06 45.15 44.89 44,89
USEROQ7 4521 44.93 44.93
USERO08 4551 45.10 45.10
USERO09 45.72 45.19 45.19
USER10 45.77 45.21 45.21
USER11 45.88 45.24 45.24
USER12 46.02 45.47 45.47
USER13 46.35 45.62 45.62
USER14 4643 45.65 45.65
USER15 46.53 45.66 45.66
USER16 46.60 45.67 45.67
USER17 46.61 45.68 45.68
USER18 46.67 45.70 45.70
USER19 46.72 45.71 45.71
USER20 46.73 45.71 45.71

32

DFS Usage, HDFS Imported

47
46.5
46
45.5
45
445
44
435
T I PIT LI RIR DI DIPPN NP

'\ '\,
P L X & PR XSS
& F T ITFEFFFTFTETEEE

=@=—HDFS <=@=FD-HDFS ==@=RFD-HDFS

The flow o eri

a. Truncate HB “-\b nd delete all files from FD-HDFS.
b. Upload files to FC D\"r duplicate i o~

c. Upload users8 files.
d. Write down the increase of space usage.

d. Repeatbtod.

Table 7: Ex3-HDFS List

Duplicat File Size(MB) File Count File

33

e (%) Size*3
HDFS00% 0 101.6 184 304.8
HDFS10% 10 101.6 184 304.8
HDFS20% 20 101.6 184 304.8
HDFS30% 30 101.6 184 304.8
HDFS40% 40 101.6 184 304.8
HDFS50% 50 101.6 184 304.8
HDFS60% 60 101.6 184 304.8
HDFS70% 70 101.6 184 304.8
HDFS80% 80 101.6 184 304.8
HDFS90% 90 101.6 184 304.8
HDFS100% 100 101.6 184 304.8

4.7 Result of Experiment 3

Table 8: Ex3-DFS usage

HDFS FD-HDFS RFD-HDFS
HDFS00% 304.81 299.61 299.61
HDFS10% 304.82 269.34 269.34
HDFS20% 304.77 241.18 241.18
HDFS30% 304.80 210.81 210.81
HDFS40% 304.81 174.03 174.03
HDFS50% 304.81 151.99 151.99

34

HDFS60% 304.78 121.7 121.7
HDFS70% 304.80 91.46 91.46
HDFS80% 304.82 62.14 62.14
HDFS90% 304.80 32.20 32.20
HDFS100% 304.81 0 0
DFS Usage
350
300 ® & & & & & & & & & O
250
200
150
100
50
0
Qe Qe Qe Qo Qo Qe Ao Ao Ao N SN
Q Q Q \] Q Q Q Q Q \ \]
S & & > o oy <0 S S < S
& & §F & & & & & & & Q\QQ%
=@=—=HDFS ==@=FD-HDFS RFD-HDFS

Figure 24: Ex3-DFS usage

4.8 Overhead

The experiment of overhead was running at VMware WorkStation 9, the hard disk drive
is 1T 5400rpm.

6 file will be upload to FD-HDFS, let’s record the time span in log file.

The flow of experiment overhead:
a. Truncate HBase table and delete all files from FD-HDFS.

b. Upload file #.

35

c. Write down the log for time usage.

Repeat b to d.
Table 9: Sample files for overhead testing
File Size(MB)
File0 131

36

Time Usage (sec)
2500

2000
1500
1000

500

FileO Filel File2 File3 File4 File5

=@=[FD-HDFS(RFD-HDFS Post process) === RFD-HDFS(In-Process) HDFS

Figure-25: Time usage for Hash and Comparison

4.9 Multi-Threading(Multi-Users)

20 User upload all file to cloud at the same time. The system have no issue about
Multi-Threading.
The flow of experiment Multi-Users:

Truncate HBase table and delete all files from FD-HDES.

e

=

Upload all files from 20 users one by one.

Truncate HBase table and delete all files from FD-HDFS.

1

o

Upload all files from 20 users at the same time.

File Size(MB) Log

Single thread | 2 minutes 28 sec 04:42:59-985-HASH start

04:45:27-989-WRITEFOLDER End

Multi thread 2 minutes 9 sec 04:31:37-985-HASH start

37

04:33:46-195-WRITEFOLDER End

We’ll see the multi-threading is a little faster than the single one. But the user count is much

bigger than 20, the effective of nodes cluster should not a few second of process time.

5 Conclusion

Table 11: Compare with HDFS

HDFS RFD-HDFS FD-HDES
File No Yes Yes
Deduplication
File Reliability | O 0 X(SHA2-512=2"")

The Loading of | No

Hash generate, Stream

Hash generate

comparison compare

The Cost of Full Full The duplicated file
Upload time upload/download time and
and Bandwidth bandwidth are almost zero
Loading of Normal Normal May be reduced
NameNode and

HMaster

Same Data / Not support. Same Data Same Data

Similar Data

Source Not support. Target Dedup Source Dedup
Dedup/Target

Dedup

In Line Not support. Post Process In Line Process
Process/Post

Process

Keep old Not support. Keep old data Keep old data

data/new data

SHAA1 needs 2° to find the file of different content but equal Hash Sum[8]. It is obvious that
the SHA2-512 collision probability is very low, so the experimental results of RFD-HDFS
and FD-HDES are identical.-That-is; although the Hash Collision Policy has been concluded,
there is no opportunity to use. The chance of the hash collision should be really small, but
how about the Nuclear Science and financial application? That’s the reason about the model
of RFD-HDFS, which will'be individually listed since many systems still cannot afford
one-astronomical number error, many systems have the requirements of saving transmission
time and the bandwidth, and the both have suitable occasions and applications.

From first experimental results, we can observe that the probability of holding duplicate
files between User and User is not high.

The reason why the repeat exists is because in the experiment, the students electing the
same course participated and needed to report the paper report, that the opportunity
interactively holding the same file. But as long as the clouds do not have any information, the
rate of repetition is low.

In the second experiment, we had simulated the cloud HD-HDFS operation for a certain
time and have housed many papers. Many documents already exist in FD-HDFS, under which
we can observe the space complexity decreased.

In the third experiment, the same user uploaded the same paper at different points of time.

39

We can find that the FD-HDFS system housed more papers have less space occupancy rate. In
ideal, when storage references reach one hundred percent, then all new existing files will no
longer consume space.

In conclusion, a centralized cloud system can gradually lead to the increase of file
repetition when the users upload data. Through file de-duplication, the storage space required
can be greatly reduced.

Through this system; incorporating some type of file population becomes possible. What
is needed is only constant space.

RFD-HDES system suitable for use in commercial information, nuclear engineering, if
the application cannot allow any.error; FD-HDFS could implement at most kind of files, if a

small error is acceptable.

6 . Future Work

The'MapReduce is useful to determine how to split'the file-to data blocks (Chunk), For
example: a Longest Common Subsequence (LCS) for determine the diff of the file content,
but if the file was split, there should be data fragmentation issue. DUTCH T. MEYER[10]
find that whole-file deduplication together with sparseness is a highly efficient means of
lowering storage consumption, even in a backup scenario. It approaches the effectiveness of
conventional deduplication at a much lower cost in performance and complexity.

Hadoop provide compressed stream write in, but it’s optional and should be handle by
programmer or user. If the middle layer file system exists, the compress function could apply
to each file of FD-HDFS, and user does not have to care about it at all.

It should be easy to port the architecture to IBM GPFS[17] and Amazon S3(Dropbox)[18]

40

easily, everything we have to do is change the API of cloud storage.

MapReduce, CUDA or a specific hardware may reduce the overhead of hash generate
and stream comparison.(RFD-HDFS)

How about a BitTorrent Proxy server for speed up the download time and reduce the
bandwidth requirement of ISP.

The replica of file is reduced. For data localization, the topology is useful at the hotspot

files.

7 Reference

[1] _ S. Ghemawat, H. Gobioff, and S. T. Leung, "The Google file
system,” in ACM SIGOPS Operating Systems Review, 2003, pp. 29-43.

[2] F Chang,]. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.
Burrows, et al,, "Bigtable: A distributed storage system for structured
data," ACM Transactions on Computer Systems (TOCS), vol. 26, p. 4,
2008.

[3] T. White, "Hadoop : the definitive guide," ed: Sebastopol,
Calif. : O'Reilly Media, Inc., 2009.

[4] L. George, "HBase : the definitive guide,” ed: Sebastopol, CA :
O'Reilly, 2011.

[5] "~ D.Eastlakeand P. Jones, "US secure hash algorithm 1
(SHA1)," ed: RFC 3174, September, 2001.

[6] M. Stonebraker;, "SQL databases v. NoSQL databases,"
Communications of the ACM, vol. 53, pp. 10-11, 2010.

[7] M. Bellare and T. Kohno, "Hash function balance and its
impact on birthday attacks," in Advances in Cryptology-Eurocrypt 2004,
2004, pp. 401-418.

[8] B.Schneier, "New cryptanalytic results against SHA-1,"
Weblog: Schneier on Security, 2005.

[9] W.]. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur, "Single
instance storage in Windows 2000," in Proceedings of the 4th USENIX

41

Windows Systems Symposium, 2000, pp. 13-24.

[10] D.T. Meyer and W.]. Bolosky, "A study of practical
deduplication,” Trans. Storage, vol. 7, pp. 1-20, 2012.

[11] J.]J. Rao and K. V. Cornelio, "An Optimized Resource
Allocation Approach for Data-Intensive Workloads Using
Topology-Aware Resource Allocation,” in Cloud Computing in
Emerging Markets (CCEM), 2012 IEEE International Conference on,
2012, pp. 1-4.

[12] J. L. Carter.and M. N. Wegman, "Universal classes of hash
functions," Journal of computer and system sciences, vol. 18, pp.
143-154, 1979.

[13] D.Borthakur, "HDFS Architecture Guide," 2008.

[14] L.Kolb, A. Thor, and E. Rahm, "Dedoop: efficient
deduplication with Hadoop," Proc. VLDB Endow., vol. 5, pp. 1878-1881,
2012.

[15] B. Nutch, "Open source search," Queue. v2 i2, pp. 54-61,
2004.

[16] M. Reis and G. Resiss, "EndNote 5 reference
manager—functions—improvements—personal experiences,"
Schweiz Rundsch Med Prax, vol. 91, pp. 1645-50, 2002.

[17]]. Barkes, M. R: Barrios, E Cougard, P. G. Crumley, D. Marin, H.
Reddy, et al., "GPFS: a parallel file system,” IBM International Technical
Support Organization, 1998.

[18]]. Varia, "Cloud architectures,” White Paper of Amazon,
jineshvaria. s3. amazonaws. com/public/cloudarchitectures-varia. pdf,
2008.

42

Appendix A: C# Code of the Paper Graber

public void ThreadProc()

{

//Grab Paper from website

mmt 1 =0;

//SendEmail sendEmail = new SendEmail();

StreamWriter sw = new StreamWriter("C:\\ouput" + loopEnd + ".txt");

HttpWebResponse response ,-

//form.but tonGrab.BackColor = Color.Red;

CookieCollection cookies = new CookieCollection();

//String TimeFormat = "HH:mm:ss";

- T .

DateTime startTime = DateTime.NoWéL

- -

DateTime CurrentTime = DateTime.Now;

DateTime EndTime = DateTime.Now;'

TimeSpan timeSpan = TimeSpan.Zero; ;

//FormPaperGrabing. textBoxStartTime.Text = startTime.ToString(TimeFormat);

//FormPaperGrabing. textBoxStartTime.Refresh() ;L

Regex regex = new Regex(@"\/stable\/pdfplus/(.*).pdf");

//Regex regex = new Regex(@".*ft_gateway.cfm[?]id=(.*pdf.*)[""] title.*");
B -‘

null, cookies);

MatchCollection mc;
_—

System.I0.StreamReader reader;

int retryCount = 0;

for (i = loopStart; i < loopEnd; 1 += loopStep)

{
int endNum = tagUrl.IndexOf("&",

9);
tagUrl = tagUrl.Remove(79, endNum - 79);
tagUrl = tagUrl.Insert(79, i.ToString());
string respHIML;
try
{
response = HttpWebResponseUtility.CreateGetHttpResponse(tagUrl, null,

reader = new System.IO.StreamReader(response.GetResponseStream(),

43

System.Text .Encoding.UTFR);
respHIML = reader.ReadToEnd();

}
catch (Exception e)

{

sw.WriteLine("ERROR " + 1 + " in " + loopEnd + e.Message);
sw.Flush();
if (retryCount < 2)

{ .a B

retryCount += 1,

mc = regex.Matches(respHIML);

foreach (Match item in mc)
L
{ —
String line = "http://www.jstor.org/stable/pdfplus/" +

item.Groups[1].Value + ".pdf?acceptTCLue”m

sw.WriteLine(line);

}
FormPaperGrabing. textBoxIndex.Text = i.ToString();

™ NNy

FormPaperGrabing. textBoxIndex.Refresh();
= _— —_— - —

CurrentTime = DateTime.Now;

timeSpan = CurrentTime.Subtract(startTime);

double avgSeconds = timeSpan.TotalSeconds / 1;

EndTime = CurrentTime.AddSeconds((loopEnd - 1) * avgSeconds);

FormPaperGrabing. textBoxTimeSpan.Text = timeSpan.Hours.ToString() + "Hours" +
timeSpan.Minutes.ToString() + "Minutes" + timeSpan.Seconds.ToString() + "Seconds";

FormPaperGrabing. textBoxTimeSpan.Refresh();
FormPaperGrabing. textBoxTimeEnd.Text = EndTime.ToString(TimeFormat);

44

FormPaperGrabing. textBoxTimeEnd.Refresh();

}
FormPaperGrabing.buttonGrab.BackColor = Color.Green;

+ loopEnd + " finish in

to

sendEmail.Send("PaperGrabing pass" + loopStart +
+ 1, "C:\\ouput" + loopEnd + ".txt");
)

catch (Exception e)

{

}
finally

U

//sendEmail.Send("PaperGrabing End", "");

sw.Close();

45

Appendix B: Java Code of the main, command controller

public enum EnumCommand {
LS, DELETE, WRITE, READ, HASHREAD, HASHWRITE, WRITEFOLDER, WRITEHDFS, TRUNCATE,
TEST

}

public static void main(String[] args) throws Exception {
List<String> argsSB = Arrays.asList(args);
EnumCommand enumCommand = null;
if (argsSB:size() > 0) {

enumCommand = EnumCommand.valueOf(argsSB.get(0).toUpperCase());

switch (enumCommand) {
case LS:
if (argsSB.size() 1= 2)
throw new Exception("Source and Destination Require");
LS(argsSB.get(1));
break;
case WRITE:
if (argsSB.size() 1= 3)
throw new Exception("Source and Destination Require");
WRITE(argsSB.get(1), argsSB.get(2));
break;
case WRITEFOLDER:
if (argsSB.size() '=3)
throw new Exception(“Source and Destination Require");
WRITEFOLDER(argsSB.get(1), argsSB.get(2));
break;
case WRITEHDFS:
if (argsSB.size() '=3)
throw new Exception(""Source and Destination Require");
WRITEHDFS(argsSB.get(1), argsSB.get(2));
break;
case READ:
if (argsSB.size() '=3)
throw new Exception("Source and Destination Require");

46

READ(argsSB.get(1), argsSB.get(2));
break;
case DELETE:
if (argsSB.size() 1= 2)
throw new Exception("DELETE target require");
DELETE(argsSB.get(1));
break;
case HASHREAD:

if (argsSB.size(). 1=

[NEW EXCePLI

private

E(String source) throws IOException {

public static
//System.o n(DateTime.getTimeStamp() + "DELET
HBaseAPI hba ‘-\l _ ;
HDFSAPI hdfsAPI'=r
if (hbaseAPI.scanQualifier(source 0)

throw new IOException("Source file not found");
String HexSHA = hbase APl.GetHashByPath(source);
hbaseAPI.DelRowBYyPath(source);
if (hbaseAPl.scanRow(HexSHA) == 0)
hdfsAPI.delFilebyHash(HexSHA);
/ISystem.out.printin(DateTime.getTimeStamp() + "DELETE End");

47

public static void READ(String source, String destination) throws Exception {
/ISystem.out.printin(DateTime.getTimeStamp() + "READ Start");
HBaseAPI hbase APl = new HBaseAPI();
HDFSAPI hdfsAPI = new HDFSAPI();
if (hbaseAPI.scanQualifier(source) == 0)

throw new I0Exception("Source file not found");

String HexSHA = hbase API.GetHashByPath(source);
hdfsAPI.getFilebyHash(HexSHA, destination);
//System.out.printin(DateTime.getTimeStamp() + "READ_End");

private static.void /r READ(String hash, String destination)

throws Exception {

print

S Date e.C D

SAPI hdfsAP W \P
df .getFiIeb ash(hash, destin }
S] AL .

out.printin(DateTime.c

tart");

PD{) T 1A S I

static void WRITEHL
hrows IOExcept
.out.printin(Date .getTimeStamp() + "WRITEHDFS Start");

w\ s 1896
A7 \ & g

for (Fi older.listFiles()) {
if (file.isFile()
hdfsapi.Adc

ionF)

System.out.printin(i++);

}
/ISystem.out.printin(DateTime.getTimeStamp() + "WRITEHDFS End");

private static void LS(String folder) {
/I System.out.printin(Date Time.getTimeStamp() + "LISTFOLDER Start");

try {
48

HBaseAPI hbase APl = new HBaseAPI();
hbaseAPI.ListFolder(folder);
} catch (Exception e) {
System.out.printin(DateTime.getTimeStamp() + "LISTFOLDER Fail:"
+ e.getMessage());

} finally {
/I System.out.printin(DateTime.getTimeStamp() + "LISTFOLDER End");

private static void V

private static void W
String destinatio s IOEXxception {
if (folder.isFile()) {
WRITE(sourceF, destinationF);
return;
}else {
for (File file : folder.listFiles()) {
if (file.isFile()) {
WRITE(sourceF + /" + file.getName(), destinationF + /"
+ file.getName());
}else {

WriteFilesInFolder(file, sourceF + "/" + file.getName(),
49

destinationF + "/ + file.getName());

public static void WRITE(String source, String destination)

throws I0OException

[/ISystem.out.printin(Da
HBaseAPI hba
HDFSARI F

Joolean roweXISt = NDase NOIZE(FE

if (frow

/1System.o 0 in e n FTRL T de

Il rowFrsize e

hbase Adc V(HexSHA, destination

1896

Il ¥1%4 i
/ISystem.o
i .printin(DateTime.getTimeStamp() + "# 1% R Ae ~ ATR T 4 ~ AR R

hbaseAPI.DelRowBYyPath(destination);

hbaseAPl.AddRow(HexSHA, destination,
String.valueOf(file.length()));

hdfsAPl.AddFile(source, HexSHA);

}
if (rowExist & !pathExist) {

50

Il row{rsizedp I ihe Srfefhh © T BB 0% b e ~ BT B R AT S AR
/ISystem.out.printin(DateTime.getTimeStamp() + source);
hdfsAPIl.AddFile(source, "pool/" + HexSHA);
if (hdfsAPI.StreamCompare(HexSHA)) {
hbaseAPl.AddRow(HexSHA, destination,
String.valueOf(file.length()));
hdfsAPI.delFilebyHash("pool/" + HexSHA);

System.out.printin(source+" "+file.length());

Telse {

destination,

ISLEAS SN0
I—
eM.OULDIINLLN

.i aqﬁ destinatic
e A lanath()

hdfsA@dFile(source, HexSHA + "-" + destinatio

} catch (Exception €)
System.out.printin(Date Time.getTimeStamp() + "WRITE Fail:"
+ e.getMessage());
} finally {
/ISystem.out.printin(DateTime.getTimeStamp() + "WRITE End");

51

Appendix C: Java Code of HBASE API

public class HBaseAPI {
HTable table;

public HBaseAPI() {
Configuration HBASE_CONFIG = HBaseConfiguration.create();
HBASE_CONFIG.set("hbase.zookeeper.quorum®, “datanode2");
try {

table =

} catch (I0EXxce
P

to-generated cat

ew RowFilter(CompareOp.EQUAL,
BinaryComparator(Bytes.toBytes(rowKey.

FilterList flis
flist.addFilter(filterl);
sc.setFilter(flist);
ResultScanner rsan = table.getScanner(sc);
Result rs = rsan.next();

if (rs==null) {
52

/ISystem.out.printIn(*'scan row no record");

Yelse {
while (rs = null) {
[//System.out.printIn(**scan row record:");

List<KeyValue> kvList = rs.list();

for (@SuppressWarnings(“unused") KeyValue kv : kvList) {

), "UTF-8")
0,."UTF-8")

IS =rsan.ne

1896
public int sca VSize 'rﬁKey,Filefile){

try {

Scan sc = new S ;
String size = String.valueOf(file.length()
/I sc.addFamily("myfamily".getBytes());
RowFilter filterl = new RowFilter(CompareOp.EQUAL,

new BinaryComparator(Bytes.toBytes(rowKey)));

FilterList flist = new FilterList(FilterList.Operator.MUST_PASS_ALL);
ValueFilter filter2 = new ValueFilter(CompareOp.EQUAL,

new RegexStringComparator(size));

flist.addFilter(filterl);
53

flist.addFilter(filter2);
sc.setFilter(flist);

ResultScanner rsan = table.getScanner(sc);

Result rs = rsan.next();

if (rs==null) {

[/ISystem.out.printIn(scan ro

r (@Suppre

OE

[/ TOPQ

e.printStac

}

return 0;

public String GetHashByPath(String path) throws IOException {

try {

Scan sc = new Scan();

54

sc.addFamily("path".getBytes());
QualifierFilter filterl = new QualifierFilter(CompareOp.EQUAL,
new RegexStringComparator("~" + path + "(.*)"));

FilterList flist = new FilterList(FilterList.Operator.MUST_PASS_ALL);

flist.addFilter(filterl);

sc.setFilter(flist);

ResultScanne

} catch (I0Exc

one)
throw new C \"'“lm!mmmih
}

throw new IOException("path not found");

public . scanQualifier(String path) {

try {

Scan sc = new Scan();

55

sc.addFamily("path".getBytes());
QualifierFilter filterl = new QualifierFilter(CompareOp.EQUAL,

new RegexStringComparator("~" + path + "(.*)"));
FilterList flist = new FilterList(FilterList.Operator.MUST_PASS_ALL);
flist.addFilter(filterl);

sc.setFilter(flist);

ResultScanne

rii 896 - kvLis

tstem.out.println(new String(kv.getRow()

}
} catch (I0Exception €) {

e.printStackTrace();
}

56

public void AddRow(String Rowkey, String Path, String Size)
throws I0Exception {
Put put = new Put(Bytes.toBytes(Rowkey));
put.add(Bytes.toBytes("path™), Bytes.toBytes(Path), Bytes.toBytes(Size));
table.put(put);

public void DelRowByPath(String path) {

try {

//System.out.printIn(*scan Qualifier no recora

}else {
List<KeyValue> DelList = new ArrayList<KeyValue>();
HDFSAPI hdfsAPI = new HDFSAPI();

while (rs = null) {
/ISystem.out.printIn("scan Qualifier record:");

List<KeyValue> kvList = rs.list();

for (KeyValue kv : kvList) {
57

DelList.add(kv);

rs = rsan.next();

}
for (KeyValue kv : DelList) {

DELETEByQualifier(new String(kv.getRow(), "UTF-8"),
new String(kv.getQualifier(), "UTF-8"));
if (this.scanRow(new String(kv.getRow(), "UTF-8")) == 0)
IFilebyHash(new String(kv.getRow(), "UTF-8"));

public void

try

_patn _.geto

e.getScanner(sc);

Result rs = rsan.next(

if (rs==null) {
System.out.printin("Folder is empty");

Yelse {
HashMap<String, FileAtt> hmFile = new HashMap<String, FileAtt>();
HashMap<String, FileAtt> hmFolder = new HashMap<String, FileAtt>();
while (rs 1= null) {

List<KeyValue> kvList = rs.list();

58

for (KeyValue kv : kvList) {
FileAtt fileAtt = new FileAtt();
fileAtt.Path = new String(kv.getQualifier(), "UTF-8");
fileAtt.Size = new String(kv.getValue(), "UTF-8");
fileAtt.FileName = fileAtt.Path
.replaceFirst(folder, "");
if (fileAtt.FileName.startsWith("/")) {
fileAtt.FileName = fileAtt.FileName.substring(1);

(slashindex > 0) {
fileAtt.Fi

1896
iIeAt@t : hmFolder.values()) {

for (FileAt
System.out.pr

fileAtt.FileName, fileAtt.Size));

}

System.out.printIn("Folder count:" + hmFolder.size()

+ "File count:" + hmFile.size());

59

Appendix D: Java Code of HDFS API

public class HDFSAPI {
FileSystem hdfs;

static Configuration config;

public HDFSAPI() throws IOException {

config = new Configuratio

config.set("fs.default.name", *hdf
hdfs = FileSystem.ge

EHEe(TalSe, |

boolean isDeleted

hdfs.close();

return isDeleted;

@SuppressWarnings(“deprecation™)

public static void deleteDir(String dir) throws IOException {

FileSystem fs = FileSystem.get(config);
60

fs.delete(new Path(dir));

fs.close();

public void getFilebyHash(String Source, String Destination)

throws Exception {

{
Path src = new Pa
Path dst eW
hdfs.co yLoca
}

arnings(“deprecation)

epyHasn(String nex

I, 1896
new Pa#_HDFS/pooI/" + hexSHA);

FSDatalnpu
FSDatalnputStream old

BufferedReader newReader = n

BufferedReader oldReader = null;

try {
newlS = fs.open(newFile, 64 * 1024 * 1024);
oldIS = fs.open(oldFile, 64 * 1024 * 1024);
newReader = new BufferedReader(new InputStreamReader(newlS));
oldReader = new BufferedReader(new InputStreamReader(oldIS));
String newline;
String oldline;

while ((newline = newReader.readLine()) != null
61

&& (oldline = oldReader.readLine()) != null) {
if (newline.compareTo(oldline) !=0) {
System.out.printin(Date Time.getTimeStamp() + "Stream Compare not the same");

return false;

}
} catch (Exception e) {

System.out.printin(DateTime. i A eam Compare Fail" + e.getMessage());

return false;
} finally {

62

	Acknowledgements
	List of Contents
	List of Figure
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Importance and Contribution
	1.4 Outline of the thesis

	2 Background And Related Work
	2.1 Data Deduplication
	2.1.1 Detection of the Same Data / Similar Data
	2.1.2 Source Deduplication(Client)/ Target Deduplication (Storage Devices)
	2.1.3 In-line Processing/Post Processing
	2.1.4 Keep old data/new data
	2.1.5 Whole File Deduplication / Chunk Data Deduplication
	2.1.6 Cloud Storage

	2.2 HDFS
	2.3 Hash-SHA2
	2.4 HBase

	1
	3 System Design and Implementation
	3.1 Overview
	3.1.1 HDFS
	1.1.1
	1.1.1
	3.1.2 RFD-HDFS
	3.1.3 FD-HDFS

	3.2 Architecture
	3.2.1 HDFS
	3.2.2 RFD-HDFS
	3.2.3 FD-HDFS

	3.3 Algorithm
	3.3.1 File Writing
	3.3.2 File reading
	3.3.3 Background Worker
	3.3.4 FD-HDFS Function Presentation

	4 Experiments
	4.1 Environment, and Setting
	4.2 Experiment 1
	4.3 Result of Experiment 1
	4.4 The setting of Experiment 2
	4.5 Result of Experiment 2
	4.6 The setting of Experiment 3
	4.7 Result of Experiment 3
	4.8 Overhead
	4.9 Multi-Threading(Multi-Users)

	1
	5 Conclusion
	6 Future Work
	7 Reference
	Appendix A: C# Code of the Paper Graber
	Appendix B: Java Code of the main, command controller
	Appendix C: Java Code of HBASE API
	Appendix D: Java Code of HDFS API

