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Abstract

This paper presents a learning control design, together with an experimental study for implementing it on an industrial robot
working in constrained environments. A new reinforcement learning scheme is proposed, to enable performance optimization in
industrial robots. Using this scheme, the learning process is split into generalized and specialized learning phases, increasing the
convergence speed and aiding practical implementation. Initial computer simulations were carried out for force tracking control of
a two-link robot arm. The results confirmed that even without calculating the inverse kinematics or possessing the relevant
environmental information, operating rules for simultaneously controlling the force and velocity of the robot arm can be achieved via
repetitive exploration. Furthermore, practical experiments were carried out on an ABB IRB-2000 industrial robot to demonstrate the
developed reinforcement-learning scheme for real-world applications. Experimental results verify that the proposed learning
algorithm can cope with variations in the contact environment, and achieve performance improvements. ( 1998 Elsevier Science ¸td.
All rights reserved.
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1. Introduction

Industrial robots have been extensively used for
welding, painting and material transfer in automated
factories. For more-difficult tasks such as manipulating
tools for assembly, grinding and deburring, the robot
interacts more closely with its environment, and the
inclusion of force information in the control of robot
motion is therefore necessary. Fig. 1 illustrates such
a working situation, where the normal force and tangen-
tial velocity of the tool have to be under simultaneous
control for proper operation. Most commercially avail-
able robots, however, work solely as position-controlled
devices, and have no way of directly controlling the
contact forces between tool and workpiece. Increasing
the adaptability of industrial robots by developing force
controllers has been an active research area (Stepien
et al., 1987; De Schutter and Van Brussel, 1988; Song and
Li, 1995; Whitcomb et al., 1996). A number of force-
control algorithms have been proposed. Almost all of

them assume that the dynamic model of the manipulator,
as well as the environmental states (shape and stiffness),
are known to the designer. This is not always possible in
practice, however, especially when the difficulty of esti-
mating environmental variables is taken into account.
Considerable time may be required to derive a model that
is sufficiently accurate for acceptable performance. More-
over, in many practical applications, contact conditions
such as the shape and resilience of the environmental
elements are irregular and time-varying. It can be extreme-
ly difficult to accomplish force-tracking control using
conventional model-based approaches in such situations.

In this paper, reinforcement learning is applied to the
force-tracking control of an industrial robot. It is desir-
able that improved performance of a robot manipulator
should be obtained through cyclic practicing. Learning
control can achieve improved control performance when
system information is unknown or incompletely known.
Recent developments in reinforcement learning methods
have given rise to their application in the control of
intelligent robotic systems (Gullapulli et al., 1994). In this
approach, the performance is improved by iterative train-
ing. It is therefore employed here to deal with the uncer-
tainties that a robot manipulator faces while interacting
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Fig. 1. An illustration of a deburring operation using a robot arm
equipped with a force/torque sensor.

with its environment. The approach proposed in this
work is to directly adjust the control law through rein-
forcement learning. It was initially hoped that optimal
control rules could be found for a specific task by actively
exploring the control space. Via learning, these rules can
be found without knowing either the exact robot model
or the environmental conditions in which it operates.
However, although existing learning algorithms are
functionally sufficient, they generally demand so many
iterations that the learning process tends to be too slow.
Their feasibility for practical application is therefore lim-
ited, and the development of more-efficient learning algo-
rithms requires urgent attention. This paper proposes
a new reinforcement learning scheme to enable perfor-
mance optimization in robot force control. Using this
scheme, the learning process is split into generalized and
specialized learning phases, increasing the convergence
speed of learning and aiding practical implementation.

The rest of this paper is organized as follows. Section
2 describes the theoretical background to reinforcement
learning. Section 3 presents a new reinforcement learning
control method for robotic force-tracking. Computer
simulations of this scheme are described in Section 4. In
Section 5, a practical realization of the proposed algo-
rithm is presented through force-tracking control of
an industrial robot. It demonstrates the feasibility of
reinforcement learning in real-world applications. Sec-
tion 6 presents the conclusions.

2. Background review

In reinforcement learning, a system improves its per-
formance by receiving feedback from its environment in

the form of a reward or penalty commensurate with the
appropriateness of the system’s response. The system
then uses this feedback to adapt its behavior so as to
maximize the probability of receiving such rewards in the
future. Early approaches to reinforcement learning were
based on the theory of learning automata (Narendra and
Thathachar, 1974). The algorithm selects actions prob-
abilistically from a set of possible actions, and updates its
action probabilities on the basis of evaluation feedback.
The task is to maximize the expected value of the evalu-
ation received. Although stochastic learning automata
have mostly been studied in a non-associative form (that
is, where they search for a single optimal action), they can
be extended to learn mappings, such as control rules, that
associate input patterns with actions. Barto et al. (1981)
combined stochastic learning automata with parameter
estimation of pattern recognition by parameterizing the
mapping from pattern input to action probabilities. As
these parameters are adjusted under the influence of
evaluation feedback, the action probabilities are adjusted
to increase the expected evaluation. Barto et al. termed
their network an associative search network because it
actively sought the optimal output pattern (by a random
search) to be associated with each input pattern (asso-
ciative memory). Barto and Anandan (1985) presented an
algorithm of this type, termed the ‘‘associative reward-
penalty’’, or A

R~P
, algorithm, and proved a convergence

theory. To solve difficult control problems such as bal-
ancing a cart-pole system, Barto et al. (1983) proposed
a reinforcement learning scheme using two networks.
The learning system consisted of a single adaptive critic
element (ACE) and a single associative search element
(ASE). The ASE associates the input and output by
searching under the influence of reinforcement feedback.
The ACE constructs a more informative evaluation func-
tion than actual evaluation feedback alone can provide.
This two-element cooperative learning mode has been
applied to many other learning control systems (Ander-
son, 1987; Guha and Mathur, 1990; Porcino and Collins,
1990). To increase the learning efficiency for situations
where the control objective is achieved after a sequence of
control actions (such as in a cart-pole system or chess
game), Sutton (1988) proposed an algorithm called the
‘‘temporal difference’’ (TD) algorithm, to predict the
evaluation signal for each control action before the ter-
minal state was arrived at.

In the learning automata or the associative reward-
penalty algorithm, reinforcement learning can only deal
with problems that can be handled by discrete output
actions. This is not suitable for most control applications,
in which continuous control signals are required.
A stochastic reinforcement learning algorithm for learn-
ing functions with continuous outputs was proposed by
Gullapulli (1990). This algorithm is based on a stochastic
real-valued (SRV) unit that contains two elements. As
shown in Fig. 2, unit 1 is the learning element that
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Fig. 2. Stochastic real-valued unit.

Fig. 3. Generalized learning extent in a 2-DOF BOXES system.

produces an output which is a real-valued function of the
inputs. Unit 2 is a reinforcement predictor that estimates
the expected value of the reinforcement signal. The first
unit can be thought of as estimating the mean value k,
and the second as determining the variance p (by
a monotonically increasing, non-negative function s, see
Fig. 2). The random search is accomplished by taking the
normal distribution ((k, p). A random variable a is gen-
erated in this process. An output function y then maps
a to the control output. The parameters in ¼ and » are
adjusted by evaluation feedback from the environment.
Because the unit 2 predicts (tracks) the evaluation feed-
back, the learning rule used for adjusting the parameters
in » is usually a least-mean-square (LMS) method
(Widrow and Stearns, 1985):

D»"b (r!r' )X, (1)

where X is the input vector, b is the learning rate, r is the
evaluation feedback or reinforcement from the environ-
ment and r' is the predicted reinforcement.

The learning rule for adjusting the parameters in ¼ of
unit 1 is

D¼"a (r'!r)A
a!k

p BX, (2)

where a is the learning rate parameter. The fraction in (2)
can be thought of as normalized noise (Gullapulli, 1990).
If noise causes the unit to receive a reinforcement signal
that is lower than the predicted value (r'!r'0), then it
indicates the search direction is correct, and that it
should update the mean value k towards a. It is therefore
desirable for the unit to have an action closer to the

current action. On the other hand, if noise causes the unit
to receive a reinforcement signal that is greater than the
expected value (r'!r(0), then it should update its mean
output value in the opposite direction.

3. Proposed algorithm

In practice, the learning controller must remember the
learned, correct mapping of input and output variables.
Two major approaches to associative memory are: the
BOXES system and artificial neural networks (ANNs).
ANNs have been used for associative memory in many
applications. With adequate hidden-layer elements, any
non-linear mapping can be accomplished by a three-
layered feedforward network. However, the parameters
for ANNs are difficult to determine, and many training
cycles are generally required to obtain an acceptable
generalization property. The BOXES approach was first
employed by Michie and Chambers (1986), who par-
titioned each dimension of the input space into a finite set
of intervals. The cross-products of these sets of intervals
form a set of boxes in the input space, and a learning
element is associated with each box. The inputs are
sampled to determine in which box they lie (see Fig. 3).
The learning element associated with that box then
makes control decisions about the given inputs. The
advantage of the boxes approach is its simplicity of
implementation, and its drawback is the difficulty of
partitioning the input space appropriately. If the par-
titioning is too rough, the associative property is lost and
instability may develop. On the other hand, if the par-
titioning is too fine, learning will be too slow and will
require more memory.

K.-T. Song, T.-S. Chu / Control Engineering Practice 6 (1998) 37—44 39



Fig. 4. Direct reinforcement learning control system block diagram.

A new learning algorithm is proposed in this paper
that combines the advantages of boxes (simplicity) and
neural networks (generalization). In this method, learn-
ing is split into a generalized learning phase and a spe-
cialized learning phase for the association memory using
the boxes approach. The generalized learning phase is
useful at the very beginning of reinforcement learning,
when the system has no learning experience at all. Not
only are the parameters of the box in which the inputs
belong modified, but also those of the boxes around it. In
this way, an input box’s experience can be extended to
related boxes. Fig. 3 illustrates this concept. Specifically,
for two input variables, the learning rule for the SRV unit
in the generalized learning phase is as follows:

D¼"cdK
1
#dK

2 a (r'!r)(a!k)X, (3)

where c (0(c(1) is the decay rate, dK
1
4d

1
and dK

2
4d

2
are the distances from the current box to the input box
for the two input variables respectively, and d

1
, d

2
are the

extent of a neighborhood in a two-dimensional boxes
system. Note that in (3) the standard deviation p is
removed. This is because it has no meaning for boxes
other than the input box. The learning rule for adjusting the
parameters in » is the same as the original equation (1).

Learning is switched to the specialized learning phase
when system performance satisfies a preset global cri-
terion. This is determined according to the characteristics
of the task and the purpose of control. A good occasion
to switch from the generalized to the specialized learning
phase is when the system can perform the given task
a number of times without failure. During execution,
a failure is recorded when the evaluation feedback ex-
ceeds the assigned tolerance. After a failure, the system is
set to return to the start condition, for a new trial. In the
specialized learning phase, as in the original boxes sys-
tem, only the input box parameters are modified, to
fine-tune individual box parameters and give them some-
what specialized characteristics. Fig. 4 depicts the direct
reinforcement learning control structure. Exploiting gen-
eralized learning, the system can propagate learned ex-
perience faster, and thereby decrease the training time.
On the other hand, by exploiting specialized learning the
system can learn unique features pertaining to each con-
trol subspace, and improve the learning convergence.
The proposed learning algorithm is summarized as
follows:

3.1. Proposed learning algorithm

(S1) Assign initial values to », ¼ and X.
(S2) Determine the extent of neighborhood d

1
, d

2
(if

a two-dimensional case).
(S3) Calculate the predicted reinforcement r(kª ).
(S4) Calculate control action y (k).
(S5) Obtain system states of the next sample instant

X (k#1).

(S6) Compute the evaluation feedback r (k#1) for
X (k#1).

(S7) Update the parameters »(k) in the reinforcement
predictor network using (1).

(S8) If the global criterion is not satisfied (i.e., the gener-
alized learning applies), then update the parameters
¼(k) of the input box using (2) and those of the
neighboring boxes using (3); otherwise update the
parameters ¼(k) using (2) (specialized learning).

(S9) If the learning results are acceptable, then stop;
otherwise go to S3.

4. Simulation results

Computer simulations of force-tracking control for
a two-degree-of-freedom (2-DOF) robot arm were first
carried out to verify the proposed reinforcement learning
scheme. The lengths of the first and second links of the
simulated manipulator were: l

1
"1 m, l

2
"0.8 m respec-

tively. Since most existing industrial robots are position-
controlled devices, it was assumed in the simulations that
there existed a position controller for motion-command
execution. The manipulator dynamics was not taken into
account by the learning controller. Therefore, the control
outputs were position (angle) commands for each joint.
The environment was modelled as a stiffness. This im-
plies that the normal force being applied is proportional
to the difference between the environment-surface posi-
tion and the current position of the end-effector. Under
these assumptions, the proposed controller was set to
learn both the inverse kinematics of the robot arm and
the contact environment stiffness.

In the beginning, the system was in the generalized
learning phase. It switched to the specialized learning
phase when the robot was able to finish a certain num-
ber of trials without failure. The evaluation feedback
r functioned as the local criterion, providing simulta-
neous evaluations of the force and velocity errors to the
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Fig. 5. Initial position of the two-link robot arm in simulation. Fig. 7. Simulation result: learned trajectories of joint 1 and joint 2.

Fig. 6. Simulation result: number of steps the robot moved in each
repetition.

learning controller. One simulation tracked a circular
surface with a prescribed contact force; this is explained
in detail below.

Fig. 5 illustrates the robot arm’s initial position and its
environment. In this configuration, the arm had an initial
contact force F"0.7212N, where the stiffness of the
environment was assumed to be 100 N/m. One input
variable to the controller h

1
was partitioned into 100

parts in the range of 45°$15°, and the other input
variable h

2
was partitioned into 200 parts in the range of

!45°$30°. This yielded a total of 20 000 boxes for this
system. In generalized learning, the decay rate c"0.9.
The parameters for specifying the range of updating
d
1
"d

2
"5. Therefore, 121 boxes were updated in each

iteration. The learning rates a and b were both set to 0.5
for the generalized learning phase. In the specialized
learning phase, the learning rates were a"0.1 and
b"0.5 respectively. In this simulation, the global cri-
terion was set to 10 successive successful trials of the
specified trajectory. Here the number 10 was selected by
experience. For fewer than 10 trials, the primary learning
stage would not be completed. On the other hand,
a greater number of trials (in the generalized learning
phase) would result in inefficient learning. The evaluation
feedback was designed by taking into account that the
specified contact force and velocity were 1N and
1cm/step respectively. It was calculated using the follow-
ing equation:

r"
force!error(N)

2(N)
#

velocity!error(cm)

2(cm)
. (4)

If this value exceeded 1, it constituted a failure and the
robot returned to the start position. The trajectory was
designed to complete the circular path in 45 steps.
Fig. 6 shows the simulation results for the number of
steps the robot moved in each repetition. It would not
complete the 45-step circular path if the evaluation feed-
back of any single step was greater than 1. Note that
a moving average is used for every 10-set of data in this
plot. Fig. 7 shows the learned trajectories of joint 1 and
joint 2 respectively. Fig. 8 shows the evolution of the
evaluation feedback in this simulation. Fig. 9 shows the
force error. In these two figures, the solid lines indicate
the final results when the learning converged. The dashed
lines are the data taken when the learning process was
switched from the generalized learning phase to the

K.-T. Song, T.-S. Chu / Control Engineering Practice 6 (1998) 37—44 41



Fig. 8. Simulation result: evaluation feedback.

Fig. 9. Simulation result: force error.

Fig. 10. Simulation result: learned trajectory of the simulated
manipulator.

Fig. 11. Experimental setup for force-tracking control.

specialized learning phase. It can be seen from these
figures that the evaluation feedback and force error were
still not acceptable, even though the global criterion was
satisfied. This was because 10 successful trials of the
specified task were adjudged using the tolerance assigned
to (4). The learning had not yet converged at this point,
and the performance would not be satisfactory. However,
in the subsequent specialized learning phase the system
improved its performance after more learning iterations.
As the learning converged, optimal performance was
obtained, as shown by the solid lines. Fig. 10 illustrates
the learned trajectory of the simulated manipulator.
A dash-lined ellipse represents the contact environment.
It can be seen from the figure that the tool tip accomp-
lished a circular path, as desired.

5. Experimental results

An experimental verification was carried out in the
laboratory to demonstrate the feasibility of using the
proposed scheme for practical force-tracking control. In
the experiment, the learning ability was also verified

under the influence of sensor noise and variations in the
contact environment. Fig. 11 shows the experimental
setup, where an ABB IRB 2000 industrial robot equipped
with a JR3 6-DOF force/torque sensor was used for
force-tracking control. Cartesian end-effector position
commands were sent to the robot controller via a com-
puter link. The end-effector was a simple roller, which
was mounted on the force/torque sensor. The contact
surface was made of a sponge-type material. A soft envi-
ronment was provided to test the learning control algo-
rithm. The normal contact force was obtained from the
force/torque sensor, and the reinforcement learning algo-
rithm was run on a PC/AT-386. The experiment was
arranged as a single-input-single-output (SISO) system;
that is, learning control was applied to one degree of
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Fig. 12. Experimental results of mean (solid lines) and random-
searched position commands (dashed lines) in the learning process.

Fig. 13. Experimental results of normal contact force at the tool tip.

Fig. 14. The change in the initial contact force due to the variations in
shape and stiffness of the sponge in the experiment.

freedom in Cartesian space. The contact force was con-
trolled through a position-control loop along the ½-axis.

One experimental result is presented here. The desired
trajectory of the robot was to move at a constant speed in
the Z-axis, with a prescribed contact force of 2 Kg. This
trajectory was generated to the manipulator as a position
incremental of !5 mm (the negative sign means a
downward motion) for 20 steps. In this experiment,
c"0.8, a"b"0.5 for the generalized learning phase,
and a"1, b"0.5 for the specialized learning phase.
Fig. 12 shows the recorded positions along the Y-axis in
the reinforcement learning process. Note that in the ex-
periment the contact force was controlled along this axis
via the position loop of the manipulator. In this figure,
the solid lines are the mean positions (see Fig. 2) and the
dashed lines are the random-searched position com-
mands. As learning proceeded, it can be seen from the
figure that the search range became smaller and smaller.
This was because the controller output approached the
ideal output. The error converged to an acceptable level
after about 200 learning iterations. Fig. 13 shows the
measured contact force at the tool tip in the learning
process. In the figure, there are large force errors at the
beginning (the first trial). At the 150th repetition (dashed-
line), the force error decreases. After 237 iterations the
contact force converges to the desired value. Fig. 14
depicts the initial contact force with respect to the repeti-
tions of the learning cycles. Notably, the initial contact
force changes. This was caused by variations in the shape
and stiffness of the sponge after so many instances of
manipulations (rubbing), applied to it in the experiment.

However, it can be seen from the force responses in
Fig. 13 that this variation in the environment has no
influence on the control performance achieved. In fact,
the proposed learning algorithm will succeed as long as
the learning speed remains faster than the variation rate
of the contact environment.

6. Conclusions

In this work, a reinforcement learning control design
was developed for robot position and force tracking in
time-varying environments. A new learning algorithm is
proposed, in which the learning process is split into
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a generalized learning phase and a specialized learning
phase. This scheme combines the advantages of the
conventional boxes system and ANNs for associative
memory in the reinforcement learning process. It makes
learning more efficient and therefore suitable for practi-
cal applications. Simulation results show that the rules
that simultaneously control force and velocity can be
learned through active exploration, without prior know-
ledge of either the robot’s inverse kinematics or the
environment state. The experimental results further dem-
onstrate that although sensor noise existed and vari-
ations in the contact surface characteristics occurred, the
learning was still successful over 237 repetitions using
this algorithm. Extensive studies will be continued in the
future to apply reinforcement learning techniques for
performance optimization in robotic systems.
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