
 

國立交通大學 
資訊管理研究所 

 
博 士 論 文 

 

 

採用模糊資訊的推理：方法與應用 

Reasoning with Fuzzy Information: 

Methods and Applications 

 

 

研究生：高韓英 

指導教授：黎漢林 博士 

 

中華民國九十三年六月



採用模糊資訊的推理：方法與應用 

Reasoning with Fuzzy Information: Methods and Applications 
 
 

研 究 生：高 韓 英 Student：Han-Ying Kao 

指導教授：黎 漢 林 Advisor：Han-Lin Li 

 
 

國 立 交 通 大 學 

資 訊 管 理 研 究 所 

博 士 論 文 

 
 

A Dissertation 

Submitted to Institute of Information Management 

College of Management 

National Chiao Tung University 

in Partial Fulfillment of the Requirements 

for the Degree of  

Doctor of Philosophy 

in 

Information Management 
June 2004 

Hsinchu, Taiwan, Republic of China 
 
 

中華民國九十三年六月



 

Dedication 

 

To Dad, Mom, Leo and Athena,  

who complete me. 

 



 

採用模糊資訊的推理：方法與應用 
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摘    要 

 
對於專家系統或是決策支援系統而言，推理是一項重要的工作。現實世界中，有

三類常見的推理工作：預測、診斷、與規劃。在形形色色的知識庫與運算機制中，貝氏

網路與影響圖是很普遍的圖形化模式，常用來處理不確定情況下的推理與決策。過去有

許多學者提出各種演算法，試圖解決貝氏網路或影響圖上的查詢。然而，這些方法通常

存在一些限制。首先，相關的參數或機率值，必須是確定而非模糊的。當決策或推理環

境中，無法取得確定的知識，而只能取得不完整或是模糊的資訊時，推理工作將難以進

行。其次，傳統貝氏網路的推理方法，難以考慮額外的限制。再者，不同的推理工作無

法同時完成，例如診斷與決策之規劃。鑑於上述之限制，本論文擴展傳統的貝氏網路，

而發展出一般性的貝氏網路，在這一般性的貝氏網路中，有幾個重要的組成集合：離散

隨機節點之集合、連續隨機節點之集合、決策節點之集合，確定性參數之集合、與模糊

參數之集合。除了傳統上只考慮離散隨機節點與確定參數的推理演算法，本論文研究三

類貝氏網路的特殊題型，並提出解答的方法。這三類特殊推理題型為：(1) 考慮離散隨

機節點與模糊參數之診斷，(2) 考慮離散隨機節點與模糊參數之診斷及決策，與(3) 考
慮連續隨機節點之診斷與決策。 

本論文的特色包含下列幾點：(1) 擴展傳統的貝氏網路，而發展出一般性的貝氏

網路，其中考慮：離散隨機節點之集合、連續隨機節點之集合、決策節點之集合，確定

性參數之集合、與模糊參數之集合。此一般性的貝氏網路，將作為本研究的基礎架構。

(2) 解決在一般性貝氏網路上的模糊推理問題，包括牽涉模糊參數與可能性分配的題型。 
(3) 在推理的過程中，考慮無法納入正規知識庫的額外的限制或知識。(4) 在靜態與動

態的環境下，解答針對貝氏網路的查詢。(5) 將發展的推理模式與方法，應用於醫療資

訊或供應鏈管理的個案。所有的應用個案皆有詳細的解說。 
 
關鍵詞: 模糊推理，貝氏網路，影響圖，供應鏈管理，醫療資訊。  
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ABSTRACT 
 
Reasoning is a major task to an expert system or a decision support system. Three 

types of reasoning tasks prevail in real-world applications: prediction, diagnosis and planning. 
Among the various knowledge bases and computation schema, Bayesian networks and 
influence diagrams are well-known graphical models for reasoning and decision-making 
under uncertainty. Many algorithms have been designed to answer the queries on a Bayesian 
network or an influence diagram. However, several limitations persist in the conventional 
methods. First, all relevant parameters are assumed to be crisp. Second, extra constraints or 
knowledge regarding belief propagation in Bayesian networks are difficult to embed. Third, 
diagnosis and planning cannot be completed in the same place. Motivated by the limitations 
mentioned above, this dissertation extend the traditional Bayesian networks to general 
Bayesian networks (GBN) that are composed of several components: the set of discrete 
random nodes, continuous random nodes, decision nodes, crisp parameters, and fuzzy 
parameters. In addition to the conventional reasoning problems that consider only crisp nodes 
and crisp parameters, three categories of reasoning are solved as the special cases (subsets) of 
general Bayesian networks: (1) diagnosis with discrete random nodes and fuzzy parameters; 
(2) diagnosis and decision-making with discrete random nodes and fuzzy parameters; and (3) 
diagnosis and decision-making with continuous random nodes in dynamic environments.  

The distinguished features of this dissertation include: (1) extend the traditional 
Bayesian networks to general Bayesian networks, including discrete random nodes, 
continuous random nodes, decision nodes, crisp parameters, and fuzzy parameters. The 
general Bayesian networks are induced as the general research framework; (2) solve fuzzy 
reasoning tasks in three subsets of GBN where fuzzy parameters and possibility distributions 
are considered; (3) consider extra knowledge or constraints for the belief propagation, which 
are not implemented in the formal knowledge bases; (4) answer the queries from Bayesian 
networks in dynamic as well as static environments; (5) the reasoning models and methods 
are applied to the cases from medical informatics and supply chain management. All the 
applications are developed and illustrated in details. 
 
Keywords: fuzzy reasoning, Bayesian networks, influence diagrams, supply chain 
management, medical informatics.  
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Chapter 1 Introduction 

 

Reasoning algorithms is a core issue to an expert system or a decision support system. 

In many domains, such as medical inference or industrial informatics, there are at least three 

types of reasoning tasks in a decision support system: prediction, diagnosis, and 

decision-making [32,41]. To conduct the reasoning tasks, an expert system or decision support 

system needs a knowledge representation mechanism for the knowledge base. Bayesian 

networks are commonly used graphical probabilistic models for the knowledge base. This 

chapter will review the basics of expert systems and reasoning.  

 

1.1 Research background 

Expert systems are a kind of information systems which should be able to process an 

memorize information, learn and reason in both deterministic an uncertain situations, 

communicate with human and/or other expert systems, make appropriate decisions, and 

explains why these decision work.  

Castillo et al [2] classified the problems that an expert system can deal with into two 

types: deterministic and stochastic. Deterministic problems can be formulated using a set of 

rules that relates several well-defined objects. Experts systems that deal with deterministic 

problems are known as rule-based expert systems. In stochastic or uncertain situations it is 

necessary to introduce some means for handling uncertainty, such as certainty factors, fuzzy 

logic, probability, and so on. Expert systems that use probability as a measure of uncertainty 

are know as probabilistic expert systems, and the strategy they use is know as probabilistic 

reasoning or probabilistic inference. The ability to use both predictive and diagnostic 

information is an important component of plausible reasoning, and improper handling of such 

information leads to strange results. So, Pearl [35] classified the patterns of plausible 
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reasoning into abductive reasoning and inductive reasoning. Deduction, or prediction, is a 

logical process from a hypothesis to deduce evidence where probabilistic relationships are 

involved [35]. For example, if A is true, then B is true; that is A implies B. Abductive 

reasoning, or diagnosis, is a logical process that hypothetically explains experimental 

observations. For example, if A implies B, then finding B is true makes A more credible.  

This dissertation will focus on the abductive reasoning and decision-making models in 

expert systems. In this dissertation, Bayesian networks and influence diagrams play a central 

role in the uncertainty formalism.  

Bayesian networks [34,35] are directed acyclic graphs (DAG) in which the nodes 

represent the variables, the arcs represent the direct causal influences between the linked 

variables, and the strengths of these influences are expressed by forward conditional 

probabilities. The semantics of Bayesian networks demands a clear correspondence between 

the topology of a DAG and the dependency relationships portrayed by it. They are widely 

used knowledge representation and reasoning tools for various domains under uncertainty 

[1,2,4,8,13-18,20,23,27,34,35].  

Influence diagrams are a special type of Bayesian networks with three kinds of nodes: 

decision nodes, chance nodes, and a value node. Decision nodes, shown as squares, represent 

choices available to the decision-makers. Chance nodes, shown as circles, represent random 

variables (or uncertain quantities). Finally, the value node, shown as a diamond, represents the 

objective (or utility) to be maximized. In a multiple objective decision making model, there 

may be more than one value nodes. There are two methods for determining the optimal 

decision policy from an influence diagram [35]. The first, proposed by Howard and Matheson 

[11], consists of converting the influence diagram to a decision tree and solving for the 

optimal policy within the tree, using exp-max labeling procedure. The second approach, 

proposed by Shachter, to decision-making in influence diagrams consists of eliminating 

modes from diagram through a series of value-preserving transformations.  
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Several methods have been developed for solving abductive or diagnostic reasoning 

problems in Bayesian networks. Exact methods exploit the independence structure contained 

in the network to efficiently propagate uncertainty [2,35]. Meanwhile, stochastic simulation 

methods provide an alternative approach suitable for highly connected networks, in which 

exact algorithms can be inefficient [35]. Recently, search-based approximate algorithms, 

which search for high probability configurations through a space of possible values, have 

emerged as a new alternative [36]. On the other hand, two key approaches have been 

proposed for symbolic inference in Bayesian networks, namely: the symbolic probabilistic 

inference algorithm (SPI) [38] and symbolic calculations based on slight modifications of 

standard numerical propagation algorithms [1,2].  

The above methods have several limitations for reasoning from a Bayesian network or 

an influence diagram: 

1. Most literatures focused on the discrete random nodes with discrete probability 

distributions. 

2. All relevant parameters are assumed to be crisp. 

3. Extra constraints or knowledge regarding belief propagation in Bayesian networks are 

difficult to embed. 

4. Decision-making and diagnosis cannot be done in a complete model. Even in a 

compact graphical decision model, like influence diagrams, the proposed methods 

only focus on maximizing the expected gains but ignoring the problem diagnosis. 

Those limitations restrict the usefulness of reasoning in Bayesian networks. First, the 

conditional probabilities between a random node and its parents could be fuzzy parameters 

because of the difficulties of learning accurately the causal relationships among the nodes. 

The decision makers may also feel awkward to make judgments for the linguistic vagueness 

or incomplete knowledge, which make the probability theory not suitable in problem 

formulation. Under such circumstances, the fuzzy nodes in a Bayesian networks can be 
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introduced to overcome the obstacle. Additionally, knowledge workers often acquire 

additional information regarding inferences in Bayesian networks, particularly when facing 

diverse diagnostic scenarios. This information can relate to boundary, dependency or 

disjunctive conditions.  

 

1.2 Research Objectives and Framework 

Based on the limitations mentioned above, this dissertation is motivated to investigate 

and develop the reasoning methods for Bayesian networks and influence diagrams with 

improved features.  

The objectives of this dissertation are as follow. 

1. Develop the reasoning models that can contain various kinds of Bayesian networks 

that may include crisp discrete nodes, continuous nodes, crisp parameters, fuzzy 

parameters, and decision nodes.  

2. Introduce extra knowledge or constraints into the reasoning models, which can 

perform the propagation more efficiently and effectively. 

3. Design the model that can complete diagnosis and suggest optimal treatment 

simultaneously, which can facilitate the performance in a business or medical decision 

support systems.  

For the common base of research, this dissertation first defines a general Bayesian 

networks as follow.  

Definition 1 General Bayesian networks. 

A general Bayesian network (GBN) is a directed acyclic graph (DAG) representing the 

joint probability distribution of several sets of variables, including DN, CN, XN, L, P; that is . 

GBN= (DN, CN, XN, L, P), where  

DN denotes a set of discrete random nodes; 
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CN denotes a set of continuous random nodes; 

P denotes a set of parameters (probabilities); 

XN denotes the decision node set; 

L denotes a set of directed links between the nodes, such that  

L=(DN,CN,XN) × (DN,CN,XN)  □ 

 

Based on the definition of GBN, we can induce several specific types of Bayesian 

networks. Consider a Bayesian network widely referred in Figure 1. Figure 1 represents the 

variables and their relationships from a medical problem. There are five random nodes, A, B, 

C, D, E. If all the random nodes in Figure 1 are discrete variables, and their probability 

distributions are crisp as in Table 1, then we can define a typical Bayesian network most 

common in the literatures, namely, BN1 = (DN, L, P).  

If the parameters of the probability distributions are not crisp but fuzzy, for example, 

P(+b|+a) = 1
~x , P(+b|-a) = 2

~x , P(+c|+a) = 3
~x , P(+c|-a) = 4

~x , P(+d|+b,+c) = 5
~x , P(+d|-b, 

+c) = 6
~x , P(+d|+b, -c) = 7

~x , and P(+d|-b, -c) = 8
~x , then we can define the second type of 

Bayesian networks, BN2 in the form of BN2= (DN, L, P~ ), where the parameter set turns into 

fuzzy. 
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Figure 1: (a) an example of Bayesian networks, (b) the tree structure as 

clustering B and C into Z [35] 

 

 

Furthermore, if the Bayesian networks involve not only discrete random nodes but 

also decision nodes, then the BN2 can be extended into BN3 in the form of BN3= (DN, XN, 

L, P~ ), where the decision node set, XN, is added.  

In many domains, there may be continuous variables involved. In such circumstances, 

the continuous random nodes must be added into the Bayesian networks, which induces the 

fourth type of Bayesian networks BN4 in the form of BN4= (DN, CN, XN, L, P), where the 

continuous random node set CN is included,  

 6



 

Table 1: The Associated Conditional Probability Distribution of Figure 1(b) 

P(+a) = 0.20  

P(+b|+a) = 0.80 

P(+c|+a) = 0.20 

P(+d|+b, +c) = 0.80 

P(+d|+b, -c) = 0.80 

P(+e|+c) = 0.80 

P(+b|-y) = 0.20 

P(+c|-a) = 0.05 

P(+d|-b, +c)= 0.80 

P(+d|-b, -c) = 0.05 

P(+e|-c) = 0.60 

 

 

Additionally, a general Bayesian network is normally acyclic. However, in some 

special situations, the Bayesian networks may be cyclic. The feedback loops in cyclic 

Bayesian networks imply the time-series dependency between the network nodes, which 

consequently expend the static Bayesian networks into dynamic Bayesian networks [4].  

After the Bayesian networks are constructed as the knowledge bases, the decision 

makers need to reason from the knowledge bases. This kind of reasoning tasks is called 

abductive reasoning. The general form of abductive reasoning is explained in the following.  

 

Remark 1 Abductive reasoning. 

Given a set of evidence or observations Ĕ from a GBN, define the set of unknown 

nodes Û GBN\ Ĕ, the query of the belief (posterior) distribution of Û, BEL(Û| Ĕ), is an 

abductive reasoning problem. □ 

⊂

Since the conventional methods only answer very narrow scope of the queries on Bayesian 

networks, this dissertation develops several models to handle a set of specific reasoning 

problems in general Bayesian networks. In addition, these models are extended to consider the 

diagnosis and decision-making as well. Based on the four types of Bayesian networks 
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introduced previously, there are four categories of reasoning problems discussed in this 

dissertation:  

 

1. Problem 1: diagnosis with discrete random nodes and crisp parameters. This category 

is reasoning from the simplest type of the Bayesian networks, BN1= (DN, L, P), and 

has been vastly studied in the literatures (Chapter 3).  

2. Problem 2: diagnosis with discrete random nodes and fuzzy parameters in a static 

Bayesian network. This kind of problems is reasoning from BN2= (DN, L, P~ ) (Chapter 

3). 

3. Problem 3: diagnosis and decision-making with discrete random nodes and fuzzy 

parameters in a static influence diagram. This kind of problems is solved on BN3= 

(DN, XN, L, P~ ) (Chapter 4) 

4. Problem 4: diagnosis and decision-making with continuous random nodes, decision 

nodes, and crisp parameters in a dynamic influence diagram. This type of problems is 

answered from BN4= (DN, CN, XN, L, P) (Chapter 5). 

 

For every category of problems, this dissertation first gives a description of problem 

formulation, and develops the reasoning model in a comprehensive and systematic way. 

Thereafter, the algorithms and solutions will be designed. One example or examples will be 

used to illustrate how to operate the reasoning methods, especially in medical informatics and 

supply chain systems. The outcomes and performances are examined carefully in the 

discussions. In the final chapter, some concluding remarks will be presented. The conceptual 

research framework and the dissertation structure are shown in Figure 2.  
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Figure 2: Research framework of the dissertation 
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Chapter 2 Literatures review 

 

This chapter reviews the basic concepts of probabilistic reasoning, Bayesian networks, 

influence diagrams, and fuzzy sets. 

 

2.1 Expert systems and probabilistic reasoning 

First of all, this dissertation defines expert systems as follows. 

 

Definition 2: Expert systems  

An expert system can be defined as a computer system (hardware or software) that 

simulates human experts in a given area of specialization [2]. □ 

As such, an expert system should be able to process an memorize information, learn 

and reason in both deterministic an uncertain situations, communicate with human and/or 

other expert systems, make appropriate decisions, and explains why these decision work.  

Castillo et al [2] classified the problems that an expert system can deal with into two 

types: deterministic and stochastic. Deterministic problems can be formulated using a set of 

rules that relates several well-defined objects. Experts systems that deal with deterministic 

problems are known as rule-based expert systems. In stochastic or uncertain situations it is 

necessary to introduce some means for handling uncertainty, such as certainty factors, fuzzy 

logic, probability, and so on. Expert systems that use probability as a measure of uncertainty 

are know as probabilistic expert systems, and the strategy they use is know as probabilistic 

reasoning or probabilistic inference. The ability to use both predictive and diagnostic 

information is an important component of plausible reasoning, and improper handling of such 

information leads to strange results. So, Pearl [35] classified the patterns of plausible 
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reasoning into abductive reasoning and inductive reasoning. Deduction, or prediction, is a 

logical process from a hypothesis to deduce evidence where probabilistic relationships are 

involved [35]. For example, if A is true, then B is true; that is A implies B. Abductive 

reasoning, or diagnosis, is a logical process that hypothetically explains experimental 

observations. For example, if A implies B, then finding B is true makes A more credible.  

George Polya [37] classified plausible reasoning into the following four: 

1. Inductive patterns: “The verification of a consequence renders a conjecture more 

credible.” For example, the conjecture “She didn’t sleep well last night” becomes 

more credible when we verify, “She looks dispirited this morning”. 

2. Successive verification of several consequences: “The verification of a new 

consequence counts more or less if the new consequence differs more less from the 

former, verified consequences.” For example, if in trying substantiating the conjecture 

“All ravens are black,” we observe n Australian ravens, all of them black, our 

subsequent confidence in the conjecture will be increased substantially of the (n+1)-th 

ravens is a black Brazilian rather than another Australian ravens.  

3. Verification of improbable consequences: “The verification of a consequence counts 

more or less according as the consequence is more or less improbable in itself.” For 

example, the conjecture “She didn’t sleep well” obtains more support from “She is 

nodding this morning” than from the more common observation “She looks dispirited 

this morning”. 

4. Inference from analogy: “A conjecture becomes more credible when an analogous 

conjecture turns out to be true.” For example, the conjecture “Of all objects displacing 

the same volume, the sphere has the smallest surface” becomes more credible when 

we prove the relative theorem “Of all curves enclosing the same area, the circle has 

the shortest perimeter.” 

This dissertation will focus on the abductive reasoning and decision-making models in 
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expert systems. In this research, Bayesian networks and influence diagrams play a central role 

in the uncertainty formalism.  

 

2.2 Bayesian networks 

Bayesian networks [34,35] are directed acyclic graphs (DAG) in which the nodes 

represent the variables, the arcs represent the direct causal influences between the linked 

variables, and the strengths of these influences are expressed by forward conditional 

probabilities. A simple example is given in Figure 1(b). The semantics of Bayesian networks 

demands a clear correspondence between the topology of a DAG and the dependency 

relationships portrayed by it. They are widely used knowledge representation and reasoning 

tools for various domains under uncertainty [1,2,4,8,13-18,20,23,27,34,35].  

Influence diagrams are a special type of Bayesian networks with three kinds of nodes: 

decision nodes, chance nodes, and a value node. Decision nodes, shown as squares, represent 

choices available to the decision-makers. Chance nodes, shown as circles, represent random 

variables (or uncertain quantities). Finally, the value node, shown as a diamond, represents the 

objective (or utility) to be maximized. In a multiple objective decision making model, there 

may be more than one value nodes. There are two methods for determining the optimal 

decision policy from an influence diagram [35]. The first, proposed by Howard and Matheson, 

consists of converting the influence diagram to a decision tree and solving for the optimal 

policy within the tree, using exp-max labeling procedure. The second approach, proposed by 

Shachter, to decision-making in influence diagrams consists of eliminating modes from 

diagram through a series of value-preserving transformations.  

Several methods have been developed for solving abductive or diagnostic reasoning 

problems in Bayesian networks. Exact methods exploit the independence structure contained 

in the network to efficiently propagate uncertainty [2,35]. Meanwhile, stochastic simulation 
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methods provide an alternative approach suitable for highly connected networks, in which 

exact algorithms can be inefficient [35]. Recently, search-based approximate algorithms, 

which search for high probability configurations through a space of possible values, have 

emerged as a new alternative [36]. On the other hand, two key approaches have been 

proposed for symbolic inference in Bayesian networks, namely: the symbolic probabilistic 

inference algorithm (SPI) [38] and symbolic calculations based on slight modifications of 

standard numerical propagation algorithms [1,2].  

The above methods have several limitations for reasoning from a Bayesian network or 

an influence diagram: 

1. All network nodes or variables must be crisp. 

2. All relevant parameters are assumed to be crisp. 

3. Extra constraints or knowledge regarding belief propagation in Bayesian networks are 

difficult to embed. 

4. Decision-making and diagnosis cannot be done in a complete model. Even in a 

compact graphical decision model, like influence diagrams, the proposed methods 

only focus on maximizing the expected gains but ignoring the problem diagnosis. 

 

Those limitations restrict the usefulness of reasoning in Bayesian networks. First, the 

conditional probabilities between a node and its parents could be fuzzy parameters because of 

the difficulties of learning accurately the causal relationships among the nodes. The decision 

makers may also feel awkward to make judgments for the linguistic vagueness or incomplete 

knowledge, which make the probability theory not suitable in problem formulation. Under 

such circumstances, the fuzzy nodes in a Bayesian networks can be introduced to overcome 

the obstacle. Additionally, knowledge workers often acquire additional information regarding 

inferences in Bayesian networks, particularly when facing diverse diagnostic scenarios. This 
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information can relate to boundary, dependency or disjunctive conditions.  

 

2.3 Fuzzy sets and theory 

Fuzzy sets were introduced by Zadeh [43] in 1965 to manipulate data and information 

processing uncertainties which statistics is not proper for use. It was particularly designed to 

mathematically represent uncertainty as well as vagueness and to offer formalized tools for 

handling the imprecision intrinsic to many domains.  

Fuzzy sets are a means of representing and manipulating information not precise. A 

fuzzy subset Ã of a set X can be can be defined as a set of ordered pairs, each with the first 

element from X and the second element from the interval [0,1], with exactly one ordered pair 

for each element of X. This defines a mapping as below. 

]1,0[:~ →XAµ , 

between elements of the set X and values in the interval [0,1]. The value zero is to 

represent complete non-membership, the value one is to represent complete membership, and 

values in between are to represent intermediate degrees of membership. The set X is referred 

as the universe of discourse for the fuzzy subset Ã. Usually, the mapping A~µ  is described as 

a function, the membership function of Ã. The degree to which the statement “x is in Ã” is 

true is determined by finding the ordered pair (x, A~µ ). The degree of the statement to be true is 

the second element of the ordered pair.  

 

Definition 3: Fuzzy membership functions.  

Let X be a nonempty set. A fuzzy set Ã in X is characterized by its membership function  

]1,0[:~ →XAµ , 

and A~µ  is interpreted as the degree of membership of element x in fuzzy set Ã for each x □ 
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Visibly, Ã is completely determined by the following expression. 

{ }XxxxA A ∈= |))(,(~
~µ . 

By the above expression, the terms membership function and fuzzy subset are used 

interchangeably. A fuzzy subset Ã of a classical set X is called normal if there exists an 

 such that Ã(x) = 1. Otherwise, Ã is subnormal. An α-level set (or α-cut) of a fuzzy set 

Ã of X is a non-fuzzy set denoted by [Ã]

Xx∈

α and defined by  

{ }
⎩
⎨
⎧

=
>≥∈

=
0),~ supp(cl
0,)(~|]~[

α
ααα

ifA
ifxAXxA  

where )~ supp(cl A  denotes the closure of the support of Ã. A fuzzy set Ã of X is called convex 

if [Ã]α is a convex subset of X for all ]1,0[∈α . 

Similarly, a fuzzy number can be defined as follow. 

 

Definition 4: Fuzzy numbers 

A fuzzy number Ã is a fuzzy set of the real line with a normal, fuzzy convex and 

continuous membership function satisfying the limit conditions, and 0)(~lim =
−∞→

tA
t

.□ 

Based on the concepts reviewed in this chapter, next chapter will show how this 

dissertation solves the fuzzy reasoning problems on Bayesian network. 
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Chapter 3 Diagnosis with fuzzy parameters 

 

Based on the review in Chapter 2, we understand that current adductive reasoning 

methods can solve very limited scope of the reasoning from Bayesian networks. This chapter 

will first illustrate the steps to solve a traditional abductive reasoning query, and then develop 

the model for diagnosis with crisp nodes and fuzzy parameters in Bayesian network.  

 

3.1 Reasoning with crisp information 

In this section, a simplest form of abductive reasoning is introduced as follow. 

 

Problem 1: Given the evidence set Ĕ from BN1= (DN, L, P), compute the belief distribution 

of Û BN⊂ 1\ Ĕ, BEL(Û| Ĕ). ▓ 

 

Problem 1 is interpreted with the following case from medicine and Example 1. 

Consider the following example from Pearl [35].  

“Metastatic cancer is a possible cause of a brain tumor and is an explanation for 

increased total serum calcium. Either of these could explain a patient falling into a 

coma. Severe headache is also possibly associated with a brain tumor.”  

Figure 1(b) shows a Bayesian network representing the above cause and effect 

relationships. Table 1 lists the causal influences in terms of conditional probability 

distributions. Each variable is characterized by the probability given the state of its parents. 

For instance:  represents the dichotomy between having a brain tumor and not 

having one, +c denotes the assertion C = 1 or “Brain tumor is present”, and –c is the negation 

of +c, namely, C = 0. The root node, A, which has no parent, is characterized by its prior 

}0,1{∈C
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probability distribution. The above information can be used to solve the following reasoning 

problems.  

 

Example 1: Compute the posterior probability of every A, B, and C, given the conditional 

probabilities in Table 1, and a situation involving a patient who is suffering from a severe 

headache (E=1) but has not fallen into a coma (D=0); that is, compute P(a|-d, +e), P(b|-d, +e) 

and P(c|-d, +e). □ 

 

Now this section reviews one conventional method, clustering, for computing the 

posterior probabilities with crisp parameters and no extra constraints. Consider the Bayesian 

network in Figure 1(b) with the crisp information in Table 1. Clustering [2,35] can transform 

Figure 1(b) into an equivalent tree structure in Figure 1(c), where nodes B and C are collapsed 

into a compound node . Let CBZ &= },,,{ 4321 zzzzZ =  be a set of cardinalities of Z  

and , , ),(1 cbz ++= ),-(2 cbz += )-,(3 cbz += , and )-,-(4 cbz = . Moreover, let  denote 

the state of all variables except Y; for example, ={

YW

AW )-,( 1 edz + , , )-,( 2 edz + )-,( 3 edz + , 

}. From Pearl [35], the value of , which is the distribution of y 

conditioned on the value , can be calculated as below considering every instance of y. 

)-,( 4 edz + )|( YWyP

YW
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where Aα , Bα , and Cα  are the normalizing constant ensuring that 

1)|-()|(
1)|-()|(
1)|-()|(

=++
=++
=++

CC

BB

AA

WcPWcP
WbPWbP
WaPWaP

 (2) 

From (2), then intuitively 

∑ ∑
= =

+−
==== 1

0

4

1
)|()|()|()(

1

a i
iii

CBA

zePzdPazPaP
αααα  (3) 

and 

1)|()|()|()( =+−∑∑
a z

iii
i

zePzdPazPaPα  (4) 

The value of  in (1) is obtained below for the data in Table 1: )|( AWaP +

)]6)(.05.1)(2.1)(8.1()6)(.8.1)(2.1)(8(.
)8)(.8.1)(2)(.8.1()8)(.8.1)(2)(.8)[(.2(.)|(

−−−+−−+
−−+−=+ αAWaP

. 

Similarly,  

)]6)(.05.1)(05.1)(2.1()6)(.8.1)(05.1)(2(.
)8)(.8.1)(05)(.2.1()8)(.8.1)(05)(.2)[(.2.1()|(

−−−+−−+
−−+−−=− αAWaP

. 

From (1) and (3), then 432.2=α , )|( AWaP + =0.097, and )|( AWaP − =0.903.  

 18



 

The answers to Example 1 are 

)903.0,097.0(),|( =+− edaP , )903.0,097.0(),|( =+− edbP , )969.0,031.0(),|( =+− edcP . 

█ 

 

Observing the solution stated above, several limitations persist in the conventional 

reasoning methods.  

First, all network nodes and relevant parameters are assumed to be crisp. This narrows 

the usefulness of reasoning methods when some parameters are hard to estimate. Freeling [7] 

claimed fuzzy probability as an extension of probability theory, which is more promising than 

possibility and probability theory as a decision aid. Second, extra constraints or knowledge 

regarding belief propagation in Bayesian networks are difficult to embed. Third, different 

reasoning tasks, such as diagnosis as well as treatment planning, cannot be completed in the 

same place. Those attributes are often needed in both business and medical informatics. 

Furthermore, the limitations encumber reasoning to be automated.  

For some systematic or technical reasons, the conditional probabilities of the network 

nodes may be fuzzy, instead of crisp. For instance, )|( abP ++  cannot be 0.8 but rather is a 

fuzzy number, say 1
~x , where 1

~)|( xabP =++ , and is associated with a membership function 

)( 1~
1

xxµ , represented as follows. (See Figure 3)   

16.0),8.08.0(5)6.0(5)( 11111~
1

≤≤−+−−−= xxxxxxµ  

where “ ∗ ” denotes the absolute value of a term *. 
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1.00.80.6

1.0

)( 1~
1

xxµ

1x
 

Figure 3: The membership function )( 1~
1

xxµ  of 1
~x  

 

The above expression and Figure 3 mean that the domain of 1
~x  is between 0.6 and 

1.0. If =0.8 then 1x )( 1~
1

xxµ =1, implying that =0.8 is the most possible situation. If 

0.6 or 1 then 

1x

≤1x ≥1x )( 1~
1

xxµ =0, the least possible manifestation of . If =0.7, then 1x 1x

)( 1~
1

xxµ =0.5.  

 

0.950.80.7 0.85

1.0

)( 7~
7

xxµ

7x
 

Figure 4: The membership function )( 7~
7

xxµ  of 7
~x  

 

Fuzzy membership functions can be expressed in various ways. For example, let 

P(+d|+b,+c) = 7
~x   and express )( 7~

7
xxµ  as the following function (Figure 4). 
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95.07.0),85.085.0(5)8.08.0(5)7.0(10)( 7777777~
7

≤≤−+−−−+−−−= xxxxxxxxµ . 

)( 7~
7

xxµ  is a trapezoid membership function and comprises four line segments, where 

0.8 0.85 has the maximal membership.  ≤≤ 7x

 

3.2 Problem and goals 

This chapter discusses reasoning with crisp nodes and fuzzy parameters as the 

following problem. 

 

Problem 2: Given the evidence set Ĕ from BN2= (DN, L, P~ ), compute the belief distribution 

of Û BN⊂ 2\ Ĕ, BEL(Û| Ĕ).▓ 

 

The fuzzy parameters are denoted by as ix~ , 8,...,2,1=i , where P(+b|+a) = 1
~x , 

P(+b|-a) = 2
~x , P(+c|+a) = 3

~x , P(+c|-a) = 4
~x , P(+d|+b,+c) = 5

~x , P(+d|-b, +c) = 6
~x , P(+d|+b, 

-c) = 7
~x , and P(+d|-b, -c) = 8

~x . Table 2 lists the membership functions of the fuzzy 

parameters, among which )( 7~
7

xxµ  and )( 8~
8

xxµ  are trapezoid membership functions while 

the remainder are triangular functions. 

After introducing the fuzzy probabilities, the Example 1 turns into a more complex 

problem as Example 2.  
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Table 2: The membership functions of fuzzy probabilities 

Parameter ix~  )(~ ix x
i

µ  Domain of  ix

1
~)|( xabP =++  )8.08.0(5)6.0(5 111 −+−−− xxx  [0.6,1.0] 

2
~)|( xabP =−+  )2.02.0(10)1.0(10 222 −+−−− xxx  [0.1,0.3] 

3
~)|( xacP =++  )2.02.0(15)1.0(10 333 −+−−− xxx  [0.1,0.25] 

4
~)|( xacP =−+  )05.005.0(5.17)01.0(25 444 −+−−− xxx  [0.01,0.15] 

51
~)|( xzdP =+  )8.08.0(5)6.0(5 555 −+−−− xxx  [0.6,1.0] 

62
~)|( xzdP =+  )8.08.0(10)7.0(10 666 −+−−− xxx  [0.7,0.9] 

73
~)|( xzdP =+  )85.085.0(5

)8.08.0(5)7.0(10

77

777

−+−−

−+−−−

xx

xxx

 
[0.7,0.95] 

84
~)|( xzdP =+  )07.007.0(25

)05.005.0(5.12)01.0(25

88

888

−+−−

−+−−−

xx

xxx

 
[0.01, 0.09] 

 

Example 2: Compute the belief distributions P(a|-d, +c), P(b|-d, +c), and P(c|-d, +c), given 

the fuzzy membership functions in Table 2 and some constraints related to belief propagation.  

 

Current abductive reasoning methods have difficulties in solving Problem 2 and 

Example 2 since it involves fuzzy information and extra constraints.  

Consider abductive reasoning with constraints. For a given Bayesian network, 

knowledge workers (such as clinicians) may have professional judgments regarding the 

features of certain nodes and the relationships among them in particular diagnostic 

backgrounds. These features and relationships can take the form of various constraints [26].  
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1. Boundary constraints:  

From additional information or observations, clinicians can infer that the posterior 

probability of A given E=1 and D=0 should be higher than 0.1 but lower than 0.3, 

which is expressed as  

3.0≤),-|(≤1.0 edaP ++  (5) 

2. Functional dependency: 

The beliefs of certain nodes are functionally dependent. For example, clinicians can 

judge that the posterior probability of B is roughly a certain multiple of that of A given 

E=1 and D=0, which is expressed as  

),-|(2≤),-|( edbPedaP ++++  (6) 

3. Disjunctive constraints: 

Sometimes disjunction may occur between nodes. For example, a doctor may estimate 

that either  or ),-|( edaP ++ ),-|( edbP ++ is equal to or below 0.2, which is 

expressed as  

Either  or 2.0≤),-|( edaP ++ 2.0≤),-|( edbP ++  (7) 

By introducing these constraints into the reasoning system, the following problems are 

formulated.  

 

Example 2.1: Compute the belief distributions P(a|-d, +e), P(b|-d, +e), and P(c|-d, +e), given 

the fuzzy membership functions in Table 2 and the following constraints.  

3.0≤),-|(≤1.0 edaP ++ , 

),-|(2≤),-|( edcPedbP ++++  

Either  or 2.0≤),-|( edaP ++ 2.0≤),-|( edbP ++ . 

 

Example 2.1 is more complicated and difficult than Example 1 when solved using 
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current propagation methods.  

 

3.3 Model development 

The following illustrates another approach for calculating the posterior probabilities 

with fuzzy parameters. 

 

3.3.1 Fuzzy parameters 

Consider a membership function )(~ xxµ  of x~ , as displayed in Figure 5. This 

piecewise linear function generally is expressed as 

 

1a 2a 3a 4a

1s

2s 3s

4s

5a

)(~ xxµ

x
 

Figure 5: A membership function of fuzzy probability 
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µ  (8) 

Computing the above expression is complex. Consequently, this work employs an 

efficient method of expressing a piecewise linear function. Consider the following 
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proposition.  

 

Proposition 1 Let )(~ xxµ  denote the membership function of fuzzy variable x~ , as displayed 

in Figure 4, where  represent the break points of mja j ,...,2,1, = )(~ xxµ , and njs j ,...,2,1, =  

are the slopes of line segments between  and , and ja 1+ja )(~ xxµ  is the sum of absolute 

terms [24,40]:  

)(
2

)()()(
2

1
111~ jj

m

j

ii
x axaxssaxsax −+−

−
+−+= ∑

=

−µµ  (9) 

If )(~ xxµ  in (9) is to be maximized, then the following proposition is used for convenient 

linearization. 

 

Proposition 2 Maximizing a function )(~ xxµ  in (9) requires solving the following linear 

program [24,40]:  
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Proof: 

Since , then clearly  11 −− −≤ kkk aad

)()( 2211121 −−− +++−≥+++−≥ kkkk dddadddax , so constraint 
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1221 −− ≥++++ kk adddx  is converted by constraint 

mkforaddddx kkk ,,3,2,1221 =≥+++++ −− . █ 

 

From Proposition 2, the non-linear membership functions are transformed into 

equivalent linear functions. 

 

3.3.2 Fuzzy Abductive Models  

To compute the belief distribution of the unknown nodes in a Bayesian networks with 

fuzzy parameters, there are several alternative objective functions. Consider Example 2.1.  

1. Estimate the upper/ lower bound for P(+a|-d, +e), P(+b|-d, +e), P(+c|-d, +e) by 

maximizing/ minimizing the beliefs, respectively. e.g.  

Maximize P(+a|-d, +e) → Upper bound of P(+a|-d, +e), 

Minimize P(+a|-d, +e) → Lower bound of P(+a|-d, +e). 

 

2. Generate a pair of belief, e.g. (P(+a|-d, +e)min µ, P(+a|-d, +e)max µ) with respect to 

the maximal/ minimal confidence for fuzzy parameters. e.g. 

Maximize )(~ ix x
i

µ  → under maximal confidence for fuzzy parameters. 

Minimize )(~ ix x
i

µ  → under minimal confidence for fuzzy parameters. 

 

3. Generate the distributions of P(+a|-d, +e), P(+b|-d, +e), P(+c|-d, +e) by α-cut and fuzzy 

simulation. 

 

All the above classes of the objectives can be implemented based on the 

decision-makers’ needs or preferences. This dissertation chooses the second class as the 
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objectives.  

Since there are several fuzzy parameters involved in Problem 2, this dissertation will 

estimate the belief distribution for the unknown nodes with the maximal and minimal 

confidence. The belief distribution under maximal confidence will be estimated by 

maximizing the fuzzy membership functions; oppositely, the belief distribution under minimal 

confidence will be estimated by minimizing the fuzzy membership function. 

Building upon the clustering method, Proposition 1 and 2, the abductive model for 

solving Example 2.1 is formulated below. 

 

 

Model 1(a) (for maximal confidence) 

,8,,2,1),(~ =ixMaximize ixi
µ  

,edbPoredaPEither
edcPedbP

edaP
tosubject

2.0≤),-|(2.0≤),-|(
),,-|(2≤),-|(

,3.0≤),-|(≤1.0
),1(

++++
++++

++

 (11) 

 

Model 1(b) (for minimal confidence) 

,8,,2,1),(~ =ixMinimize ixi
µ  

,edbPoredaPEither
edcPedbP

edaP
tosubject

2.0≤),-|(2.0≤),-|(
),,-|(2≤),-|(

,3.0≤),-|(≤1.0
),1(

++++
++++

++

 (12) 

 

where the objective function maximize and minimize all fuzzy membership functions. Since 
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(4) contains numerous non-separate nonlinear terms, Model 1 is a highly non-linear and 

nonconvex program. This dissertation will deal with the disjunctive constraint first and takes 

care of the nonlinear issue in the following proposition. 

 

Proposition 3 A disjunctive constraint 0)~( ≤xf  or 0)~( ≤xg  can be expressed by the 

following inequalities. 

⎪
⎭

⎪
⎬

⎫

≤+≤
−+≤≤−
−+≤≤−

.1
)1()~()1(
),1()~()1(

12

122

211

θθε
θθθ
θθθ

MMxgM
MMxfM

 (13) 

where 1θ  and 2θ  are 0-1 variables, M is a relatively large number, and ε  is a relatively 

small positive number. 

The four possible combinations of 1θ  and 2θ  can be checked as follows: (i) for 1θ = 1, 

2θ =1 the constraints are Mxf ≤≤ )~(0  and Mxg ≤≤ )~(0 , which are inactive constraints; 

(ii) for 1θ = 0, 2θ =1 then 0)~( ≤≤− xfM  and Mxg 2)~(0 ≤≤ , meaning that when 

0)~( ≥xg , )~(xf  must be 0 or less; (iii) for 1θ = 1, 2θ =0, the constraints are Mxf 2)~(0 ≤≤  

and 0)~( ≤≤− xgM , which implies that when 0)~( ≥xf , )~(xg  must be 0 or less; (iv) for 

1θ = 0, 2θ =0 the constraints become MxfM ≤≤− )~(  and MxgM ≤≤− )~( , which are 

inactive constraints. The third constraint in (13) excludes the combinations 1θ = 1, 2θ =1 and 

1θ = 0, 2θ =0. To summarize, (13) implies that either 0)~( ≤xf  or 0)~( ≤xg  must be 

satisfied. 

 

3.4 Solution and illustrative examples 

Abductive reasoning problems in certain applications are solved below using the 

proposed constrained optimization approach. 
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Example 2.1 is solved using the following program. 

,8,,2,1),(~ =ixMaximize ixi
µ  (for the maximal confidence), or 

,8,,2,1),(~ =ixMinimize ixi
µ  (for the minimal confidence), 
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First (14) is linearized using Proposition 2 and then the initial program is altered into 

the equivalent program as follows. 

,8,,2,1),(~ =ixMaximize ixi
µ  (for the maximal confidence), or 

,8,,2,1),(~ =ixMinimize ixi
µ  (for the minimal confidence), 

s.t. 
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To ensure belief propagation the lower bound of the membership functions is set at 0.2; 

that is, the membership of every fuzzy parameter must equal or exceed 0.2, which excludes 

scenarios involving poorly estimated parameters.  

LINGO 8.0 solves Example 2.1 in less than one second. The solutions for maximal 

confidence are α =2.6743 and   

∑
=

+−++=−++
4

1
)|()|()|()(),|(

i
iii zePzdPazPaPedaP α =0.1097, 

∑
= =

+−=−++
1,0 3,1

])|()|()|()([),|( ∑
a i

iii zePzdPazPaPedbP α =0.20, 

∑
+

= =

+−=−++
a

a i
iii zePzdPazPaPedcP

1,0 2,1
])|()|()|()([),|( ∑ =0.1. 

The solutions for minimal confidence are  
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∑
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+−++=−++
4

1
)|()|()|()(),|(

i
iii zePzdPazPaPedaP α =0.1056, 

∑
= =

+−=−++
1,0 3,1

])|()|()|()([),|( ∑
a i

iii zePzdPazPaPedbP α =0.2, 

∑
+

= =

+−=−++
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a i
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])|()|()|()([),|( ∑ =0.1 □ 

Table 3 lists the detailed solutions.  

The results of this model differ from those for Example 1. In Table 3, ),|( edaP −++  

changes to [0.1056, 0.1058], where 0.1056 and 0.1058 is solved by minimizing and 

maximizing the fuzzy membership functions, respectively. ),|( edbP −++  changes to 0.2, 

and  changes to 0.1, which implies that the solutions are insensitive to the 

confidence of fuzzy parameters. This variance results from the constraints that dominate the 

belief propagation. Readers may have deduced that Example 1 can be considered a special 

case in which every membership of the fuzzy parameters converges on 1.  

),|( edbP −++
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Table 3: Solution of Example 2.1 

 Under maximal confidence Under minimal confidence 

)( +aBEL  0.1058 0.1056 

)( +bBEL  0.20 0.2 

)( +cBEL  0.10 0.10 

1x  0.9449 0.96 

2x  0.2762 0.28 

3x  0.2339 0.2062 

4x  0.1284 0.1300 

5x  0.6458 0.64 

6x  0.7265 0.72 

7x  0.7321 0.7405 

8x  0.0831 0.0860 

)( 1~ xx1
µ  0.2755 0.2 

)( 2~ xx2
µ  0.2383 0.2 

)( 3~ xx3
µ  0.3218 0.2 

)( 4~ xx4
µ  0.2162 0.2 

)( 5~ xx5
µ  0.2290 0.2 

)( 6~
6

xxµ  0.2651 0.2 

)( 7~ xx7
µ  0.2496 0.2 

)( 8~ xx8
µ  0.3441 0.2 

 

 32



 

Under certain circumstances, knowledge workers may need to compromise among 

diverse, even conflicting information sources, causing fuzzy parameters to differ from their 

most possible values. 

 

Example 2.2 (Just-in-time techniques and firm performance): This example uses the 

Bayesian network to model the relationship between just-in-time purchasing techniques and 

firm performance [10]. Just-in-time purchasing (JITP) is an important component of supply 

chain management in managing inventory flows. Several key factors link the JITP process and 

firm performance, and Figure 6 models the relationships among these factors. Tables 4 and 5 

summarize the probability distributions of the nodes and fuzzy parameters. 

This study hypothesizes a scenario in which inventory management performance is good 

( ), employ relationship is poor (+im −er ), transportation performance is good ( +ta ), and 

financial and market performance is poor ( −fm ). The problem involves calculating the belief 

distribution of all unknown nodes, top management commitment ( tp ), supplier value-added 

( ), training ( tsu r ), quantity delivered ( ), and time-based quality performance ( ). The 

reasoning model is formulated as (17). 

qd tq
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Figure 6: A Bayesian network of the relationships between JITP techniques and 

performance measures [10] 

 

Table 4: The conditional probability distribution of Example 2.2 
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Table 5: The membership functions of fuzzy probabilities in Example 2.2. 

Parameter )( 3~
3 ix x

i
µ  Domain of ix3

31
~x  )3.03.0(5.7)1.0(5 313131 −+−−− xxx  [0.1,0.4] 

32
~x  )6.06.0(5)4.0(5 323232 −+−−− xxx  [0.4,0.8] 

33
~x  )1.075.0(20)05.0(20 333333 −+−−− xxx  [0.05,0.15] 

34
~x  )7.07.0(5)6.06.0(5)5.0(10 3434343434 −+−−−+−−− xxxxx  [0.5,0.8] 

35
~x  )3.03.0(5)2.02.0(5)1.0(10 3535353535 −+−−−+−−− xxxxx  [0.1,0.4] 
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First the nonlinear membership functions are linearized, yielding (18).  

)( 3~
3 ix xMaximize

i
µ  (for the maximal confidence), or 
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)( 3~
3 ix xMinimize
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µ  (for the minimal confidence), 
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LINGO 8.0 solves the above program in approximately 5 seconds, obtaining the following 

results 

For the model under the maximal confidence: 

α =30.5359, 

.1489.0),,,|(
,8510.0),,,|(

,2886.0),,,|(
,8.0),,,|(

,6103.0),,,|(

=−+−++
=−+−++
=−+−++
=−+−++
=−+−++
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fmimertasuP
fmimertatpP

 

For the model under the minimal confidence: 

α =30.9791, 

.1489.0),,,|(
,8510.0),,,|(

,3695.0),,,|(
,8.0),,,|(

,6000.0),,,|(

=−+−++
=−+−++
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=−+−++
=−+−++
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Table 6 lists the details.  
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3.5 Discussions and conclusions  

This chapter develops a non-linear programming model for dealing with constrained 

abductive reasoning on Bayesian networks. This model can be built on any exact propagation 

methods in Bayesian networks. The present study involves some fuzzy parameters and certain 

extra constraints. Optimization techniques, including piecewise linearization, are adopted to 

solve this non-linear programming model and obtain the solutions to the abductive reasoning 

problems under maximal and minimal confidence to the fuzzy parameters. Since the 

constraints in this model are extremely non-linear, and numerous non-separable terms are 

involved, local optima are obtained at the present stage. To enhance the solution quality, some 

global optimization techniques [24,40,41] can be further used for extended studies. 

Simultaneously, various reasoning related constraints are considered, including boundary 

constraints, dependency and disjunctive constraints. Compared to traditional methods that 

deal with constraints by dummy auxiliary nodes [8, 10], this optimization model of abduction 

avoids network restructuring. All extra information related to reasoning is considered to be 

additional constraints in the proposed non-linear program.  
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Table 6: Solution of Example 2.2 

 Under maximal confidence Under minimal confidence 

)( +tpBEL  0.6103 0.6000 

)( +suBEL  0.8000 0.8000 

)( +trBEL  0.2886 0.3694 

)( +qdBEL  0.8510 0.8510 

)( +tqBEL  0.1489 0.1489 

31x  0.3567 0.3561 

32x  0.7098 0.8 

33x  0.1274 0.1207 

34x  0.5451 0.7 

35x  0.3549 0.3 

)( 31~ xx31
µ  0.4329 0 

)( 32~ xx32
µ  0.4510 0 

)( 33~ xx33
µ  0.4510 0 

)( 34~ xx34
µ  0.4510 0 

)( 35~ xx35
µ  0.4510 0 
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Chapter 4 Diagnosis and decision with fuzzy parameters 

 

This chapter discusses the reasoning systems that need to complete diagnosis and 

decision making simultaneously. In this class of problems, the knowledge base will be 

extended into an influence diagram, in which the decision variables and fuzzy parameters are 

introduced. The problem of this chapter is presented as follow.  

 

Problem 3: Given the evidence set Ĕ from BN3= (DN, XN, L, P~ ), compute the belief 

distribution of Û⊂  BN3\ Ĕ, BEL(Û| Ĕ) ▓ 

 

In some environments, such as in a medical reasoning system, two generic reasoning 

tasks are vital: diagnostic reasoning and treatment planning. Diagnostic reasoning is the 

process of reconstructing the past facts from the observed evidence. Treatment planning is 

reasoning about the effects of actions treated on patients [27]. Usually, the practices of 

medicine and business require both kinds of reasoning to work simultaneously. However, few 

current reasoning methods can conduct the two reasoning tasks successfully at one time. 

Besides, the reasoning systems become more complex considering the complexity of human 

bodies and its relationships with the regional factors.  

In some clinical cases, various factors may raise the difficulty in reasoning, such as the 

demographic variances of nosography, the incomplete knowledge of the diseases (e.g. Severe 

Acute Respiratory Syndrome, SARS, in the early 2003), some restrictions on estimating 

relevant parameters of the diseases, etc. In these cases, the clinicians’ experiences and 

judgment may be very useful to diagnosis and prescription. Therefore, the site-by-site factors 

and clinicians’ knowledge, which may be expressed with extra constraints in the reasoning 

systems, need to be integrated into the medical decision support systems. At the same time, 
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owing to the difficulties to estimate the causal effects between possible pathogens and the 

diseases, the parameters of the knowledge base can be expressed as fuzzy numbers.  

Considering the clinical issues mentioned above, the authors are motivated to develop 

a methodology with the following features. 

1. Complete diagnostic reasoning as well as treatment planning. 

2. Combine the formal knowledge base as well as decision-makers’ judgments that 

present as extra constraints. 

3. Work compatibly with the circumstance where fuzzy information is involved.  

In the following section, the background of this research and the proposed approach 

will be interpreted. 

  

4.1 Influence diagrams 

In medical informatics and industrial domains, Bayesian networks and influence 

diagrams [30,31,33,35,39] are widely used knowledge representation and decision aids under 

uncertainty. Influence diagrams are directed acyclic graphs with three types of nodes: decision 

nodes, chance nodes, and a value node. Decision nodes, shown as squares, represent choices 

available to the decision-makers. Chance nodes, shown as circles, represent random variables 

(or uncertain quantities). Finally, the value node, shown as a diamond, represents the objective 

(or utility) to be maximized. In a multiple objective decision making model, there may be 

more than one value nodes.  

However, two limitations still persist when utilizing the above approaches for solving 

medical reasoning problems: 

1. All associated probabilities are assumed to be crisp values. 

2. Difficult to introduce the constraint among the nodes in Bayesian networks or 

influence diagrams.  

 40



 

3. Planning and diagnostic problems are not considered in one paradigm. 

 

The limitations mentioned above restrict the practical usefulness of medical reasoning 

on Bayesian networks and influence diagrams in the following facts. First, the conditional 

probabilities between a node and its parent nodes could be fuzzy instead of a crisp numbers, 

owing to the difficulties of learning accurately the cause-effect relationships among the nodes. 

Second, as a common fact, the experts may have some professional speculations in the form 

of constraints between the nodes in a Bayesian network. These constraints could be boundary, 

dependency, or disjunctive conditions. Third, the investigators of influence diagrams used to 

maximize the utility functions by node removal processes [30,33,39] and ignore diagnostic 

reasoning tasks; on the other hand, Bayesian networks have been used widely in probabilistic 

reasoning but lacked the capability to suggest the optimal decision. 

This section proposes an optimization model to make diagnostic reasoning and 

treatment planning for bacterial infections, where the cause-effect relationships are expressed 

with an influence diagram and fuzzy data. The inputs of the reasoning system are conditional 

probability distributions of the network nodes, the associated costs of the candidate antibiotic 

treatments, the expected effects of the treatments, and extra constraints regarding belief 

propagation. Since the prevalence of the pathogens and infections are determined by many 

site-by-site factors and subjective knowledge, the decision may involve uncertainty not 

compliant with conventional approaches and quite different background. So we allow the 

decisions to be made under fuzzy environments, at which some of the parameters could be 

fuzzy parameters [7], and some constraints regarding diagnosis are introduced. When a 

patient is received, this reasoning system can, based on the present symptoms or 

bacteriological tests, help the clinician make precise diagnosis at the first decision point, and 

also supply the suggestions of optimal treatment for the infection.  The outputs of the 

reasoning model are the likelihood of a bacterial infection, the most likely pathogen(s), the 
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suggestion of optimal treatment, the gain of life expectancy of the patient related to the 

optimal treatment, the probability of coverage from an infection associated with the antibiotic 

treatment, and the cost-effect analysis of the treatment prescribed. The input-process-output 

diagram is depicted in Figure 7. 

 

 

Figure 7: The input-output diagram of the optimization model for Chapter 4 

 

In the following, the authors will introduce an example of Urinary tract infection 

(UTI), the problem and design goal, and handling the fuzzy information sequentially. 
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Figure 8: A revised Bayesian network for Urinary tract infection [23]** 

 

Consider one example of urinary tract infections modified from Leibovici et al [23]. 

As depicted in Figure 8, this example uses an influence diagram as the knowledge and 

decision model where the conditional probability distributions for the relevant random and 

decision variables are calculated. For the sake of simplicity and without loss of generality, all 

random nodes are assumed and organized as binary. The conditional probability distributions 

of the variables are given as an example in Table 7 through Table 9. The nodes and their states 

in Figure 8 are described as follow.  

 

                                                 
** In the latter part of Figure8, the authors put pairs of (Node_Name: Description) for each node in the network 
to explain what the nodes represent. 
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Table 7: The conditional probabilities of pathogens, tests, and signs of UTI 

)( 1pathoP + =0.1 

)( 2pathoP + =0.09 

)( 3pathoP + =0.09 
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xpathopathopathoutiP
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=+−−+
=++−+
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Pathogen ( ): a microorganism capable of causing urinary tract infection. For 

the convenience of computation, only 3 of 12 pathogens are presented:  (Klebsiella 

pneumoniae)  (Pseudomonas aeruginosa),  (Escherichia Coli). The states of 

this kind of nodes are severity: severe ( =1) and not severe ( =0).  

iPatho

1Patho

2Patho 3Patho

iPatho iPatho

Urinary tract infection (UTI ): The states of this node are severe (UTI =1) and not 

severe (UTI =0).  

Signs and symptoms of urinary tract infection ( ): the manifestations that 

might cause from UTI . There are six possible signs presented in Figure 7:  

(suprapubic pain),  (Frequent micturition),  (Flank pain),  (Urinary 

symptoms),  (Serum albumin) and  (Fever). The states of these nodes are 

present ( =1) and absent ( =0).  

iSign

1Sign

2Sign 3Sign 4Sign

5Sign 6Sign

iSign iSign
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Table 8: The conditional probabilities of Signs ( ) iSign
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Table 9: Conditional probabilities of Coverage with resistance ( =1) Resist

 The instance of ( ) 321 ,, PathoPathoPatho

Treatment* (1,1,1) (1,0,1) (1,1,0) (1,0,0) (0,1,1) (0,0,1) (0,1,0) (0,0,0) 

0tr ** 0.3 0.4 0.4 0.5 0.4 0.3 0.3 0.6 

1tr  0.7 0.9 0.99 0.95 0.7 0.8 0.75 0.7 

2tr  0.7 0.7 0.85 0.7 0.85 0.8 0.99 0.8 

3tr  0.8 0.8 0.87 0.8 0.95 0.99 0.8 0.9 

4tr  0.7 0.95 0.8 0.9 0.8 0.7 0.9 0.95 

5tr  0.8 0.9 0.85 0.9 0.8 0.9 0.9 0.9 

* The costs of the , , , , ,  are 5000 (the receiving and process costs), 20000, 25000, 

30000, 32000 and 50000 dollars, respectively.  

0tr 2tr 4tr1tr 3tr 5tr

** No treatment. 

 

Bacteriological tests ( ):  (growth of microorganisms in the blood),  

(growth of microorganisms in the urine) and  (nitrite test). The states of these nodes are 

positive ( =1) and negative ( =0).  

iTest 1Test 2Test

3Test

iTest iTest

Coverage of UTI ( ): the percent of pathogens of UIT susceptible to an 

antibiotic drug. The states of this node are significant ( =1) and insignificant 

(Coverage =0). 

Coverage

Coverage
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Resistance to antibiotic drugs ( ): the states of this node are resistant 

( =1) and not resistant ( =0). 

Resist

Resist Resist

Antibiotic treatment (Tr ): the treatment will be appropriate if it matches the in-vitro 

susceptibility of the pathogens. For simplicity of demonstration, we consider 5 of 26 

antibiotic drugs and one additional state for no treatment. Thus, we have 6 alternatives, that is 

Tr = }  where  stands for no treatment and =0 or 1. When =1, 

 is prescribed; opposed, i =0 means that  is not prescribed. For the efficiency of 

computation, we allow only one antibiotic drug at one time, which let it possible to formulate 

this decision problem as a mixed 0-1integer program. If more than one drug are mixed in the 

therapy, the mixed treatment will be regarded as another treatment. Notably, this node is a 

decision node that has effects on the coverage from urinary tract infection.  

,t,t,t,t,t,t{ 543210 rrrrrr 0tr itr itr

itr tr itr

Cost: a utility node associated with antibiotic treatments ( ).  )( itrCost

Gain: the gain in life expectancy obtained by prescribing an antibiotic drug (Gain ), 

which is a function of the coverage ( ) and the underlying disorder of the patient 

(Underlying ).  

Coverage

Underlying: the underlying disorder of the patient (Underlying ), which will be 

represented by an equivalent base years of remaining life for the simplicity of computation.  

Each variable above is characterized by crisp or fuzzy probabilities given the state of 

its parents. For instance,  represents the dichotomy between having urinary tract 

infection and not having one. 

}0,1{∈UTI

uti+  stands for the assertion  or “urinary tract 

infection is present”, and  stands for the negation of 

1=UTI

uti− uti+ , i.e., .  0=UTI

Denote Y as the parameter set of the Bayesian network depicted in Figure 7. The joint 

probability distribution of this network with treatment  can be expressed as (19). itr
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 (19) 

 

4.2 Problem and goals 

The UTI problem can be seen as one case from Problem 3, which we present as 

Example 3 as below. 

 

Example 3 Refer to the conditional probabilities in Table 7 and Table 8, and the evidence that 

a patient is suffering from frequent micturition ( =1), flank pain ( =1) and urinary 

symptoms ( =1), but has not fallen into a suprapubic pain ( =0), serum albumin 

( =0) or fever  ( =0). Denote the evidence set Ĕ = {ě}={ =0, =1, 

=1, =1, =0, =0}. We need to solve the following two problems.  

2Sign 3Sign

4Sign 1Sign

5Sign 6Sign 1Sign 2Sign

3Sign 4Sign 5Sign 6Sign

1. Compute the belief distribution of every , , and . 1Patho 2Patho 3Patho UTI

2. Make the suggestion of the optimal treatment based on the information given in Table 

9, assuming the patient with resistance to the antibiotic treatments ( =1).  Resist

At the first decision point, the clinician tends to make the diagnosis without biological 

test results; that is, the task is reasoning on the subgraph omitting the nodes  and 

simplified as to compute P(y| ě) where ě stands for an instance of the evidence set Ĕ, and Y 

shrinks as { , , , ,Coverage }. This is reasonable since all the test 

nodes are Barron nodes in this diagram [30,33,39]. If the treatment prescribed at the first time 

doesn’t work, then some biological tests would be further considered. Besides, this model 

would like to provide the suggestions for the optimal treatment that maximizes the gain of life 

expectancy and minimizes the total associated costs.  

iTest

1Patho 2Patho 3Patho UTI
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Notice that some of the parameters in Table 7 are not crisp but fuzzy numbers. For 

instance, ),,|( 321 pathopathopathoutiP ++++  is not a crisp but a fuzzy number instead, say 

1
~x , where 1321

~),,|( xpathopathopathoutiP =++++ , and associated with a membership 

function )( 1~ xx1
µ  represented as follows. 

⎩
⎨
⎧ ≤≤−+−−−

=
,,0
,16.0),8.08.0(5)6.0(5

)( 1111
1~

1 elsewhere
xxxx

xxµ  (20) 

where “ ∗ ” is the absolute value of a term *. 

The above expression and Figure 8 mean that the domain of  is between 0.6 and 

1.0. If =0.8 then 

1x

1x )( 1~
1

xxµ =1, which implies that =0.8 is the most confident situation. If 

≤0.6 or ≥1 then 

1x

1x 1x )( 1~
1

xxµ =0, which is least possible to happen. If =0.7, then 1x

)( 1~
1

xxµ =0.5.  

Based on Proposition 1, (20) can be expressed into a general form as (9). 

Now this study expresses the membership functions of the fuzzy parameters )(~ ix x
i

µ  

in Table 10. The readers may find that all the eight fuzzy parameters are triangular fuzzy 

numbers. However, the membership functions in Table 10 involve absolute terms, which is 

not convenient to compute. Since the membership function in (9) is a nonlinear function to be 

maximized, this study will use Proposition 2 to formulate the optimization for diagnosis and 

optimal treatment. 

Now we are ready to formulate the optimization model for diagnosis and treatment 

planning. Here we formulate the diagnostic reasoning and treatment planning problems as an 

optimization model. The objectives involved in this model are described as in next section. 
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4.3 Model development 

The objectives involved in this model are described below. 

1. To maximize the sum of every fuzzy membership functions. That is, we will make the 

suggestions of optimal treatment under the maximal confidence of the fuzzy 

information. 

2. To maximize the gain in life expectancy. 

3. To minimize the total costs of the treatments.  

 

The first objective is to maximize the sum of every fuzzy membership functions. The 

decision of treatment prescription influences the gain and cost of this therapy. In this problem, 

the clinician has 6 candidate treatments to choose, where no treatment is included. We 

represent each antibiotic treatment as a binary variable  (including  standing for no 

treatment) and the associated cost as . The total cost is . The objective 

functions can be expressed as the following.  

itr 0tr

)( itrCost ∑
=

5

0
)(

i
itrCost

)(~1 ix xzMax
i

µ=  (21) 

)),((2 UnderlyingCoverageGainEzMax =  (22) 

∑
=

=
5

0
3 )(

i
itrCostzMin  (23) 

where “ ” stands for the expectation of a term *.  (*)E
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Table 10: The membership functions of fuzzy probabilities 

Parameter )(~ ix x
i

µ  Domain of ix~  

1
~x  )8.08.0(5)6.0(5 111 −+−−− xxx  [0.6,1] 

2
~x  )2.08.0(10)7.0(10 222 −+−−− xxx  [0.7,0.9] 

3
~x  )75.075.0(20)7.0(20 333 −+−−− xxx  [0.7,0.8] 

4
~x  )7.07.0(10)5.0(10 444 −+−−− xxx  [0.5,0.7] 

5
~x  )8.08.0(10)7.0(10 555 −+−−− xxx  [0.7,0.9] 

6
~x  )6.06.0(20)55.0(20 666 −+−−− xxx  [0.55,0.65] 

7
~x  )5.05.0(10)4.0(10 777 −+−−− xxx  [0.4,0.6] 

8
~x  )01.001.0(100)(100 888 −+−− xxx  [0,0.02] 

 

In (22), we express the gain in life expectancy as a function of the expectation of 

 and Underlying . We assume that the underlying disorder and health status can be 

converted to an equivalent base year, in this case, 35 years, and the gain is a multiple of the 

base year. It assumes that, in this clinical case, a patient has the ideal 35 years gain of life 

expectancy if the probability to recover from UTI is 1. Since the literatures [23] show that 

one-year gained in life can be regarded equivalent to $55,000, we re-write (22) as (24) for unit 

standardization.  

Coverage

 

35*))((550002 CoverageGainEz ×=′  (24) 

 

Setting that only one treatment can be chosen at one decision point, we can formulate 
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the total cost function as in (23). Notably, the expected gain is a function of the resistance of 

antibiotic treatment (given =1), the pathogens ( ), and the treatment prescribed 

( ). The reader may refer to their relationships in Table 9. Defining  as a 0-1 variable, the 

expectation of ,  can be computed as 

Resist jPatho

itr itr

Coverage )(CoverageE

 

∑ ∑ ∑ ∑ =×=

=

i patho patho patho
ii trresistpathopathopathoeragePtr

CoverageE

1 2 3

)),1,,,|(cov
)1Resist|(

321α  (25), 

where α  is the normalizing constant, which will be explained in next subsection.  

In this optimization program, two categories of constraints must to be satisfied: (i) the 

constraints regarding the Bayes’ Theorem, and (ii) the extra constraints regarding belief 

propagation. This optimization model can be implemented with various exact propagation 

methods. We do not intend to discuss here the details of reasoning algorithms, but focus our 

attentions on how to formulate this problem as an optimization model. This optimization 

model can be based on any exact methods. The interested readers may refer to the literatures 

[1,2,34,35,36,38].  

Now we formulate the first category of constraints as  

,1)],1,,,|(cov

)|0()|0(
)|1()|1()|1()|0(

),,|()([

)(

5

0
321

65

4321

coverage
321

3

11 2 3

==×

==×
====×

×=

∑

∑ ∑ ∑ ∑ ∑ ∏

∑

=

=

i
i

patho patho patho uti j
j

y

trresistpathopathopathoerageP

utisignPutisignP
utisignPutisignPutisignPutisignP

pathopathopathoutiPpathoP

yP

α

 (26) 

,01,1
5

0
ortrtr i

i
i ==∑

=
 (27) 

where α  is the normalizing constant which ensures that the sum of the probabilities of every 

instance of y is 1. The constraint in (27) regulates the clinician to prescribe only one treatment 

in the first decision point.  
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At the same time, for a given Bayesian network, the users or the experts, such as the 

clinicians, may have some professional speculations about the features of some nodes and the 

relationships among them, in some specific diagnostic context. These features and 

relationships can be identified as the following types of constraints [14]. 

1. Boundary constraints 

Some conditional probabilities may have upper or lower bounds. For instance, a 

clinician may speculate that the posterior probability of  given the evidence 

should be higher than 0.3 but lower that 0.5, which can be expressed as  

3Patho

5.0≤)|(≤3.0 3 epathoP +  (28) 

2. Dependency constraints 

The beliefs of some nodes in a Bayesian network may exist mutually dependent 

relationships. For example, a clinician may presume that the posterior probability of 

 should be some multiple of  given the evidence. Such a relationship 

is expressed as  

2Patho 3Patho

)|(5.0)|( 31 epathoPepathoP +≤+  (29) 

3. Disjunctive constraints 

Sometimes the disjunctive condition between the nodes may exist. For example, a 

doctor may estimate that either )|( 2 epathoP +  or )|( 1 epathoP +  is equal to or less 

than 0.4, which is expressed as  

Either 0.4 or ≤)|( 2 epathoP + ≤)|( 1 epathoP + 0.4 (30) 

 

Introducing constraints (28) and (30) into this reasoning system, this optimization 

program becomes 
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⎪
⎪
⎭

⎪
⎪
⎬

⎫

−

′

)30(),28()26(.
3

2

1

st
zMin
zMax
zMax

 (31) 

Since the disjunctive constraint (30) is a nonlinear constraint, we will linearize it by some 0-1 

variables as the following. 

⎪
⎭

⎪
⎬

⎫

≤+≤
−+≤−+≤−
−+≤−+≤−

.1
)1(4.0)|()1(
),1(4.0)|()1(

12

1212

2121

θθε
θθθ
θθθ

MMepathoPM
MMepathoPM

 (32) 

where 1θ  and 2θ  are 0-1 variables, M is a relatively large number, and ε  is a relatively 

small positive number. 

There are four instances of 1θ  and 2θ . (i) When 1θ = 1, 2θ =1, (32) turns into 

MepathoP ≤−+≤ 4.0)|(0 2  and MepathoP ≤−+≤ 4.0)|(0 1 , which are inactive constraint; 

(ii) When 01 =θ , 12 =θ , we get 04.0)|( 2 ≤−+≤− epathoPM  and 

MepathoP 24.0)|(0 1 ≤−+≤ , which means that when 4.0)|( 1 ≥+ epathoP ,  

must be less than or equal to 0.4; (iii) When 

)|( 2 epathoP +

1θ = 1, 2θ =0, the constraints are 

MepathoP 24.0)|(0 2 ≤−+≤  and 04.0)|( 1 ≤−+≤− epathoPM , which implies that when 

,  must be less than or equal to 0.2; (iv) When 4.0)|( 2 ≥+ epathoP )|( 1 epathoP + 1θ = 0, 

02 =θ , the inequalities become MepathoPM ≤−+≤− 4.0)|( 2  and 

, which are inactive constraints. The third inequalities in (32) 

exclude the combinations when 

MepathoPM ≤−+≤− 4.0)|( 1

1θ = 1, 2θ =1 and 1θ = 0, 2θ =0. To summarize, (32) implies 

that either 0.4 or ≤+ )|( 2 epathoP ≤+ )|( 1 epathoP 0.4 must be satisfied. 

 

4.4 Algorithm and solutions 

The model formulated in the previous section is a multiobjective program, so we adopt 

the fuzzy approach proposed by Zimmermann [44] to solve it. Following the steps described 
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below, the model is solved. 

 

Algorithm 1 

Step 1: Get the ideal solutions of every objective. 

To obtain the ideal solutions, every objective is optimized independently regardless of 

other objectives. In (31), we maximize , 1z 2z′ , and minimize  individually to acquire 

their ideal solutions ,  and , respectively. The ideal values are =8, 

=1722198, and =5000.  

3z

*
1z *

2z′ *
3z *

1z

*
2z *

3z

Step 2: Get the anti-ideal solution of every objective. 

To obtain the anti-ideal solutions, every objective is computed in the opposite way 

regardless of other objectives. Now, we minimize , 1z 2z′ , and maximize  to acquire the 

associated ideal solutions , and , respectively. The anti-ideal values are =4, 

=733764.5, and =40000.  

3z

−
1z

−′2z −
3z −

1z

−
2z −

3z

Step 3: Define the membership function of every objective by its ideal and anti-ideal 

solutions. 

With the ideal and anti-ideal solutions of every objective, we can define their 

membership functions as follow.  

−

−

−

−
=

kk

kk
kz zz

zzz
k *)(µ  (33) 

The membership functions evaluate the degree of fulfillment for every objective. 

Step 4: Maximize the minimal membership function of the three objectives.  

Using Zimmermann’s fuzzy approach for multi-objective programs, the model (32) 

can be converted into (34).  
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 (34) 

where λ  is defined as 

))(),(),((min 3213,2,1 321
zzz zzz µµµλ ′= ′

. 

In (34), this study intends to search for the maximum of the minimum level of 

fulfillment for all the objective functions. To avoid the poor estimation of the fuzzy 

parameters and decision quality, we set the strict lower bound of the membership function of 

every fuzzy parameter at 0.5. Applying the ideal and anti-ideal values computed in Step 1 and 

Step 2, (34) is specified as (35). 

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

−
−
−

≤

−
−′

≤

−
−

≤

),32(),28()26(
400005000

40000
5.7337641722198

5.733764
48
4..

3

2

1

z

z

zts

Max

λ

λ

λ

λ

 (35) 

This study will solve (35) with LINGO 8.0 developed by LINDO Systems Inc. [48]. 

LINGO is a comprehensive tool designed to build and solve linear, nonlinear and integer 

optimization models. LINGO provides a completely integrated package that includes a 

powerful language for expressing optimization models, a full featured environment for 

building and editing problems, and a set of fast built-in solvers.  

LINGO 8.0 solves (35) in 1 second and obtains the optimal treatment as  (1tr 11 =tr , 

054320 ===== trtrtrtrtr ), the normalizing constantα =323.6647, the optimal minimal 

membership of the objectivesλ =0.5714, and the likelihood of every pathogens:  

 55



 

.9895.0)|(,3884.0)|(
,3111.0)|(,4000.0)|(

3

21

=+=+
=+=+

eutiPepathoP
epathoPepathoP

 
The suggested optimal treatment results in a probability of 0.8396 to cover from the 

urinary tract infection, equivalent gain in life expectancy as $1616259, and the total costs in 

$20000. Besides, the clinician can make the diagnosis and optimal prescription at the first 

decision point with an overall confidence of the fuzzy parameters at 0.5714. We also find 3
~x , 

4
~x , 7

~x , 8
~x  significantly apart from its most possible values. It makes sense that, under this 

reasoning context, the experts need to make some subjective judgment or compromise 

between different, even conflicting information sources, which make the fuzzy parameters 

apart from their most confident values. The detailed solutions are listed in Table 11. 

 

4.5 Discussions and conclusions 

During the implementation of the reasoning model, the authors find the strength of the 

optimization model. First, the reasoning system allows the clinicians to combine their special 

judgments or experiences as extra constraints, which supplement the incomplete formal 

knowledge. This is useful for some newly discovered disease or infections, and increase the 

flexibility and robustness for various clinical settings. Second, the model completes two major 

tasks in medical informatics: diagnostic reasoning and treatment planning simultaneously, 

which is important a requirement for clinical decision support systems. Third, LINGO 

provides a powerful and efficient computation tool for solving the optimization model, 

especially when the authors adopt some linearizing techniques to transform the highly 

nonlinear program. Based on the authors’ experiences, LINGO performs better in solving 

linear programs than solving nonlinear programs.  

However, the authors also find several potential challenges in developing the proposed 

reasoning system. First, as the clinical problems grow larger and more complex, it may be a 

burden for the clinicians to formulate the model. In some diseases, there may be tens or 
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hundreds of nodes in the networks. The clinicians will have difficulties to estimate the 

parameters or specify the conditions of their diagnosis and prescription. Therefore, the system 

needs some experts in knowledge engineering or information management to participate in, 

which consequently increases the costs to implement. Second, as the scales of network grow 

larger, computing the belief of the unknown nodes will be more complicated and 

time-consuming. Some special techniques for belief propagation may be considered, such as 

clustering, joint tree decomposition, stochastic simulation, and so on [1,2,34,35,36,38]. How 

to integrate these computation methods and the optimization model will be a critical issue in 

implementing the reasoning system. Third, as network structures become huge, implementing 

the optimization model with LINGO will be fairly challenging. LINGO provides several 

interfaces with other applications, such as Visual C++, Visual Java, Visual Basic, etc. The 

system developers can bundle LINGO's functionality into their applications, or call functions 

from within the LINGO models that were written in an external programming language [48]. 

It will facilitate generating the codes for LINGO models and importing the parameters or 

input data from other applications. 
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Table 11: Solution of Example 3 

λ  0.5714 

1z =  ∑
=

8

1
~ )(

i
ix x

i
µ 6.2857 

2z =  )(GainE 1616259  

3z =  ∑
=

5

0
)(

i
itrCost 20000 

)|( 1 epathoP +  0.4000 

)|( 2 epathoP +  0.3111 

)|( 3 epathoP +  0.3884 

)|( eutiP +  0.9895 

Optimal treatment 11 =tr , 054320 ===== trtrtrtrtr  

),|cov( 5treerageP +  0.8396 

1x  0.8001 )( 1~
1

xxµ  0.9985 

2x  0.8001 )( 2~ xx2
µ  0.9970 

3x  0.7601 )( 3~ xx3
µ  0.7972 

4x  0.5500 )( 4~ xx4
µ  0.5000 

5x  0.8001 )( 5~ xx5
µ  0.9970 

6x  0.6000 )( 6~ xx6
µ  0.9960 

7x  0.45 )( 7~ xx7
µ  0.5000 

8x  0.0070 )( 8~ xx8
µ  0.5000 
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Chapter 5 Diagnosis and decision with fuzzy nodes  

 

This chapter discusses the reasoning systems that need to complete diagnosis and 

decision-making in dynamic environments. In this class of problems, the knowledge base will 

be extended into a dynamic fuzzy influence diagram, in which the decision variables and 

fuzzy variables (nodes) are introduced. The problem of this chapter is presented as follow.  

 

Problem 4: Given the evidence set Ĕ from BN4= (DN, CN, XN, L, P), compute the belief 

distribution of Û⊂BN4\ Ĕ, BEL(Û| Ĕ). ▓ 

 

5.1 Reasoning in supply chain management 

In some domain, the reasoning tasks may involve various types/degrees of 

uncertainties and become more complex than the conventional problems, such as supply chain 

management.  

Supply chain management has been commonly recognized as a key issue of business 

success, especially for multinational industries and global markets. It has shifted the 

management paradigm of enterprises. There are several works on the causal relationships in 

multi-echelon supply chains, such as the dynamics of buyer-supplier relationships 

[3,10,12,32], the strategic role of the buying firms in structuring supplier-supplier 

relationships and supply chain effectiveness [21], the relationship between just-in-time 

purchasing techniques and supply chain performance [9], diagnostic reasoning in supply chain 

alliance with static Bayesian networks [15,16,18], and so on. However, there are limited 

works on design of integrated systematic methodologies for supply chain diagnostics and 

optimal solution. Naim et al [29] developed a methodology, Quick Scan, to conduct a supply 
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chain oriented business diagnostics in the European automotive supply chain values streams. 

Quick Scan is a systematic methodology to collect and synthesize the data from a supply 

chain. One of the main outputs of Quick Scan is the cause-and-effect diagram of the supply 

chain. The advantages of Quick Scan are (1) data collection and integration, (2) identification 

of causal relationships in a supply chain, and (3) a systematic and integrated view of supply 

chain diagnostics.  

Reviewing the literatures on supply chain diagnostics, we find some interesting issues 

worth further discussions and extensions. First, the diagnostic methodologies are not designed 

in the previous works. Second, the strength and uncertainty of the causal relationships in 

supply chain diagnostics are not quantified. Third, there is not an integrated framework on 

diagnosis and decision-making for the optimal supply chain solutions. Fourth, fuzzy 

information is not considered in the previous works. Motivated by the open issues, this study 

proposes an integrated framework based on a dynamic influence diagram for the supply chain 

diagnosis and decision-making. The uncertainties involved in supply chains are captured by 

fuzzy numbers and membership functions, which turns the decision model into a dynamic 

fuzzy influence diagram. Using the integrated framework, it works to answer the queries such 

as “What are possibly the causes of the poor schedule adherence of the two-echelon supply 

chains?” and “How information and communication technologies can contribute to the supply 

chain collaboration? What is the optimal technical solution to the supply chain treatment?” 

The remainder of this chapter will be organized as follow. Section 5.2 first addresses a 

case of European automotive supply chains. Section 5.3 then gives an introduction of 

dynamic models with fuzzy parameters. A dynamic fuzzy influence diagram will be 

developed for the two-echelon supply chain based on the case studied in section 5.2. Section 

5.4 designs the algorithms to conduct diagnostic reasoning in the dynamic fuzzy influence 

diagram. Next, section 5.5 formulates a fuzzy multi-objective nonlinear programming model 

for the optimal supply chain solution. Finally, section 5.6 gives the discussions and 
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conclusions. The research framework is depicted as Figure 9 

 

Develop the dynamic fuzzy influence diagram
for the supply chain management.

Phase II: decision making for the optimal
treatment to the supply chain problems.

Handling the fuzzy nodes and 
possibility distributions.

Phase I: diagnose the supply chain based
on the dynamic influence diagram.

Discussions and comments

A case study for the European automotive 
supply chain.

Measure the technical solution alternatives
with fuzzy costs and utilities.

 

 

Figure 9: Research framework of Chapter 5 

 

5.2 Problem and Goals 

In this section, we first introduce a case of the two-echelon European automotive 

supply chain [29]. From this case, the readers can realize how the cause and effect diagram of 

the engine assembler and its component supplier is built and provides a basis for supply chain 

diagnosis. 
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Example 4: As one component supplier of the leading engine assembler Company C, 

Company S puts much attention to its own performance and satisfaction of Company C. From 

the past periods, Company S observed the poor schedule adherence inside the company, and 

several help calls from Company C. So Company S initiated an investigation of the company 

and through the two-echelon supply chain.  

Based on Quick Scan, a previous survey to integrate the quantitative and qualitative 

data from a two-echelon supply chain, all participating companies and third parties who 

concern the supply chain problems can investigate demand amplification effects in the supply 

chain and the causes of the poor schedule adherence of the component supplier. One of the 

main outputs of the Quick Scan is the cause-and-effect diagram shown in Figure 10 [29]. 

From the cause-and-effect diagram in Figure 10, the readers can find two kinds of factors: the 

keys of customers (achromatic) and the keys from suppliers (in gray). The arrows in the 

diagram represent the causal links between the keys of the two-echelon supply chain. 

Company S traced all the key factors in Figure 10 carefully. 

After a thorough investigation, Company S found several symptoms internal his 

company, which closely relate to some segments in the supply chain. Further collecting 

relevant data through the supply chain, Company S observed that, for the preceding periods, 

Company C has put considerable schedule alterations. Company S itself had large product 

range and high risk of obsolescence, and also kept limited finished goods. The production 

capacity constraint was high and the scheduling flexibility was low. Besides, the supplier bore 

large set-up times/ costs and had large batch production.  
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Figure 10: Cause-effect diagram of the two-echelon automotive supply chain [29] 

 

At the same time, Company S foresaw the needs to strengthen the collaborative 

mechanism in the supply chain, which is supposed to enhance the information transparency, 

customer satisfaction in the supply chain value stream, and the overall supply chain 

performance. The information and communication technologies (ICT) are usually believed to 

facilitate the supply chain collaboration.  

In Example 4, there are two important issues to concern: (a) What are the causes of 

poor schedule adherence in the automotive supply chains? How possible are the unknown 

variables to be the sources of the problems? (b) What is the optimal technical solution to the 

supply chain collaboration supposed to enhance the supply chain performance? 

Since the previous works did not provide proper tools for analyzing the above 

problems, this study will propose a two-phase model to answer problem (a) and problem (b). 

Next section will show how the cause-and-effect diagram in Figure 10 can be converted into a 

dynamic fuzzy influence diagram. Then, diagnostic reasoning in the supply chain will answer 
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the first problem in the diagnostic phase. 

 

5.2.1 Dynamic Bayesian networks with fuzzy nodes 

Example 4 can be developed as one application of dynamic Bayesian networks or 

influence diagrams for supply chain management, involving a leading automotive engine 

assembler (Company C) and one of its component suppliers (Company S). This study will 

formulate the supply chain using a dynamic influence diagram. 

A static influence diagram can be extended into a dynamic influence diagram 

[4,8,16,17] by introducing relevant temporal dependencies between representations of the 

static network at different times. Two types of dependencies can be distinguished in a 

dynamic network: contemporaneous dependencies and non-contemporaneous dependencies. 

Contemporaneous dependencies refer to arcs between nodes that represent variables within 

the same time period. Non-contemporaneous dependencies refer to arcs between nodes that 

represent variables at different times. We will illustrate how to formulate a dynamic influence 

diagram for the supply chain diagnosis and treatment, as well as how the participating 

enterprises in the supply chain can solve the diagnostic problems and obtain the optimal 

solution on the diagrams. 

 

5.2.2 Uncertainties in supply chains 

The supply chain mentioned in Example 4 is a highly uncertain and complex system. 

The uncertainties originate from several sources. 

(a) The stochastic properties in the supply chain system itself, such as the relationships 

among the nodes in the network, which are random in nature. This category of 

uncertainty is usually handled with probability theory. 
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(b) The incomplete knowledge of the system. The decision maker may have only partial 

knowledge about the system, and need to make some subjective judgments, such as 

the costs and benefits from the supply chain collaborations. This category of 

uncertainty is often treated with fuzzy sets and the possibility functions. 

(c) The semantic vagueness in the system, such as good manufacturing capability, stock 

control performance, customer satisfaction, etc. This kind of ambiguity is usually 

treated with fuzzy sets and the possibility distributions. Once we define the fuzzy 

nodes and possibility distributions in the influence diagram, it will become a fuzzy 

influence diagram. Moreover, this study will encounter a dynamic fuzzy influence 

diagram for the supply chain systems.  

This chapter will consider and operate the three types of uncertainty mentioned above.  

 

5.3 Model development 

Before applying the graphical decision model to the supply chain problems, the 

authors first make a brief discussion. According to the uncertainty of the domain problems, 

there are several types of network nodes: crisp discrete nodes, crisp continuous nodes, fuzzy 

discrete nodes, and fuzzy continuous nodes. In a word, the crisp nodes behave randomly and 

are described with a probability distribution. On the other hand, the fuzzy nodes are generally 

semantically ambiguous or are realized with incomplete knowledge. Considering the system 

characteristics of the supply chain, we choose crisp discrete and fuzzy continuous nodes to 

formulate the domain variables. Because there is a feedback loop in Figure 10, the 

two-echelon supply chain will be expressed by a dynamic fuzzy influence diagram in the 

following steps. First, this study changes every factor in Figure 10 into a network node. There 

are two types of nodes: crisp random nodes and fuzzy nodes. For convenience of computation 

and without loss of generality, each crisp node is assumed two states and turn into a binary 
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variable. The cases of multi-valued crisp nodes are indifferent in nature and intuitive to extend 

in real-world applications. Each crisp random node is characterized with a prior or conditional 

probability distribution, which has been learned previously from the field. For the nodes that 

are semantically ambiguous or incompletely comprehended, we assign each one a possibility 

distribution to express the level of possibility. The knowledge workers operating on the 

system can maintain and alter these distributions when any updated information is passed into 

the systems. 

Now Figure 10 is transformed into Figure 11. The description and states of the random 

nodes are listed in Table 12. Let X stands for the crisp node set and Y~ stands for the fuzzy 

node set. For the crisp nodes, we use the uppercase letters to represent the variables and 

lowercase letters for their associated values. For example, represents the dichotomy 

between low risk of obsolescence and high risk of obsolescence at time .  stands for 

 =1 and  stands for  =0. Oppositely, we assign a triangular membership function 

to represent a fuzzy node. Every fuzzy node is denoted by (

}1,0{∈tC

t tc+

tC tc¬ tC

yyy ,, * ), where y  represents the 

left limit, y  stands for the right limit, and  represents the peak of the triangular 

membership function. This study does not discuss how to learn the relevant parameters, but 

concentrate on the diagnostic reasoning and decision-making methods. In Figure 11, two 

kinds of nodes are added: decision node ( ) and utility node (U ).  stands for the 

information and communication technologies that will be selected to improve the supply 

chain performance and  denotes the utility set. 

*y

ICT ICT

U

In Figure 11, we introduce one implicit link from  to U I , which is unusual in 

influence diagrams. The implicit links implies that, the benefit from the collaboration is 

shown as a value node but will feedback to the next-stage supply chain system and diminish 

the poor schedule adherence through decreasing schedule alterations on the suppliers. 

The diagnostic problems in a supply chain can be regarded from any possible aspects 
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concerning the supply chain. Assume that all the probabilities or possibilities of the nodes 

have been learned from the historical data and given in Table 13. Remarkably, the probability 

distributions of some crisp nodes conditioned on the manifestation of their fuzzy parents. To 

cope with these cases, this study adopts a computable approximate mechanism.  
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Figure 11: A dynamic influence diagram of the supply chain 
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Figure 11a: Time expansion of the dynamic influence diagram in Figure 11 
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Table 12: Description of nodes in the dynamic influence diagram in Figure 11 

Node Level Description State 
Crisp nodes 

A Customer Product variety 1: > 15 product lines; 

0: <= 15 product lines 

B Supplier Product range 1: > 30 product lines; 

0: <= 30 product lines 

C Supplier Risk of obsolescence 1: > 0.5; 0: <= 0.5 

E Customer Design specification alterations 1: > 2 times/order 

0: <= 2 times /order 

F Customer B.O.M accuracy 1: > 90%, 0: <= 90% 

G Supplier Finished goods safety stock 1: > 5000 SKUs;  

0: <= 5000 SKUs. 

H Supplier Lack of raw materials at use 1: > 10%; 0: <= 10%. 

I Customer Schedule alterations on suppliers 1: > 5 times/order 

0: <= 5 times/order 

J Supplier Schedule adherence 1: > 90%; 0: <=90% 

K Supplier Production capacity constraint 1: > 130% demand orders; 

0: <= 130% demand orders 

L Customer Schedule build alterations 1: > 5 times/order 

0: <= 5 times /order 

N Customer Lack of components at use 1: > 10%; 0: <=10% 

O Supplier Scheduling flexibility 1: > 35 % capacity; 

0: <= 35 % capacity 

Q Customer Lost stock at use 1: > 5 %; 0: <= 5 %. 

R Supplier Set-up times/costs 1: >10% standard time 

0: > 10% standard time 

S Supplier Volume of batch production 1: > 60%; 0: <=60% 

Fuzzy nodes 

D~  Supplier Stock control performance Level of assessed performance

M~  Customer Build capability % of on-time order fulfillment 

P~  Customer Stock control performance Level of assessed performance
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This work partitions the support of the fuzzy parents into a few sub-domains, and then 

approximates the crisp children’s conditional probability on the sub-domains. In a living 

expert system, these parameters for the dependency relationships can be estimated and tuned 

by the knowledge engineers. 

The evidence collected till now are poor schedule adherence ( =0), considerable 

schedule alterations (

tJ

tI =1), large product range ( tB =1), high risk of obsolescence ( =1), 

limited finished goods ( =0), large production capacity constraint (

tC

tG tK =1), poor scheduling 

flexibility ( =0), large set-up times/ costs (tO tR =1) and had large batch production ( =1). 

Given the information on hand, now Company S needs to compute the posterior probability 

distributions of every proposition in the system backward for  periods, given the evidence 

set Ě = {

tS

n

tB =1, =1, =0, tC tG tI =1, =0, tJ tK =1, =0, tO tR =1, =1|1 }.  tS nt ≤≤

In Figure 11, a feedback loops exists among I (schedule alterations placed on 

suppliers), J (schedule adherence), N (lack of components when required), M (build capability) 

and L (schedule build alterations). If we take a time expansion aspect, Figure 11 can be 

expended as Figure 11(a). This study assumes that the relationship and conditional probability 

distributions among the nodes remain unchanged in the studied horizon. Regardless of the 

decision and utility nodes temporarily, the joint probability distribution of this dynamic 

Bayesian network for time  = 1 through can be expressed as (36). t n

 

 

 

 

 70



 

Table 13: The probability/possibility distributions for the dynamic Influence Diagrams 

in Example 4 

Crisp nodes  

)( taP + =0.7 
 

),|( ttt eabP +++ =0.9 ),|( ttt eabP +¬+ =0.6 

),|( ttt eabP ¬++ =0.8 ),|( ttt eabP ¬¬+ =0.2 

)|( tt bcP ++ =0.85 )|( tt bcP ¬+ =0.2 

)( teP + =0.4 
 

)|( tt efP ++ =0.15 )|( tt efP ¬+ =0.9 

)|( tt cgP ++ =0.1 )|( tt cgP ¬+ =0.8 

)|( 6.0
tt dhP >+ =0.05 )|( 6.0

tt dhP ≤+ =0.9 

),|( ttt lfiP +++ =0.8 ),|( ttt lfiP +¬+ =1.0 

),|( ttt lfiP ¬++ =0.01 ),|( ttt lfiP ¬¬+ =0.5 

),,|( tttt ihgjP ++++ =0.2 ),,|( tttt ihgjP +¬++ =0.5 

),,|( tttt ihgjP ¬+++ =0.6 ),,|( tttt ihgjP ¬¬++ =0.99 

),,|( tttt ihgjP ++¬+ =0.0 ),,|( tttt ihgjP +¬¬+ =0.5 

),,|( tttt ihgjP ¬+¬+ =0.6 ),,|( tttt ihgjP ¬¬¬+ =0.8 

)( tkP + =0.5 
 

)|( 9.0
tt mlP ≥+ =0.1 )|( 8.0

tt mlP ≤+ =0.9 
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)|( 1−++ tt jnP =0.1 )|( 1−¬+ tt jnP =0.5 

),|( ttt qonP ¬++ =0.2 ),|( ttt qonP ¬¬+ =0.6 

),|( ttt qonP +++ =0.01 ),|( ttt qonP +¬+ =0.1 

),|( ttt skoP +++ =0 ),|( ttt skoP +¬+ =0.7 

),|( ttt skoP ¬++ =0.6 ),|( ttt skoP ¬¬+ =0.95 

)|( 6.0
tt pqP >+ =0.1 )|( 6.0

tt pqP ≤+ =0.5 

)( trP + =0.5 
 

)|( tt rsP ++ =0.7 )|( tt rsP ¬+ =0.3 

Fuzzy nodes  

)~( tdPos =(0.3, 0.6, 0.9) 
 

)|~( tt nmPos + = (0.5,0.6,0.8) )|( tt nmPos ¬ =(0.9,0.95,1.0) 

)~( tpPos = (0.5,0.6,0.7) 
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 (36) 

The equation in (36) involves both joint probability and possibility functions, so we 
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use “ ” to denote the operator link crisp and fuzzy parameters. ⊗

The term  embraces contemporaneous dependencies at time and 

non-contemporaneous dependencies at 

),,|( 1 tttt qojnP − t

1−t . There are two simple parameterized 

decompositions used commonly by time-series analysts: the additive and the multiplicative 

decomposition [4]. The additive decomposition is used commonly in time-series analysis for 

integrating predictions based on current observations with predictions based on historical 

observations. Additive decompositions are an integral aspect of models that purport to 

forecast future values of time-series. The multiplicative decomposition is used usually to 

model log-linear systems in engineering applications. Both decompositions employ likelihood 

weights, which provide a language for assigning measures of reliability to information about 

different periods. Using this approach, we can consider the probabilistic dependencies from 

contemporaneous sets of variables and from variables at different points in the past as 

providing independent sources of information. The measures are used to weight the 

contributions of the contemporaneous and non-contemporaneous dependencies separately. 

The sum of the predictions, each weighted by its likelihood, gives the final predictions. The 

use of likelihood weighting allows an expert to specify the weight of the past versus the 

present easily. Consider the following property. 

 

Additive and multiplicative decomposition 

Let ω  denotes the likelihood that  predicted from the information at period t , 

and 

tn

)1( ω−  denotes the likelihood that  predicted from the information prior to time . 

In the additive decomposition, the conditional probability function  can be 

given by 

tn t

),,|( 1 tttt qojnP −

)|()1(),|(),,|( 11 −− −+= ttttttttt jnPqonPqojnP ωω  (37) 
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In the multiplicative decomposition, the conditional probability function is 

ωωγ −−− ×= 111 )|(),|(),,|( ttttttttt jnPqonPqojnP  (37a) 

where γ  is a constant that normalizes the probability distributions to unify. The likelihood 

weight ω  can be learned from the historical data with maximum likelihood methods [4]. 

Considering the dynamic properties of Example 4, this study will use additive decomposition 

in (37). 

In modeling the supply chain with an influence diagram, we encounter a dilemma. The 

two-echelon supply chain is first noticed with its inefficiency in meeting the manufacturing 

schedule, and needs a first-handed diagnosis prior to a treatment solution. Therefore, this 

supply chain system needs two things at two different timing: a thorough diagnosis and a 

suggestion as to the optimal technical solution. Conventional approaches to evaluate the 

influence diagram do not allow the delay between diagnosis and decision-making. Hence, this 

study will divide the procedure for treating the supply chain system into two phases: 

diagnostic phase and optimization phase. In the diagnostic phase, the authors first ignore the 

decision and utility nodes and regard this system as a Bayesian network. After the origin of 

supply chain inefficiency is uncovered, next optimization phase will be activated and find the 

optimal solution. 

 

5.4 Algorithms and solutions 

Example 4 is a typical diagnostic reasoning problem in a dynamic environment. We 

will use the stochastic simulation [2,35] to solve this problem. 

 

5.4.1 Phase I: diagnostic phase 

First of all, we denote by  the state of all variables except X, then the value of X Xw
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will be chosen by tossing a coin that favors 1 over 0 by a ratio of )|( XwxP +  to )|( XwxP ¬ . 

We will show that , the distribution of each crisp variable X conditioned on the 

values  of all other variables in the system, can be calculate by purely local computations. 

The distributions of  in this network at time  are as (38)-(44). 

)|( XwxP

Xw

)|( XwxP t

 

Distributions of crisp nodes 

),|()()|( tttt
A

t eabPaPwaP t α=  (38) 

)|(),|()()|( tttttt
E

t efPeabPePweP t α=  (39) 

),|()|()|( ttttt
F

t lfiPefPwfP t α=  (40) 

),,|()~|()|( tttttt
H

t ihgjPdhPwhP t α=  (41) 

),|()~|()|( ttttt
L

t lfiPmlPwlP t α=  (42) 

)|~()]|()1(),|([)|( 1 ttttttt
N

t nmPosjnPqonPwnP t ⊗−+= −ωωα  (43) 

)|()1(),|()[|()|( 1−−+= ttttttt
Q

t jnPqonPpqPwqP t ωωα  (44) 

Similarly, the distribution of )|~( ~YwyPos  at time  are list as (45)-(47). t

 

Distributions of fuzzy nodes 

)~|()~()|~( ~
ttt

D
t dhPdPoswdPos t ⊗=α  (45) 

)~|()|~()|~( ~
tttt

M
t mlPnmPoswmPos t ⊗=α  (46) 

)~|()~()|( ~
ttt

P
t pqPpPoswpPos t ⊗=α  (47) 

where α  is the normalizing constant. 

This study assumes ω =0.5 for all periods except the starting period ( t =1) when ω  
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is 1. Assume that the evidence remains unchanged during the simulation. This assumption can 

be released when applied to more complex scenarios. The algorithm of stochastic simulation 

is listed as follow. 

 

Algorithm 2: Stochastic simulation for crisp nodes 

Step 1: Read EvidenceSet, UnknownNodeSet. In Example 4, EvidenceSet={B, C, G, I, J, K, 

O, R, S}, and UnknownNodeSet is the set of remaining nodes which are unknown to 

the decision makers. 

Step 2: Read X  from UnknownNodeSet. If the value returned is NULL, then go to Step 6.  

Step 3: Read the values of X ’s neighbors. For example, when E is read, the values of E’s 

neighbors, B and F, are inspected. Similarly, when N is read, the values of N’s 

neighbors, J, M~ , O, Q, are inspected.  

Step 4: Compute )|0()|1( XX wXPwXP == . 

Step 5: Assign 0 or 1 to X  from a random number generator favoring by the ratio 

)|0()|1( XX wXPwXP == . Go to Step 2. 

Step 6: Compute the belief of X =1, , from the proportion of 1’s of )(xBEL X . 

End of Algorithm 2. 

For the propagation of the fuzzy nodes, we design the fuzzy simulation algorithm to 

generate the possibility belief range of the unknown fuzzy nodes. In Algorithm 3, we replace 

the operator “⊗ ” with minimum intersection operator “∧ ”.  

 

Algorithm 3: Fuzzy simulation for fuzzy nodes 

Step 1: Read EvidenceSet, UnknownNodeSet.  
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Step 2:Read Y~  from UnknownNodeSet. If the value returned is NULL, then go to Step 8.  

Step 3: Read the values of Y~ ’s neighbors. For example, when D~  are read, the values of 

D~ ’s neighbors, H, are inspected.  

Step 4: Generate )|()~()~()|~( ~ xY xPPosyPoswyPos πψ ∧∧= , where )~(ψPos  stands for the 

possibility distribution of Y~ ’s fuzzy neighbors, )|( xxP π  stands for the probability 

distribution of Y~ ’s crisp neighbor. For M~ , the crisp neighbors are L and N, and the 

fuzzy neighbors are empty.  

Step 5: Specify the λ  level and generate λ -cut set of Y~ .  

Step 6: Sample from the λ -cut set of Y~  randomly and get . y

Step 7: Store the minimum , the maximum , and the mean value 

 of the sampled . Go to Step 2.  

)(yMIN )(yMAX

)(yMEAN y

Step 8: Generate the belief distribution of Y~ , )~(yBEL , in the form of 

( , , ). )(yMIN )(yMEAN )(yMAX

End of Algorithm 3. 

This study implements Algorithm 2 and 3 with Java 2. We observe the belief 

distribution for three periods and specify the confidence of the possibility functions at λ  = 

0.0, 0.5 and 1.0. The program simulates for 10000 iterations and finishes in less than 1 second. 

The results of simulation show the belief of every unknown node at every period, which are 

summarized in Table 14a through Table 14c. Observing Table 14a to Table 14c, we can find 

the belief distributions of the nodes relevant to poor schedule adherence. Several causes have 

significant influence on the supply chain inefficiency. The customer has large product variety 

( 1) with belief and around 0.8. The frequent specification alterations put by the customer =tA
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( 1=tE ) is 0.55 to 0.65, approximately. Besides, the customer puts frequent schedule build 

alterations ( ) with belief 0.65, 0.88, 0.88, according to 1=tL λ =0, 0.5 and 1.0, respectively. 

All the manifestations provide direct or indirect explanations for Company S’s poor schedule 

adherence. The results also explain why the decision variable  aims at ICT L  and is 

expected to treat the supply chain through the effect of U  on I . However, the single 

company is not capable of solving the problems in this two-echelon supply chain. 

Next, Company S needs to initiate a collaborative plan with Company C to improve 

the schedule adherence and supply chain performance. 

 

5.4.2 Phase II: Optimization phase 

Now Company C realized what related to the poor schedule adherence in the 

two-echelon supply chain. It sensed the needs to implement electronic supply chain 

collaboration via ICT to upgrade the collaborative platform.  
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Table 14a: The results of simulation (λ -level = 0.0) 

 t =1 t =2 t =3 

Crisp nodes    

)1( =tABEL  .8248 .8286 .8220 

)1( =tEBEL  .6236 .6466 .6467 

)1( =tFBEL  .3370 .3121 .3126 

)1( =tHBEL  .5221 .5113 .5189 

)1( =tLBEL  .6623 .6378 .6433 

)1( =tNBEL  .4369 .4533 .4465 

)1( =tQBEL  .2845 .2965 .3003 

Fuzzy nodes    

)~( tdBEL  (.3001, .5984, .8999) (.3001, .6031, .8999) (.3000, .6008, .8999)

)~( tmBEL  (.5001, .8185, .9999) (.5000, .8132, .9999) (.5000, .8164, .9999)

)~( tpBEL  (.5000, .6009, .6999) (.5000, .5992, .6999) (.5000, .6000, .6999)

Note: The evidence set Ė={ tB =1, =1, =0, C tG tI =1, =0, tJ tK =1, =0, tO tR =1, =1|tS 31 ≤≤ t }. 

 

 79



 

Table 14b: The results of simulation (λ -level = 0.5)  

 t =1 t =2 t =3 

Crisp nodes    

)1( =tABEL  .8355 .8389 .8367 

)1( =tEBEL  .5587 .5323 .5599 

)1( =tFBEL  .4342 .4558 .4319 

)1( =tHBEL  .6395 .6541 .6530 

)1( =tLBEL  .8729 .8897 .8847 

)1( =tNBEL  .8121 .8429 .8442 

)1( =tQBEL  .1816 .2775 .2783 

Fuzzy nodes    

)~( tdBEL  (.4350, .5760, .7574) (.4350, .5728, .757) (.4350, .5738, .7574)

)~( tmBEL  (.5450, .6463, .9774) (.5450, .6342, .9774) (.5450, .6338, .9774)

)~( tpBEL  (.5250, .5935, .6549) (.5250, .5897, .6549) (.5250, .5899, .6549)

Note: The evidence set Ė={ tB =1, =1, =0, C tG tI =1, =0, tJ tK =1, =0, tO tR =1, =1|tS 31 ≤≤ t }. 
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Table 14c: The results of simulation (λ -level = 1.0):  

 t =1 t =2 t =3 

Crisp nodes    

)1( =tABEL  .8350 .8305 .8381 

)1( =tEBEL  .5410 .5389 .5458 

)1( =tFBEL  .4446 .4544 .4360 

)1( =tHBEL  .6291 .6760 .6470 

)1( =tLBEL  .8698 .8972 .8817 

)1( =tNBEL  .8419 .8620 .8520 

)1( =tQBEL  .0779 .1064 .1046 

Fuzzy nodes    

)~( tdBEL  (.5700, .5934, .6149) (.5700, .5923, .6149) (.5700, .5929, .6149)

)~( tmBEL  (.5900, .6518, .9549) (.5900, .6445, .9549) (.5900, .6481, .9549)

)~( tpBEL  (.5500, .6027, .6099) (.5500, .6016, .6099) (.5500, .6018, .6099)

Note: The evidence set Ė={ tB =1, =1, =0, C tG tI =1, =0, tJ tK =1, =0, tO tR =1, =1|tS 31 ≤≤ t }. 

 

After intensive communications, the two participating businesses finally reach a 

common consensus and start implementing this cooperative proposal. They start considering 

relevant Information technologies and collaborative solutions, especially business-to-business 

(B-to-B) collaboration expected to improve the information transparency and customer 
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relationships in the supply chain value streams. After professional survey and consulting 

experts’ opinions, four alternatives will be evaluated. The information for the optimization 

phase is listed as follow. 

},,,{ 4321 zzzzICT = , where  stands for XML,  stands for RosettaNet,  stands for 

ebXML, and  stands for BizTalk. All  are 0-1 variables. When the i th 

alternative is adopted,  is 1; otherwise  is 0. More than one alternative can be 

implemented simultaneously to cover various needs from different partners.  

1z 2z 3z

4z iz

iz iz

=U { }654321 ,,,,, UUUUUU : set of costs and utilities. Refer to Table 16. 

4,3,2,1, =jiu  Costs of  at phase , where =1 represents the conceptualization phase, 

=2 represents the analysis phase, =3 represents the design and implementation 

phase, =4 represents the maintenance phase. Notably, the costs include all explicit 

expenditures and implicit efforts to implement the alternatives.  

iz j j

j j

j

6,5, =liu : Expected benefits of , where =5 means information transparency via , =6 

means expected on-time product delivery resulted from solution . 

iz l iz l

iz

All the measures of utility set are normalized to scale 0 to 100.  

vp~ : Fuzzy parameters that defines “around “, where v }95,90,80,70,60,50,40{∈v . 

)~( vpPos : Possibility function of fuzzy parameter vp~ , vvv ppp ≤≤ , and =1.  )( *
vpPos
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Table 15: Description of IT solutions 

 Description Software provider 

XML 

( ) 1z

eXtensible Markup Language (XML) [53] is a simple and

flexible text format derived from SGML. An important role 

in exchanging of data and basis of technologies, such as 

Web Services, SOAP and etc.  

webMethods [54], Peregrine 

System [50], Ariba [45], TIBCO 

[42], etc. 

RosettaNet 

( ) 2z

RosettaNet is an e-business process standard for 

Information Technology, Electronic Components, 

Semiconductor Manufacturing and Telecommunications

industries. Sponsored by IBM, Intel, Inovis, webMethods 

and over 400 companies. [51] 

webMethods, Peregrine System, 

TIBCO, Ariba …  

 

EbXML 

( ) 3z

Electronic Business using eXtensible Markup Language 

(ebXML) [47] provides an open XML-based standard to 

support exchanging business messages and conduct trading 

relationships. Sponsored by UN/CEFACT and OASIS. 

webMethods , Peregrine System, 

TIBCO, … 

BizTalk 

( ) 4z

BizTalk [46] is an XML-based and open standard 

sponsored by Microsoft Corporation. It is used to adopt the 

business processes of business-to business (B-to-B), 

enterprise application integration (EAI), and Business 

Process Automation (BPA). 

Microsoft BizTalk Server [49] 

 

 

The descriptions the four solutions are given in Table 15. Also, the costs to deploy 

every alternative, including all explicit expenditures and implicit efforts, are estimated in 

Table 16. Due to the uncertainty and ambiguity involved in the planning processes, all the 
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costs and utilities of the ICT alternatives are expressed by fuzzy numbers. For convenience of 

comparison and to avoid the confidential issues about the price, the fuzzy numbers are 

normalized and standardized to [0,100]. The information  

 

Table 16: Estimated costs/utilities of IT solutions in Example 4 (scale: 0 to 100) 

Costs/Utilities XML ( )1z RosettaNet( )2z EbXML( ) 3z BizTalk( )4z

Cost of Conceptualization ( ) 1,iu 40
~p  90

~p  70
~p  60

~p  

Cost of Analysis ( ) 2,iu 50
~p  90

~p  80
~p  70

~p  

Cost of Design ( ) 3,iu 50
~p  90

~p  70
~p  60

~p  

Cost of Maintenance ( ) 4,iu 50
~p  80

~p  60
~p  60

~p  

Information transparency ( ) iu 60
~p  95

~p  60
~p  80

~p  

Reduced forecast variance ( ) iv 50
~p  90

~p  60
~p  80

~p  

 

By proposition 1, we can express all the fuzzy parameters in costs and utilities as in 

Table 17. Furthermore, by Proposition 2, the non-linear membership functions are 

transformed into equivalent linear functions. 
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Table 17: The possibility functions of the fuzzy parameters in Example 4 

kp~  Possibility function )~( kpPos  (
v

p , ,*
vp vp ) 

40
~p  )4040(2.0)35(2.0 404040 −+−−− ppp  (35,40,45) 

50
~p  )5050(2.0)45(2.0 505050 −+−−− ppp  (45,50,55) 

60
~p  )6060(2.0)55(2.0 606060 −+−−− ppp  (55,60,65) 

70
~p  )7070(2.0)65(2.0 707070 −+−−− ppp  (65,70,75) 

80
~p  )8080(2.0)75(2.0 808080 −+−−− ppp  (75,80,85) 

90
~p  )9090(2.0)85(2.0 909090 −+−−− ppp  (85,90,95) 

95
~p  )9595(2.0)90(2.0 959595 −+−−− ppp  (90,95,100) 

 

In the optimization phase, there are four objectives to be optimized: maximizing the 

expected information transparency ( ), maximizing the expected customer satisfaction 

( ), minimizing the expected costs ( ), and maximizing the overall membership of the 

fuzzy parameters ( ). All the four alternatives are possibly selected to implement. The 

lower bound of expected information transparency and reduced forecast variance are set at 

100. Oppositely, the upper limit of costs is 650 units. Now the model for supply chain 

collaboration is formulated as Model 2. 

1obj

2obj 3obj

4obj
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Model 2 
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 (49) 

This study specifies the confidence level of fuzzy sets at 0.5 as in the last equalities in 

(49). It regulates that every possibility must be equal to or greater than 0.5, which excludes 

the case when the costs and utilities are poorly estimated. Since the four objectives are 

nonlinear functions, the global optimal solutions will not be solved directly. So, this study 

converts these nonlinear functions into linear ones with the linearization strategies in next 

subsection. 
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5.4.3 Linearization strategies 

The following constraints can convert the nonlinear non-separate term  in the 

first three objectives into linear ones, where  is a 0-1 variable and  is a continuous 

variable. First, replace  with . The behaviors of  can be bounded with a set of 

linear constraints as follow. 

ji pz

iz jp

ji pz jiq , jiq ,

.0

),1()1(

,

,

jiji

ijjjiijj

pzq

zppqzpp

≤≤

−+≤≤−+
 (50) 

The authors then verify the manifestation of  with the instances of . When = 0, (50) 

will be changed into (51) which implies that =0. 

jiq , iz iz

jiq ,

.00

,

,

,

≤≤

+≤≤−

ji

jjjijj

q

ppqpp
 (51) 

In the other case when = 1, (50) will change into (52) which implies that =iz jiq , ji pz . 

.0

,

,

,

jiji

jjij

pzq

pqp

≤≤

≤≤
 (52) 

Linearizing the first three objectives with (50) and the fourth objective with Proposition 2, 

Model 2 can be converted into Model 3. 
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Model 3 
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 (55) 

This study uses modified Zimmermann’s approach [22,44] to solve this fuzzy 
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multi-objective decision model. The steps for solving Model 3 are as follow. 

Step 1: Solve all objectives for their ideal and anti-ideal solutions separately and 

independently. We maximize and minimize  to get its ideal and anti-ideal 

solution denoted by  and , respectively; , , , ,  

and  are obtained in the same way. Notably,  is minimized for its ideal 

solution and maximized for its anti-ideal solution. 

1obj

*
1obj −

1obj *
2obj −

2obj *
3obj −

3obj *
4obj

−
4obj 3obj

Step 2: Maximize the average score subjected to each score of individual objective and the 

original constraints of the optimization program. The program will be converted into 

(56). 
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In Example 4, the numerical instance for (56) is (57). 
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LINGO 8 solves the above program and finds the global optimal solutions in less than 

0.1 second.  

From the solution report, the optimal solution for supply chain collaboration is to 

implement RosettaNet ( ) and BizTalk ( ), which yield a overall score of 0.7354, the 

expected information transparency of 175 standard units, the expected on-time product 

delivery of 170 standard units, the total costs of 600 units, and the overall membership of 7.0 

(for seven fuzzy parameters). The individual scores of the information transparency, customer 

satisfaction, total costs and possibilities of fuzzy parameters are 0.867, 0.875, 0.200, and 

1.000, respectively. The detailed solution report is listed in Table 18. 

2z 4z

 

5.5 Discussions and conclusions 

This paper proposes an integrated model for supply chain diagnostics and treatment 

optimization. The authors adopt dynamic fuzzy influence diagrams to describe the 

cause-and-effect relationships in the two-echelon supply chain. In addition to the random 

nodes standing for the key variables in the business practice, we use one decision node 

representing the treatment to the supply chain problems and a value node standing for the 

objectives to be optimized. In the dynamic fuzzy influence diagrams, two kinds of nodes are 

designed: crisp discrete nodes and fuzzy continuous nodes. In living expert systems, the 

knowledge engineers can maintain and update the distributions of the nodes via a system 
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interface as needed. The decision-makers can conduct diagnostic reasoning based on the 

observed symptoms or evidences for multiple periods. Then the optimal solution to treat the 

diagnosed problem will be suggested by the fuzzy multi-objective optimization models.  

 

Table 18: Solution report of Example 4 

Objective value = 0.7354 
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In implementing the influence diagram, we encounter a dilemma. The influence 

diagrams are compact and descriptive in model decision model conceptually. However, when 

we operate the model, there is time delay between diagnosis and treatment. The conventional 

methods in evaluating influence diagram did not consider the time delay. They even did not 

consider the diagnosis but concentrate on maximizing the expected gain. Hence, this study 

divides the reasoning procedure into two phases: diagnostic and optimization phases. The 

decision-makers are allowed to check the diagnosed problems first and then decide what the 

optimal solution to the problem is. This division makes the operations of the influence 

diagram more consistent in real-world industrial practices. 

This study is a proposed design of integrated framework for supply chain diagnosis 
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and decision-making. For future extensions, this work may be implemented into complete 

decision support systems. In the decision support systems, various models and reasoning 

strategies can be included in the model bases. Through the user interface, the decision-makers 

may modify the influence diagram structures and related parameters. The probability 

distributions and possibility distributions can be learned and tuned in light of different 

scenarios or constraints.  
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Chapter 6 Discussions and conclusions  

 

This dissertation defines general Bayesian networks (GBN) that are composed of five 

components: the set of crisp nodes, the set of fuzzy nodes, the set of crisp parameters, the set 

of fuzzy parameters, the set of arcs (links) among the nodes, and the set of decision variables. 

Three categories of reasoning are studied as the special cases (subsets) of general Bayesian 

networks: (1) diagnosis with crisp nodes and fuzzy parameters, (2) diagnosis and 

decision-making with crisp nodes and fuzzy parameters, and (3) diagnosis and 

decision-making with fuzzy nodes in dynamic environments. The distinguished features of 

this dissertation include: 

1. Define general Bayesian networks as the general research framework. 

2. Solves the reasoning tasks in three subsets of GBN where different types/degrees of 

uncertainties are considered. 

3. Consider extra knowledge or constraints for the belief propagation, which are not 

implemented in the formal knowledge bases. 

4. Answer the queries from Bayesian networks in dynamic as well as static 

environments. 

This chapter will first discuss the implications from the series of research, give some 

directions for future extensions, and make the conclusions. 

 

6.1 Discussions 

In implementing the dissertation, the author finds some issues worth further 

discussion. 

First, when the decision variables are introduced into the Bayesian networks, the 
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models will become influence diagrams. However, when the reasoning tasks include 

diagnosis and follow-up treatments, the author encounters the dilemma in using the decision 

model. The dilemma results from the time delay between diagnosis and decision-making. 

When an expert diagnoses a problem, supposed he or she has not ascertained where the 

symptoms originate, not to mention the assessment of different solution. The roots of 

problems determine the set of alternative solutions and their outcomes. That is what the author 

calls time delay between diagnosis and decision-making. However, in using influence 

diagrams, the decision-makers have to estimate the costs and utilities of every alternative, 

regardless how the roots influence determine the solution sets and their values. That is why 

traditional approaches evaluating influence diagrams focused only on maximizing the 

expected gain (utility) and ignoring the diagnostic reasoning. Hence, in Problem 4 (Chapter 4), 

this dissertation partitions the reasoning in influence diagrams into two phases: diagnostic 

phase and decision-making phase.  

Second, in handling the fuzzy parameter or fuzzy variables, this dissertation uses two 

approaches: piecewise linearization and α-cut methods. The advantage of piecewise 

linearization is the quality and performance in solving the reasoning model, especially when 

the reasoning model is designed as a nonlinear programming model. However, when the 

problem scale grows large, the programming model may be too complex. Under such a 

circumstance, α-cut methods perform better, especially for fuzzy simulation. 

Third, in this dissertation, the conditional distributions of the nodes with fuzzy parents 

are simplified by partition methods, in which the distributions of the nodes are conditioned on 

some sub-domains of their fuzzy parents. There is another alternative approach for the 

conditional distributions: functional distributions. That is, the distributions of the nodes can be 

expressed as a function of their fuzzy parents’ values. The functional distributions need more 

complex computation schema but are more compact and logical consistent. 
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6.2 Future extensions 

For extended studies, there are several interesting issues worth further investigation.  

First, the proposed models can be extended to complete decision support systems 

(DSS). A DSS is composed of four subsystems: data management subsystem, mode 

management subsystem, knowledge-based subsystem, and user interfaces. The schematic 

view of DSS is show in Figure 12. To apply the models into real-world application, the real 

databases can be integrated with the reasoning systems, and assess the validity and reliability 

of the proposed models.  

Second, for enhancing the computational efficiency, some algorithmic methods can be 

combined into the models, such as artificial neural networks, genetic algorithms, and so on. 

The outcomes from different computation schemes can be compared and cross-referenced.  

Third, several decision-making methods can be integrated with the proposed models, 

especial the multiple criteria decision making (MCDM) methods, e.g. Analytic hierarchy 

process (AHP), Data encryption analysis (DEA), and so on. These decision-making methods 

can provide optimal treatment or approaches to the diagnosed problems and enhance the 

decision quality in the reasoning models. 

This dissertation intends to contribute to diagnostic reasoning in both methodology 

and applications, especially in industrial practices and medical informatics.  
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Figure 12: A schematic view of DSS 

 

6.3 Concluding remarks 

This dissertation proposes a definition of general Bayesian networks, which can be 

specialized into various kinds of Bayesian networks. The general Bayesian networks provide 

a foundation stone for flexible and robust knowledge base design. The knowledge base can 

solve various problems involving fuzzy as well as crisp information, under dynamic as well as 

static circumstances. 

This dissertation solves three categories of reasoning are studied as the special cases 

(subsets) of general Bayesian networks: (1) diagnosis with crisp nodes and fuzzy parameters, 

(2) diagnosis and decision-making with crisp nodes and fuzzy parameters, and (3) diagnosis 

and decision-making with fuzzy nodes in dynamic environments. If taking the costs and 

utilities in Problem 4 (Chapter 4) as one type of fuzzy parameters, this dissertation has 

 96



 

develop a whole model for solving the general Bayesian networks. The author hopes that this 

dissertation has make some contributions in expert systems and reasoning methods.  
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