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Reasoning with Fuzzy Information: Methods and Applications

Student : Han-Ying Kao Advisor : Han-Lin Li

Institute of Information Management

National Chiao Tung University

ABSTRACT

Reasoning is a major task to an expert system or a decision support system. Three
types of reasoning tasks prevail in real-world applications: prediction, diagnosis and planning.
Among the various knowledge bases and computation schema, Bayesian networks and
influence diagrams are well-known graphical models for reasoning and decision-making
under uncertainty. Many algorithms have been designed to answer the queries on a Bayesian
network or an influence diagram. However, several limitations persist in the conventional
methods. First, all relevant parameters are assumed to be crisp. Second, extra constraints or
knowledge regarding belief propagation in'Bayesian networks are difficult to embed. Third,
diagnosis and planning cannot be ¢ompleted in. the'same place. Motivated by the limitations
mentioned above, this dissertation extend:ithe ‘traditional Bayesian networks to general
Bayesian networks (GBN) that are composed of several components: the set of discrete
random nodes, continuous random nodes;rdecision nodes, crisp parameters, and fuzzy
parameters. In addition to the convéntional reasoning problems that consider only crisp nodes
and crisp parameters, three categories of reasoning are solved as the special cases (subsets) of
general Bayesian networks: (1) diagnosis with discrete random nodes and fuzzy parameters;
(2) diagnosis and decision-making with discrete random nodes and fuzzy parameters; and (3)
diagnosis and decision-making with continuous random nodes in dynamic environments.

The distinguished features of this dissertation include: (1) extend the traditional
Bayesian networks to general Bayesian networks, including discrete random nodes,
continuous random nodes, decision nodes, crisp parameters, and fuzzy parameters. The
general Bayesian networks are induced as the general research framework; (2) solve fuzzy
reasoning tasks in three subsets of GBN where fuzzy parameters and possibility distributions
are considered; (3) consider extra knowledge or constraints for the belief propagation, which
are not implemented in the formal knowledge bases; (4) answer the queries from Bayesian
networks in dynamic as well as static environments; (5) the reasoning models and methods
are applied to the cases from medical informatics and supply chain management. All the

applications are developed and illustrated in details.

Keywords: fuzzy reasoning, Bayesian networks, influence diagrams, supply chain

management, medical informatics.
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Chapter 1 Introduction

Reasoning algorithms is a core issue to an expert system or a decision support system.
In many domains, such as medical inference or industrial informatics, there are at least three
types of reasoning tasks in a decision support system: prediction, diagnosis, and
decision-making [32,41]. To conduct the reasoning tasks, an expert system or decision support
system needs a knowledge representation mechanism for the knowledge base. Bayesian
networks are commonly used graphical probabilistic models for the knowledge base. This

chapter will review the basics of expert systems and reasoning.

1.1 Research background

Expert systems are a kind-of information:systems which should be able to process an
memorize information, learn and reason in both ‘deterministic an uncertain situations,
communicate with human and/of.other expert systems, make appropriate decisions, and
explains why these decision work.

Castillo et al [2] classified the problems that an expert system can deal with into two
types: deterministic and stochastic. Deterministic problems can be formulated using a set of
rules that relates several well-defined objects. Experts systems that deal with deterministic
problems are known as rule-based expert systems. In stochastic or uncertain situations it is
necessary to introduce some means for handling uncertainty, such as certainty factors, fuzzy
logic, probability, and so on. Expert systems that use probability as a measure of uncertainty
are know as probabilistic expert systems, and the strategy they use is know as probabilistic
reasoning or probabilistic inference. The ability to use both predictive and diagnostic
information is an important component of plausible reasoning, and improper handling of such

information leads to strange results. So, Pearl [35] classified the patterns of plausible



reasoning into abductive reasoning and inductive reasoning. Deduction, or prediction, is a
logical process from a hypothesis to deduce evidence where probabilistic relationships are
involved [35]. For example, if A is true, then B is true; that is A implies B. Abductive
reasoning, or diagnosis, is a logical process that hypothetically explains experimental
observations. For example, if A implies B, then finding B is true makes A more credible.

This dissertation will focus on the abductive reasoning and decision-making models in
expert systems. In this dissertation, Bayesian networks and influence diagrams play a central
role in the uncertainty formalism.

Bayesian networks [34,35] are directed acyclic graphs (DAG) in which the nodes
represent the variables, the arcs represent the direct causal influences between the linked
variables, and the strengths of these influences are expressed by forward conditional
probabilities. The semantics of Bayesian networks.demands a clear correspondence between
the topology of a DAG and the-dependency relationships portrayed by it. They are widely
used knowledge representation and reasoning. tools for various domains under uncertainty
[1,2,4,8,13-18,20,23,27,34,35].

Influence diagrams are a special type of Bayesian networks with three kinds of nodes:
decision nodes, chance nodes, and a value node. Decision nodes, shown as squares, represent
choices available to the decision-makers. Chance nodes, shown as circles, represent random
variables (or uncertain quantities). Finally, the value node, shown as a diamond, represents the
objective (or utility) to be maximized. In a multiple objective decision making model, there
may be more than one value nodes. There are two methods for determining the optimal
decision policy from an influence diagram [35]. The first, proposed by Howard and Matheson
[11], consists of converting the influence diagram to a decision tree and solving for the
optimal policy within the tree, using exp-max labeling procedure. The second approach,
proposed by Shachter, to decision-making in influence diagrams consists of eliminating
modes from diagram through a series of value-preserving transformations.

2



Several methods have been developed for solving abductive or diagnostic reasoning
problems in Bayesian networks. Exact methods exploit the independence structure contained
in the network to efficiently propagate uncertainty [2,35]. Meanwhile, stochastic simulation
methods provide an alternative approach suitable for highly connected networks, in which
exact algorithms can be inefficient [35]. Recently, search-based approximate algorithms,
which search for high probability configurations through a space of possible values, have
emerged as a new alternative [36]. On the other hand, two key approaches have been
proposed for symbolic inference in Bayesian networks, namely: the symbolic probabilistic
inference algorithm (SPI) [38] and symbolic calculations based on slight modifications of
standard numerical propagation algorithms [1,2].

The above methods have several limitations for reasoning from a Bayesian network or
an influence diagram:

1.  Most literatures focused- on.'the discrete random nodes with discrete probability
distributions.

2. All relevant parameters are asstumed to be erisp.

3.  Extra constraints or knowledge regarding belief propagation in Bayesian networks are
difficult to embed.

4.  Decision-making and diagnosis cannot be done in a complete model. Even in a
compact graphical decision model, like influence diagrams, the proposed methods
only focus on maximizing the expected gains but ignoring the problem diagnosis.
Those limitations restrict the usefulness of reasoning in Bayesian networks. First, the

conditional probabilities between a random node and its parents could be fuzzy parameters
because of the difficulties of learning accurately the causal relationships among the nodes.
The decision makers may also feel awkward to make judgments for the linguistic vagueness
or incomplete knowledge, which make the probability theory not suitable in problem
formulation. Under such circumstances, the fuzzy nodes in a Bayesian networks can be

3



introduced to overcome the obstacle. Additionally, knowledge workers often acquire
additional information regarding inferences in Bayesian networks, particularly when facing
diverse diagnostic scenarios. This information can relate to boundary, dependency or

disjunctive conditions.

1.2 Research Objectives and Framework

Based on the limitations mentioned above, this dissertation is motivated to investigate
and develop the reasoning methods for Bayesian networks and influence diagrams with
improved features.

The objectives of this dissertation are as follow.

1.  Develop the reasoning models_thatsean_contain various kinds of Bayesian networks
that may include crisp discreteynodes,.continuous nodes, crisp parameters, fuzzy
parameters, and decision-nodes.

2. Introduce extra knowledge: orconstraints .into the reasoning models, which can
perform the propagation more efficiently and effectively.

3.  Design the model that can complete diagnosis and suggest optimal treatment
simultaneously, which can facilitate the performance in a business or medical decision
support systems.

For the common base of research, this dissertation first defines a general Bayesian
networks as follow.

Definition 1 General Bayesian networks.

A general Bayesian network (GBN) is a directed acyclic graph (DAG) representing the
joint probability distribution of several sets of variables, including DN, CN, XN, L, P; that is .
GBN= (DN, CN, XN, L, P), where

DN denotes a set of discrete random nodes;



CN denotes a set of continuous random nodes;
P denotes a set of parameters (probabilities);
XN denotes the decision node set;

L denotes a set of directed links between the nodes, such that

L=(DN,CN.XN) x (DN,CN.XN) []

Based on the definition of GBN, we can induce several specific types of Bayesian
networks. Consider a Bayesian network widely referred in Figure 1. Figure 1 represents the
variables and their relationships from a medical problem. There are five random nodes, 4, B,
C, D, E. If all the random nodes in Figure 1 are discrete variables, and their probability
distributions are crisp as in Table 1, then we can define a typical Bayesian network most
common in the literatures, namely, BN; = (DN, L, P).

If the parameters of the probability 'distributions are not crisp but fuzzy, for example,
P(+bl+a) = x|, P(+b|-a) = X,,P(+clta)=_X;, P(tcl-a) = X,, P(+d+b,+c) = X5, P(+d|-b,
+c) = X¢, P(+d|tbh, -¢) = X,, and P(+d|-b, -c).= X, then we can define the second type of
Bayesian networks, BN, in the form of BN,= (DN, L, P ), where the parameter set turns into

fuzzy.



Metastatic cancer

Increased total

serum calcium Brain tumor

Coma Severe headaches

(b)

Figure 1: (a) an example of Bayesian networks, (b) the tree structure as

clustering B and C into Z [35]

Furthermore, if the Bayesian networks involve not only discrete random nodes but
also decision nodes, then the BN, can be extended into BN; in the form of BN;= (DN, XN,
L P ), where the decision node set, X, is added.

In many domains, there may be continuous variables involved. In such circumstances,
the continuous random nodes must be added into the Bayesian networks, which induces the
fourth type of Bayesian networks BN, in the form of BN,= (DN, CN, XN, L, P), where the

continuous random node set CN is included,



Table 1: The Associated Conditional Probability Distribution of Figure 1(b)

P(+a)=0.20

P(+bl+a) = 0.80 P(+b]-y) = 0.20
P(+cl+a) = 0.20 P(+c|-a) = 0.05
P(+d|+b, +¢) = 0.80 P(+d|-b, +¢)= 0.80
P(+d|+b, -¢) = 0.80 P(+d)-b, -¢) = 0.05
P(+el+¢) = 0.80 P(+e|-c) = 0.60

Additionally, a general Bayesian network is normally acyclic. However, in some
special situations, the Bayesian networks may:be cyclic. The feedback loops in cyclic
Bayesian networks imply the time-series | dependency between the network nodes, which
consequently expend the static Bayesian networks into-dynamic Bayesian networks [4].

After the Bayesian networks-are constructed as the knowledge bases, the decision
makers need to reason from the knowledge bases. This kind of reasoning tasks is called

abductive reasoning. The general form of abductive reasoning is explained in the following.

Remark 1 Abductive reasoning.

Given a set of evidence or observations E from a GBN, define the set of unknown
nodes USGBN\ E, the query of the belief (posterior) distribution of U, BEL(U| E), is an
abductive reasoning problem. [ ]

Since the conventional methods only answer very narrow scope of the queries on Bayesian
networks, this dissertation develops several models to handle a set of specific reasoning
problems in general Bayesian networks. In addition, these models are extended to consider the

diagnosis and decision-making as well. Based on the four types of Bayesian networks



introduced previously, there are four categories of reasoning problems discussed in this

dissertation:

1.  Problem 1: diagnosis with discrete random nodes and crisp parameters. This category
is reasoning from the simplest type of the Bayesian networks, BN,= (DN, L, P), and
has been vastly studied in the literatures (Chapter 3).

2. Problem 2: diagnosis with discrete random nodes and fuzzy parameters in a static
Bayesian network. This kind of problems is reasoning from BN,= (DN, L, 13) (Chapter
3).

3.  Problem 3: diagnosis and decision-making with discrete random nodes and fuzzy
parameters in a static influence diagram. This kind of problems is solved on BN;=
(DN, XN, L, P) (Chapter 4)

4.  Problem 4: diagnosis and decision-making with continuous random nodes, decision
nodes, and crisp parameters inza-dynamic. influence diagram. This type of problems is

answered from BN,= (DN, CN; XN, L, P)(Chapter 5).

For every category of problems, this dissertation first gives a description of problem
formulation, and develops the reasoning model in a comprehensive and systematic way.
Thereafter, the algorithms and solutions will be designed. One example or examples will be
used to illustrate how to operate the reasoning methods, especially in medical informatics and
supply chain systems. The outcomes and performances are examined carefully in the
discussions. In the final chapter, some concluding remarks will be presented. The conceptual

research framework and the dissertation structure are shown in Figure 2.
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Chapter 2 Literatures review

This chapter reviews the basic concepts of probabilistic reasoning, Bayesian networks,

influence diagrams, and fuzzy sets.

2.1 Expert systems and probabilistic reasoning

First of all, this dissertation defines expert systems as follows.

Definition 2: Expert systems

An expert system can be defined as a computer system (hardware or software) that
simulates human experts in a given'area of specialization [2]. []

As such, an expert system should be able to process an memorize information, learn
and reason in both deterministiec an uncertain: situations, communicate with human and/or
other expert systems, make appropriate decisions, and explains why these decision work.

Castillo et al [2] classified the problems that an expert system can deal with into two
types: deterministic and stochastic. Deterministic problems can be formulated using a set of
rules that relates several well-defined objects. Experts systems that deal with deterministic
problems are known as rule-based expert systems. In stochastic or uncertain situations it is
necessary to introduce some means for handling uncertainty, such as certainty factors, fuzzy
logic, probability, and so on. Expert systems that use probability as a measure of uncertainty
are know as probabilistic expert systems, and the strategy they use is know as probabilistic
reasoning or probabilistic inference. The ability to use both predictive and diagnostic
information is an important component of plausible reasoning, and improper handling of such

information leads to strange results. So, Pearl [35] classified the patterns of plausible
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reasoning into abductive reasoning and inductive reasoning. Deduction, or prediction, is a

logical process from a hypothesis to deduce evidence where probabilistic relationships are

involved [35]. For example, if A is true, then B is true; that is A implies B. Abductive

reasoning, or diagnosis, is a logical process that hypothetically explains experimental

observations. For example, if A implies B, then finding B is true makes A more credible.
George Polya [37] classified plausible reasoning into the following four:

1. Inductive patterns: “The verification of a consequence renders a conjecture more
credible.” For example, the conjecture “She didn’t sleep well last night” becomes
more credible when we verify, “She looks dispirited this morning”.

2. Successive verification of several consequences: “The verification of a new
consequence counts more or less if the new consequence differs more less from the
former, verified consequences.” For example, if in trying substantiating the conjecture
“All ravens are black,”’~we. observe # Australian ravens, all of them black, our
subsequent confidence in-the conjecture-will be increased substantially of the (n+7)-th
ravens is a black Brazilian rather.than another Australian ravens.

3. Verification of improbable consequences: “The verification of a consequence counts
more or less according as the consequence is more or less improbable in itself.” For
example, the conjecture “She didn’t sleep well” obtains more support from “She is
nodding this morning” than from the more common observation “She looks dispirited
this morning”.

4.  Inference from analogy: “A conjecture becomes more credible when an analogous
conjecture turns out to be true.” For example, the conjecture “Of all objects displacing
the same volume, the sphere has the smallest surface” becomes more credible when
we prove the relative theorem “Of all curves enclosing the same area, the circle has
the shortest perimeter.”

This dissertation will focus on the abductive reasoning and decision-making models in

11



expert systems. In this research, Bayesian networks and influence diagrams play a central role

in the uncertainty formalism.

2.2 Bayesian networks

Bayesian networks [34,35] are directed acyclic graphs (DAG) in which the nodes
represent the variables, the arcs represent the direct causal influences between the linked
variables, and the strengths of these influences are expressed by forward conditional
probabilities. A simple example is given in Figure 1(b). The semantics of Bayesian networks
demands a clear correspondence between the topology of a DAG and the dependency
relationships portrayed by it. They are widely used knowledge representation and reasoning
tools for various domains under uncertaintys[1.2,4,8,13-18,20,23,27,34,35].

Influence diagrams are a special-type of Bayesian networks with three kinds of nodes:
decision nodes, chance nodes, and a value node. Decision nodes, shown as squares, represent
choices available to the decision-makers. Chance nodes, shown as circles, represent random
variables (or uncertain quantities). Finally, the'value node, shown as a diamond, represents the
objective (or utility) to be maximized. In a multiple objective decision making model, there
may be more than one value nodes. There are two methods for determining the optimal
decision policy from an influence diagram [35]. The first, proposed by Howard and Matheson,
consists of converting the influence diagram to a decision tree and solving for the optimal
policy within the tree, using exp-max labeling procedure. The second approach, proposed by
Shachter, to decision-making in influence diagrams consists of eliminating modes from
diagram through a series of value-preserving transformations.

Several methods have been developed for solving abductive or diagnostic reasoning
problems in Bayesian networks. Exact methods exploit the independence structure contained

in the network to efficiently propagate uncertainty [2,35]. Meanwhile, stochastic simulation

12



methods provide an alternative approach suitable for highly connected networks, in which
exact algorithms can be inefficient [35]. Recently, search-based approximate algorithms,
which search for high probability configurations through a space of possible values, have
emerged as a new alternative [36]. On the other hand, two key approaches have been
proposed for symbolic inference in Bayesian networks, namely: the symbolic probabilistic
inference algorithm (SPI) [38] and symbolic calculations based on slight modifications of
standard numerical propagation algorithms [1,2].
The above methods have several limitations for reasoning from a Bayesian network or
an influence diagram:
1. All network nodes or variables must be crisp.
2. All relevant parameters are assumed to be crisp.
3. Extra constraints or knowledge regarding belief propagation in Bayesian networks are
difficult to embed.
4.  Decision-making and diagnosis‘cannot_be /done in a complete model. Even in a
compact graphical decision”meodel, like influence diagrams, the proposed methods

only focus on maximizing the expected gains but ignoring the problem diagnosis.

Those limitations restrict the usefulness of reasoning in Bayesian networks. First, the
conditional probabilities between a node and its parents could be fuzzy parameters because of
the difficulties of learning accurately the causal relationships among the nodes. The decision
makers may also feel awkward to make judgments for the linguistic vagueness or incomplete
knowledge, which make the probability theory not suitable in problem formulation. Under
such circumstances, the fuzzy nodes in a Bayesian networks can be introduced to overcome
the obstacle. Additionally, knowledge workers often acquire additional information regarding

inferences in Bayesian networks, particularly when facing diverse diagnostic scenarios. This
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information can relate to boundary, dependency or disjunctive conditions.

2.3  Fuzzy sets and theory

Fuzzy sets were introduced by Zadeh [43] in 1965 to manipulate data and information
processing uncertainties which statistics is not proper for use. It was particularly designed to
mathematically represent uncertainty as well as vagueness and to offer formalized tools for
handling the imprecision intrinsic to many domains.

Fuzzy sets are a means of representing and manipulating information not precise. A
fuzzy subset A of a set X can be can be defined as a set of ordered pairs, each with the first
element from X and the second element from the interval [0,1], with exactly one ordered pair

for each element of X. This defines a mapping;as below.
py: X >[01],
between elements of the-set X and values in the interval [0,1]. The value zero is to

represent complete non-membership, the value one:1s to represent complete membership, and

values in between are to represent intermediate degrees of membership. The set X is referred

as the universe of discourse for the fuzzy subset 4. Usually, the mapping 4 1s described as

a function, the membership function of 4. The degree to which the statement “x is in 4” is

true is determined by finding the ordered pair (x, £;). The degree of the statement to be true is

the second element of the ordered pair.

Definition 3: Fuzzy membership functions.

Let X be a nonempty set. A fuzzy set A in X is characterized by its membership function

p; X —>[0,],

and i is interpreted as the degree of membership of element x in fuzzy set A for each x []
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Visibly, 4 is completely determined by the following expression.

A= {0 p; ()| xe X
By the above expression, the terms membership function and fuzzy subset are used
interchangeably. A fuzzy subset 4 of a classical set X is called normal if there exists an

x € X such that A(x) = 1. Otherwise, 4 is subnormal. An a-level set (or a-cut) of a fuzzy set

A of X is a non-fuzzy set denoted by [4]* and defined by

[Z]az {xeX\Z(x)Za}, if a>0
cl(supp Z), if a=0

where cl(supp Z) denotes the closure of the support of 4. A fuzzy set A of X is called convex

if [A]* is a convex subset of X for all « €[0,1].

Similarly, a fuzzy number can be defined as follow.

Definition 4: Fuzzy numbers
A fuzzy number A is a fuzzy set of the veal line with a normal, fuzzy convex and

continuous membership function satisfying the limit conditions, and 1im A ®)=0.]

"
Based on the concepts reviewed in this chapter, next chapter will show how this

dissertation solves the fuzzy reasoning problems on Bayesian network.
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Chapter 3 Diagnosis with fuzzy parameters

Based on the review in Chapter 2, we understand that current adductive reasoning
methods can solve very limited scope of the reasoning from Bayesian networks. This chapter
will first illustrate the steps to solve a traditional abductive reasoning query, and then develop

the model for diagnosis with crisp nodes and fuzzy parameters in Bayesian network.

3.1 Reasoning with crisp information

In this section, a simplest form of abductive reasoning is introduced as follow.

Problem 1: Given the evidence set E from BN;= (DN, L, P), compute the belief distribution

of UcBN\E, BEL(U/E). R

Problem 1 is interpreted with therfollowing case from medicine and Example 1.
Consider the following example from Pearl [35].

“Metastatic cancer is a possible cause of a brain tumor and is an explanation for

increased total serum calcium. Either of these could explain a patient falling into a

coma. Severe headache is also possibly associated with a brain tumor.”

Figure 1(b) shows a Bayesian network representing the above cause and effect
relationships. Table 1 lists the causal influences in terms of conditional probability
distributions. Each variable is characterized by the probability given the state of its parents.
For instance: C e {1,0} represents the dichotomy between having a brain tumor and not
having one, +c denotes the assertion C = 1 or “Brain tumor is present”, and —c is the negation

of +c, namely, C = 0. The root node, A, which has no parent, is characterized by its prior
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probability distribution. The above information can be used to solve the following reasoning

problems.

Example 1: Compute the posterior probability of every A, B, and C, given the conditional
probabilities in Table 1, and a situation involving a patient who is suffering from a severe
headache (E=1) but has not fallen into a coma (D=0); that is, compute P(al-d, +e), P(b|-d, +e)

and P(c|-d, +e). []

Now this section reviews one conventional method, clustering, for computing the
posterior probabilities with crisp parameters and no extra constraints. Consider the Bayesian
network in Figure 1(b) with the crisp information in Table 1. Clustering [2,35] can transform
Figure 1(b) into an equivalent tree structure in Figure 1(c), where nodes B and C are collapsed
into a compound node Z=B&C. Let Z={z,,2z,,25,z,} be a set of cardinalities of Z
and z, =(+b,+c), z, =(-b,+¢) - zy =(+b,-c), and z, =(-b,-c). Moreover, let W, denote
the state of all variables except Y;for.example;, ‘W ,={(z,,-d +e), (z,,-d+e), (z;,-d +e),
(z4,-d +e) }. From Pearl [35], the value of P(y|W,), which is the distribution of y

conditioned on the value W, , can be calculated as below considering every instance of y.
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4
P(+a|W,)= aAP(+a)Z P(z; | +a)P(-d |z,)P(+e| z;)
i=1

4
P(=a|W,)=a,P(-a)),P(z;|-a)P(-d | z;)P(+e| z;)
i=1

1
P(+b|Wy)=ay Y [P(a) 3 P(z;|a)P(=d | z;)P(+e| )]

a=0 i=1,3

1
P(=b|Wy)=ay ) [P(a) D P(z;|a)P(~d | z;)P(+e| z,)]
a=0

i=2,4

(D

1
P(+c|We)=ac Y [P(a) X P(z; |a)P(=d | z;)P(+e| z,)]

a=0 i=1,2

1
P(—c|Wc)=ac Y [P(a) X P(z; |a)P(=d | z;)P(+e| z,)]

a=0 i=3,4

where «,, ap,and o, are the normalizing constant ensuring that

P(+a|W )+ P(-a|W,)=1
P(+b | W)+ P(-b|Wy)=1 (2)
P(+c| W)+ P(-c| W) =1

From (2), then intuitively
1

a=a,=ay=0c=— 2 A3)

Y P(@)Y P(z; | O)P(=d]z)P(+e] z,)
a=0 i=1

and

aY.> P(a)P(z; |a)P(-d | z,)P(+e| z;) =1 (4)

The value of P(+a|W,) in (1) is obtained below for the data in Table 1:

P(+a|W,)=a(2)[(8)(2)(1-.8)(.8)+(1-.8)(:2)(1—.8)(.8)
+(8)(1=2)(1—.8)(.6) + (1—.8)(1-.2)(1—.05)(.6)]

Similarly,

P(—a|W,)=a(l-2)[(2)(.05)(1-.8)(.8) + (1—.2)(.05)(1 —.8)(.8)
+(.2)(1-.05)(1—.8)(.6) + (1—.2)(1—.05)(1—.05)(.6)]

From (1) and (3), then & =2.432, P(+a|W,)=0.097,and P(-a|W,)=0.903.
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The answers to Example 1 are
P(a|-d,+e)=(0.097,0.903), P(b|—d,+e)=(0.097,0.903), P(c|-d,+e)=(0.031,0.969).

Observing the solution stated above, several limitations persist in the conventional
reasoning methods.

First, all network nodes and relevant parameters are assumed to be crisp. This narrows
the usefulness of reasoning methods when some parameters are hard to estimate. Freeling [7]
claimed fuzzy probability as an extension of probability theory, which is more promising than
possibility and probability theory as a decision aid. Second, extra constraints or knowledge
regarding belief propagation in Bayesian networks are difficult to embed. Third, different
reasoning tasks, such as diagnosis.as well.as.treatment planning, cannot be completed in the
same place. Those attributes are often needed in both business and medical informatics.
Furthermore, the limitations encumber feasoning to be automated.

For some systematic or technical reasons, the conditional probabilities of the network
nodes may be fuzzy, instead of crisp. For instance, P(+b|+a) cannot be 0.8 but rather is a

fuzzy number, say X;, where P(+b|+a)=X,, and is associated with a membership function

U5 (x;) , represented as follows. (See Figure 3)
#s (x;) = 5(x, —0.6) = 5(x, 0.8+ x, —0.8), 0.6<x, <1

*

where “|*|” denotes the absolute value of a term *.
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1.0

: xl
0.6 0.8 1.0

Figure 3: The membership function s (x;) of X,

The above expression and Figure 3 mean that the domain of X, is between 0.6 and

1.0. If x,=0.8 then uz (x;)=1, implying that x,;=0.8 is the most possible situation. If

x; 0.6 or x; 21 then p5; (x;)=0, the least possible manifestation of x;. If x;=0.7, then

Mz, (x)=0.5.

1.0 ...............................................

X7
0.7 0.8 0.85 0.95

Figure 4: The membership function y; (x;) of X,

Fuzzy membership functions can be expressed in various ways. For example, let

P(+d|+b,+c)= X; andexpress us; (x;) as the following function (Figure 4).
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#z (x7) =10(x; =0.7) = 5(|x; — 0.8+ x, —0.8) = 5(x; —0.85+x; —0.85),  0.7<x; <0.95
Uz, (x7) 1s a trapezoid membership function and comprises four line segments, where

0.8< x5 £0.85 has the maximal membership.

3.2 Problem and goals

This chapter discusses reasoning with crisp nodes and fuzzy parameters as the

following problem.

Problem 2: Given the evidence set E from BN,= (DN, L, P ), compute the belief distribution

of UCBN,\E, BEL(U|E).H

The fuzzy parameters are denoted by as x;, i=12,...,8, where P(+b[+ta) = X,
P(+b|'a) = )72 s P(+C|+a) = fS ) P(+C|'a) 2 )~C4 s P(+d|+b,+C) = )?5 ) P(+d|'b: +C) = )?6 s P(+d|+b9

-c) = X,;, and P(+d|-b, -c) = Xx;. Table"2"lists the membership functions of the fuzzy

parameters, among which 5 (x;) and p; (xg) are trapezoid membership functions while

the remainder are triangular functions.
After introducing the fuzzy probabilities, the Example 1 turns into a more complex

problem as Example 2.
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Table 2: The membership functions of fuzzy probabilities

Parameter X, Mz (X;) Domain of x;
P(+b|+a) =%, 5(x; —0.6) = 5(x; — 0.8+ x; —0.8) [0.6,1.0]
P(+b|—a) =%, 10(x, —0.1)~10(x, —0.2|+x, —0.2) [0.1,0.3]
P(+c|+a) =%, 10(x; —0.1) = 15(|x; —0.2] + x;, —0.2) [0.1,0.25]
P(+c|-a) =%, 25(x, —0.01)—17.5(x, —0.05] + x, —0.05) [0.01,0.15]
P(+d | z;) = Xy 5(x5 = 0.6) = 5(x; —0.8]+ x5 — 0.8) [0.6,1.0]
P(+d|z,) =%, 10(x, —0.7) —=10(|x, — 0.8+ x, —0.8) [0.7,0.9]
ey | e
O s o= S

Example 2: Compute the belief distributions P(al|-d, +c), P(b|-d, +c), and P(c|-d, +c), given

the fuzzy membership functions in Table 2 and some constraints related to belief propagation.

Current abductive reasoning methods have difficulties in solving Problem 2 and
Example 2 since it involves fuzzy information and extra constraints.

Consider abductive reasoning with constraints. For a given Bayesian network,
knowledge workers (such as clinicians) may have professional judgments regarding the
features of certain nodes and the relationships among them in particular diagnostic

backgrounds. These features and relationships can take the form of various constraints [26].
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1.  Boundary constraints:
From additional information or observations, clinicians can infer that the posterior
probability of A given E=1 and D=0 should be higher than 0.1 but lower than 0.3,
which is expressed as
0.1< P(+al|-d,+e)< 0.3 (5)
2. Functional dependency:
The beliefs of certain nodes are functionally dependent. For example, clinicians can
judge that the posterior probability of B is roughly a certain multiple of that of A given
E=1 and D=0, which is expressed as
P(+a|-d,+e)<2P(+b|-d,+e) (6)
3. Disjunctive constraints:
Sometimes disjunction may.eccur betweenmnodes. For example, a doctor may estimate
that either P(+a|-d,+e) or P(+b{-d,+e)is equal to or below 0.2, which is
expressed as
Either P(+a|-d,+e)<0.2 or P(+b|-di+e)<0.2 (7)
By introducing these constraints into the reasoning system, the following problems are

formulated.

Example 2.1: Compute the belief distributions P(a|-d, +e), P(b|-d, +e), and P(c|-d, +e), given
the fuzzy membership functions in Table 2 and the following constraints.

0.1< P(+al-d,+e)< 0.3,

P(+b|-d,+e) < 2P(+c|-d,+e)

Either P(+a|-d,+e)<0.2 or P(+b|-d,+e)<0.2.

Example 2.1 is more complicated and difficult than Example 1 when solved using
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current propagation methods.

3.3 Model development

The following illustrates another approach for calculating the posterior probabilities

with fuzzy parameters.

3.3.1 Fuzzy parameters

Consider a membership function g;(x) of X, as displayed in Figure 5. This

piecewise linear function generally is expressed as

s (x)

Cll (12 a3 a4 615

Figure 5: A membership function of fuzzy probability

s (x—ay), a <x<a,
p(ay) +8,(x=a,), ay <x<ay
pz(X) =g plaz)+s3(x—as), az<x<ay, (8)

ula)+s,(x—ay), a,<x<as

0, elsewhere.

Computing the above expression is complex. Consequently, this work employs an

efficient method of expressing a piecewise linear function. Consider the following
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proposition.

Proposition 1 Let . (x) denote the membership function of fuzzy variable X, as displayed

in Figure 4, where a;,j= L2,...,m represent the break points of x:(x), and ;)= L2,...,n

are the slopes of line segments between a; and a

5 41> and g5 (x) is the sum of absolute

terms [24,40]:

m

() = pa) s (x =)+ 2 v —a 4 x—a)) ©)

Jj=2

If u:(x) in (9) is to be maximized, then the following proposition is used for convenient

linearization.

Proposition 2 Maximizing a function 3 (x) in (9) requires solving the following linear

program [24,40]:

Max Z=Sl(x—a1)+2§:m(x—aj+zj:dk)
=2 2 k=L
subject to
x+d, 2a,,
x+d, +d, 2 a;,
: (10)
x+d +d,+---+d, ,2a,,
0<d,<a,,
0<d, ,<a,—-a,,, for k=23, m,
x € F(feasible set).

Proof:
Since d,_, <a, —a,_,, then clearly

x2a,-(d,+d,+---+d,_)2a,,—(d, +d, +---+d,_,), so constraint
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x+d,+d,+---+d,_, >a,_, is converted by constraint
1 2 k-2 k-1 y

x+d +dy,+-+d, ,+d,_2a,, for k=23,--.m. R

From Proposition 2, the non-linear membership functions are transformed into

equivalent linear functions.

3.3.2 Fuzzy Abductive Models

To compute the belief distribution of the unknown nodes in a Bayesian networks with
fuzzy parameters, there are several alternative objective functions. Consider Example 2.1.
1. Estimate the upper/ lower bound for P(+al-d, +e), P(+b|-d, +e), P(+c|-d, +e) by
maximizing/ minimizing the beliefsyrespectively. e.g.
Maximize P(+a|-d, +e) — Upper bound of P(+a]-d, +e),

Minimize P(+al-d, +e) — Lower bound'of P(+a|-d, +e).

2. Generate a pair of belief, e.g. (P(+al-d, +e)min p, P(+al-d, +e)max p) with respect to
the maximal/ minimal confidence for fuzzy parameters. e.g.

Maximize p5; (x;) — under maximal confidence for fuzzy parameters.

Minimize g (x;) — under minimal confidence for fuzzy parameters.

3. Generate the distributions of P(+al-d, +e), P(+bl-d, +e), P(+c|-d, +e) by a-cut and fuzzy

simulation.

All the above classes of the objectives can be implemented based on the
decision-makers’ needs or preferences. This dissertation chooses the second class as the

26



objectives.

Since there are several fuzzy parameters involved in Problem 2, this dissertation will
estimate the belief distribution for the unknown nodes with the maximal and minimal
confidence. The belief distribution under maximal confidence will be estimated by
maximizing the fuzzy membership functions; oppositely, the belief distribution under minimal
confidence will be estimated by minimizing the fuzzy membership function.

Building upon the clustering method, Proposition 1 and 2, the abductive model for

solving Example 2.1 is formulated below.

Model 1(a) (for maximal confidence)

Maximize iz (x;), i=124:-8,

subject to (1),
0.1< P(+a|-d,+e)< 0.3,
P(+b|-d,+e) < 2P(%c|-d,+e),
Either P(+a|-d,+e)<0.2 or P(+b|-d,+e)<0.2, (11)

Model 1(b) (for minimal confidence)

Minimize o (x,), i=12,---8,

subject to (1),
0.1< P(+a|-d,+e) < 0.3,
P(+b|-d,+e) < 2P(+c|-d,+e),
Either P(+a|-d,+e)<02 or P(+b|-d,+e)<0.2, (12)

where the objective function maximize and minimize all fuzzy membership functions. Since
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(4) contains numerous non-separate nonlinear terms, Model 1 is a highly non-linear and
nonconvex program. This dissertation will deal with the disjunctive constraint first and takes

care of the nonlinear issue in the following proposition.

Proposition 3 A disjunctive constraint f(X)<0 or g(x)<0 can be expressed by the
following inequalities.
M@ -1 f(X)SMO, +M(1-6,),

M@, -1)< g(X) < MO, + M(1-6,)

e<0,+0, <1.

(13)

where &, and 0, are 0-1 variables, M is a relatively large number, and ¢ is a relatively

small positive number.

The four possible combinations-of & and: 105 can-be checked as follows: (i) for 6= 1,

6,=1 the constraints are 0< f(x¥) <M -and 0<g(X)<M , which are inactive constraints;
(i) for = 0, 6, =1 then —-M < f(¥)<0 and 0<g(X)<2M , meaning that when
g(x)=20, f(x) mustbe 0 or less; (iii) for 6,=1, 6,=0, the constraints are 0< f(X)<2M
and —M < g(x) <0, which implies that when f(X)>0, g(X) must be 0 or less; (iv) for
6,= 0, 6,=0 the constraints become —M < f(X)<M and —-M <g(x¥)< M, which are
inactive constraints. The third constraint in (13) excludes the combinations 6,=1, 6,=1 and
6,= 0, 6,=0. To summarize, (13) implies that either f(X)<0 or g(x)<0 must be

satisfied.

3.4 Solution and illustrative examples

Abductive reasoning problems in certain applications are solved below using the

proposed constrained optimization approach.
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Example 2.1 is solved using the following program.

Maximize ps (x;), i=12,---38, (for the maximal confidence), or

Minimize s (x;), i=L2,---,8, (for the minimal confidence),

S.t.
#s, (x;) = 5(x, —0.6) = 5(|x, —0.8/+x, —0.8),
pz, (x,) =10(x, —0.1)=10(x, —0.2|+x, —0.2),
Hz, (x3) =10(x3 —0.1) = 15(x; — 0.2+ x5 —0.2),
Hz, (x4) = 25(x, —0.01)=17.5(|x, - 0.05]+ x, —0.05),
#z, (x5) =5(x5 —0.6) = 5(|xs — 0.8+ x5 - 0.8),
#z, (x6) =10(xg —0.7) =10(|x¢ —0.8]+ x, — 0.8),
Hs, (x7) =10(x; =0.7) = 5(|x, — 0.8 3, = 0.8) = 5(; — 0.85|+ x; —0.85),
Hs, (Xg) = 25(xg —0.01) —12.5(|x, = 0.05] + xg = 0.05)
—25(|xg —0.07|+ x¢ =0.07),

(14)

a[0.2x,x5(1-X5)0.8 + 0.2(1-X; ) X5 (1-X, )08
+0.2%,(1-%5)(1-%,)0.6 + 0.2(1- X, )(1- X3)(1- x¢)0.6
+0.8%,%,(1-x5)0.840.8(1-X%,)x,(1-X,)0.8
+0.8x%,(1-%,)(1-%,)0.6+0.8(1-x,)(1-X,)(1-X%4)0.6] =1,
0.1< P(+a|-d,+e) < 0.3,

P(+b|-d,+e) < 2P(+c|-d,+e),

Either P(+al|-d,+e)<0.2 or P(+b|-d,+e)< 0.2,

X; € F(feasible set).

(15)

First (14) is linearized using Proposition 2 and then the initial program is altered into

the equivalent program as follows.

Maximize M (x;), i=L2,---,8, (for the maximal confidence), or

Minimize s (x;), i=L2,---,8, (for the minimal confidence),

S.1.
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Hs, (%) =5(x; —0.6) - 2[5(x, —0.8+d,)],

Uz, (x,) =10(x, —0.1) - 2[10(x, 0.2+ d,)],

Mz, (x3) =10(x; —0.1) = 2[15(x5 = 0.2+ d3)],

Uz, (x4) =25(x4 —0.01) - 2[17.5(x, —0.05+d,)],

Hz, (x5) =5(x5 —0.6) = 2[5(x5 — 0.8+ d5)],

s, (x6) =10(x5 —0.7) = 2[10(xs — 0.8+ d)],

Mz, (x7) =10(x; =0.7) = 2[5(x; = 0.8+ d7,) +5(x; —0.85+d;, +d )],

Mz, (xg) = 25(xg —0.01) = 2[12.5(xg — 0.05 + dg; ) + 25(x, —0.07 + dg; +dy, )],
x+d, 208, 0<d,<0.8,

x,+d, 202, 0<d,<0.2,

x;+dy 202, 0<d;<0.2,

x,+d, 20.05 0<d,<0.05,

Xs+ds20.8, 0<d;<0.8,

Xg+dg 208, 0<d;<0.8,

x;+d; +d;, 2085, 0<d,,<08,, 0<d,, <0.05, (16)
Xg +dg, +dg, 20.07, 0<dg, <£0.05,5°0<d;, <0:02, and (15)

To ensure belief propagation the fower-bound of the membership functions is set at 0.2;
that is, the membership of every fuzzy.parameter must equal or exceed 0.2, which excludes
scenarios involving poorly estimated parameters.

LINGO 8.0 solves Example 2.1 in less than one second. The solutions for maximal

confidence are ¢ =2.6743 and

4
P(+a|+d,—e) = aP(+a)) P(z; | +a)P(-d | z;)P(+e| z;) =0.1097,
i=1

P(+b|+d,—e)=a Z [P(a) Z P(z;|a)P(—d | z;)P(+e| z;)]=0.20,

a=0,1 i=1,3

P(+c|+d,—e)= i [P(a) ZP(Z,- |a)P(—d|z;)P(+e]|z;)]=0.1.

a=0,1 i=1,2

The solutions for minimal confidence are
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4
P(+a|+d,—e) = aP(+a)) P(z; | +a)P(-d | z;) P(+e| z;) =0.1056,
i=1

P(+b|+d,—e)=a D [P(a) > P(z;|a)P(—d | z;)P(+e|z;)]=0.2,

a=0,1 i=1,3

P(+c|+d,—e)= i [P(a) ZP(Z,- |a)P(—d | z;)P(+e| z;)]=0.1 []

a=0,1 i=1,2

Table 3 lists the detailed solutions.

The results of this model differ from those for Example 1. In Table 3, P(+a|+d,—e)
changes to [0.1056, 0.1058], where 0.1056 and 0.1058 is solved by minimizing and
maximizing the fuzzy membership functions, respectively. P(+b|+d,—e) changes to 0.2,
and P(+b|+d,—e) changes to 0.1, which implies that the solutions are insensitive to the
confidence of fuzzy parameters. This variance results from the constraints that dominate the
belief propagation. Readers may have deduced that Example 1 can be considered a special

case in which every membership-of the fuzzy parameters converges on 1.
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Table 3: Solution of Example 2.1

Under maximal confidence

Under minimal confidence

BEL(a+) 0.1058 0.1056
BEL(b+) 0.20 0.2
BEL(c+) 0.10 0.10
X, 0.9449 0.96
X, 0.2762 0.28

X, 0.2339 0.2062

X, 0.1284 0.1300
X 0.6458 0.64
X 0.7265 0.72

X, 0:7321 0.7405

Xq 0.0831 0.0860
s (X)) 0.2755 0.2
Uz, (x,) 0.2383 0.2
sz, (x3) 0.3218 0.2
s, (x,) 0.2162 0.2
s (x5) 0.2290 0.2
Mz, (X6) 0.2651 0.2
s (x7) 0.2496 0.2
15 (xg) 0.3441 0.2
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Under certain circumstances, knowledge workers may need to compromise among
diverse, even conflicting information sources, causing fuzzy parameters to differ from their

most possible values.

Example 2.2 (Just-in-time techniques and firm performance): This example uses the
Bayesian network to model the relationship between just-in-time purchasing techniques and
firm performance [10]. Just-in-time purchasing (JITP) is an important component of supply
chain management in managing inventory flows. Several key factors link the JITP process and
firm performance, and Figure 6 models the relationships among these factors. Tables 4 and 5
summarize the probability distributions of the nodes and fuzzy parameters.

This study hypothesizes a scenario in which inventory management performance is good
(im+), employ relationship is poot (er —), transportation performance is good (fa+), and
financial and market performancg is poor ( fm - ). The.problem involves calculating the belief
distribution of all unknown nodgs, top.management commitment (#p ), supplier value-added
(su), training (#r ), quantity delivered (gd ), and time-based quality performance (#g). The

reasoning model is formulated as (17).
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Inventory
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Figure 6: A Bayesian network of the relationships between JITP techniques and

performance measures [10]

Table 4: The conditional probability. distribution of Example 2.2

P(tp+) = X5,

P(su+|tp+) =X3,
P(tr+[tp+) =Xy,
P(ta+|su+)=0.7
P(gd+|su+)=0.8
P(im+|qd+)=0.3
P(tg+|su+)=0.4
P(fm+|tq+)=0.7
P(er+|tr+)=0.6

P(su+|tp—) =Xy,
P(tr+|tp—) = X35
P(ta+|su—)=0.1
P(gd+|su-)=0.3
P(im+|qd—)=0.1
P(tq+|su—)=0.05
P(fm+|tg—)=0.1
P(er+|tr—)=0.1
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Table 5: The membership functions of fuzzy probabilities in Example 2.2.

Parameter Mz, (x3;) Domain of Xx3;
X, 5(xy; —0.1) = 7.5(x;, — 0.3 + x5, —0.3) [0.1,0.4]
Xy 5(x3, —0.4) = 5(|x3, — 0.6 + x5, —0.6) [0.4,0.8]
X 20(x;5 —0.05) = 20(|xy; —0.75]+ x5 —0.1) [0.05,0.15]

Xy 10(x3, —0.5) = 5(jx;, — 0.6)+ x5, —0.6) = 5(|x5, — 0.7|+ x5, —0.7) [0.5,0.8]

Xy 10(x35 — 0.1) = 5(]x35 = 0.2]+ x35 = 0.2) = 5(|x35 — 0.3+ x35 —0.3) [0.1,0.4]

Maximize  u5 (xy;) (for the maximal confidence), or

Minimize  pi5 (x5;) (for the minimal confidence),

S.t.
Hz, (%31) = 5(x3; =0.1) = 7.5(x3, — 0.3+ x57=0.3),
Uz, (X35) =5(x3, —0.4) - 5(|x32 - 0.6| + x5, —0.6),
M, (x33) = 20(x33 = 0.05) - 20(|x33 - 0.75| +x33—0.1),
Hss, (X34) =10(x34 —0.5) = 5(|x34 — 0.6+ X35 —0.6) = 5(|x3, —0.7|+ x3, —0.7),
Mg (X35) =10(x35 = 0.1) = 5(x35 = 0.2+ x35 —0.2) = 5(|x;5 — 0.3+ x35, —0.3),
ad > 3. > > [P(p)P(tr|p)P(su | ip)P(ta+| su)P(qd | su)Ptq | su)

tp su tr qd tq
x P(er—|tr)P(im+|qd)P( fm—|tq)] =1,
P(tp+|ta+,er—,im+, fm—) > 0.6,

(17)

P(su+|ta+,er—,im+, fm—)>0.8.

First the nonlinear membership functions are linearized, yielding (18).

Maximize 5 (xy;) (for the maximal confidence), or
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Minimize  piz (x5;) (for the minimal confidence),

s.t.

Mz, (x31) = 5(x3 = 0.1) = 2[7.5(x5, - 0.3+ d5,)],

Mz, (X35) =5(x3, = 0.4) = 2[7.5(x3, — 0.6 + d3,)],

M, (x33) = 20(x33 = 0.05) = 2[20(x35 — 0.1+ d33)],

Mz, (X34) =10(x34 = 0.5) = 2[5(x34 = 0.6 +d34y) +5(x34 — 0.7+ d3y,)],

s, (X35) =100x35 = 0.1) = 2[5(x35 — 0.2+ d35)) + 5(x35 — 0.3+ d35,)], (18)
a) 2. 2.2 Y IPtp)P(tr|tp)P(su|p)P(ta+| su)P(qd | su)P(tq | su)

tp su tr qd tq
x P(er—|tr)P(im+| qd)P( fm—|tq)] =1,
P(tp+|ta+,er—,im+, fm—) > 0.6,
P(su+ |ta+,er—,im+, fm—) > 0.8.

LINGO 8.0 solves the above program in approximately 5 seconds, obtaining the following

results
For the model under the maximal confidence:

a =30.5359,

P(tp+|ta+,er—,im+, fm—) =0.6103,
P(su+|ta+,er—im+, fm—)=0.8,
P(tr+|ta+,er—,im+, fm—) =0.2886,
P(qd+|ta+,er—,im+, fm—)=0.8510,
P(tq+ |ta+,er—,im+, fm—) = 0.1489.

For the model under the minimal confidence:

a =30.9791,

P(tp+| ta+,er—,im+, fm—) = 0.6000,
P(su+|ta+,er—im+, fm—)=0.8,
P(tr+|ta+,er—,im+, fm—) =0.3695,
P(qd+|ta+,er—,im+, fm—)=0.8510,
P(tq+ |ta+,er—,im+, fm—) = 0.1489.

Table 6 lists the details.
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3.5 Discussions and conclusions

This chapter develops a non-linear programming model for dealing with constrained
abductive reasoning on Bayesian networks. This model can be built on any exact propagation
methods in Bayesian networks. The present study involves some fuzzy parameters and certain
extra constraints. Optimization techniques, including piecewise linearization, are adopted to
solve this non-linear programming model and obtain the solutions to the abductive reasoning
problems under maximal and minimal confidence to the fuzzy parameters. Since the
constraints in this model are extremely non-linear, and numerous non-separable terms are
involved, local optima are obtained at the present stage. To enhance the solution quality, some
global optimization techniques [24,40,41] can be further used for extended studies.
Simultaneously, various reasoning related constraints are considered, including boundary
constraints, dependency and disjunective ,constraints. Compared to traditional methods that
deal with constraints by dummy-auXiliary nodes [8; 101, this optimization model of abduction
avoids network restructuring. AH extra information related to reasoning is considered to be

additional constraints in the proposed non-linearprogram.
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Table 6: Solution of Example 2.2

Under maximal confidence

Under minimal confidence

BEL(ip+) 0.6103 0.6000
BEL(su+) 0.8000 0.8000
BEL(tr+) 0.2886 0.3694
BEL(qd+) 0.8510 0.8510
BEL(tq+) 0.1489 0.1489
X, 0.3567 0.3561
Xs,) 0.7098 0.8
X5 0.1274 0.1207
Xy, 0.5451 0.7
X3 0.3549 0.3
Mz, (x31) 0.4329 0
Uz, (x3,) 0.4510 0
s, (X33) 0.4510 0
U, (X3) 0.4510 0
s (X35) 0.4510 0
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Chapter 4 Diagnosis and decision with fuzzy parameters

This chapter discusses the reasoning systems that need to complete diagnosis and
decision making simultaneously. In this class of problems, the knowledge base will be
extended into an influence diagram, in which the decision variables and fuzzy parameters are

introduced. The problem of this chapter is presented as follow.

Problem 3: Given the evidence set E from BN;= (DN, XN, L,ﬁ), compute the belief

distribution of Uc BN;\E, BEL(U|E) W

In some environments, such asin a medical reasoning system, two generic reasoning
tasks are vital: diagnostic reasoning and-|treatment planning. Diagnostic reasoning is the
process of reconstructing the past facts from the observed evidence. Treatment planning is
reasoning about the effects of actions treated om” patients [27]. Usually, the practices of
medicine and business require both kinds of reasoning to work simultaneously. However, few
current reasoning methods can conduct the two reasoning tasks successfully at one time.
Besides, the reasoning systems become more complex considering the complexity of human
bodies and its relationships with the regional factors.

In some clinical cases, various factors may raise the difficulty in reasoning, such as the
demographic variances of nosography, the incomplete knowledge of the diseases (e.g. Severe
Acute Respiratory Syndrome, SARS, in the early 2003), some restrictions on estimating
relevant parameters of the diseases, etc. In these cases, the clinicians’ experiences and
judgment may be very useful to diagnosis and prescription. Therefore, the site-by-site factors
and clinicians’ knowledge, which may be expressed with extra constraints in the reasoning

systems, need to be integrated into the medical decision support systems. At the same time,
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owing to the difficulties to estimate the causal effects between possible pathogens and the
diseases, the parameters of the knowledge base can be expressed as fuzzy numbers.
Considering the clinical issues mentioned above, the authors are motivated to develop
a methodology with the following features.
1. Complete diagnostic reasoning as well as treatment planning.
2.  Combine the formal knowledge base as well as decision-makers’ judgments that
present as extra constraints.
3. Work compatibly with the circumstance where fuzzy information is involved.
In the following section, the background of this research and the proposed approach

will be interpreted.

4.1 Influence diagrams

In medical informatics -and industrial domains, Bayesian networks and influence
diagrams [30,31,33,35,39] are widely used-knowledge representation and decision aids under
uncertainty. Influence diagrams are directed acyclic graphs with three types of nodes: decision
nodes, chance nodes, and a value node. Decision nodes, shown as squares, represent choices
available to the decision-makers. Chance nodes, shown as circles, represent random variables
(or uncertain quantities). Finally, the value node, shown as a diamond, represents the objective
(or utility) to be maximized. In a multiple objective decision making model, there may be
more than one value nodes.

However, two limitations still persist when utilizing the above approaches for solving
medical reasoning problems:

1. All associated probabilities are assumed to be crisp values.
2. Difficult to introduce the constraint among the nodes in Bayesian networks or

influence diagrams.
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3. Planning and diagnostic problems are not considered in one paradigm.

The limitations mentioned above restrict the practical usefulness of medical reasoning
on Bayesian networks and influence diagrams in the following facts. First, the conditional
probabilities between a node and its parent nodes could be fuzzy instead of a crisp numbers,
owing to the difficulties of learning accurately the cause-effect relationships among the nodes.
Second, as a common fact, the experts may have some professional speculations in the form
of constraints between the nodes in a Bayesian network. These constraints could be boundary,
dependency, or disjunctive conditions. Third, the investigators of influence diagrams used to
maximize the utility functions by node removal processes [30,33,39] and ignore diagnostic
reasoning tasks; on the other hand, Bayesian networks have been used widely in probabilistic
reasoning but lacked the capability to suggest the optimal decision.

This section proposes an optimization model to make diagnostic reasoning and
treatment planning for bacterial infections, whete the-cause-effect relationships are expressed
with an influence diagram and fuzzy-data. The.nputs of the reasoning system are conditional
probability distributions of the network nodes, the associated costs of the candidate antibiotic
treatments, the expected effects of the treatments, and extra constraints regarding belief
propagation. Since the prevalence of the pathogens and infections are determined by many
site-by-site factors and subjective knowledge, the decision may involve uncertainty not
compliant with conventional approaches and quite different background. So we allow the
decisions to be made under fuzzy environments, at which some of the parameters could be
fuzzy parameters [7], and some constraints regarding diagnosis are introduced. When a
patient is received, this reasoning system can, based on the present symptoms or
bacteriological tests, help the clinician make precise diagnosis at the first decision point, and
also supply the suggestions of optimal treatment for the infection. The outputs of the
reasoning model are the likelihood of a bacterial infection, the most likely pathogen(s), the
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suggestion of optimal treatment, the gain of life expectancy of the patient related to the

optimal treatment, the probability of coverage from an infection associated with the antibiotic

treatment, and the cost-effect analysis of the treatment prescribed. The input-process-output

diagram is depicted in Figure 7.

Conditional probability
distributions of
the network nodes (variables)

The costs of the candidate
treatments

h

The expected effects of
the candidate treatments

Extra mformation( constr amts) for
diagnosis

¥

The optimization
model for
diagnostic reasoning
and
optimal treatment

N The likelihood of a bacterial
infection

K

L
BN

K
||

The most hikely pathogens ‘

Suggested optimal treatment ‘

The gain of hfe expectancy ‘

The probability of coverage ‘

The cost-effect analysis ‘

Figure 7: The input-output diagram of the optimization model for Chapter 4

In the following, the authors will ‘introduce an example of Urinary tract infection

(UTI), the problem and design goal, and handling the fuzzy information sequentially.

42



Patho,: Klebsiella pnenmoniae Tr: Antibiotic Treaternent UTT: Urinary Tract
Patho, Pseudomonas

’ Resist: Eesistance Infection
aerugiosa _ Cost: Costs of antibiotic Sign,: suprapubic pain
Pathoy: Escherld_na Coli _ treatments Sign,: frequent micturition
Test: grow of microorganisms Gain: gross gain in life Sign,: Flank pain
in the blood _ _ expectancy Sign, Urinary symptorms
Testy: grow of microorgarisms Resist: resistance Signg: serum albumin
in the QTS Underlying: underlying disorders Signg: Fever
Test, | mitrite test of patients

Figure 8: A revised Bayesian network for Urinary tract infection [23]**

Consider one example of urinary tract infections modified from Leibovici et al [23].
As depicted in Figure 8, this example uses an influence diagram as the knowledge and
decision model where the conditional probability distributions for the relevant random and
decision variables are calculated. For the sake of simplicity and without loss of generality, all
random nodes are assumed and organized as binary. The conditional probability distributions
of the variables are given as an example in Table 7 through Table 9. The nodes and their states

in Figure 8 are described as follow.

" In the latter part of Figure8, the authors put pairs of (Node_Name: Description) for each node in the network
to explain what the nodes represent.
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Table 7: The conditional probabilities of pathogens, tests, and signs of UTI

P(+ patho,)=0.1

P(+ patho,)=0.09

P(+patho,)=0.09

P(+uti |+ patho, ,+ patho, .+ patho;) = X,
P(+uti | +patho,,— patho, .+ patho;) =X,
P(+uti |+ patho, ,+ patho, ,— patho;) = X,
P(+uti |+ patho, ,— patho, ,— patho;) = X,
P(+uti | —patho, + patho, .+ patho;) = X5
P(+uti | —patho, ,— patho, .+ patho;) = X,
P(+uti | —patho, .+ patho, ,— pathoy) = X,
P(+uti|—patho, ,— patho, ,— pathos) = Xg

Pathogen ( Patho,): a microorganism-capable-of causing urinary tract infection. For
the convenience of computation;only 3;of 12 pathogens are presented: Patho, (Klebsiella
pneumoniae) Patho, (Pseudomonas‘aeruginosa), Patho, (Escherichia Coli). The states of
this kind of nodes are severity: severe ( Patho,=1) and not severe ( Patho,=0).

Urinary tract infection (U77): The states of this node are severe (UTI=1) and not
severe (UTI =0).

Signs and symptoms of urinary tract infection (Sign;): the manifestations that
might cause from UTI . There are six possible signs presented in Figure 7: Sign,
(suprapubic pain), Sign, (Frequent micturition), Sign, (Flank pain), Sign, (Urinary
symptoms), Signs (Serum albumin) and Sign, (Fever). The states of these nodes are

present (Sign; =1) and absent ( Sign, =0).
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Table 8: The conditional probabilities of Signs ( Sign,)

P(+sign, | +uti)=0.6
P(+sign, |+uti)=0.9
P(+signy | +uti) =0.6
P(+sign, | +uti)=0.8
P(+signs | +uti)=0.6
P(+signg | +uti) =0.7

P(+sign, | —uti)=0.01
P(+sign, | —uti)=0.10
P(+signy | —uti) = 0.05
P(+sign, | —uti) =0.05
P(+signs | —uti)=0.10
P(+signg | —uti) =0.01

Table 9: Conditional probabilities of Coverage with resistance ( Resist =1)

The instance of ( Patho,, Patho,, Pathos)

Treatment*  (1,1,1) (1,0,1) (1,1,0) (1,0,0) (0,1,1) (0,0,1) (0,1,0) (0,0,0)
" 0.3 0.4 0.4 0.5 0.4 0.3 0.3 0.6
t 0.7 09 4099 095 0.7 08  0.75 0.7
tr, 07  07- 0851 .07 ' -08 08 099 0.8
tr, 08 087 087 .08 /- 095 09 08 0.9
tr, 07 095 08 0.9 0.8 0.7 0.9 0.95
trs 08 09 085 09 0.8 0.9 0.9 0.9

* The costs of the 7y, try, tr,, try, try, trs are 5000 (the receiving and process costs), 20000, 25000,

30000, 32000 and 50000 dollars, respectively.

** No treatment.

Bacteriological tests (7est;): Test, (growth of microorganisms in the blood), 7est,

(growth of microorganisms in the urine) and 7est; (nitrite test). The states of these nodes are

positive (7est;=1) and negative ( Test; =0).

Coverage of UTI (Coverage): the percent of pathogens of UIT susceptible to an

antibiotic drug. The states of this node are significant ( Coverage=1) and insignificant

(Coverage=0).
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Resistance to antibiotic drugs ( Resist ): the states of this node are resistant

( Resist =1) and not resistant ( Resist =0).

Antibiotic treatment (77 ): the treatment will be appropriate if it matches the in-vitro
susceptibility of the pathogens. For simplicity of demonstration, we consider 5 of 26
antibiotic drugs and one additional state for no treatment. Thus, we have 6 alternatives, that is
Tr={try,tr,try,try, try, trs}, where tr, stands for no treatment and t=0 or 1. When tr;=1,
tr; is prescribed; opposed, tr=0 means that tz is not prescribed. For the efficiency of
computation, we allow only one antibiotic drug at one time, which let it possible to formulate
this decision problem as a mixed 0-linteger program. If more than one drug are mixed in the
therapy, the mixed treatment will be regarded as another treatment. Notably, this node is a

decision node that has effects on the coverage from urinary tract infection.

Cost: a utility node associated. with-antibiotic treatments ( Cost(#r;) ).

Gain: the gain in life expectancy.obtained by prescribing an antibiotic drug ( Gain ),

which is a function of the coverage. ( Coverage ) and the underlying disorder of the patient
(Underlying ).
Underlying: the underlying disorder of the patient (Underlying), which will be

represented by an equivalent base years of remaining life for the simplicity of computation.

Each variable above is characterized by crisp or fuzzy probabilities given the state of

its parents. For instance, UTI €{1,0} represents the dichotomy between having urinary tract
infection and not having one. +uti stands for the assertion U7/ =1 or “urinary tract

infection is present”, and —uti stands for the negation of +uti,ie., UTI =0.

Denote Y as the parameter set of the Bayesian network depicted in Figure 7. The joint

probability distribution of this network with treatment t~ can be expressed as (19).
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3 6
P(y)= H P(patho,)x P(uti| patho,, patho, , patho; ) x H P(sign; |uti)
i=1 j=l

3
x [ [ P(test, | patho,, patho,, pathos) (19)
k=1

x P(coverage| patho,, patho,, patho,resist,tr;).

4.2 Problem and goals

The UTI problem can be seen as one case from Problem 3, which we present as

Example 3 as below.

Example 3 Refer to the conditional probabilities in Table 7 and Table 8, and the evidence that
a patient is suffering from frequent miecturition (Sign, =1), flank pain ( Sign,=1) and urinary
symptoms ( Sign,=1), but has not fallen 1mto a suprapubic pain (Sign,=0), serum albumin
(Signs=0) or fever (Sign,=0). Denote the evidence set E = {&}={ Sign, =0, Sign,=1,
Signy=1, Sign,=1, Signs=0, Sign,=0}. We need to solve the following two problems.

1. Compute the belief distribution of every Patho,, Patho,, Pathoyand UTI .

2. Make the suggestion of the optimal treatment based on the information given in Table

9, assuming the patient with resistance to the antibiotic treatments ( Resist =1).

At the first decision point, the clinician tends to make the diagnosis without biological
test results; that is, the task is reasoning on the subgraph omitting the nodes Test;, and
simplified as to compute P(y| €) where ¢ stands for an instance of the evidence set E, and Y
shrinks as { Patho,, Patho,, Patho,, UTI ,Coverage }. This is reasonable since all the test
nodes are Barron nodes in this diagram [30,33,39]. If the treatment prescribed at the first time
doesn’t work, then some biological tests would be further considered. Besides, this model
would like to provide the suggestions for the optimal treatment that maximizes the gain of life

expectancy and minimizes the total associated costs.
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Notice that some of the parameters in Table 7 are not crisp but fuzzy numbers. For

instance, P(+uti|+ patho,,+ patho, .+ pathoy) 1is not a crisp but a fuzzy number instead, say

X, where P(+uti|+patho,,+patho,,+patho;)=X,, and associated with a membership

function 5 (x;) represented as follows.

5(x; —0.6)—5(]x; — 0.8 +x, —0.8), 0.6<x, <1,

p () =1 """ =08+ : (20)
0, elsewhere,

where “|*|” is the absolute value of a term *.

The above expression and Figure 8 mean that the domain of x; is between 0.6 and

1.0. If x;=0.8 then x5 (x;)=1, which implies that x;=0.8 is the most confident situation. If

x;<0.6 or x; =1 then g (x)=0, whichiis least possible to happen. If x,=0.7, then
/J?Cl (xl) =0.5.
Based on Proposition 1, (20) can.be.exptessed into a general form as (9).

Now this study expresses the membership functions of the fuzzy parameters s (x;)

in Table 10. The readers may find that all the eight fuzzy parameters are triangular fuzzy
numbers. However, the membership functions in Table 10 involve absolute terms, which is
not convenient to compute. Since the membership function in (9) is a nonlinear function to be
maximized, this study will use Proposition 2 to formulate the optimization for diagnosis and
optimal treatment.

Now we are ready to formulate the optimization model for diagnosis and treatment
planning. Here we formulate the diagnostic reasoning and treatment planning problems as an

optimization model. The objectives involved in this model are described as in next section.
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4.3 Model development

The objectives involved in this model are described below.

1.  To maximize the sum of every fuzzy membership functions. That is, we will make the
suggestions of optimal treatment under the maximal confidence of the fuzzy
information.

2. To maximize the gain in life expectancy.

3.  To minimize the total costs of the treatments.

The first objective is to maximize the sum of every fuzzy membership functions. The
decision of treatment prescription influences the gain and cost of this therapy. In this problem,
the clinician has 6 candidate treatments to choose, where no treatment is included. We

represent each antibiotic treatment-as a binary variable #; (including #r, standing for no

5
treatment) and the associated cost as. Cost(ir;). The total cost is Y Cost(ir;). The objective
i=0

functions can be expressed as the following.

Max  z, = pz (x;) (21
Max  z, = E(Gain(Coverage,Underlying)) (22)
5
Min  zy =) Cost(tr;) (23)
i=0

where “ E(*)” stands for the expectation of a term *.
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Table 10: The membership functions of fuzzy probabilities

Parameter 5 (x;) Domain of X

%, 5(x; —0.6) = 5(x; — 0.8+ x, —0.8) [0.6,1]

X, 10(x, —0.7) = 10(x, — 0.8+ x, —0.2) [0.7,0.9]

X, 20(x; —0.7) = 20(|x; —0.75|+ x3 —0.75) [0.7,0.8]
X, 10(x, —0.5) =10(x, —0.7]+ x, - 0.7) [0.5,0.7]

X 10(x5 —0.7) =10(|x5 — 0.8|+ x5 = 0.8) [0.7,0.9]
X 20(xg —0.55) = 20(|x —0.6|+ x4 —0.6) [0.55,0.65]
X, 10(x; — 0.4) =10(x; — 0.5]% x, - 0.5) [0.4,0.6]

g 100(xg ) — F00(|xg — 0.01}4xg = 0:01) [0,0.02]

In (22), we express the gain in' life"expectancy as a function of the expectation of
Coverage and Underlying . We assume that the underlying disorder and health status can be
converted to an equivalent base year, in this case, 35 years, and the gain is a multiple of the
base year. It assumes that, in this clinical case, a patient has the ideal 35 years gain of life
expectancy if the probability to recover from UTI is 1. Since the literatures [23] show that
one-year gained in life can be regarded equivalent to $55,000, we re-write (22) as (24) for unit

standardization.

zj =55000 x E(Gain(Coverage)) * 35 (24)

Setting that only one treatment can be chosen at one decision point, we can formulate
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the total cost function as in (23). Notably, the expected gain is a function of the resistance of

antibiotic treatment (given Resist =1), the pathogens (Patho;), and the treatment prescribed

(tr;). The reader may refer to their relationships in Table 9. Defining #; as a 0-1 variable, the

expectation of Coverage, E(Coverage) canbe computed as

E(Coverage|Resist =1)
=a), Y. Y. Y. xP(coverage| patho,, patho,, pathos,resist =1,ir;)) (25),

i patho, patho, pathos
where @ is the normalizing constant, which will be explained in next subsection.

In this optimization program, two categories of constraints must to be satisfied: (i) the
constraints regarding the Bayes’ Theorem, and (ii) the extra constraints regarding belief
propagation. This optimization model can be implemented with various exact propagation
methods. We do not intend to dis¢uss herejthesdetails of reasoning algorithms, but focus our
attentions on how to formulate:this problem as an optimization model. This optimization
model can be based on any exact.methods. The interésted readers may refer to the literatures
[1,2,34,35,36,38].

Now we formulate the first category of constraints as

> P(y)
y

3
=a ) > 2 > 2 I[1P(patho;)x P(uti| patho,, patho,, pathos)

patho, patho, pathos uti coverage j=l
x P(sign, = 0|uti)P(sign, =1|uti)P(sign, =1|uti)P(sign, =1|uti) (26)
x P(signs = 0| uti)P(signg = 0| uti)

5
x Y P(coverage| patho,, patho,, pathos,resist =1,tr;)] =1,
i=0

5
dYtr=1, tr;=1 or 0, (27)

i=0

where « is the normalizing constant which ensures that the sum of the probabilities of every
instance of y is 1. The constraint in (27) regulates the clinician to prescribe only one treatment
in the first decision point.
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At the same time, for a given Bayesian network, the users or the experts, such as the

clinicians, may have some professional speculations about the features of some nodes and the

relationships among them, in some specific diagnostic context. These features and

relationships can be identified as the following types of constraints [14].

1.

Boundary constraints
Some conditional probabilities may have upper or lower bounds. For instance, a

clinician may speculate that the posterior probability of Patho, given the evidence

should be higher than 0.3 but lower that 0.5, which can be expressed as
0.3 < P(+pathoy |e) < 0.5 (28)

Dependency constraints
The beliefs of some nodes jinta Bayesian network may exist mutually dependent
relationships. For example, a clinician may presume that the posterior probability of

Patho, should be some-multiple of  Patho, given the evidence. Such a relationship

is expressed as
P(+patho, | e) < 0.5P(+ patho, | ) (29)
Disjunctive constraints

Sometimes the disjunctive condition between the nodes may exist. For example, a

doctor may estimate that either P(+patho, |e) or P(+patho,|ée) is equal to or less

than 0.4, which is expressed as

Either P(+patho, |e)<0.4 or P(+patho,|e)< 0.4 (30)

Introducing constraints (28) and (30) into this reasoning system, this optimization

program becomes
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Max Z

Max z) G31)
Min Zy
st. (26)—(28),(30)

Since the disjunctive constraint (30) is a nonlinear constraint, we will linearize it by some 0-1

variables as the following.

M (6, —1) < P(+patho, |e)—0.4< MO, + M (1-6,),

M6, -1) < P(+patho, |e)—0.4< M6, + M(1-6,) (32)

e<0,+6, <1
where 6, and 6, are 0-1 variables, M is a relatively large number, and & is a relatively
small positive number.

There are four instances of 6,.and, 8,. (1) When 6,= 1, 6,=1, (32) turns into

0 < P(+patho, |e)—0.4< M and:- 0 < P(¥patho, | €)—0.4 < M , which are inactive constraint;
(1) When 6, =0 , 6,=1", we get - —-M <P(+patho,|e)—04<0 and
0 < P(+patho, | e)—0.4 <2M , which'means-that when P(+patho,|e)>0.4, P(+patho, |e)
must be less than or equal to 0.4;°(ii1) "When 6, = 1, 6, =0, the constraints are
0 < P(+patho, |e)—0.4<2M and — M < P(+patho, |e)—0.4 <0, which implies that when
P(+patho, |e)>0.4, P(+patho,|e) must be less than or equal to 0.2; (iv) When 6,= 0,
6,=0 the inequalities become —M < P(+patho, |e)—04<M and
— M < P(+patho, | e)—0.4 < M , which are inactive constraints. The third inequalities in (32)
exclude the combinations when =1, 6,=1and 6,=0, 6,=0. To summarize, (32) implies

that either P(+patho, |e)<0.4 or P(+ patho, | e) <0.4 must be satisfied.

4.4 Algorithm and solutions

The model formulated in the previous section is a multiobjective program, so we adopt

the fuzzy approach proposed by Zimmermann [44] to solve it. Following the steps described
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below, the model is solved.

Algorithm 1

Step 1: Get the ideal solutions of every objective.
To obtain the ideal solutions, every objective is optimized independently regardless of

other objectives. In (31), we maximize z,, z,, and minimize z; individually to acquire

. . . * * * . . *
their ideal solutions z, , z, and z; , respectively. The ideal values are z, =8,

z,=1722198, and z,=5000.

Step 2: Get the anti-ideal solution of every objective.
To obtain the anti-ideal solutions, every objective is computed in the opposite way

regardless of other objectives. Now, we'minimize z,, z,, and maximize z; to acquire the

associated ideal solutions z, , 'z and z;, respectively. The anti-ideal values are z; =4,

z;=733764.5, and z5 =40000.

Step 3: Define the membership function of every objective by its ideal and anti-ideal
solutions.
With the ideal and anti-ideal solutions of every objective, we can define their

membership functions as follow.

Zy —Zp
M (z)=———
Zy —Zk

(33)
The membership functions evaluate the degree of fulfillment for every objective.
Step 4: Maximize the minimal membership function of the three objectives.

Using Zimmermann’s fuzzy approach for multi-objective programs, the model (32)

can be converted into (34).
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Max A
st A<, (z) =11
1 2 T4
zh—zI"
ALy (2y) === (34)
Zy —Zy
A<, (z) =33
’ Z3 —Zz3
(26) —(28),(32),

where A 1is defined as

/1 = min(ﬂzl (Zl)’/uz'z (Z;)a:uz3 (Z3 ))

1,2,3

In (34), this study intends to search for the maximum of the minimum level of
fulfillment for all the objective functions. To avoid the poor estimation of the fuzzy
parameters and decision quality, we set the strict lower bound of the membership function of
every fuzzy parameter at 0.5. Applying the ideal and anti-ideal values computed in Step 1 and
Step 2, (34) is specified as (35).

Max A

s.t. A<
8—4
z5, —733764.5

" 1722198—-733764.5
z;, —40000

<=3
5000-40000
(26)—-(28),(32),

(35)

This study will solve (35) with LINGO 8.0 developed by LINDO Systems Inc. [48].
LINGO is a comprehensive tool designed to build and solve linear, nonlinear and integer
optimization models. LINGO provides a completely integrated package that includes a
powerful language for expressing optimization models, a full featured environment for
building and editing problems, and a set of fast built-in solvers.

LINGO 8.0 solves (35) in 1 second and obtains the optimal treatment as #;, (#; =1,
try =tr, =try =tr, =tr; =0 ), the normalizing constant o =323.6647, the optimal minimal

membership of the objectives 4 =0.5714, and the likelihood of every pathogens:
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P(+patho, | e) =0.4000, P(+patho, |e)=0.3111,
P(+patho, | e) =0.3884, P(+uti|e)=0.9895.

The suggested optimal treatment results in a probability of 0.8396 to cover from the
urinary tract infection, equivalent gain in life expectancy as $1616259, and the total costs in
$20000. Besides, the clinician can make the diagnosis and optimal prescription at the first
decision point with an overall confidence of the fuzzy parameters at 0.5714. We also find X;,
X4, X7, Xg significantly apart from its most possible values. It makes sense that, under this
reasoning context, the experts need to make some subjective judgment or compromise
between different, even conflicting information sources, which make the fuzzy parameters

apart from their most confident values. The detailed solutions are listed in Table 11.

4.5 Discussions and conclusions

During the implementation of the reasoning model, the authors find the strength of the
optimization model. First, the reasoning system.allows the clinicians to combine their special
judgments or experiences as extra constraints, which supplement the incomplete formal
knowledge. This is useful for some newly discovered disease or infections, and increase the
flexibility and robustness for various clinical settings. Second, the model completes two major
tasks in medical informatics: diagnostic reasoning and treatment planning simultaneously,
which is important a requirement for clinical decision support systems. Third, LINGO
provides a powerful and efficient computation tool for solving the optimization model,
especially when the authors adopt some linearizing techniques to transform the highly
nonlinear program. Based on the authors’ experiences, LINGO performs better in solving
linear programs than solving nonlinear programs.

However, the authors also find several potential challenges in developing the proposed
reasoning system. First, as the clinical problems grow larger and more complex, it may be a

burden for the clinicians to formulate the model. In some diseases, there may be tens or
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hundreds of nodes in the networks. The clinicians will have difficulties to estimate the
parameters or specify the conditions of their diagnosis and prescription. Therefore, the system
needs some experts in knowledge engineering or information management to participate in,
which consequently increases the costs to implement. Second, as the scales of network grow
larger, computing the belief of the unknown nodes will be more complicated and
time-consuming. Some special techniques for belief propagation may be considered, such as
clustering, joint tree decomposition, stochastic simulation, and so on [1,2,34,35,36,38]. How
to integrate these computation methods and the optimization model will be a critical issue in
implementing the reasoning system. Third, as network structures become huge, implementing
the optimization model with LINGO will be fairly challenging. LINGO provides several
interfaces with other applications, such as Visual C++, Visual Java, Visual Basic, etc. The
system developers can bundle LINGO's functionality into their applications, or call functions
from within the LINGO models that were written in an external programming language [48].
It will facilitate generating the ‘codes for LINGO models and importing the parameters or

input data from other applications.
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Table 11: Solution of Example 3

A 0.5714
8

4 =i§,u;i (x;) 6.2857

z, =E(Gain) 1616259

Z3 ZZS(; Cost(tr;) 20000

P(+ patho, | e) 0.4000

P(+patho, | e) 0.3111

P(+pathoy | e) 0.3884

P(+uti|e) 0.9895

Optimal treatment |t =1, try=try =tr; =tr, =tr; =0

P(+coverage|e,trs) [0.8396

X, 0.8001 Mz kxy) 0.9985
X, 0.8001 M, (x,) 0.9970
X, 0.7601 M, (x3) 0.7972
X, 0.5500 Mz, (x,) 0.5000
Xs 0.8001 Mz (x5) 0.9970
X4 0.6000 Mz, (Xg) 0.9960
X, 0.45 Mz (x7) 0.5000
Xq 0.0070 M, (Xg) 0.5000
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Chapter 5 Diagnosis and decision with fuzzy nodes

This chapter discusses the reasoning systems that need to complete diagnosis and
decision-making in dynamic environments. In this class of problems, the knowledge base will
be extended into a dynamic fuzzy influence diagram, in which the decision variables and

fuzzy variables (nodes) are introduced. The problem of this chapter is presented as follow.

Problem 4: Given the evidence set E from BN,= (DN, CN, XN, L, P), compute the belief

distribution of Uc BN,\ E, BEL(U| E). W

5.1 Reasoning in supply chain management

In some domain, the -reasoning tasks ‘may involve various types/degrees of
uncertainties and become more complex thanthe conventional problems, such as supply chain
management.

Supply chain management has been commonly recognized as a key issue of business
success, especially for multinational industries and global markets. It has shifted the
management paradigm of enterprises. There are several works on the causal relationships in
multi-echelon supply chains, such as the dynamics of buyer-supplier relationships
[3,10,12,32], the strategic role of the buying firms in structuring supplier-supplier
relationships and supply chain effectiveness [21], the relationship between just-in-time
purchasing techniques and supply chain performance [9], diagnostic reasoning in supply chain
alliance with static Bayesian networks [15,16,18], and so on. However, there are limited
works on design of integrated systematic methodologies for supply chain diagnostics and

optimal solution. Naim et al [29] developed a methodology, Quick Scan, to conduct a supply
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chain oriented business diagnostics in the European automotive supply chain values streams.
Quick Scan is a systematic methodology to collect and synthesize the data from a supply
chain. One of the main outputs of Quick Scan is the cause-and-effect diagram of the supply
chain. The advantages of Quick Scan are (1) data collection and integration, (2) identification
of causal relationships in a supply chain, and (3) a systematic and integrated view of supply
chain diagnostics.

Reviewing the literatures on supply chain diagnostics, we find some interesting issues
worth further discussions and extensions. First, the diagnostic methodologies are not designed
in the previous works. Second, the strength and uncertainty of the causal relationships in
supply chain diagnostics are not quantified. Third, there is not an integrated framework on
diagnosis and decision-making for the optimal supply chain solutions. Fourth, fuzzy
information is not considered in theiprevious works. Motivated by the open issues, this study
proposes an integrated framework based on'a dynamie influence diagram for the supply chain
diagnosis and decision-making. The uncertainties involved in supply chains are captured by
fuzzy numbers and membership functions, which turns the decision model into a dynamic
fuzzy influence diagram. Using the integrated framework, it works to answer the queries such
as “What are possibly the causes of the poor schedule adherence of the two-echelon supply
chains?” and “How information and communication technologies can contribute to the supply
chain collaboration? What is the optimal technical solution to the supply chain treatment?”

The remainder of this chapter will be organized as follow. Section 5.2 first addresses a
case of European automotive supply chains. Section 5.3 then gives an introduction of
dynamic models with fuzzy parameters. A dynamic fuzzy influence diagram will be
developed for the two-echelon supply chain based on the case studied in section 5.2. Section
5.4 designs the algorithms to conduct diagnostic reasoning in the dynamic fuzzy influence
diagram. Next, section 5.5 formulates a fuzzy multi-objective nonlinear programming model
for the optimal supply chain solution. Finally, section 5.6 gives the discussions and
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conclusions. The research framework is depicted as Figure 9

A case study for the European automotive
supply chain.

Develop the dynamic fuzzy influence diagram
for the supply chain management.

Handling the fuzzy nodes and Measure the technical solution alternatives
possibility distributions. with fuzzy costs and utilities.

Phase I: diagnose the supply chain based
on the dynamic influence diagram.

Phase II:-decision making for-the optimal
treatment to the supply chainsproblems.

Discussions.-and comments

Figure 9: Research framework of Chapter 5

5.2 Problem and Goals

In this section, we first introduce a case of the two-echelon European automotive
supply chain [29]. From this case, the readers can realize how the cause and effect diagram of
the engine assembler and its component supplier is built and provides a basis for supply chain

diagnosis.
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Example 4: As one component supplier of the leading engine assembler Company C,
Company S puts much attention to its own performance and satisfaction of Company C. From
the past periods, Company S observed the poor schedule adherence inside the company, and
several help calls from Company C. So Company S initiated an investigation of the company
and through the two-echelon supply chain.

Based on Quick Scan, a previous survey to integrate the quantitative and qualitative
data from a two-echelon supply chain, all participating companies and third parties who
concern the supply chain problems can investigate demand amplification effects in the supply
chain and the causes of the poor schedule adherence of the component supplier. One of the
main outputs of the Quick Scan is the cause-and-effect diagram shown in Figure 10 [29].
From the cause-and-effect diagram in Figure 10, the readers can find two kinds of factors: the
keys of customers (achromatic) and the keys from suppliers (in gray). The arrows in the
diagram represent the causal links between.the keys of the two-echelon supply chain.
Company S traced all the key factors m Figure 10 carefully.

After a thorough investigation; Company S found several symptoms internal his
company, which closely relate to some segments in the supply chain. Further collecting
relevant data through the supply chain, Company S observed that, for the preceding periods,
Company C has put considerable schedule alterations. Company S itself had large product
range and high risk of obsolescence, and also kept limited finished goods. The production
capacity constraint was high and the scheduling flexibility was low. Besides, the supplier bore

large set-up times/ costs and had large batch production.
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(A) Large (E) Design Key (L) Scheduled (P) Poor stock
poduc | | spcieton bl com
variety alterations alterations

supplier
¥ v / T A

(Br)oIZIirc%[e (F) Inaccurate R alt(eIr)atsif)}rllzdullaece d (M) Cannot build (Q) Last stock at
p B.O.M. P what want to point of use
range on suppliers
y'Y
A A
L (G) Limited () Poor (N) Lack of (R) Large
(C())bljcilggcr:asnkcgf —» finished goods > schedule —» components set-up times
safety stock adherence when required and costs

/'Y
/ ‘
(H) Lack of (K) Production (O) Lack of

raw materials capacity —»  scheduling N
when required constraint flexibility

(D) Poor internal
stock visibility

(S) Large batch
production

Figure 10: Cause-effect diagram of the two-echelon automotive supply chain [29]

At the same time, Companys S foresaw the needs to strengthen the collaborative
mechanism in the supply chain, which:is suppesed to enhance the information transparency,
customer satisfaction in the supply chain value stream, and the overall supply chain
performance. The information and communication technologies (ICT) are usually believed to
facilitate the supply chain collaboration.

In Example 4, there are two important issues to concern: (a) What are the causes of
poor schedule adherence in the automotive supply chains? How possible are the unknown
variables to be the sources of the problems? (b) What is the optimal technical solution to the
supply chain collaboration supposed to enhance the supply chain performance?

Since the previous works did not provide proper tools for analyzing the above
problems, this study will propose a two-phase model to answer problem (a) and problem (b).
Next section will show how the cause-and-effect diagram in Figure 10 can be converted into a
dynamic fuzzy influence diagram. Then, diagnostic reasoning in the supply chain will answer
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the first problem in the diagnostic phase.

5.2.1 Dynamic Bayesian networks with fuzzy nodes

Example 4 can be developed as one application of dynamic Bayesian networks or
influence diagrams for supply chain management, involving a leading automotive engine
assembler (Company C) and one of its component suppliers (Company S). This study will
formulate the supply chain using a dynamic influence diagram.

A static influence diagram can be extended into a dynamic influence diagram
[4,8,16,17] by introducing relevant temporal dependencies between representations of the
static network at different times. Two types of dependencies can be distinguished in a
dynamic network: contemporaneous dependencies and non-contemporaneous dependencies.
Contemporaneous dependencies refer-to arcs between nodes that represent variables within
the same time period. Non-contemporaneous dependencies refer to arcs between nodes that
represent variables at different times. We will'illustrate how to formulate a dynamic influence
diagram for the supply chain diagnosis‘andtreatment, as well as how the participating
enterprises in the supply chain can solve the diagnostic problems and obtain the optimal

solution on the diagrams.

5.2.2 Uncertainties in supply chains

The supply chain mentioned in Example 4 is a highly uncertain and complex system.

The uncertainties originate from several sources.

(a) The stochastic properties in the supply chain system itself, such as the relationships
among the nodes in the network, which are random in nature. This category of

uncertainty is usually handled with probability theory.
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(b) The incomplete knowledge of the system. The decision maker may have only partial
knowledge about the system, and need to make some subjective judgments, such as
the costs and benefits from the supply chain collaborations. This category of

uncertainty is often treated with fuzzy sets and the possibility functions.

(c) The semantic vagueness in the system, such as good manufacturing capability, stock
control performance, customer satisfaction, etc. This kind of ambiguity is usually
treated with fuzzy sets and the possibility distributions. Once we define the fuzzy
nodes and possibility distributions in the influence diagram, it will become a fuzzy
influence diagram. Moreover, this study will encounter a dynamic fuzzy influence
diagram for the supply chain systems.

This chapter will consider and operate the three types of uncertainty mentioned above.

5.3 Model development

Before applying the graphical decision-model to the supply chain problems, the
authors first make a brief discussion. According to the uncertainty of the domain problems,
there are several types of network nodes: crisp discrete nodes, crisp continuous nodes, fuzzy
discrete nodes, and fuzzy continuous nodes. In a word, the crisp nodes behave randomly and
are described with a probability distribution. On the other hand, the fuzzy nodes are generally
semantically ambiguous or are realized with incomplete knowledge. Considering the system
characteristics of the supply chain, we choose crisp discrete and fuzzy continuous nodes to
formulate the domain variables. Because there is a feedback loop in Figure 10, the
two-echelon supply chain will be expressed by a dynamic fuzzy influence diagram in the
following steps. First, this study changes every factor in Figure 10 into a network node. There
are two types of nodes: crisp random nodes and fuzzy nodes. For convenience of computation

and without loss of generality, each crisp node is assumed two states and turn into a binary
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variable. The cases of multi-valued crisp nodes are indifferent in nature and intuitive to extend
in real-world applications. Each crisp random node is characterized with a prior or conditional
probability distribution, which has been learned previously from the field. For the nodes that
are semantically ambiguous or incompletely comprehended, we assign each one a possibility
distribution to express the level of possibility. The knowledge workers operating on the
system can maintain and alter these distributions when any updated information is passed into
the systems.

Now Figure 10 is transformed into Figure 11. The description and states of the random

nodes are listed in Table 12. Let X stands for the crisp node set and Y stands for the fuzzy

node set. For the crisp nodes, we use the uppercase letters to represent the variables and
lowercase letters for their associated values. For example, C' € {0,1} represents the dichotomy

between low risk of obsolescenceand highrrisk. of ‘obsolescence at time ¢. +c¢' stands for

C' =1 and —c' stands for C'==0. Oppositely, we assign a triangular membership function

to represent a fuzzy node. Every fuzzy nodeis denoted by ( y, y",7), where Y represents the

left limit, y stands for the right limit, and y' represents the peak of the triangular

membership function. This study does not discuss how to learn the relevant parameters, but
concentrate on the diagnostic reasoning and decision-making methods. In Figure 11, two
kinds of nodes are added: decision node (/CT') and utility node (U). ICT stands for the
information and communication technologies that will be selected to improve the supply
chain performance and U denotes the utility set.

In Figure 11, we introduce one implicit link from U to I, which is unusual in
influence diagrams. The implicit links implies that, the benefit from the collaboration is
shown as a value node but will feedback to the next-stage supply chain system and diminish
the poor schedule adherence through decreasing schedule alterations on the suppliers.

The diagnostic problems in a supply chain can be regarded from any possible aspects
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concerning the supply chain. Assume that all the probabilities or possibilities of the nodes
have been learned from the historical data and given in Table 13. Remarkably, the probability
distributions of some crisp nodes conditioned on the manifestation of their fuzzy parents. To

cope with these cases, this study adopts a computable approximate mechanism.

— explicit link
e implicit link

Customer

Supplier

___________________________________________________________________________________________________

Figure 11: A dynamic influence diagram of the supply chain
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Figure 11a: Time expansion of the dynamic influence diagram in Figure 11
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Table 12: Description of nodes in the dynamic influence diagram in Figure 11

Node Level Description State
Crisp nodes
A Customer Product variety 1: > 15 product lines;
0: <= 15 product lines
B Supplier Product range 1: > 30 product lines;
0: <= 30 product lines
C Supplier Risk of obsolescence 1:>0.5;0: <= 0.5
E Customer Design specification alterations 1: > 2 times/order
0: <=2 times /order
F Customer B.O.M accuracy 1: > 90%, 0: <= 90%
G Supplier Finished goods safety stock 1: > 5000 SKUs;
0: <=5000 SKUs.
H Supplier Lack of raw materials at use 1: > 10%; 0: <= 10%.
I Customer Schedule alterations on suppliers 1: > 5 times/order
0: <=5 times/order
J Supplier Schedule adherence 1: > 90%; 0: <=90%
Supplier Production capacity constraint 1: > 130% demand orders;
0: <= 130% demand orders
L Customer Schedule build alterations 1: > 5 times/order
0: <=5 times /order
N Customer Lack of components at use 1: > 10%; 0: <=10%
Q) Supplier Scheduling flexibility 1: > 35 % capacity;
0: <= 35 % capacity
Q Customer Lost stock at use 1:>5%; 0: <=5 %.
R Supplier Set-up times/costs 1: >10% standard time
0: > 10% standard time
S Supplier Volume of batch production 1: > 60%; 0: <=60%
Fuzzy nodes
D Supplier Stock control performance Level of assessed performance
M Customer Build capability % of on-time order fulfillment
P Customer Stock control performance Level of assessed performance
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This work partitions the support of the fuzzy parents into a few sub-domains, and then
approximates the crisp children’s conditional probability on the sub-domains. In a living
expert system, these parameters for the dependency relationships can be estimated and tuned
by the knowledge engineers.

The evidence collected till now are poor schedule adherence (J'=0), considerable
schedule alterations (/’=1), large product range ( B'=1), high risk of obsolescence (C'=1),
limited finished goods ( G’ =0), large production capacity constraint (K’=1), poor scheduling
flexibility (O'=0), large set-up times/ costs (R'=1) and had large batch production (S*=1).
Given the information on hand, now Company S needs to compute the posterior probability
distributions of every proposition in the system backward for »n periods, given the evidence
set K= {B'=1, C'=1, G'=0, I'=1, J'=0, K'=1, O'=0, R'=1, S'=1|1<t<n}.

In Figure 11, a feedback loops exists among [ (schedule alterations placed on
suppliers), J (schedule adherence), N (lack of components when required), M (build capability)
and L (schedule build alterations). If we take-a time expansion aspect, Figure 11 can be
expended as Figure 11(a). This study-assumes thatthe relationship and conditional probability
distributions among the nodes remain unchanged in the studied horizon. Regardless of the
decision and utility nodes temporarily, the joint probability distribution of this dynamic

Bayesian network for time ¢ =1 through » can be expressed as (36).
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Table 13: The probability/possibility distributions for the dynamic Influence Diagrams

in Example 4

Crisp nodes

P(+a")=0.7

P(+b" | +a’ +€')=0.9

P(+b' | +a',—e")=0.8

P(+b" | —a' +e')=0.6

P(+bt |—|at,—|et)=0.2

P(+c" | +b")=0.85

P(+c' | —b')=0.2

P(+¢')=0.4

P(+f"|+e")=0.15

P(+f"|—e')=0.9

P(+g" | +c")=0.1

P(+g'| —c')=0.8

P(+h' |d’y)=0.05

P(+h'|d’,5)=0.9

P+ |+f",+1")=0.8

P(+i" |+f",—1")=0.01

P(+i' | —f " ,+1")=1.0

P(+i" | —f",=1")=0.5

P(+j" | +g" +h' +i")=0.2
P(+j" |+g" +h',—i')=0.6
P(+j" | =g’ +h' +i")=0.0

P(+j" | =g’ +h',—i")=0.6

P(+j" | +g",—h" +i")=0.5
P(+j" | +g",—h",—i')=0.99
P(+j" | —g',—h" +i')=0.5

P(+jt | —|gt,—|ht,—|it):().8

P(+k")=0.5

P(+1" | mly)=0.1

P(+1" |my5)=0.9
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P(+n' |+ =0.1
P(+n" | +0",—¢")=0.2

P(+n" | +0' +q")=0.01

P(+n' |—'1)=0.5
P('H’lt |—|Ot,—|qt):0.6

P(+n' | =o' +¢")=0.1

P(+o' | +k' +s")=0

P(+o' | +k',—s")=0.6

P(+o' | =k' +s")=0.7

P(+OZ ‘—|kt,—|St):O.95

P(+q' |Pio.6) =0.1

P(+q" | po6)=0.5

P(+r')=0.5

P(+s" | +r")=0.7

P(+s"|—r")=0.3

Fuzzy nodes

Pos(d")=(0.3, 0.6, 0.9)

Pos(m' | +n")=(0.5,0.6,0.8)

Pos(m™~] —n")=(0.9,0.95,1.0)

Pos(p')=(0.5,0.6,0.7)

L(x,7)=P(x)® Pos(y)

= P(al, a’,.,a",b',b*,... b",.. s 5%, s")® Pos(c?, m,p)
= P(a")P(b' |d',e")P(c" | B\P(P(f' |e)P(g" |)P(h' |d")
< PG| fLINPG i g hYPUEYP | )P(n' o', q")
%P0 s, KYP(g" | BYP(PG | )
® [Pos(c?l) A Pos(ii' | n') A Pos(p")] (36)
x[1[P(a")P®' |a' e )P(c" | b")P()P(f" | )P(g" |c)P(h' |d")
=2
x P(i"| f1 1P|, g k)PP | m')P(n' | 7,0 ,q")
x P(o" | s, k")P(q" | p")P(r')P(s" | r")]
® [Pos(g’) A Pos(m' | n") A Pos(p")].

The equation in (36) involves both joint probability and possibility functions, so we
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use “® ” to denote the operator link crisp and fuzzy parameters.
The term P(n'|j"",0',q") embraces contemporaneous dependencies at time ¢and

non-contemporaneous dependencies at f—1 . There are two simple parameterized
decompositions used commonly by time-series analysts: the additive and the multiplicative
decomposition [4]. The additive decomposition is used commonly in time-series analysis for
integrating predictions based on current observations with predictions based on historical
observations. Additive decompositions are an integral aspect of models that purport to
forecast future values of time-series. The multiplicative decomposition is used usually to
model log-linear systems in engineering applications. Both decompositions employ likelihood
weights, which provide a language for assigning measures of reliability to information about
different periods. Using this approach, we can consider the probabilistic dependencies from
contemporaneous sets of variables and sfrom“variables at different points in the past as
providing independent sources: of information.  The measures are used to weight the
contributions of the contemporaneous and-nen-contemporaneous dependencies separately.
The sum of the predictions, each weighted by ‘its likelihood, gives the final predictions. The
use of likelihood weighting allows an expert to specify the weight of the past versus the

present easily. Consider the following property.

Additive and multiplicative decomposition

Let @ denotes the likelihood that »n' predicted from the information at period 7,

and (1—w) denotes the likelihood that n’ predicted from the information prior to time .
In the additive decomposition, the conditional probability function P(n'| jt_l,ot,qt) can be

given by

P(n' | j7,0',q" ) =P |0',q")+(1-@)P(n" | j'™) (37)
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In the multiplicative decomposition, the conditional probability function is
P(n'|j7.0",q") =y P(n' |0 .q")" x P(n" | j7)"™ (372)

where » is a constant that normalizes the probability distributions to unify. The likelihood
weight @ can be learned from the historical data with maximum likelihood methods [4].
Considering the dynamic properties of Example 4, this study will use additive decomposition
in (37).

In modeling the supply chain with an influence diagram, we encounter a dilemma. The
two-echelon supply chain is first noticed with its inefficiency in meeting the manufacturing
schedule, and needs a first-handed diagnosis prior to a treatment solution. Therefore, this
supply chain system needs two things at two different timing: a thorough diagnosis and a
suggestion as to the optimal technical solution. Conventional approaches to evaluate the
influence diagram do not allow the delay between diagnosis and decision-making. Hence, this
study will divide the procedure for treating the 'supply chain system into two phases:
diagnostic phase and optimization phase. In the diagnostic phase, the authors first ignore the
decision and utility nodes and regard this system as a Bayesian network. After the origin of
supply chain inefficiency is uncovered, next optimization phase will be activated and find the

optimal solution.

5.4 Algorithms and solutions

Example 4 is a typical diagnostic reasoning problem in a dynamic environment. We

will use the stochastic simulation [2,35] to solve this problem.

5.4.1 Phase I: diagnostic phase

First of all, we denote by w, the state of all variables except X, then the value of X
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will be chosen by tossing a coin that favors 1 over 0 by a ratio of P(+x|w,) to P(—x|wy).
We will show that P(x|w, ), the distribution of each crisp variable X conditioned on the
values w, of all other variables in the system, can be calculate by purely local computations.

The distributions of P(x|w, ) in this network at time ¢ are as (38)-(44).

Distributions of crisp nodes

P(a"|w,)=aP(a)P0' |a',e") (38)
Pe' [w,)=aP(e")P(b"|a',e")P(f"|e") (39)
P(f"|w.)=aP(f"|e)PG" | f',1") (40)
P(h' |w,.)=aP(h' |d")P(j" | g' . h',i) (41)
P(" |w,)=aP(" |m")PG" | f',15) (42)
P(n' |w,,) = alwP(n' |o',q")+ (I=0)Pn"}jT) ® Pos(i' |n') (43)
P(q" |wy)=aP(q" | pHleP(n' |o',q") + (- )P’ | 7™ (44)

Similarly, the distribution of Pos(y |wy) attime ¢ are list as (45)-(47).

Distributions of fuzzy nodes

Pos(d" | w,)=aPos(d Y@ P(h' |d") (45)
Pos(m" | W)= aPos(m' |n")®P(l" |m") (46)
Pos(p' |wg, ) =aPos(p')® P(q" | p") (47)

where « is the normalizing constant.

This study assumes @ =0.5 for all periods except the starting period (¢#=1) when @
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is 1. Assume that the evidence remains unchanged during the simulation. This assumption can
be released when applied to more complex scenarios. The algorithm of stochastic simulation

is listed as follow.

Algorithm 2: Stochastic simulation for crisp nodes
Step 1: Read EvidenceSet, UnknownNodeSet. In Example 4, EvidenceSet={B, C, G [, J, K,
O, R, S}, and UnknownNodeSet is the set of remaining nodes which are unknown to

the decision makers.
Step 2: Read X from UnknownNodeSet. If the value returned is NULL, then go to Step 6.

Step 3: Read the values of X ’s neighbors. For example, when E is read, the values of E’s

neighbors, B and F, are inspected. Similarly, when N is read, the values of N’s

neighbors, J, M , O, O, are inspected.

Step 4: Compute P(X =1|wy)/B(X =0 wy).

Step 5: Assign 0 or 1 to X from a random number generator favoring by the ratio
P(X =1|wy)/P(X =0|wy).Go to Step 2.
Step 6: Compute the belief of X =1, BEL(x), from the proportion of 1’s of X .

End of Algorithm 2.
For the propagation of the fuzzy nodes, we design the fuzzy simulation algorithm to
generate the possibility belief range of the unknown fuzzy nodes. In Algorithm 3, we replace

the operator “® ” with minimum intersection operator “A”.

Algorithm 3: Fuzzy simulation for fuzzy nodes

Step 1: Read EvidenceSet, UnknownNodeSet.
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Step 2:Read Y from UnknownNodeSet. If the value returned is NULL, then go to Step 8.

Step 3: Read the values of Ys neighbors. For example, when D are read, the values of

D ’s neighbors, H, are inspected.
Step 4: Generate Pos(y |wy) = Pos(y) A Pos(W) A P(x|x,), where Pos(y) stands for the

possibility distribution of Y s fuzzy neighbors, P(x|z,) stands for the probability

distribution of ¥ ’s crisp neighbor. For M , the crisp neighbors are L and N, and the

fuzzy neighbors are empty.

Step 5: Specify the A level and generate A -cut set of Y .
Step 6: Sample from the A -cut set of Y randomly and get y .

Step 7: Store the minimum MIN(y), -the maximum MAX(y), and the mean value

MEAN(y) of the sampled y.Go to Step 2.

Step 8: Generate the belief distribution *of Y , BEL(y) , in the form of
(MIN(y), MEAN(y), MAX(y)).

End of Algorithm 3.

This study implements Algorithm 2 and 3 with Java 2. We observe the belief
distribution for three periods and specify the confidence of the possibility functions at 4 =
0.0, 0.5 and 1.0. The program simulates for 10000 iterations and finishes in less than 1 second.
The results of simulation show the belief of every unknown node at every period, which are
summarized in Table 14a through Table 14c. Observing Table 14a to Table 14c, we can find
the belief distributions of the nodes relevant to poor schedule adherence. Several causes have

significant influence on the supply chain inefficiency. The customer has large product variety

(A" =1) with belief and around 0.8. The frequent specification alterations put by the customer
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(E'=1) is 0.55 to 0.65, approximately. Besides, the customer puts frequent schedule build
alterations (L' =1) with belief 0.65, 0.88, 0.88, according to A=0, 0.5 and 1.0, respectively.
All the manifestations provide direct or indirect explanations for Company S’s poor schedule
adherence. The results also explain why the decision variable /C7T aims at L and is
expected to treat the supply chain through the effect of U on /. However, the single
company is not capable of solving the problems in this two-echelon supply chain.

Next, Company S needs to initiate a collaborative plan with Company C to improve

the schedule adherence and supply chain performance.

5.4.2 Phase II: Optimization phase

Now Company C realized what;related to the poor schedule adherence in the
two-echelon supply chain. It sensed-the needs to implement electronic supply chain

collaboration via ICT to upgrade-the collaborative platform.
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Table 14a: The results of simulation ( A -level = 0.0)

t=1 t=2 t=3
Crisp nodes
BEL(A" =1) 8248 8286 8220
BEL(E' =1) 6236 6466 6467
BEL(F' =1) 3370 3121 3126
BEL(H' =1) 5221 5113 5189
BEL(L' =1) 6623 6378 6433
BEL(N' =1) 4369 4533 4465
BEL(Q' =1) 2845 2965 3003
Fuzzy nodes
BEL(d") (3001, .5984, .8999) | (.3001,.6031,.8999) |(.3000, .6008, .8999)
BEL(") (.5001, .8185,.9999) | (.5000,.8132,.9999) |(.5000, .8164, .9999)
BEL(p") (.5000, .6009, .6999) | (.5000,.5992,.6999) |(.5000, .6000, .6999)

Note: The evidence set E={ B' =1,

C=1, G'=0, I'=1, J'=0, K'=1, O'=0, R'=1, S'=1]1<t<3}.
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Table 14b: The results of simulation (A -level = 0.5)

t=1 t=2 t=3
Crisp nodes
BEL(A' =1) 8355 .8389 8367
BEL(E' =1) 5587 5323 5599
BEL(F' =1) 4342 4558 4319
BEL(H' =1) 6395 6541 6530
BEL(L =1) 8729 .8897 .3847
BEL(N' =1) 8121 .8429 .8442
BEL(Q' =1) 1816 2775 2783
Fuzzy nodes
BEL(d") (4350, .5760, .7574) | (4350, .5728,.757) | (.4350,.5738,.7574)
BEL(m'") (.5450, .6463, .9774) | (5450, .6342, .9774) | (.5450, .6338, .9774)
BEL(p") (.5250, .5935, .6549) | (.5250,.5897, .6549) | (.5250, .5899, .6549)

Note: The evidence set E={ B'=1, C=1, G'=0, I'=1, J'=0, K'=1, O'=0, R'=1, S'=1|]1<¢t<3}.
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Table 14c¢: The results of simulation (A -level = 1.0):

=1 t=2 t=3
Crisp nodes
BEL(A' =1) 8350 .8305 .8381
BEL(E' =1) 5410 .5389 .5458
BEL(F' =1) 4446 4544 4360
BEL(H' =1) 6291 6760 6470
BEL(L' =1) 8698 8972 8817
BEL(N' =1) 8419 8620 8520
BEL(Q' =1) 0779 11064 1046
Fuzzy nodes
BEL(d") (.5700, .5934, .6149) | (.5700,.5923,.6149) | (.5700,.5929, .6149)
BEL(#") (.5900, .6518, .9549) | (.5900, .6445,.9549) | (.5900, .6481, .9549)
BEL(p") (.5500, .6027, .6099) | (.5500,.6016,.6099) | (.5500, .6018, .6099)

Note: The evidence set E={ B'=1, C=1, G'=0, I'=1, J'=0, K'=1, O'=0, R'=1, S'=1|]1<¢t<3}.

After intensive communications, the two participating businesses finally reach a
common consensus and start implementing this cooperative proposal. They start considering
relevant Information technologies and collaborative solutions, especially business-to-business

(B-to-B) collaboration expected to improve the information transparency and customer
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relationships in the supply chain value streams. After professional survey and consulting

experts’ opinions, four alternatives will be evaluated. The information for the optimization

phase is listed as follow.

ICT ={z|,2z,,25,2,}, where z, stands for XML, z, stands for RosettaNet, z; stands for
ebXML, and z, stands for BizTalk. All z, are 0-1 variables. When the i th

alternative is adopted, z, is 1; otherwise z; is 0. More than one alternative can be

implemented simultaneously to cover various needs from different partners.

U= {Ul,Uz,U3,U4,U5,U6}: set of costs and utilities. Refer to Table 16.

U; j1234 Costs of z; at phase j, where ;=1 represents the conceptualization phase,

j =2 represents the analysis phase, j=3 represents the design and implementation
phase, j=4 represents the maintenancerphase. Notably, the costs include all explicit

expenditures and implicitefforts to implement-the alternatives.
u; s Expected benefits of z;, where<I=5 means information transparency via z;, /=6

means expected on-time product delivery resulted from solution z; .

All the measures of utility set are normalized to scale 0 to 100.

D, : Fuzzy parameters that defines “around v*“, where v € {40,50,60,70,80,90,95} .

Pos(p,) : Possibility function of fuzzy parameter p,, <p,<Pp,,and Pos(p,)=l.

v
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Table 15: Description of IT solutions

Description Software provider

XML eXtensible Markup Language (XML) [53] is a simple and|webMethods [54], Peregrine
(z)) flexible text format derived from SGML. An important role|System [50], Ariba [45], TIBCO

in exchanging of data and basis of technologies, such as|[42], etc.

Web Services, SOAP and etc.
RosettaNet [RosettaNet is an e-business process standard for|webMethods, Peregrine System,
(z,) Information ~ Technology,  Electronic = Components,| TIBCO, Ariba ...

Semiconductor Manufacturing and Telecommunications

industries. Sponsored by IBM, Intel, Inovis, webMethods

and over 400 companies. [51]
EbXML Electronic Business jising-eXtensible :Markup Language/webMethods , Peregrine System,
(z3) (ebXML) [47] provides an opensXMIL-based; standard to|TIBCO, ...

support exchanging business messages and econduct trading

relationships. Sponsored by UN/CEFACT and OASIS.
BizTalk BizTalk [46] is an XML-based and open standard{Microsoft BizTalk Server [49]
(z4) sponsored by Microsoft Corporation. It is used to adopt the

business processes of business-to business (B-to-B),

enterprise application integration (EAI), and Business

Process Automation (BPA).

The descriptions the four solutions are given in Table 15. Also, the costs to deploy
every alternative, including all explicit expenditures and implicit efforts, are estimated in

Table 16. Due to the uncertainty and ambiguity involved in the planning processes, all the
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costs and utilities of the ICT alternatives are expressed by fuzzy numbers. For convenience of

comparison and to avoid the confidential issues about the price, the fuzzy numbers are

normalized and standardized to [0,100]. The information

Table 16: Estimated costs/utilities of I'T solutions in Example 4 (scale: 0 to 100)

Costs/Utilities XML (z,) |RosettaNet(z,)| EbXML(z;) |BizTalk(z,)
Cost of Conceptualization (u; ) Pio Poo Pro Pso
Cost of Analysis (u,,) Dso Doo Pso Pro
Cost of Design (u; ;) Dso Doo Pro Peo
Cost of Maintenance (u, ,) He Dso Deo Deo
Information transparency (u;) Bk Dos Deo Do
Reduced forecast variance (v;) Dy Doo Deo Do

By proposition 1, we can express all the fuzzy parameters in costs and utilities as in

Table 17. Furthermore, by Proposition 2, the non-linear membership functions are

transformed into equivalent linear functions.
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Table 17: The possibility functions of the fuzzy parameters in Example 4

A Possibility function Pos(p,) (p,py>P,)
Pao 0.2(pyy —35) = 0.2(|p,y — 40|+ p,, —40) (35,40,45)
Pso 0.2(ps, —45)—0.2(|ps, — 50|+ ps, —50) (45,50,55)
Peo 0.2(pgy —55) = 0.2(|pgy — 60|+ py, —60) (55,60,65)
Pro 0.2(psy —65) = 0.2(|psy — 70|+ py, — 70) (65,70,75)
Peo 0.2(pgy —75) = 0.2(| gy — 80|+ py, —80) (75,80,85)
Pso 0.2(pyy —85) = 0.2(|pgy 5 90| + pgy —90) (85,90,95)
Dos 0.2(pos —90) — 0.2(| pis = 95| pgs —95) (90,95,100)

In the optimization phase, there ate four objectives to be optimized: maximizing the
expected information transparency (obj,), maximizing the expected customer satisfaction
(obj, ), minimizing the expected costs (0bj; ), and maximizing the overall membership of the
fuzzy parameters (o0bj,). All the four alternatives are possibly selected to implement. The
lower bound of expected information transparency and reduced forecast variance are set at

100. Oppositely, the upper limit of costs is 650 units. Now the model for supply chain

collaboration is formulated as Model 2.

85



Model 2

4
Max obj, = Zziui,S =Z1Peo T Z,P9s T Z3P60 T Z4Ps0>

i=1

4
Max obj, = zziui,6 =Z1Pso T Z3P90 T Z3P60 T Z4Ps0>

i=1

4

4
Min obj, = Zzziui,j = (2, P4 +32,D50) + (32, Doy + 2, Dgo)

=1 =1
+ (223050 +23Pg0 + Z3P50) + (324 Pg0 + 24 P70)s

Max obj, = Pos(p,)

S.t.

Pos(Pyy) =0.2(pyy —35)— 0-2(|P40 - 4O| + pag —40),
Pos(Psy) = 0.2(psy —45) = 0.2(|psy — 50|+ psy —50),
Pos(pgy)=0.2(pgy —55)— 0-2(|P60 - 60| + Peo — 60),
Pos(Prg) =0.2(ps —65) - 0-2(|P70 T 70| + pro —70),
Pos(pgy)=0.2(pgy —75)— 0-2(|P80 - 8O| + pgo —80),
Pos(Pyy) = 0.2(peg —85) = 0:2(| psg = 90+ pyg—90),
Pos(Pys) = 0.2( pos —90) = 0.2( pos = 95|+ pos — 95,
P, <P, <Dy

z;=0 or 1,

obj, >100, obj, 2100, obj, <650,

Pos(p,)=0.5.

(48)

(49)

This study specifies the confidence level of fuzzy sets at 0.5 as in the last equalities in

(49). It regulates that every possibility must be equal to or greater than 0.5, which excludes

the case when the costs and utilities are poorly estimated. Since the four objectives are

nonlinear functions, the global optimal solutions will not be solved directly. So, this study

converts these nonlinear functions into linear ones with the linearization strategies in next

subsection.
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5.4.3 Linearization strategies

The following constraints can convert the nonlinear non-separate term z,p; in the
first three objectives into linear ones, where z; is a 0-1 variable and p; is a continuous
variable. First, replace z;p; with g, ;. The behaviors of ¢; ; can be bounded with a set of

linear constraints as follow.

pi+pi(zi-D<q,;<p;,+p;(1-2z),

50
0<q,,<zp, (50)

The authors then verify the manifestation of ¢; ; with the instances of z;. When z;= 0, (50)

will be changed into (51) which implies that _ g, ;=0.

pj_ﬁj Sqi,j Spj +l_7j=

51
0<g;;<0. 1)
In the other case when z,= 1, (50) will change‘into (52) which implies that ¢, ;.=z;p;.
p S qi S p i
J S5 (52)
0< qi; S Z:P;-

Linearizing the first three objectives with (50) and the fourth objective with Proposition 2,

Model 2 can be converted into Model 3.
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Model 3

Max obj; = gy 60 + 92,05 + 93,60 + 950>
Max 0bj, = qy 50 + 92,00 + 93,60 T 94805
Min obj; =(qy.40 +341.50) + (342,00 + 92.80) + (293,70 + G360 + 93.80)
+(394,60 + 9470 (53)

Max obj, = Z Pos(p,) = Pos(P,y) + Pos(Psy) + Pos(pgy) + Pos(Pry)

+ Pos(pgy )+ Pos(pyy ) + Pos(Pos )

Pao+ Pao (21 =D < G140 < Pyo + Py (1—2)), 0<qy490 <2 Pag>
Pso + Pso(z1 =1) <4y 50 < pso + Pso(1—-2)), 0<4g,50 <z P50
Peo + Poo(z1 = 1) < q160 < Peo + Poo(1—21)s 0<960 <2 Peo>
Pso + Do (25 =1) S50 < Pgo + Po(1-23), 0<¢550 <2, P80
Poo + Poo (22 =1) £q5.90 < Pog + Pog(1—2,), 0<9, .90 =2, Pg9,
Pos + Pos (2, =1) S G5 95 < Pos + Pos (l:223), 0= ;95 < 2, Pos,
Peo + Peo(23 =1) < q3.60 < Pgo + Pgo 1 =23)s 0.<¢3.60 < 23 P60
P70+ Pro(23 =1) S q5.90 < oo + Pro (1= 23), 05937 < z3P70>
Pso + Pgo (23 =1) S q380 < pgo + Pgo(1 7250 0 <g380 < 23D
Peo + Peo(Za =1 < qu60 < Poo + Pepll=Z4)s 0=¢, 60 <Z4De0>
P10+ P10(24 =) < qu 70 < Pro + Dro(1=24)s 0<q470 <24D70>

Pso + Pso (24 =1) £ qu g0 < pgo + Pgo(1—24), 0<¢450<2z4Ps0>

(54)

Pos(Pyg) =0.2(pyy —35) - 2[0-2(]940 —40+dy)}
Pos(psy) =0.2(psy —45) — 2[0.2(p50 —50+ds, )],
Pos(gy) = 0.2(pgy ~55) = 2[0.2(pg ~ 60+ digo)]
Pos(Py) =0.2(psg —65) = 2[0.2(psg — 70+ dp)]
Pos(Pso) = 02(pgo ~75) ~2[0.2(pg ~80+dgo )]
Pos(pgy) =0.2(pgy —85) — 2[0-2(P90 —-90+ d90)]»
Pos(os) = 0.2( pos ~90) —2[0.2(pys —95 +dys)},
P, <Py, <Dy

z;=1 or 0,

obj, 2100, obj, 2100, obj, <650,
py+d,2p,, 0<d,<p,,

Pos(p,)=0.5.

>

(55)

This study uses modified Zimmermann’s approach [22,44] to solve this fuzzy
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multi-objective decision model. The steps for solving Model 3 are as follow.

Step 1: Solve all objectives for their ideal and anti-ideal solutions separately and
independently. We maximize and minimize obj, to get its ideal and anti-ideal

solution denoted by objl* and obj, , respectively; obj; , obj,, obj;, obj; , objz

andobj, are obtained in the same way. Notably, obj, is minimized for its ideal
solution and maximized for its anti-ideal solution.

Step 2: Maximize the average score subjected to each score of individual objective and the
original constraints of the optimization program. The program will be converted into

(56).

Max score

S.t.

b

score < (score, + scores + scores+ score4y

score, = 2= 2| s e O 20V (56)
scorey = Obji;Obh, score, = Obfi;ObJ“’

objs = obj; obj, —obj,
(54)—(55).

In Example 4, the numerical instance for (56) is (57).
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Max score

S.L.
score < (score, + score, + score; + score4y
i, —11 i1
score, = M, score, = M, (57)
185-110 180—-100
score, :M’ score, = obj, —O’
400 - 650 7-0
(54)—(55).

LINGO 8 solves the above program and finds the global optimal solutions in less than
0.1 second.

From the solution report, the optimal solution for supply chain collaboration is to
implement RosettaNet (z,) and BizTalk (z,), which yield a overall score of 0.7354, the
expected information transparency of 175, standard units, the expected on-time product
delivery of 170 standard units, the‘total costsrof 600 units, and the overall membership of 7.0
(for seven fuzzy parameters). The individual scores of'the information transparency, customer
satisfaction, total costs and possibilities of-fuzzy ‘parameters are 0.867, 0.875, 0.200, and

1.000, respectively. The detailed solutionreport is listed in Table 18.

5.5 Discussions and conclusions

This paper proposes an integrated model for supply chain diagnostics and treatment
optimization. The authors adopt dynamic fuzzy influence diagrams to describe the
cause-and-effect relationships in the two-echelon supply chain. In addition to the random
nodes standing for the key variables in the business practice, we use one decision node
representing the treatment to the supply chain problems and a value node standing for the
objectives to be optimized. In the dynamic fuzzy influence diagrams, two kinds of nodes are
designed: crisp discrete nodes and fuzzy continuous nodes. In living expert systems, the

knowledge engineers can maintain and update the distributions of the nodes via a system
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interface as needed. The decision-makers can conduct diagnostic reasoning based on the
observed symptoms or evidences for multiple periods. Then the optimal solution to treat the

diagnosed problem will be suggested by the fuzzy multi-objective optimization models.

Table 18: Solution report of Example 4

Objective value = 0.7354

=40.0000
score = 0.7354 Pao Pos(P,) =1.0000
Pao
s, =50.0000 -
score, = 0.8667 Pos(ps,) =1.0000
Pe = 60.0000 -
score, = 0.8750 Pos(pg,) =1.0000
P+ = 70.0000 -
score, = 0.2000 Pos(p,,) =1.0000
Pgo = 80.0000 -
score,, =1.0000 Pos(pg,) =1.0000
) Poo =90.0000 -
obj, =175.0000 Pos(py,) =1.0000
) Pos =.95.0000 -
obj, =170.0000 Pos(pys) =1.0000
obj, = 600.6667
obj, =7.0000
z,=z4=1
z,=2,=0

In implementing the influence diagram, we encounter a dilemma. The influence
diagrams are compact and descriptive in model decision model conceptually. However, when
we operate the model, there is time delay between diagnosis and treatment. The conventional
methods in evaluating influence diagram did not consider the time delay. They even did not
consider the diagnosis but concentrate on maximizing the expected gain. Hence, this study
divides the reasoning procedure into two phases: diagnostic and optimization phases. The
decision-makers are allowed to check the diagnosed problems first and then decide what the
optimal solution to the problem is. This division makes the operations of the influence
diagram more consistent in real-world industrial practices.

This study is a proposed design of integrated framework for supply chain diagnosis
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and decision-making. For future extensions, this work may be implemented into complete
decision support systems. In the decision support systems, various models and reasoning
strategies can be included in the model bases. Through the user interface, the decision-makers
may modify the influence diagram structures and related parameters. The probability
distributions and possibility distributions can be learned and tuned in light of different

scenarios or constraints.
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Chapter 6 Discussions and conclusions

This dissertation defines general Bayesian networks (GBN) that are composed of five
components: the set of crisp nodes, the set of fuzzy nodes, the set of crisp parameters, the set
of fuzzy parameters, the set of arcs (links) among the nodes, and the set of decision variables.
Three categories of reasoning are studied as the special cases (subsets) of general Bayesian
networks: (1) diagnosis with crisp nodes and fuzzy parameters, (2) diagnosis and
decision-making with crisp nodes and fuzzy parameters, and (3) diagnosis and
decision-making with fuzzy nodes in dynamic environments. The distinguished features of
this dissertation include:

1. Define general Bayesian networks as the general research framework.

2. Solves the reasoning tasks in three subsets of GBN where different types/degrees of
uncertainties are consideted.

3. Consider extra knowledge “or constraints' for the belief propagation, which are not
implemented in the formal knowledge bases.

4. Answer the queries from Bayesian networks in dynamic as well as static
environments.

This chapter will first discuss the implications from the series of research, give some

directions for future extensions, and make the conclusions.

6.1 Discussions

In implementing the dissertation, the author finds some issues worth further
discussion.

First, when the decision variables are introduced into the Bayesian networks, the
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models will become influence diagrams. However, when the reasoning tasks include
diagnosis and follow-up treatments, the author encounters the dilemma in using the decision
model. The dilemma results from the time delay between diagnosis and decision-making.
When an expert diagnoses a problem, supposed he or she has not ascertained where the
symptoms originate, not to mention the assessment of different solution. The roots of
problems determine the set of alternative solutions and their outcomes. That is what the author
calls time delay between diagnosis and decision-making. However, in using influence
diagrams, the decision-makers have to estimate the costs and utilities of every alternative,
regardless how the roots influence determine the solution sets and their values. That is why
traditional approaches evaluating influence diagrams focused only on maximizing the
expected gain (utility) and ignoring the diagnostic reasoning. Hence, in Problem 4 (Chapter 4),
this dissertation partitions the reasoning in influence diagrams into two phases: diagnostic
phase and decision-making phase.

Second, in handling the fuzzypatameter.or fuzzy variables, this dissertation uses two
approaches: piecewise linearization and a-eut' methods. The advantage of piecewise
linearization is the quality and performance in solving the reasoning model, especially when
the reasoning model is designed as a nonlinear programming model. However, when the
problem scale grows large, the programming model may be too complex. Under such a
circumstance, a-cut methods perform better, especially for fuzzy simulation.

Third, in this dissertation, the conditional distributions of the nodes with fuzzy parents
are simplified by partition methods, in which the distributions of the nodes are conditioned on
some sub-domains of their fuzzy parents. There is another alternative approach for the
conditional distributions: functional distributions. That is, the distributions of the nodes can be
expressed as a function of their fuzzy parents’ values. The functional distributions need more

complex computation schema but are more compact and logical consistent.
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6.2 Future extensions

For extended studies, there are several interesting issues worth further investigation.

First, the proposed models can be extended to complete decision support systems
(DSS). A DSS is composed of four subsystems: data management subsystem, mode
management subsystem, knowledge-based subsystem, and user interfaces. The schematic
view of DSS is show in Figure 12. To apply the models into real-world application, the real
databases can be integrated with the reasoning systems, and assess the validity and reliability
of the proposed models.

Second, for enhancing the computational efficiency, some algorithmic methods can be
combined into the models, such as artificial neural networks, genetic algorithms, and so on.
The outcomes from different computation schemes can be compared and cross-referenced.

Third, several decision-making methods. can:be integrated with the proposed models,
especial the multiple criteria decision making (MCPM) methods, e.g. Analytic hierarchy
process (AHP), Data encryption -analysis (DEA), and so on. These decision-making methods
can provide optimal treatment or approaches to the diagnosed problems and enhance the
decision quality in the reasoning models.

This dissertation intends to contribute to diagnostic reasoning in both methodology

and applications, especially in industrial practices and medical informatics.
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Figure 12: A schematic view of DSS

6.3 Concluding remarks

This dissertation proposes a definition of general Bayesian networks, which can be
specialized into various kinds of Bayesian networks. The general Bayesian networks provide
a foundation stone for flexible and robust knowledge base design. The knowledge base can
solve various problems involving fuzzy as well as crisp information, under dynamic as well as
static circumstances.

This dissertation solves three categories of reasoning are studied as the special cases
(subsets) of general Bayesian networks: (1) diagnosis with crisp nodes and fuzzy parameters,
(2) diagnosis and decision-making with crisp nodes and fuzzy parameters, and (3) diagnosis
and decision-making with fuzzy nodes in dynamic environments. If taking the costs and

utilities in Problem 4 (Chapter 4) as one type of fuzzy parameters, this dissertation has
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develop a whole model for solving the general Bayesian networks. The author hopes that this

dissertation has make some contributions in expert systems and reasoning methods.
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