表 1-1

Core Size (nm)	Ligand	$\lambda \text{em} (\lambda \text{ex})$	Assignment	Ref.					
0.8(Au ₁₂)	DMSA ^c	630 nm(395 nm) $T_1 \longrightarrow S_0$		(18)					
0.8 ^a	Dodecanethiol	840 nm(680 nm)		(23)					
$0.9(Au_{28})^{b}$	GSH^d	830 nm(500 nm)	sp → d	(19)					
		1080 nm(514 nm)	sp → sp						
$1.1(Au_{38})^{b}$	Dodecanethiol	1200 nm(1064 nm)	sp → sp	(24)					
$1.7(Au_{147})^{b}$	Dodecanethiol	1200 nm(1064 nm)	sp → sp	(24)					
1.8 ^a	Tiopronin	770 nm(451nm)	sp → d	(25)					
a. Core size was determined by TEM measurements.									

- b. Clusters were purified and their core size were determined by MASS.
- c. DMSA : meso-2,3-dimercaptosuccinic acid
- d. GSH : Glutathione
- e. Tiopronin : N-2-mercaptosuccinic acid

資料來源: Chemical Physics Letter, 2004, 383, 161

表 1-2 常見於塊式高分子鏈段的化學結構

† с=снсн ₂ сн ₂ } сн ₃	poly(isoprene)	PI	† снсн ₂ † соон	poly(acrylic acid)	PAA
t ch=chch₂ch₂ t_n	poly(butadiene)	PB	tchch ₂ t _n	poly(2-vinylpyridine)	P2VP
t CHCH2	poly(styrene)	PS	t chch ₂ t _n	poly(4-vinylpyridine)	P4VP
†сн ₂ сн ₂ †	poly(ethylene)	PE	+och₂ch₂ +	poly(ethylene oxide) poly(oxyethylene)	PEO
† сн сн ₂ †	poly(ethyl ethylene)	PEE	toch2CH L CH3	poly(propylene oxide) poly(oxypropylene)	PPO
†сн ₂ снсн ₂ сн ₂ }_ сн ₃	poly(ethylene-propylene)	PEP	toch2chtn CH2	poly(butylene oxide) poly(oxybutylene)	PBO
tchch ₂ t _n	poly(vinylcyclohexane)	PVCH		nylon 6 poly(E-caprolactam)	nylon 6
$\begin{bmatrix} CH_3 \\ I \\ CCH_2 \end{bmatrix}$	poly(methyl methacrylate)	PMMA	+ c(CH ₂)₅0 }_n	poly(E-caprolactone)	PCL
$\begin{array}{c} CH_3\\ I\\ CCH_2\\ I\\ COOH \end{array}$	poly(methacrylic acid)	РМА	$f_{CH_3}^{CH_3}$	poly(dimethylsiloxane)	PDMS

資料來源: The Physics of Block Copolymer⁽²⁶⁾

圖 1-1 金屬塊材能階量子化示意圖

躍遷的示意圖(19)

圖 1-4 以 Dodecanethiol 為表面改質劑,m/z=29000 左右的 Au MPC 的 LDI

圖 1-5 以 DMSA 為表面改質劑的 Au MPC 的 LDI 質譜 $^{(22)}$

four arm starblock

random multiblock

圖 1-7 融熔態塊狀高分子微相分離的示意圖

圖 1-8 PS-PI 雙塊式高分子的相圖(Phase Diagram)

圖 1-9 雙塊式高分子微胞的示意圖

圖 1-10 塊狀高分子溶液中,微胞及凝膠的形成與濃度之間的關係

註:圖 1-6 到圖 1-10 皆取自 The Physics of Block Copolymer⁽²⁶⁾

圖 1-11 在 PS-P4VP 微胞中合成出的鉑(Pd) 奈米粒子⁽²⁹⁾

圖 1-12 (a)PS-P2VP 微胞溶液加入 HAuCl₄、(b)為加入 N₂H₄ 還原溶液(a)中

P2VP 相內的金離子,得到金奈米粒子的 TEM 照片

圖 1-13 在 NOR-b-NORCOOH 薄膜的 NORCOOH 相當中合成 CoFe2O4 奈米

圖 1-14 以 PS-b-PFS 做為模版所製備的鈷(Co)奈米點陣列的 SEM 圖⁽³³⁾