
Linear Algebra and its Applications 421 (2007) 202–218
www.elsevier.com/locate/laa

Numerical ranges of companion matrices

Hwa-Long Gau a, Pei Yuan Wu b,∗,1

a Department of Mathematics, National Central University, Chungli 32001, Taiwan, ROC
b Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan, ROC

Received 7 December 2005; accepted 23 March 2006
Available online 22 May 2006

Submitted by L. Hogben

Dedicated to Miroslav Fiedler on his 80th birthday

Abstract

We show that an n-by-n companion matrix A can have at most n line segments on the boundary �W(A)

of its numerical range W(A), and it has exactly n line segments on �W(A) if and only if, for n odd, A is
unitary, and, for n even, A is unitarily equivalent to the direct sum A1 ⊕ A2 of two (n/2)-by-(n/2) companion
matrices

A1 =

⎡
⎢⎢⎢⎢⎣

0 1

0
. . .
. . . 1

a 0

⎤
⎥⎥⎥⎥⎦ and A2 =

⎡
⎢⎢⎢⎢⎣

0 1

0
. . .
. . . 1

−1/ā 0

⎤
⎥⎥⎥⎥⎦

with 1 � |a| < tan(π/n) + sec(π/n).
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For every complex monic polynomial p(z) = zn + a1z
n−1 + · · · + an−1z + an (n � 2), there

is associated an n-by-n matrix⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
0 ·

· ·
· ·

· ·
0 1

−an −an−1 · · · −a2 −a1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

called its companion matrix. In this paper, we consider properties of the numerical ranges of such
matrices. To be more precise, we study the number of line segments on the boundary of such a
numerical range. We show that for an n-by-n companion matrix, this number is at most n, and
also completely determine all the companion matrices which attain this number “n”. In the case
of an odd n, this happens exactly when the companion matrix is unitary, while, for even n, the
condition is that the matrix be unitarily equivalent to the direct sum of the two (n/2)-by-(n/2)

companion matrices⎡
⎢⎢⎢⎢⎣

0 1

0
. . .
. . . 1

a 0

⎤
⎥⎥⎥⎥⎦ and

⎡
⎢⎢⎢⎢⎣

0 1

0
. . .
. . . 1

−1/ā 0

⎤
⎥⎥⎥⎥⎦

for some complex number a satisfying 1 � |a| < tan(π/n) + sec(π/n).
Recall that the numerical range W(A) of an n-by-n complex matrix A is by definition the subset

{〈Ax, x〉 : x ∈ Cn, ‖x‖ = 1} of the complex plane, where 〈·, ·〉 and ‖ · ‖ denote the standard inner
product and norm in Cn. The numerical radius w(A) of A is max {|z| : z ∈ W(A)}. It is known
that the numerical range is always convex. For other properties, the reader can consult [6, Chapter
1].

The study of the numerical ranges of the companion matrices was started in [4]. Among other
things, it was shown therein that an n-by-n companion matrix A whose numerical range W(A) is
a closed circular disc centered at the origin must be equal to the Jordan block of size n:

Jn =

⎡
⎢⎢⎢⎢⎣

0 1

0
. . .
. . . 1

0

⎤
⎥⎥⎥⎥⎦

(cf. [4, Theorem 2.9]). We start with an improvement of this result by weakening the assump-
tion on A to “W(A) contains a closed circular disc D centered at the origin with the boundary
�W(A) intersecting �D at more than n points”. For any matrix A, Re A denotes its real part
(A + A∗)/2.

Theorem 1. If A is an n-by-n companion matrix with W(A) containing a closed circular disc D

centered at the origin and with �W(A) ∩ �D having more than n points, then A = Jn.

Proof. This is done by modifying the proof of [4, Theorem 2.9]. Let A be as in (1) and let r

be the radius of D. For |z| = 1, consider the expansion of det(rIn − Re(zA)) as a trigonometric
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polynomial p(z) in z. Since zJn−1 is unitarily equivalent to Jn−1 for all z, |z| = 1, the numer-
ical range W(zJn−1) is a circular disc with center the origin and radius w(Re(zJn−1)). On the
other hand, since Re(zJn−1) is an (n − 1)-by-(n − 1) submatrix of Re(zA), we infer from our
assumption on W(A) that w(Re(zJn−1)) � r � w(Re(zA)) for all z, |z| = 1, and r = w(Re(zA))

for more than n values of z. Also, w(Re(zJn−1)), being the largest eigenvalue of Re (zJn−1),
lies between w(Re(zA)), the largest eigenvalue of Re(zA), and the second largest eigenvalue
of Re(zA). Thus the same is true for r . Therefore, p(z) � 0 for all z, |z| = 1, and p(z) = 0
for n values of z. By a classical result of Fejér [7, p. 77, Problem 40], there is a polynomial
q of degree n such that |q(z)|2 = −p(z) for all z. Since |q(z)|2 = −p(z) = 0 for more than n

values of z, we conclude that q ≡ 0 and thus p ≡ 0. In particular, the coefficients of zj in p for
j = 0, ±1, . . . ,±n are all zero. Since the coefficient of zn is an/2n, we have an = 0. Then we
can proceed as in the second half of the proof of [4, Theorem 2.9] to deduce inductively that
aj = 0 for all j . Thus A = Jn as asserted. �

The preceding theorem is analogous to a result of Anderson’s: if A is an n-by-n matrix whose
numerical range W(A) is contained in a closed circular disc D such that �W(A) ∩ �D has more
than n points, then W(A) = D. A proof of this which makes use of Fejér’s result on nonnegative
trigonometric polynomials can be found in [8, Lemma 6].

An immediate corollary of Theorem 1 is the following:

Theorem 2. For any n-by-n companion matrix A, there can be at most n points in �W(A) ∩
�W(Jn−1).

In this case, Theorem 1 is applicable since Jn−1 is a submatrix of A and hence W(A) contains
the circular disc W(Jn−1) = {z ∈ C : |z| � cos(π/n)} (cf. [5, Proposition 1]).

Next we give an alternative proof of Theorem 2 based on the following Lemma 3. It is sim-
pler and more direct. Moreover, the techniques involved are useful in the determining of when
�W(A) ∩ �W(Jn−1) contains exactly n points for an n-by-n companion matrix A.

Lemma 3. Let A be the companion matrix given by (1). If z0 cos(π/n) is a point in �W(A) ∩
�W(Jn−1), where |z0| = 1, then z0 is a zero of the polynomial

p(z) = zn sin
π

n
−

n∑
j=2

zn−j aj sin
(n − j + 1)π

n
.

Proof. It is easily seen that cos(π/n) is an eigenvalue of Re(z̄0Jn−1) with the corresponding unit
eigenvector

x0 =
√

2

n

[
z0 sin

π

n
, z2

0 sin
2π

n
, . . . , zn−1

0 sin
(n − 1)π

n

]T

in Cn−1 (cf. [5, Proposition 1]). Let y0 = [xT
0 , 0]T in Cn. Then

〈Re(z̄0A)y0, y0〉 = 〈Re(z̄0Jn−1)x0, x0〉 = cos
π

n
.

Since Re(z̄0A) � cos(π/n)In, we deduce that cos(π/n) is an eigenvalue of Re(z̄0A) with the
corresponding eigenvector y0, that is, it satisfies (Re(z̄0A) − cos(π/n)In)y0 = 0. Carrying out
the computations, we obtain from the equality of the nth components the equation
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zn
0 sin

(n − 1)π

n
−

n∑
j=2

z
n−j

0 aj sin
(n − j + 1)π

n
= 0.

Hence z0 is a zero of p as asserted. �

Proof of Theorem 2. If �W(A) ∩ �W(Jn−1) has more than n points, then the degree-n polynomial
in Lemma 3 has more than n zeros. The fundamental theorem of algebra dictates that, in particular,
the leading coefficient sin(π/n) be zero, which is a contradiction. �

We next consider the number of line segments on the boundary of the numerical range of
a companion matrix. The following theorem says that this number is at most the size of the
matrix.

Theorem 4. An n-by-n companion matrix can have at most n line segments on the boundary of
its numerical range.

This is the consequence of the next lemma and Theorem 2.

Lemma 5. Let A be an n-by-n matrix and let B be any submatrix of A. Then every line segment
of �W(A) intersects �W(B).

Proof. Let [a, b] be a line segment in �W(A) and let K = {x ∈ Cn : 〈Ax, x〉 = λ‖x‖2 for some
λ in [a, b]}. It is known that K is a subspace of Cn with dimension at least two (cf. [2, Lemma
2]). Assume, for convenience, that B is obtained from A by deleting its last row and last column.
If L = Cn−1 ⊕ {0}, then

dim(K ∩ L) = dim K + dim L − dim(K + L)�2 + (n − 1) − n = 1.

Hence there is in K a unit vector x = x1 ⊕ 0 with x1 in Cn−1. Thus 〈Bx1, x1〉 = 〈Ax, x〉 ∈ [a, b],
showing that [a, b] ∩ �W(B) /= ∅. �

Proof of Theorem 4. Let A be an n-by-n companion matrix and let B = Jn−1. Lemma 5 says
that every line segment of �W(A) intersects the circle �W(B). Our assertion then follows from
Theorem 2. �

As the preceding proof shows, for an n-by-n companion matrix A every line segment on
�W(A) intersects �W(Jn−1). The converse is in general false, namely, not every point in �W(A) ∩
�W(Jn−1) arises as the intersection of a line segment on �W(A) with �W(Jn−1). This is illustrated
by the following example.

Example 6. Let A be the 3-by-3 companion matrix associated with the polynomial p(z) = (z −
(1/2))(z − 2ω)(z − 2ω2), where ω =

(
−1 + √

3i
)

/2. It can be checked that A is unitarily equiv-

alent to [1/2] ⊕
[

2ω 3
0 2ω2

]
. Thus W(A) is the elliptic disc with foci 2ω and 2ω2 and minor axis

of length 3. Hence �W(A) ∩ �W(J2) consists of the single point 1/2 and there is no line segment
on the ellipse �W(A).
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We remark that via Kippenhahn’s result we can show that the number of line segments on
�W(A) for an n-by-n matrix A is at most n(n − 1)/2. It was asked in [1, p. 108] whether this
number can be further reduced to 2(n − 2). As of now, nobody knows.

In the remaining part of this paper, we determine when the boundary of the numerical range of
an n-by-n companion matrix has exactly n line segments. This is given by the following theorem.

Theorem 7. The following conditions are equivalent for an n-by-n (n � 3) companion matrix
A:

(a) �W(A) has n line segments on it;
(b) �W(A) ∩ �W(Jn−1) consists of n points;
(c) for n odd,

A =

⎡
⎢⎢⎢⎢⎣

0 1

0
. . .
. . . 1

a 0

⎤
⎥⎥⎥⎥⎦

for some a with |a| = 1, and, for n even,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
0 1

0 ·
· ·

· ·
· ·

· 1
a 0 · · · 0 b 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where |a| = 1 and b is in the (n, (n/2) + 1)-position with |b| < 2 tan(π/n) and, for b /= 0,

arg b = (arg a ± π)/2;
(d) for n odd, A is unitary, and, for n even, A is unitarily equivalent to the direct sum of the

two (n/2)-by-(n/2) matrices

A1 =

⎡
⎢⎢⎢⎢⎣

0 1

0
. . .
. . . 1

c 0

⎤
⎥⎥⎥⎥⎦ and A2 =

⎡
⎢⎢⎢⎢⎣

0 1

0
. . .
. . . 1

−1/c̄ 0

⎤
⎥⎥⎥⎥⎦ ,

where c is a complex number satisfying 1 � |c| < tan(π/n) + sec(π/n).

The implication (a) ⇒ (b) follows from Lemma 5 and Theorem 2. The proofs for the remaining
implications (b) ⇒ (c), (c) ⇒ (d) and (d) ⇒ (a) are more laborious. We start with the following
lemma on an expression for some determinants associated with the real part of the Jordan block.
This is useful in proving the subsequent lemmas.

Lemma 8. For any k, 1 � k � n − 1, we have

det
((

cos
π

n

)
Ik − Re Jk

)
= 1

2k
· sin (k+1)π

n

sin π
n

.
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In particular, if dk, 1 � k � n − 1, denotes the above determinant and d0 = 1, then dk =
2n−2k−2dn−k−2 for 0 � k � n − 3.

Proof. For k = n − 1, the asserted equality is obviously true since cos(π/n) is an eigenvalue of
Re Jn−1 and thus both sides are equal to zero. We next consider k = n − 2. Since⎡

⎢⎢⎢⎢⎢⎢⎣

cos π
n

− 1
2

− 1
2 cos π

n
·

· · ·
· · ·

· · − 1
2− 1

2 cos π
n

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

sin π
n

sin 2π
n·

·
·

sin (n−2)π
n

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
·
·
·
0

1
2 sin (n−1)π

n

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2)

applying Cramer’s rule to solve for sin(π/n), we obtain

sin
π

n
=

(−1)n−1 1
2 sin (n−1)π

n
·
(
− 1

2

)n−3

dn−2
=
(

1
2

)n−2
sin (n−1)π

n

dn−2
.

It follows that dn−2 = 1/2n−2 as asserted.
Assume now 1 � k � n − 3. In this case, we solve sin((k + 1)π/n) by Cramer’s rule to obtain

sin
(k + 1)π

n
=

(−1)n−1+k 1
2 sin (n−1)π

n
· dk

(
− 1

2

)n−3−k

dn−2

=
(

1
2

)n−2−k

sin (n−1)π
n

· dk(
1
2

)n−2
= 2k sin

π

n
· dk.

Our asserted expression for dk follows immediately. �

Note that if A is the n-by-n companion matrix (1), then, for any real θ , eiθA is unitarily
equivalent to the companion matrix⎡

⎢⎢⎢⎢⎢⎢⎣

0 1

0
. . .
. . . 1

0 1
−aneinθ −an−1ei(n−1)θ · · · −a2ei2θ −a1eiθ

⎤
⎥⎥⎥⎥⎥⎥⎦

.

This will be used in the proofs below.

Lemma 9. Let A be the n-by-n companion matrix (1). If �W(A) ∩ �W(Jn−1) consists of n points,
then aj = 0 for all j, 1 � j � n − 1, except possibly, when n is even, for j = n/2.

Proof. Let zk cos(π/n), 1 � k � n, be the n points in �W(A) ∩ �W(Jn−1), where the zk’s all
have modulus one. Lemma 3 says that every zk is a zero of the polynomial
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p(z) = zn sin
π

n
−

n∑
j=2

zn−j aj sin
(n − j + 1)π

n
,

which, by Lemma 8, is the same as

p(z) = sin
π

n

⎛
⎝zn −

n∑
j=2

zn−j aj 2n−j dn−j

⎞
⎠ ≡ sin

π

n
· p1(z), (3)

where dm = det((cos(π/n))Im − Re Jm) for 1 � m � n − 2 and d0 = 1. Let σ0 = 1 and let

σj =
∑

k1<···<kj

zk1 · · · zkj
,

1 � j � n, be the j th elementary symmetric function of the zk’s. Hence we have

p1(z) =
n∏

k=1

(z − zk) =
n∑

j=0

(−1)j σj z
n−j . (4)

Equating the corresponding coefficients of p1(z) in (3) and (4) yields σ1 = 0, σn = (−1)n+1an

and

σj = (−1)j+1aj 2n−j dn−j , 2 � j � n − 1. (5)

Since |zk| = 1 for all k, we have σj = σ̄n−j /σ̄n and thus

aj 2n−j dn−j = −anān−j 2j dj , 2 � j � n − 2. (6)

Note that σ1 = 0 implies that σn−1 = 0 and therefore an−1 = 0.
To prove that the remaining aj ’s are also zero, we consider the (n − 1)-by-(n − 1) matrices

Ak =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos(π/n) −z̄k/2 0
−zk/2 · · ān−2zk/2

· · · ...

· · −z̄k/2 ā3zk/2
−zk/2 cos(π/n) (ā2zk − z̄k)/2

0 an−2z̄k/2 · · · a3z̄k/2 (a2z̄k − zk)/2 cos(π/n) + Re(a1z̄k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

1 � k � n. Since |zk| = 1, the matrices z̄kJm and Jm are unitarily equivalent and hence
det((cos(π/n))Im − Re(z̄kJm)) = dm for 1 � m � n − 2. Expanding det Ak by cofactors along
its last row and then expanding the latter along their last columns, we obtain

det Ak =
(

cos
π

n
+ Re(a1z̄k)

)
dn−2 − 1

4
|a2z̄k − zk|2dn−3

− 2Re

⎡
⎣n−2∑

j=3

(
a2z̄k − zk

2

)
(−1)j

(
āj zk

2

)(
−zk

2

)j−2
dn−j−1

⎤
⎦

−
n−2∑
j=3

1

4
|aj z̄k|2dj−2dn−j−1

+ 2Re

⎡
⎣n−2∑

l=3

(−1)l+1
(

al z̄k

2

)⎛⎝ n−2∑
j=l+1

(−1)j
(

āj zk

2

)(
−zk

2

)j−l

dl−2dn−j−1

⎞
⎠
⎤
⎦
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= d1dn−2 + Re(a1z̄k)dn−2 − 1

4
(|a2|2 − 2Re(a2z̄

2
k) + 1)dn−3

− 1

4

n−2∑
j=3

|aj |2dj−2dn−j−1

+ Re

⎡
⎣n−2∑

j=3

āj

(zk

2

)j

dn−j−1 − 1

4

n−3∑
l=2

al

⎛
⎝ n−2∑

j=l+1

āj

(zk

2

)j−l

dl−2dn−j−1

⎞
⎠
⎤
⎦

=
(

d1dn−2 − 1

4
dn−3

)
+ Re(a1z̄k)dn−2 + 1

2
Re(a2z̄

2
k)dn−3

− 1

4

n−2∑
j=2

|aj |2dj−2dn−j−1

+ 2Re

⎡
⎣n−2∑

j=3

⎛
⎝āj

(zk

2

)j

dn−j−1 − 1

4

j−1∑
l=2

alāj

(zk

2

)j−l

dl−2dn−j−1

⎞
⎠
⎤
⎦

= Re (a1z̄k) dn−2 + 1

2
Re(a2z̄

2
k)dn−3 − 1

4

n−2∑
j=2

|aj |2dj−2dn−j−1

+ 2Re

⎡
⎣n−2∑

j=3

(
āj

2j

)
dn−j−1

⎛
⎝z

j
k +

j−1∑
l=2

(−1)lσlz
j−l
k

⎞
⎠
⎤
⎦ , (7)

where in the last equality we used the facts that d1dn−2 − (1/4)dn−3 = dn−1 = 0 since cos(π/n)

is an eigenvalue of Re Jn−1, and

− al2
l−2dl−2 = −al2

n−ldn−l = (−1)lσl, 2 � l � n − 2, (8)

by Lemma 8 and (5). Since cos(π/n) is the maximum eigenvalue of Re(z̄kJn−1), we have Ak � 0
and thus det Ak � 0 for all k. Hence

0 �
n∑

k=1

det Ak = Re(a1s̄1)dn−2 + 1

2
Re(a2s̄2)dn−3 − n

4

n−2∑
j=2

|aj |2dj−2dn−j−1

+ 2Re

⎡
⎣n−2∑

j=3

(
āj

2j

)
dn−j−1

⎛
⎝sj +

j−1∑
l=2

(−1)lσlsj−l

⎞
⎠
⎤
⎦ , (9)

where sj = ∑n
k=1 z

j
k for 1 � j � n − 1. Note that s1 = σ1 = 0 and the sj ’s and σl’s are related

by Newton’s identities:

sj =
⎛
⎝j−1∑

l=1

(−1)l+1σlsj−l

⎞
⎠+ (−1)j+1jσj , 1 � j � n.
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Hence

sj +
j−1∑
l=2

(−1)lσlsj−l = sj +
j−1∑
l=1

(−1)lσlsj−l

= (−1)j+1jσj = jaj 2j−2dj−2, 2 � j � n − 2,

by (8). Therefore, (9) becomes

0 � |a2|2dn−3 − n

4

n−2∑
j=2

|aj |2dj−2dn−j−1 + 2Re

⎡
⎣n−2∑

j=3

(
āj

2j

)
dn−j−1jaj 2j−2dj−2

⎤
⎦

=
n−2∑
j=2

2j − n

4
|aj |2dj−2dn−j−1. (10)

For any real number x, we use 
x� to denote the largest integer which is less than or equal to x.
The second half of the above summation, namely,

n−2∑
j=
n/2�+1

2j − n

4
|aj |2dj−2dn−j−1,

equals


(n−1)/2�∑
j=2

2(n − j) − n

4
|an−j |2dn−j−2dj−1, (11)

which we want to express as a linear combination of the |aj |2dj−2dn−j−1’s as in the first half.
For this purpose, note that |aj |2n−j dn−j = |an−j |2j dj for 2 � j � n − 2 from (6). Therefore,

|an−j |2dn−j−2dj−1 = |aj |222n−4j
d2
n−j

d2
j

dn−j−2dj−1

= |aj |222n−4j (22j−n−2dj−2)
2

d2
j

(22j−n+2dj )(2
n−2j dn−j−1)

= |aj |2dj−2dn−j−1 · 1

4

dj−2

dj

= |aj |2dj−2dn−j−1 · sin (j−1)π
n

sin (j+1)π
n

with the aid of Lemma 8. Plugging this into (11), we obtain from (10) the nonnegativity of

−

(n−1)/2�∑

j=2

(
n − 2j

4

)(
1 − sin (j−1)π

n

sin (j+1)π
n

)
|aj |2dj−2dn−j−1.

Since all the terms except |aj |2 in the above summation are strictly positive, we conclude that
aj = 0 for all j , 2 � j � 
(n − 1)/2�. By (6), we also have aj = 0 for 
n/2� + 1 � j � n − 2.
To complete the proof, we need only show that a1 = 0. Since |an| = 1, we may assume, by the
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remark in the paragraph preceding Lemma 9, that an = −1. Consider the cases of odd and even
n separately.

Assume first that n is odd. Then, from (3),

p1(z) = zn − 2an−1d1z − an = zn + 1.

We assume that the zeros of p1 are given by zk = e(2k−1)π i/n, 1 � k � n. Now we obtain from
(7) that det Ak = Re(a1z̄k)dn−2. Hence

0 � Re(a1z̄k) = cos
(2k − 1)π

n
Re a1 + sin

(2k − 1)π

n
Im a1

for all k, 1 � k � n. Replacing k by n − k + 1 in the above, we also have

cos
(2k − 1)π

n
Re a1 − sin

(2k − 1)π

n
Im a1 � 0.

Thus cos((2k − 1)π/n)Re a1 � 0 for all k. Since cos((2k − 1)π/n) can be positive or negative for
different values of k, we infer that Re a1 = 0. Then, from above, ± sin((2k − 1)π/n)Im a1 � 0
for all k, which implies that Im a1 = 0. Hence, as asserted, a1 = 0 for odd n.

Finally, assume that n is even. In this case, we deduce from (6) that an/2 = −anān/2 = ān/2,
that is, an/2 is real, and from (3) that

p1(z) = zn − 2n/2an/2dn/2z
n/2 + 1 = (zn/2 − z+)(zn/2 − z−),

where z± =
(

2n/2an/2dn/2 ±
(

2na2
n/2d

2
n/2 − 4

)1/2
)/

2. Since the zeros zk of p1 have mod-

ulus one, we have |z±| = 1, which is equivalent to |2n/2an/2dn/2| � 2. Hence, in particular,
Re z± = 2(n/2)−1an/2dn/2. On the other hand, from (7) we have

det Ak = Re(a1z̄k)dn−2 − 1

4
a2
n/2d(n/2)−2d(n/2)−1 + 2Re

(an/2

2n/2
d(n/2)−1z

n/2
k

)
,

where, since z
n/2
k = z±, the last term can be simplified as

2Re
(an/2

2n/2
d(n/2)−1z

n/2
k

)
= 2

an/2

2n/2
d(n/2)−1Re z±

= 2
an/2

2n/2
d(n/2)−12(n/2)−1an/2dn/2

= a2
n/2d(n/2)−1dn/2.

Hence

0 � det Ak = Re(a1z̄k)dn−2 − a2
n/2d(n/2)−1

(
1

4
d(n/2)−2 − dn/2

)
= Re(a1z̄k)dn−2

by Lemma 8. Because dn−2 > 0, we have Re(a1z̄k) � 0 for all k, 1 � k � n. If z+ = eiθ0 for some
real θ0, then z− = e−iθ0 and the zk’s are equal to uj ≡ e(2θ0+4jπ)/n and vj ≡ e(−2θ0+4jπ)/n,
0 � j � (n/2) − 1. Since uj = v̄(n/2)−j , both Re(a1ūj ) and Re(a1uj )(= Re(a1v̄(n/2)−j )) are
nonnegative. Hence (Re a1) cos((2θ0 + 4jπ)/n) � 0 for all j . Since different values of j yield
positive and negative values of cos((2θ0 + 4jπ)/n), we infer that Re a1 = 0. Then

Re(a1ūj ) = (Im a1) sin
2θ0 + 4jπ

n
� 0
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and

Re(a1uj ) = −(Im a1) sin
2θ0 + 4jπ

n
� 0

for all j . Hence Im a1 = 0 and, therefore, a1 = 0. This completes the proof. �

We now resume the proof of Theorem 7.

Proof of Theorem 7. (b) ⇒ (c). If n is odd, then, as proved in Lemma 9,

A =

⎡
⎢⎢⎢⎢⎣

0 1

0
. . .
. . . 1

−an 0

⎤
⎥⎥⎥⎥⎦

with |an| = 1 as required.
Now assume that n is even. From Lemma 9, we have

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
0 ·

· ·
· ·

· ·
· ·

· 1
−an 0 · · · 0 −an/2 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with |an| = 1. Let an = eiθ0 with θ0 real and let θ = (π − θ0)/n. Then eiθA is unitarily equivalent
to

A′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
0 ·

· ·
· ·

· ·
· ·

· 1
1 0 · · · 0 −ian/2e−iθ0/2 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(cf. the paragraph before Lemma 9). If b′ = −ian/2e−iθ0/2, then Lemma 3 as applied to A′ yields
that the zeros of the polynomial p1(z) = zn + zn/2b′ cot(π/n) + 1 are distinct and have modulus
one. However, the zeros of p1 are the (n/2)th roots of (−b′ cot(π/n) ± (b′2 cot2(π/n) − 4)1/2)/2.
Thus we must have |b′ cot(π/n)| < 2 or |b′| < 2 tan(π/n). On the other hand, (6) as applied to
A′ with j = n/2 yields that b′(= −ian/2e−iθ0/2) is real. Hence for nonzero b′ we have arg an/2 =
(θ0 ± π)/2. Letting a = −an and b = −an/2, we conclude that |a| = 1, |b| < 2 tan(π/n) and,
for b /= 0, arg b = (θ0 ± π)/2. �

We next prove the implication (c) ⇒ (d) of Theorem 7.

Proof of Theorem 7. (c) ⇒ (d). We need only prove the case for even n. Considering eiθA with
θ = (π − arg a)/n instead of A, we may assume that a = 1 and b is real (cf. the paragraph before
Lemma 9). Let c = (b ± (b2 + 4)1/2)/2 with the “+” sign if b � 0 and “−” sign if b < 0. Then
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1 � |c| = 1

2
|b ± (b2 + 4)1/2| � 1

2
(|b| + |b2 + 4|1/2) < tan

π

n
+ sec

π

n

and b = c − (1/c). Let d = 1/(1 + c2)1/2 and

U = d

[
In/2 cIn/2
cIn/2 −In/2

]
.

Then U is unitary and UA = (A1 ⊕ A2)U , completing the proof. �
To prove (d) ⇒ (a) of Theorem 7, we need the following lemma for even n.

Lemma 10. Let

A1 =

⎡
⎢⎢⎢⎢⎣

0 1

0
. . .
. . . 1

c 0

⎤
⎥⎥⎥⎥⎦ and A2 =

⎡
⎢⎢⎢⎢⎣

0 1

0
. . .
. . . 1

−1/c 0

⎤
⎥⎥⎥⎥⎦

be (n/2)-by-(n/2) matrices, where n (� 4) is even and c is real satisfying 1 � c < tan(π/n) +
sec(π/n). Let z0 be a zero of p1(z) = zn + zn/2(c − (1/c)) cot(π/n) + 1 and let

x =
[
z0 sin

π

n
, z2

0 sin
2π

n
, . . . , z

n/2
0 sin

n
2 π

n

]T

,

y =
[
z
(n/2)+1
0 cos

π

n
, z

(n/2)+2
0 cos

2π

n
, . . . , zn−1

0 cos

(
n
2 − 1

)
π

n
, 0

]T

,

u = (x + cy)/‖x + cy‖ and v = (cx − y)/‖cx − y‖ be vectors in Cn/2. Then

〈z̄0A1u, u〉 = cos
π

n
− i

nc Im(z
n/2
0 ) sin π

n
n
2 (1 + c2) + (1 − c2) csc2

(
π
n

)
and

〈z̄0A2v, v〉 = cos
π

n
+ i

nc Im(z
n/2
0 ) sin π

n
n
2 (1 + c2) + (c2 − 1) csc2

(
π
n

) .
Proof. Since 1 � c < tan(π/n) + sec(π/n), we have 0 � c − tan(π/n) < sec(π/n) and
therefore c2 − 2c tan(π/n) + tan2(π/n) < sec2(π/n) or c2 − 2c tan(π/n) < 1. Hence (c − (1/

c)) cot(π/n) < 2. Thus

z
n/2
0 = −1

2

(
c − 1

c

)
cot

π

n
± 1

2
i

(
4 −

(
c − 1

c

)2

cot2 π

n

)1/2

and, in particular, z0 has modulus one. Since

〈z̄0A1u, u〉 = 1

‖x + cy‖2
(〈z̄0A1x, x〉 + c〈z̄0A1x, y〉 + c〈z̄0A1y, x〉 + c2〈z̄0A1y, y〉),

we need compute the values of ‖x + cy‖ and the four inner products above. To obtain the former,
note that
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‖x‖2 =
n/2∑
j=1

|z0|2j sin2
(

jπ

n

)

= 1

2

n/2∑
j=1

(
1 − cos

2jπ

n

)
= n

4
− 1

2
Re

(
1 − e(1+(2/n))π i

1 − e2π i/n
− 1

)

= n

4
− 1

2
(−1) = 1

4
(n + 2),

‖y‖2 =
(n/2)−1∑

j=1

|z0|n+2j cos2
(

jπ

n

)

= 1

2

(n/2)−1∑
j=1

(
1 + cos

2jπ

n

)
= 1

4
(n − 2),

〈x, y〉 = z̄
n/2
0

(n/2)−1∑
j=1

sin
jπ

n
cos

jπ

n

= 1

2
z̄
n/2
0

(n/2)−1∑
j=1

sin
2jπ

n
= 1

2
z̄
n/2
0 Im

(
1 − eπ i

1 − e2π i/n
− 1

)

= 1

2
z̄
n/2
0 cot

π

n
,

and

‖x + cy‖2 = ‖x‖2 + 2c Re〈x, y〉 + c2‖y‖2

= 1

4
(n + 2) + c cot

π

n
· Re(z̄n/2

0 ) + 1

4
(n − 2)c2

= n

4
(1 + c2) + 1

2
(1 − c2) + c cot

π

n

(
−1

2

(
c − 1

c

)
cot

π

n

)

= n

4
(1 + c2) + 1

2
(1 − c2) csc2

(π

n

)
.

Moreover, we have

〈z̄0A1x, x〉 =
⎛
⎝(n/2)−1∑

j=1

sin
jπ

n
sin

(j + 1)π

n

⎞
⎠+ cz̄

n/2
0 sin

π

n
sin

π

2

= cz̄
n/2
0 sin

π

n
− 1

2

(n/2)−1∑
j=1

(
cos

(2j + 1)π

n
− cos

π

n

)

= cz̄
n/2
0 sin

π

n
− 1

2
Re

(
e3π i/n · 1 − e(2π i/n)(n−2)/2

1 − e2π i/n

)
+ 1

2

(n

2
− 1

)
cos

π

n
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= cz̄
n/2
0 sin

π

n
+ n

4
cos

π

n
,

〈z̄0A1x, y〉 = z̄
n/2
0

(n/2)−1∑
j=1

sin
(j + 1)π

n
cos

jπ

n

= 1

2
z̄
n/2
0

(n/2)−1∑
j=1

(
sin

(2j + 1)π

n
+ sin

π

n

)

= 1

2
z̄
n/2
0

(
Im(e3π i/n · 1 − e(2π i/n)(n−2)/2

1 − e2π i/n
) +

(n

2
− 1

)
sin

π

n

)

= 1

2
z̄
n/2
0

(
csc

π

n
+
(n

2
− 2

)
sin

π

n

)
,

〈z̄0A1y, x〉 = z
n/2
0

⎛
⎝(n/2)−2∑

j=1

cos
(j + 1)π

n
sin

jπ

n

⎞
⎠+ c cos

π

n

= c cos
π

n
+ 1

2
z
n/2
0

(n/2)−2∑
j=1

(
sin

(2j + 1)π

n
− sin

π

n

)

= c cos
π

n
+ 1

2
z
n/2
0

((
csc

π

n
− sin

π

n
− sin

(n − 1)π

n

)
−
(n

2
− 2

)
sin

π

n

)

= c cos
π

n
+ 1

2
z
n/2
0

(
csc

π

n
− n

2
sin

π

n

)
,

and

〈z̄0A1y, y〉 =
(n/2)−2∑

j=1

cos
(j + 1)π

n
cos

jπ

n

= 1

2

(n/2)−2∑
j=1

(
cos

(2j + 1)π

n
+ cos

π

n

)

=
(n

4
− 1

)
cos

π

n
.

Hence

〈z̄0A1u, u〉 = 1

‖x + cy‖2

[(
cz̄

n/2
0 sin

π

n
+ n

4
cos

π

n

)
+ 1

2
cz̄

n/2
0

(
csc

π

n
+
(n

2
− 2

)
sin

π

n

)

+ c

(
c cos

π

n
+ 1

2
z
n/2
0

(
csc

π

n
− n

2
sin

π

n

))
+ c2

(n

4
− 1

)
cos

π

n

]

= 1

‖x + cy‖2

(
n

4
(1 + c2) cos

π

n
+ 1

2
c
(
z̄
n/2
0 + z

n/2
0

)
csc

π

n

+ n

4
c
(
z̄
n/2
0 − z

n/2
0

)
sin

π

n

)
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= 1

‖x + cy‖2

(
n

4
(1 + c2) cos

π

n
+ c Re(zn/2

0 ) csc
π

n
− 1

2
nci Im(z

n/2
0 ) sin

π

n

)

= 1

‖x + cy‖2

(
n

4
(1 + c2) cos

π

n
− 1

2
c

(
c − 1

c

)
cot

π

n
csc

π

n

−1

2
nci Im

(
z
n/2
0

)
sin

π

n

)

= 1

‖x + cy‖2

((
n

4
(1 + c2) + 1

2
(1 − c2) csc2

(π

n

))
cos

π

n

− 1

2
nci Im

(
z
n/2
0

)
sin

π

n

)

= cos
π

n
− i

nc Im(z
n/2
0 ) sin π

n
n
2 (1 + c2) + (1 − c2) csc2

(
π
n

)
as asserted.

In a similar fashion, we derive that

‖cx − y‖2 = n

4
(1 + c2) + 1

2
(c2 − 1) csc2

(π

n

)
,

〈z̄0A2x, x〉 = −1

c
z̄
n/2
0 sin

π

n
+ n

4
cos

π

n
,

〈z̄0A2x, y〉 = 1

2
z̄
n/2
0

(
csc

π

n
+
(n

2
− 2

)
sin

π

n

)
,

〈z̄0A2y, x〉 = −1

c
cos

π

n
+ 1

2
z
n/2
0

(
csc

π

n
− n

2
sin

π

n

)
and

〈z̄0A2y, y〉 =
(n

4
− 1

)
cos

π

n
.

The asserted expression for 〈z̄0A2v, v〉 can be proved analogously as before. �

Finally, we are ready for the proof of (d) ⇒ (a) in Theorem 7.

Proof of Theorem 7. (d) ⇒ (a). If A is unitary, then

A =

⎡
⎢⎢⎢⎢⎣

0 1

0
. . .
. . . 1

−an 0

⎤
⎥⎥⎥⎥⎦

with |an| = 1 and �W(A) is a regular n-gon (cf. [4, Corollary 1.2]). For the remaining part of the
proof, we assume that n is even and A = A1 ⊕ A2, where A1 and A2 are as in (d). Multiplying A

by an eiθ with θ = − arg c, we may further assume that c is positive. If c = 1, then A1 and A2,
and hence A, are all unitary, in which case �W(A) has n line segments. Under the hypotheses
that n � 4 and 1 < c < tan(π/n) + sec(π/n), we have 0 < (c − (1/c)) cot(π/n) < 2. Since
the zeros of the polynomial p1(z) = zn + zn/2(c − (1/c)) cot(π/n) + 1 are the (n/2)th roots of
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(−(c − (1/c)) cot(π/n) ± ((c − (1/c))2 cot2(π/n) − 4)1/2)/2, we infer that they are all distinct
and have modulus one. These we denote by zk , 1 � k � n.

We now show that cos(π/n) is a multiple eigenvalue of Re(z̄kA) for any k. Indeed, if

xk =
[
zk sin

π

n
, z2

k sin
2π

n
, . . . , z

n/2
k sin

n
2 π

n

]T

,

yk =
[
z
(n/2)+1
k cos

π

n
, z

(n/2)+2
k cos

2π

n
, . . . , zn−1

k cos

(
n
2 − 1

)
π

n
, 0

]T

,

uk = (xk + cyk)/‖xk + cyk‖ and vk = (cxk − yk)/‖cxk − yk‖, then it is easily checked that
Re(z̄kA1)uk = cos(π/n)uk and Re(z̄kA2)vk = cos(π/n)vk , where for the equality of the (n/2)th
components we need that zk be a zero of p1. Hence cos(π/n) is a multiple eigenvalue of Re(z̄kA).

Next note that cos(π/n) is the maximum eigenvalue of Re(z̄kA). To prove this, let c1 � c2 �
· · · � cn and d1 � d2 � · · · � dn−1 be the eigenvalues of Re(z̄kA) and Re(z̄kJn−1), respectively.
Since Re(z̄kJn−1) is unitarily equivalent to Re Jn−1, the dj ’s are all distinct and d1 = cos(π/n)

(cf. [3, Corollary 2.7]). On the other hand, we proved in the preceding paragraph that cos(π/n) =
cj0 = cj0+1 for some j0. If j0 > 1, then from the interlacing of the cj ’s and the dj ’s: c1 � d1 �
c2 � d2 � · · · � cn−1 � dn−1 � cn, we obtain d1 = c2 = d2 = · · · = cj0+1 = cos(π/n), which
contradicts the distinctness of the dj ’s. Hence j0 � 1 and therefore c1 = cos(π/n) as required.
In particular, we have cos(π/n) = max W(Re(z̄kA)) = max Re W(z̄kA).

Finally, we check that W(A) has n line segments on its boundary. For this, consider u′
k = uk ⊕ 0

and v′
k = 0 ⊕ vk as vectors in Cn. Then

〈z̄kAu′
k, u

′
k〉 = 〈z̄kA1uk, uk〉 = cos

π

n
− i

nc Im(z
n/2
k ) sin π

n
n
2 (1 + c2) + (1 − c2) csc2

(
π
n

)
and

〈z̄kAv′
k, v

′
k〉 = 〈z̄kA2vk, vk〉 = cos

π

n
+ i

nc Im(z
n/2
k ) sin π

n
n
2 (1 + c2) + (c2 − 1) csc2

(
π
n

)
by Lemma 10. Hence

Re〈z̄kAu′
k, u

′
k〉 = Re〈z̄kAv′

k, v
′
k〉 = cos

π

n
= max Re W(z̄kA)

and

Im〈z̄kAu′
k, u

′
k〉 /= Im〈z̄kAv′

k, v
′
k〉.

Therefore, the vertical line Re z = cos(π/n) yields a line segment on �W(z̄kA). Thus �W(A) has
n line segments given by Re(z̄kz) = cos(π/n), 1 � k � n. This completes the proof. �
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