

Fig. 3

Fig. 3 A typical EDS spectrum of the as-quenched $Cu_{2.8}Mn_{0.2}Al$ alloy.

Fig. 4(a)

Fig. 4(b)

Fig. 4(c)

	$325_1 \\ 6\bar{4}2$	414_{1} $4\overline{4}4$	503_1 $2\overline{4}6$	
		•		
		•		
	$\bar{1}03_{2}$	<u>111</u>	$1\bar{1}\bar{1}_{1}$	
	202	000	$\underline{202}$	
		•		

Fig. 4(d)

Fig. 4(e)

Fig. 4(f)

Fig. 4(g)

Figure 4. Electron micrographs of the as-quenched alloy. (a) BF, (b)-(d) three SADPs taken from D0₃ matrix and fine precipitates. The foil normals are [100], [110] and [121], respectively.(<u>hkl</u> = D0₃ phase, hkl_{1, or 2} = L-J phase, 1: variant 1; 2: variant 2) (e)-(f) (111) and (200) D0₃ DF electron micrographs, respectively. (g) a DF micrograph taken with the reflection spot marked as "1" in (b).

Fig. 5(a)

Fig. 5(b)

Fig. 5(c)

Fig. 5(d)

Fig. 5(e)

Fig. 5(f)

Figure 5. Electron micrographs of the alloy aged at 350° C for 24 hours.

(a) BF, (b)-(c) two SADPs taken from D0₃ matrix and fine precipitates. The foil normals are [100] and [110], respectively. (<u>hkl</u> = D0₃ phase, hkl_{1, or 2} = L-J phase, 1: variant 1; 2: variant 2) (d)-(e) (111) and (200) D0₃ DF electron micrographs, respecitively. (f) a DF micrograph, which was taken with the reflection spot marked as 2'' in (c).

Fig. 6(a)

Fig. 6(b)

Fig. 6(c)

Fig. 6(d)

Fig. 6(e)

Fig. 6(f)

Fig. 6(h)

Figure 6. Electron micrographs of the alloy aged at 450°C for 16 hours.
(a) BF, (b)-(c) two SADPs taken from D0₃ matrix and irregular-like precipitates. The foil normals are [001] and [011].(<u>hkl</u>: matrix, hkl: γ - brass) (d) (001) γ₂ DF electron micrograph, (e)-(f) two SADPs taken from D0₃ matrix and fine precipitates. The foil normals are [100] and [110], respectively. (<u>hkl</u> = D0₃ phase, hkl_{1, or 2} = L-J phase, 1: variant 1; 2: variant 2) (g) (111) D0₃ DF electron micrograph. (h) (100)L-J DF electron micrograph.

Fig. 7(a)

Fig. 7(b)

Fig. 7(c)

Fig. 7(d)

Fig. 7(e)

Fig. 7(f)

Fig. 7(g)

Figure 7. Electron micrographs of the alloy aged at 650°C for 2 hours. (a) BF, (b)-(c) two SADPs taken from the precipitate marked as "R" in (a). The foil normals are [001] and [011]. (d) an SADP taken from the D0₃ matrix. The foil normal is [110]. (<u>hkl</u> = D0₃ phase, hkl_{1, or 2} = L-J phase, 1: variant 1; 2: variant 2) (e) (020)L-J DF electron micrograph, (f)-(g) (111) and (200) D0₃ DF electron micrographs.

Fig. 8(a)

Fig. 8(b)

Fig. 8(c)

Fig. 8(d)

Fig. 8(e)

Fig. 8(f)

Figure 8. Electron micrographs of the alloy aged at 750°C for 1 hour. (a) BF, (b)-(c) two SADPs taken from the matrix. The foil normals are [100] and [110], respectively. (hkl = D0₃ phase, hkl_{1, or 2} = L-J phase, 1: variant 1; 2: variant 2) (d) (020)L-J DF electron micrograph, (e)-(f) (111) and (200) D0₃ DF electron micrographs.