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A necessary and sufficient condition that a contraction of class C,(N) on a 
Hilbert space be a spectral operator is given. The condition is in terms of 
certain factors of the characteristic function of the contraction, which generalizes 
the known characterization that the compression of the shift on the space 
Hz @ mH2 is a scalar-type spectral operator if and only if m is a Blaschke 
product with uniformly separated zeros. Similar conditions for C,, contractions, 
Cri contractions with characteristic functions admitting scalar multiples, and 
weak contractions to be spectral are also derived. In these cases the conditions 
are only sufficient. 

For certain contractions T on a Hilbert space, very satisfactory spectral 
decompositions have been developed recently. Among them are contractions 
of class c,, completely nonunitary (c.n.u.) contractions of class C,, whose 
characteristic functions admit scalar multiples and c.n.u. weak contractions. 
Most of the work along this line was achieved by Sz.-Nagy and Foiaa (cf. [14, 
Chaps. 3, 7, 81). More recently, it has also been shown that C, operators and 
weak contractions are decomposable (cf. [4, lo]). A more restricted class than 
the decomposable operators is the class of spectral operators (in the sense of 
Dunford [2]). In this paper we are concerned with conditions, necessary or suffi- 
cient, for such contractions to be spectral. Our conditions are in terms of certain 
factors of minimal functions (for C, contractions), scalar multiples (for C1, 
contractions and weak contractions), or characteristic functions (for C,,(N) 
contractions). The proofs depend heavily on the corona theorem (cf. [l] or [33 
for the scalar-valued case; [6] for the matrix-valued case). In most of the cases 
the conditions are only sufficient. For contractions of class C,,(N) we obtain 
a characterization. In the case of N = 1 this generalizes the known fact that the 
compression of the shift on H2 0 mH2 is a scalar-type spectral operator if 
and only if m is a Blaschke product with uniformly separated zeros. Other 
generalizations of this fact can be found in [12, 131. 
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In the following only nontrivial, separable, complex Hilbert spaces are 
considered. The four sections correspond to the contractions of class C, , 

class C,, , weak contractions, and class C,(N), respectively. Our basic reference 
is [14]. 

1. CONTRACTIONS OF CLASS C,, 

A contraction T on the space H is of class C, if it is c.n.u. and ~J(T) = 0 for 
some inner function v. Let mr be the minimal function of such a contraction T. 
Consider the factorization m,(h) = B(h) S,(X), where B(X) is a Blaschke product 
and S,(h) is the singular function whose associated singular measure is CL. 

For any Bore1 subset w of the complex plane C, let m,(x) = B,(h) S,(h), where 
B,(h) is the product of those factors of B(X) whose zeros lie in w and S,(h) is 
the singular function whose associated measure is p j w. Let H, = {h: h E H, 

m,(T)h = O}. 
Recall that an operator T is spectral (in the sense of Dunford) if it has a 

countably additive resolution of the identity defined on the Bore1 subsets of c 
(cf. [2]). For w C @, w’ denotes its complement in C. 

THEOREM I. 1. Let T be a contraction of class C,, on H with minimal function 
m, . For every Rove1 subset w of @, let m, be defined as above. Assume that there 
exists an E > 0 such that 

Then T is a spectral operator. 

The following version of the corona theorem is needed in the proof (cf. [l] 

or 131). 

SCALAR CORONA THEOREM 1.2. Let fi ,...,fn befunctions in H* with /j fk 11 < 1 

(h = I,..., n) and I fi(A>l + . ..+lfn(X)l >cforaZZh,Ih/ <l,whereO<~<&. 
Then there exist functions g, ,..., g, in Hm such that f,(h) g,(h) + . + 

f,(h)g,(X) = 1 for aEZ X, ) h / < 1, and IJg,j[ < c-4% (h = l,..., n), where 13, 
is a constant depending only on n. 

Proof of Theorem 1.1. The assumption says that 

I m&9 + I m,G)l 2 E for all /\, /X / < 1 and all w. 

We may assume that 0 < E < $. It follows from the scalar corona theorem that 
there exist functions u, , u,’ in H* such that m,(x) u,(h) + m,(h) u,(‘\) = 1 

for all X, / X / < 1 and 11 U, [I, 11 u,, 11 < K, where K is a constant independent 
of w. Hence we have H, i- H,, = H, the sign $ denoting direct (not necessarily 
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orthogonal) sum (cf. [14, Proposition 111.6.41). Let E(w) denote the projection 
(not necessarily orthogonal) along H,, onto the subspace H, . Then E(w) h = 

m-,(T) u,,,,(T) h for h E H. Hence 11 E(w)11 < /I m,, 11 u,, 11 11 f  I/ u,’ ji < K. By 
virtue of [14, Theorems 111.6.3 and III.S.I] it can be easily shown that E(.) is 
a resolution of the identity for T. To prove the countable additivity we appeal 
to Mackey’s result that for E( .) there exists an invertible operator A such that 

A-r,??(w) A is self-adjoint for every w (cf. [16]). Hence for mutually disjoint 
{w,}, {A-lE(w,) A} is a sequence of orthogonal projections mutually orthogonal 
to each other. Since HUnw, = Vn H,,,, , the range of AFE(& w,J A is the span 
of the ranges of A-lE(w,) A. It follows that A-‘E(upz wfl) A = Cpa @ A-lE(w,) A 
and E(& wn) = xta E(w,). Thus T is a spectral operator, completing the proof. 

COROLLARY 1.3. Let T be a contraction of class C, on H with minimal function 
mT . Assume that m,(h) is a Blaschke product whose zeros {A,}, with corresponding 
multiplicities {ni}, satisfy 

for some E > 0. Then T is a spectral operator. 

Proof. Our hypothesis implies that for any decomposition (I, , I,} of 
I = (1,2,...) there exists a function f in H” such that 

f (h> = 0 if iElI, 

= 1 if iE12, 

f (e)(X,) = 0 for 1 < L < ni - 1 and all i, and /If 11 < K, where K is a constant 
independent of the decomposition (1, , Is} (cf. [ll, Theorem 1.21). Let B,(A) 

be the product of those factors of m,(X) whose zeros are Ai with i E 1i and B,(X) 
having zeros hi with i E Ia . Letf,(h) = B,(A)-if(h) andf,(h) = B,(h)-l( 1 - f(h)). 
Note that both f,(h) and fi(X) are analytic functions with /I fi // < K and /I fi )I < 
1 + K. Moreover, we have fi(A) B,(A) + fi(X) B,(A) = 1, for all A, j h / < 1. 
Thus 

for all A, / X / < 1. It follows from Theorem 1.1 that T is a spectral operator. 
The preceding result appeared in [Ill, but the proof there is different. In 

particular, we have 

COROLLARY 1.4. Let T be a contraction of class C,, on H with minimal function 
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mT . Assume that m,(X) is a Blaschke product whose zeros (&} are uniformly 
separated, that is, there exists an 6 > 0 such that 

llI, ( +$$I > E for all i. 
, 7 

Then T,is a scalar-type spectral operator, 

Proof. In this case each hi must have multiplicity 1. That T is a spectral 

operator follows from Corollary 1.3. If  we let wi = (A,}, then HWi = {h: h E H, 
Th = hih} and H = vi HWi . By Mackey’s result we have H = z:i Hwi , 
and T is similar to a normal operator. Hence T is of scalar type. 

2. CONTRACTIONS OF CLASS C,, 

A contraction T on H is of class C,, if Tnh + 0 and T*“h f t  0 for all h E H, 
h # 0. The characteristic function of a c.n.u. C,, contraction is outer from both 
sides (cf. [14, Proposition VI. 3.51). 

Recall that a contractive analytic function (9r , %?a , O(h)} is said to have the 
scalar multiple 6(h), if 6(h) is a scalar-valued analytic function, S(h) z+ 0, and 
there exists a contractive analytic function (9a ,9$ , Q(X)} such that L?(h) 8(h) = 

w)&%l , w Q(4 = V) b, f  or all h, 1 h 1 < 1. For an outer function O(h), 

6(h) may be chosen to be outer (cf. [14, Theorem V.6.21). 
Consider a c.n.u. contraction T of class C,, whose characteristic function O,(h) 

admits the outer scalar multiple 

S(h) == exp [& /a2v $g log / G(eit)l dt] . 

Then a(T) C C, the unit circle (cf. [14, Proposition VI.4.41). In [14, Theorems 

VII.5.2 and VII.6.21, a spectral decomposition for such a contraction is given. 
For a Bore1 subset CL of C, let H, be the spectral subspace defined there, and let 
O,(X) = O,,(A) O,,(h) be the corresponding regular factorization. If  we let 

S,(X) = exp [ & l s log I G(eit)~ dt] , 1 X / < 1, 

then O,,(X) an O,,(h) have the functions 6,(X) and 6,(h) as scalar multiples, 
respectively (cf. [14, Proposition V.7.2]), where LX’ = C\cy. 

?;HEOREM 2.1. Let T be a c.n.u. contraction of class C,, , whose characteristic 
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function Or(X) admits the outer scalar multiple S(h). For any Bore1 subset 01 of C, 
let 6, be de$ned as above. Assume that there exists an E > 0 such that 

Then T is a spectral operator. 

The following lemma is needed. 

LEMMA 2.2. Let T be an operator on the Hilbert space H, and let HI 2 H be an 
invariant subspace for T. Assume that there exists a hyperinvariant subspace 
H,_CHfor TsuchthatHI vH,=HandH,nH,={O}.IfKCHisany 
invariant subspace for T such that H = HI 4 K, then K = Hz . 

Proof. Let P be the projection (not necessarily orthogonal) along HI onto 
the subspace K. Since both HI and K are invariant for T, we have PT = TP. 

Hence PH, C Hz. It follows that PH = P(H, v  H,) C PH, C H, ; that is, 
KC H, . Since HI n H, = (0) and H = HI i K, it can be easily seen that 
K = Hz. 

We also need the following theorem due to Teodorescu [15]. 

THEOREM 2.3. Let T be a c.n.u. contraction on H with the characteristic 
function {Z?& ,9,, , 8,(h)}. Let HI C H be an invariant subspacefor T and Q=(A) = 
O,(h) O,(A) the corresponding regular factorization with the intermediate space 9. 
Then there exists a subspace H’, invariant for T, such that H = H’ i HI if and 
only if there exist bounded analytic functions {S, @. , Y(A)} and (9rI ,9, @(A)} 
such that CD(X) O,(X) + O,(X) Y(A) = IF for all A, / h / < 1. 

We remark that from the proof of the sufficient part in [ 151 we can easily check 
that if P denotes the projection (not necessarily orthogonal) along HI onto the 

subspace H’ and 11 !P]l, 11 CD I/ < K, then /I PII < K’, where K’ is a constant 
depending only on K. 

Proof of Theorem 2.1. Note that a scalar multiple of a contractive analytic 
function must be contractive. Hence we have /I 8, //, II S,, // < 1 for any 0~. 
Assuming that 0 < E < i, it follows from the scalar corona theorem that there 
exist functions u, , ua, in Hm such that 6,(h) us(A) + Q(h) us(A) = 1 for all X, 
I X j < 1 and 11 u, I), IJ u,, I/ < K, where K is independent of 01. Assume that 

%44 and Q,&> are contractive analytic functions such that GQX) @r&t) = 

W) 4 @4,(h) Q&) = %(h) 6 I h I -=c 1 and Q,,(h) @,,(A) = Q(X) 4 
O,,(X) K&(X) = 6,(1\) 1, I X I < 1. Then we have 

where I] u,4& 11, ]I uJ2, ]I < K. It follows from Theorem 2.3 that H = HL q H, 
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for some invariant subspace HL . By virtue of Lemma 2.2 we have Hi = H,, , 
since HE* is hyperinvariant for T, H, v  H,, = H and H, A H,, = (0) (cf. 

[14, Theorems VII, 5.2 and VTI.6.23). H ence H = H,, -& H, . Let &or) denote 
the projection from H onto H, along the subspace H,, . By the remark following 
Theorem 2.3 we conclude that jl E(or)ll < 1 + K’, where K’ is independent of (Y. 
Using [14, Theorems VII.5.2 and VII.6.21 and an argument similar to the one 
in the proof of Theorem 1 .I, it can be easily shown that E( .) is a resolution of 
the identity for T. This shows that T is a spectral operator and completes the 

proof. 

3. WEAK CONTRACTIONS 

A contraction T on the space H is a weak contraction if a(T) does not fill 
the unit disk D = {A: 1 X 1 < 1) and I - T*T is of finite trace. The charac- 
teristic function of a weak contraction admits a scalar multiple. For a c.n.u. 
weak contraction we may consider its C,, - C,, decomposition. Let H0 and HI 

be the invariant subspaces for such a contraction T for which T, = T jHO 
and Tl = T IH are the C,, and C,, parts of T. Let m,(h) be the minimal function 

of T, and S,(i) an outer scalar multiple of the characteristic function O,(h) 
of Tl . As in Sections 1 and 2, for every Bore1 subset w of @ we consider the 
divisors m,(h) and 6,,,,,,(X) of m,(h) and 6,(h), respectively, and the invariant 
subspaces H,(w) = {h: h E H,, , m,(T,) h = 0} and H,(W) = the spectral 

subspace of HI associated with Tl and the Bore1 subset 01 = w n C. Thus to 
every w there corresponds an invariant subspace H(w) = H,(W) V H,(w) of H. 
Such subspaces give a spectral decomposition of the contraction T (cf. [14, 
Theorem VIII.3.11). 

Let U4 = m&V kwnc (h). We begin by giving the following technical 
lemma, the proof of which can be found in [17]. 

LEMMA 3.1. Let T be a c.n.u. weak contraction on H with characteristic 
function O,(h). Let O,(X) = Ok(h) O,(X) be the regular factorization corresponding 
to the invariant subspace H(W). Then S,(A) and S,,,,(h) are scalar multiples of @,(A) 
Ok(X), respectively. 

THEOREM 3.2. Let T be a c.n.u. weak contraction on H with characteristic 
function O,(h). Let m&l) be the minimal function of the C, part T, of T and 6,(h) 
an outer scalar multiple of the characteristic function of the C,, part TX of T. FOY 

any Bore1 subset w of @, let m,(h), 8,S,,c (A) be dejned as above and S,(X) = 

mJ3 4 +,,&). Assume that there exists an E > 0 such that 

inf (i S,(X)! + ~ &(/\)I} 3 E 
WCC 

foralE h,lX! < 1. 

Then T is a spectral operator. Moreover, T, and T,, are also spectral. 
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The proof proceeds as that of Theorem 2.1. The assertions concerning Z’s 
and T,, follow from the following observations, 

for j h I < 1, and Theorems 1.1 and 2.1. 

Remark. Theorem 1 .l can also be proved along the same line as that of 
Theorems 2.1 and 3.2, since the minimal function of a C,, contraction is a scalar 
muItipIe of its characteristic function. 

4. CONTRACTIONS OF CLASS C,,(N) 

MATRIX CORONA THEOREM 4.1. Let 0, , . . . . 0, be functions in HNa with 

(I Oi )I < 1 (i = l,..., rrz) and inf{xz, jl @$(A)*[ /I: f  E CN, // 5 11 = I} > E for 
all /\, / h ) < 1, for some E > 0. Then there exist functions 52, ,..., Q,,, in HNm 
such that xzl O,(A) Q,(A) = Ifoy al2 A, I A I < 1 and // Qi /j < K (i = I,..., m), 
where K is a constant depending only on m and N. 

The proof of this theorem, except the Iast assertion, is in [6], By following 
the proof there, it can be shown that L?, ,..., Qm can be chosen in this particular 

way. 
Recall that a contraction T on H is of class C,(N), N > 1, if it is of class CO 

and has defect indices N. Such a T can be considered in its functional model 
as defined on the space H = HN2 0 OTHN2 by T*u = eri”[u(eit) - u(O)], 
u E H. If  HI C H is an invariant subspace for T and Or(h) = O,(h) O,(h) is the 
corresponding regular factorization, then HI = O,HMz @ 0,HN2 and H 0 HI = 
HN2 0 O,HNz. 

THEOREM 4.2. Let T be a contraction of class C,,(N) on the space H with 
characteristic function O,(A) and minimal function m,(X). For any Bore1 subset w, 
let m, and H, be defined as in Section 1 and let O,(h) = O,,(h) O,,(h) be the 
corresponding regular factorization. Assume that there exists an E > 0 such that 

Then T is a spectral operator. 

The proof follows the same idea as of Theorem 1.1. 

Proof. By the assumption and Theorem 4.1, there exist functions L?,, , 
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S-2 2w’ in HNm such that @,,(A) C&,(X) + O,,(h)&,@) = 1, / h 1 < 1, and I/ Sz,, 11, 
11 Sz,,, jl <K, where K is independent of w. Hence for u E HN2 we have 02&&,,~ + 
02w~L22;2~u = u. where @,,Q,,u E 0,,HN2 and 02wJ22w~u E OzW~HN2; this shows 
that 0,,HN2 + O,,,H,2 = HN2. It follows that [O,,H,2 0 O,H,2] + 
[02,,HN2 0 0,HN2] = HN2 0 O,H,z, that is, H, q H,, = H; indeed, 
H, n H,,,, = {0} follows from the fact that m, and m,, have no nontrivial com- 
mon inner divisor. I f  E(w) denotes the projection along H,,,, onto the subspace 

H, , then E(w) u = P(O,J&,u), u E H, where P denotes the (orthogonal) 
projection from HN2 onto H ~~ 0 %-HN2. Hence II E(w)11 < II @,, II It -Q2, II < K. 
Then we can proceed as in the proof of Theorem 1.1 to show that T is a spectral 
operator. 

In this case, condition (1) turns out to be also necessary. In fact, we have 
the following: 

THEOREM 4.3. Let T be as in Theorem 4.2. Assume that T is spectral with the 
resolution of the identity E(.). F or any Bore2 subset w of @, let H, = E(W) H 
denote the corresponding spectral subspace and O,(h) = O,,(h) O,,(X) the regular 
factorization associated with H, . Then there exists an E > 0 stlch that condition (1) 
holds. 

We list below the definition and some basic properties of the angle between 

two subspaces of H, which are needed in the proof of Theorem 4.3 (cf. [9, 

pp. 339-3401). 

DEFINITION 4.4. By the angle between two subspaces HI and H, is meant 
the angle dHl , ff,) (0 < v < 74), de$ned by cos v(H, , Hz) = sup 1(x, y)l, 
where the supremum is taken over al2 x E HI , y E H2 with (I x I( = j/y 11 = 1. 

PROPOSITION 4.5. If HI A H, = H and P is the projection from H onto HI 
along the subspace H, , then sin p(Hl , HJ = !I P 11-l. 

PROPOSITION 4.6. If HI i H, = H, HI’ = H G HI and H,I = H @ H, , 
then H,L q H,I = H and v(H, , H,) = v(H,‘-, H,I). 

Proof of Theorem 4.3. Since T is spectral, for any Bore1 subset w we have 
H, -i- H,, = H. By virtue ofProposition 4.6, this implies that H,I & H,“, = H, 
that is, [HN2 0 OzWHN2] i [HN2 0 02,,HN2] = HN2 0 0,HN2. Using Propo- 
sitions 4.5 and 4.6, we have sin q~(H,l, HL,) = sin p(H, , Hw,) = j/ E(w)(l-I. 
Since /j E(w)ll < K for some constant K, y(H,I, Hi,) > Kl , where K1 = 
arc sin( 1 /K). 

Now assume that no E > 0 exists for which condition (1) holds. Then there 
exist a sequence of Bore1 subsets {c+), a sequence of points (A3 in 
D = (1 h I < 11, and a sequence of unit vectors {[,I in CN satisfying 
lim, II Oewn(An)* [,, Ij = lim, II @,,;(A,)* 6, I[ = 0. We show the existence of 
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vectors (Us) in HN2 0 @20,HN2 and vectors (ML} in HN2 0 0,,;HN2 such that 
lim, /] U, /j = lim, )I uk 11 = 1 and lim,,(u, , u:) = 1, where ( , ) denotes the 
inner product in H. This implies that v(H:*, Hi;) approaches zero, contra- 
dicting q(H& , Hi;) > KI . 

Note that we have the following orthogonal decomposition of HN2: 

Consider the normalized eigenfunctions of the left shift in HM2 given by 

w n (A) = (1 - 142 12)1’2tn 
1 -x,x ’ 

and decompose them with respect to the decomposition (2), say, w, = U, + v, 
with U, E HN2 @ O,, n HNz and v, E OzW,HN2. A simple computation yields 

u,(h) = (1 - I h, ja)r/s 
(1 - @2w*(4 @2oJ,bJ*)L 

1 -x,x 

and 

(cf. [7]). Since 02,“(h) is inner, we have jl Us // = 11 02w,($)* 5, I/ and hence 
lim, j/ v, // = 0. Thus lim, II z(, /I = 1. Similarly, we obtain u, in HN2 @ 0,,;HN2 
and v; in 02,,HN2 satisfying lim, II vk I/ = 0 and lim, /I ui Ij = 1. We have 
1 = (%I > %> L (% + v, , u:, + v:> = (%a, 4) + (u, > VI) + (%a, 4) + 
(%a 9 VI). Since the last three terms of this equation tend to zero, we have 
lim, k , u:) = 1 as asserted. This completes the proof. 

The latter part of the proof is modified from the one given by Furhmann for 
Theorem 3.5 in [8]. 

By virtue of the next lemma we are able to combine Theorems 4.2 and 4.3. 

LEMMA 4.7. Let T be a contraction of class C, on H with minimal function 
mr . Assume that T is a spectral operator with the resolution of the identity E(.). 
For any Bore1 subset W, let H, be the subspace as defined in Section 1 and H(w) = 
E(w) H. Then 23, = H(w)for any w. 

Proof. Let 9 be the class of those Bore1 subsets w for which H, = H(W) 
holds. Then Y contains all closed subsets of @ (cf. [4]). Assume that w E 9’. 
We want to show that w’ E 9. We have H = H(w) i- H(J) = H, r H(w’) 
and H, v H,, = H, H, n H,, = {O}. By virtue of Lemma 2.2, ri,, = H(w’), 
and hence W’ E Y as asserted. It can also be easily seen that 9 is closed under 
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countable union. This shows that Y is a o-algebra. Thus .Y must contain all 
Bore1 subsets. 

Now we have the following main theorem. 

THEOREM 4.8. Let T be as in Theorem 4.2. For any Bore1 subset W, let H, 
be defined as in Section 1, and let O,(A) = O,,(h) @,,(A) be the corresponding regular 
factorization. Then the following are equivalent to each other: 

(i) T is a spectral operator; 

‘(ii) h t ere exists an Ed > 0 such that 

inf inf {Ii %,(X)t !I + II @,,+)5 II> 3 9 WQC .scN 
for all A, ; X 1 < 1; 

WI=1 

(iii) there exists an Ed > 0 such that 

inf inf {Ii O,,(X)*5 /i + ‘1 @,,(A)*[ Ii} > l a 
<occ SEC?’ 

forall A,~Xi<l. 

llill=l 

The equivalence of (i) and (iii) follows from Theorems 4.2, 4.3, and 

Lemma 4.7. By considering T*, instead of T, in Theorems 4.2 and 4.3, we 
obtain the equivalence of (i) and (ii). 

I f  T is of class C,(l), then Theorem 4.8 is reduced to: 

COROLLARY 4.9. Let m(h) = B(X) S(h) b e an inner function and let T = S(m) 

be the operator on the space H = Hz 0 mH2 defined by (T*u)(h) = (l/X)[u(h) - 
u(O)] for u E H, h E D. For any Bore1 subset w, let m,(h) = B,,(h) S,(A). Then 
the following are equivalent to each other: 

(i) T is a spectral operator; 

(ii) there exists an E > 0 such that 

$f,ti m&V + I m,@N 3 E forall &)A/ < 1. 

This generalizes the following well-known result (cf. [S]). 

COROLLARY 4.10. If  m(h) is a Blaschke product with simple zeros {hi}, then 
T = S(m) is a spectral operator if and only if {hi} is uniformly separated. In this 
case, T is of scalar type. 

Indeed, the assertion follows from Corollary 4.9 by noting that {Ai} is uniformly 
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separated if and only if there exists an E > 0 such that for any decomposition 

VI 1 I*> of I, 

(cf. Corollaries 1.3 and 1.4). 
As another application, we can use Corollary 4.9 to show that if 

m(h) = exp [-I’ * &(t)] , 

where p is singular and continuous (i.e., ~({t}) = 0 for all t E [0, 27r)), then 
T = S(m) is never spectral [cf. [5]). 
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