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A necessary and sufficient condition that a contraction of class Cy¢(N) on a
Hilbert space be a spectral operator is given, The condition is in terms of
certain factors of the characteristic function of the contraction, which generalizes
the known characterization that the compression of the shift on the space
H? © mH? is a scalar-type spectral operator if and only if m is a Blaschke
product with uniformly separated zeros. Similar conditions for C, contractions,
Cy1 contractions with characteristic functions admitting scalar multiples, and
weak contractions to be spectral are also derived. In these cases the conditions
are only sufficient.

For certain contractions T on a Hilbert space, very satisfactory spectral
decompositions have been developed recently. Among them are contractions
of class Cy, completely nonunitary (c.n.u.) contractions of class C}; whose
characteristic functions admit scalar multiples and c.n.u. weak contractions.
Most of the work along this line was achieved by Sz.-Nagy and Foias (cf. [14,
Chaps. 3, 7, 8]). More recently, it has also been shown that C, operators and
weak contractions are decomposable (cf. [4, 10]). A more restricted class than
the decomposable operators is the class of spectral operators (in the sense of
Dunford [2]). In this paper we are concerned with conditions, necessary or suffi-
cient, for such contractions to be spectral. Qur conditions are in terms of certain
factors of minimal functions (for C, contractions), scalar multiples (for Cy,
contractions and weak contractions), or characteristic functions (for Cy(N)
contractions). The proofs depend heavily on the corona theorem (cf. [1] or [3]
for the scalar-valued case; [6] for the matrix-valued case). In most of the cases
the conditions are only sufficient. For contractions of class Cy(N) we obtain
a characterization. In the case of N = 1 this generalizes the known fact that the
compression of the shift on H2 © mH? is a scalar-type spectral operator if
and only if m is a Blaschke product with uniformly separated zeros. Other
generalizations of this fact can be found in [12, 13].
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In the following only nontrivial, separable, complex Hilbert spaces are
considered. The four sections correspond to the contractions of class C,
class Cy; , weak contractions, and class Cy(V), respectively. Our basic reference
is [14].

1. ConTrACTIONS OF CLASS C,

A contraction T on the space H is of class C if it is c.n.u. and (T) = O for
some inner function ¢. Let m; be the minimal function of such a contraction 7.
Consider the factorization m;(A) = B(A) S,{A)}, where B(}) is a Blaschke product
and S,(A) is the singular function whose associated singular measure is p.
For any Borel subset w of the complex plane C, let m,(A) = B,(A) S,(A), where
B,(A) is the product of those factors of B(A) whose zeros lie in w and S,(}) is
the singular function whose associated measure is u | w. Let H, = {h: he H,
m(T)h = 0}.

Recall that an operator T is spectral (in the sense of Dunford) if it has a
countably additive resolution of the identity defined on the Borel subsets of C
(cf. [2]). For w C C, o’ denotes its complement in C.

TueoreM 1.1. Let T be a contraction of class Cy on H with mimimal function
my . For every Borel subset w of C, let m,, be defined as above. Assume that there
exists an € > 0 such that

iréfc{j m, (N -+ my W =€ foralld A < 1.

Then T is a spectral operator.

The following version of the corona theorem is needed in the proof (cf. [1]

or [3]).

ScaLAr Corona TueOREM 1.2, Let f, ..., f, be functions in H* with || f, || < 1
(B = 1, myand | fi(0)| + - + | fuA)} = eforall X, | X]| < 1, whereQ <e <1}
Then there exist functions g ,..., &, in H* such that fi(}) &4(A) + - +
FaN) gald) =1 for all A, |A| <1, and |g, || < e (k = 1,..., n), where B
is a constant depending only on n.

Proof of Theorem 1.1. 'The assumption says that
| m (X)) + | m,(A)] = € for all A, [A] <1 andall w.
We may assume that 0 < e < }. It follows from the scalar corona theorem that
there exist functions ., , u, in H® such that m,(A) #,(}) + m,(X) u,(A) = 1

for all A, |A| < 1 and || u,]], || %, || < K, where K is a constant independent
of w. Hence we have H,, + H,- — H, the sign -+ denoting direct (not necessarily
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orthogonal) sum (cf. [14, Proposition 111.6.4]). Let E(w) denote the projection
(not necessarily orthogonal) along H, onto the subspace H, . Then E(w)h =
m,(TYu,(T)h for he H, Hence || E(w)| < |lm, ||u, ||| <lu, ] < K. By
virtue of [14, Theorems I11.6.3 and I11.5.1] it can be easily shown that E(*) is
a resolution of the identity for T. To prove the countable additivity we appeal
to Mackey’s result that for E(-) there exists an invertible operator 4 such that
A7E(w) A is self-adjoint for every w (cf. [16]). Hence for mutually disjoint
{w,}, {4*E(w,) A} is a sequence of orthogonal projections mutually orthogonal
to each other. Since H Upe, =V, H > the range of A1E(|), w,) 4 is the span
of the ranges of 4 1E(wn) 4. Tt follows that A- IE(Upwa) A=2, DA E(w,) A
and E((, w,) = Y, E(w,). Thus T is a spectral operator, completing the proof.

CoroLLARY 1.3. Let T be a contraction of class Cy on H with minimal function
my . Assume that mp(}) is a Blaschke product whose zeros {A,}, with corresponding
multiplicities {n;}, satisfy

{1

J#e

A — A; |

1 — A

for all 1,

V

for some € > 0. Then T is a spectral operator.

Proof. Our hypothesis implies that for any decomposition {I;,I,} of
I = {1, 2,...} there exists a function f in H*® such that

f) =0 if iel,
=1 if iel,

FON) =0forl << n;,— landalls and | f|] < K, where K is a constant
independent of the decomposition {7 , I,} (cf. [11, Theorem 1.2]). Let B,(})
be the product of those factors of m;(A) whose zeros are A; with 7 € [, and By(A)
having zeros A; withi € I, . Let f3{(A) = B,(A)™1 f(A) and f,(A) = By(A)~1(1 — f(A)).
Note that both f,(A) and f,(A) are analytic functions with || f, || < K and || f, 1| <
1 + K. Moreover, we have fi(A) B(A) + fo(A) Bo(A) = 1, for all A, 14| < 1.
Thus

ng i

A — A
ZTTK

1 — A

I]

i€l

+H l—/\)\

€1,
forall A, | A | << 1. It follows from Theorem 1.1 that T is a spectral operator.

The preceding result appeared in [11], but the proof there is different. In
particular, we have

CoroLLARY 1.4. Let T be a contraction of class Cy on H with minimal function
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my . Assume that mp(A) is a Blaschke product whose zeros {\;} are umiformly
separated; that is, there exists an ¢ > 0 such that

A4
L — A

P

[

J#i

> € for all i.

Then T is a scalar-type spectral operator.

Proof. In this case each A; must have multiplicity [. That T is a spectral
operator follows from Corollary 1.3. If we let w; = {A;}, then H, = {h: he H,
Th = M\h} and H =V, H, . By Mackey’s result we have H =3, H,

and T is similar to a normal operator. Hence T is of scalar type.

;Y
i

2. ContrAcTIONS OF Crass (Y

A contraction T on H is of class Cy, if T"h -+ 0 and T*"h 4> Q for all he H,
k # 0. The characteristic function of a c.n.u. Cy; contraction is outer from both
sides (cf. [14, Proposition VI. 3.5]).

Recall that a contractive analytic function {2, , &, , ©())} is said to have the
scalar multiple §(A), if 8(}) is a scalar-valued analytic function, 8(A) == 0, and
there exists a contractive analytic function {2, , 2, , £2(A)} such that (X)) B(A) =
N1z , O(X) L) = 8(A) Ig, for all A, | A| < 1. For an outer function &(}),
8(A) may be chosen to be outer (cf. [14, Theorem V.6.2]).

Consider a c.n.u. contraction T of class C}; whose characteristic function @(A)
admits the outer scalar multiple

] 21 it )\ .
30) = exp [ fo %i—h log | &(e)] dt .

Then o(T) C C, the unit circle (cf. [14, Proposition VI.4.4]). In [14, Theorems
VIL.5.2 and VI11.6.2], a spectral decomposition for such a contraction is given.
For a Borel subset « of C, let H, be the spectral subspace defined there, and let
O7(X) = 0,,(X) B,,(A) be the corresponding regular factorization. If we let

I opetar |
5.0 = exp 5 [ S log e dr], Al <1,

then @,,() an O, ()) have the functions 8,(A) and §,/(A) as scalar multiples,
respectively (cf. [14, Proposition V.7.2]), where o’ = C\a.

Tueorem 2.1. Let T be a c.n.u. contraction of class Cy, , whose characteristic
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Sunction Or(X) admits the outer scalar multiple 5(A). For any Borel subset o of C,
let 8, be defined as above. Assume that there exists an € > 0 such that

180 (8} > forall AN <L

Then T is a spectral operator.

The following lemma is needed.

LemMa 2.2. Let T be an operator on the Hilbert space H, and let H, C H be an
invariant subspace for T. Assume that there exists a hyperinvariant subspace
H,CH for T such that H, v H, = H and H, N H, = {0}. If KC H is any
invariant subspace for T such that H = H, - K, then K = H, .

Proof. Let P be the projection {not necessarily orthogonal) along H, onto
the subspace K. Since both H; and K are invariant for T, we have PT = TP,
Hence PH,C H, . It follows that PH = P(H, v H,) CPH,CH,; that is,
KCH,. Since H N H, = {0} and H = H, -} K, it can be easily seen that
K=H,.

We also need the following theorem due to Teodorescu [15].

Tueorem 2.3. Let T be a c.nu. contraction on H with the characteristic
Junction{Dy , Dr. , Or(A)}. Let Hy C H be an invariant subspace for T and O()) =
O,(2) O,(X) the corresponding regular factorization with the intermediate space F.
Then there exists a subspace H', invariant for T, such that H = H' -+ H, if and
only if there exist bounded analytic functions {F, Dr , Y(N)} and {Dy. , F, D(A)}
such that D) @A) + O.N) WY\ = Iz forall A, | X | < 1.

We remark that from the proof of the sufficient part in [15] we can easily check
that if P denotes the projection (not necessarily orthogonal) along H, onto the
subspace H' and || ¥, || ®| < K, then || P|| < K’, where K’ is a constant
depending only on K.

Proof of Theorem 2.1. Note that a scalar multiple of a contractive analytic
function must be contractive. Hence we have [8,], |8, | <1 for any a.
Assuming that 0 << ¢ <C }, it follows from the scalar corona theorem that there
exist functions #,, #,- in H* such that 8,(X) #,(A) + 8,/() #,(2) = 1 for all A,
[A] <1 and || u, ||, l%, || < K, where K is independent of . Assume that
£,(3) and 2,,(3) are contractive analytic functions such that Q,,(3) 8,,(\) =
SN 8) 2) = 8M T, JX] <1 and Q) 6,,(0) = 8,0
0,,(A) £2,,(A) = 8, (A I, | A | < 1. Then we have

[1/(2) LoM)] X)) + O1W[t(D) 21 N] =1, |A] <1,

where [| #,:Qy, |}, f| 4,92y, || < K.Tt follows from Theorem 2.3 that H = H, + H,
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for some invariant subspace H . By virtue of Lemma 2.2 we have H, = H,-,
since H, is hyperinvariant for T, H,v H,» = H and H,n H, = {0} (cf.
[14, Theorems VII, 5.2 and VII1.6.2)). Hence H = H,- 4 H, . Let E(«) denote
the projection from H onto H, along the subspace H,- . By the remark following
Theorem 2.3 we conclude that || E(x)|| < 1 4 K, where K’ is independent of a.
Using [14, Theorems VII.5.2 and VII.6.2] and an argument similar to the one
in the proof of Theorem 1.1, it can be easily shown that E(-) is a resolution of
the identity for 7. This shows that T is a spectral operator and completes the

proof.

3. WEAK CONTRACTIONS

A contraction T on the space H is a weak contraction if ¢(T) does not fill
the unit disk D = {A: | A| < 1} and I — T*T is of finite trace. The charac-
teristic function of a weak contraction admits a scalar multiple. For a c.n.u.
weak contraction we may consider its Cy — C;; decomposition. Let Hy and H,
be the invariant subspaces for such a contraction T' for which Ty = T'|y,
and T, = T |y, arethe C, and Cy parts of T. Let my(A) be the minimal function
of T, and 8;(A) an outer scalar multiple of the characteristic function 6,(})
of T, . As in Sections | and 2, for every Borel subset w of C we consider the
divisors m,(A) and 8, ,~c(A) of my(A) and 8,(A), respectively, and the invariant
subspaces Hyw) = {h: he H,, m (T)h =0} and H,(w) = the spectral
subspace of H, associated with T and the Borel subset « = w N C. Thus to
every w there corresponds an invariant subspace H(w) = Hy(w) Y H,(w) of H.
Such subspaces give a spectral decomposition of the contraction T (cf. [14,
Theorem VIII.3.1]).

Let 8,(A) = m,(A) 8 ,~c(r). We begin by giving the following technical
lemma, the proof of which can be found in [17].

LemMa 3.1. Let T be a c.nu. weak contraction on H with characteristic
Sunction Op(). Let O4(X) == @, (A) O,(R) be the regular factorization corresponding
to the invariant subspace H(w). Then 8,(X) and 8,,(X) are scalar multiples of ©,(})
8., (X), respectively.

TuEOREM 3.2. Let T be a c.n.u. weak contraction on H with characteristic
function ©7(X). Let my(X) be the minimal function of the Cy part Ty of T and 5,(})
an outer scalar multiple of the characteristic function of the Cy, part Ty of T. For
any Borel subset o of C, let m,(X), 8 ,~c(A) be defined as above and 8.,(A) =
My (A) 8 nc(A). Assume that there exists an « > O such that

inf {18, 5 18, = forall ATAT <1

Then T is a spectral operator. Moreover, T, and Ty, are also spectral.
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The proof proceeds as that of Theorem 2.1. The assertions concerning T
and T, follow from the following observations,

inf {lm )] + | m )} > inf (1 8,00] + 18,001 >

AL Branc®] + 8y} = In 18,00 4 18, > e

for | A < 1, and Theorems 1.1 and 2.1.

Remark. 'Theorem 1.1 can also be proved along the same line as that of
Theorems 2.1 and 3.2, since the minimal function of a C; contraction is a scalar
multiple of its characteristic function.

4. ConTRACTIONS OF CLass Cy(N)

Martrix Corona THeorEm 4.1. Let 6,, ..., 0,, be functions in Hy> with
16,1 <1 (= lLym) and inf(X], | BN €[ E€CY, [ £] =1} > ¢ for
all A, [A] < 1, for some € > 0. Then there exist functions 2, ,..., 2, in Hy”
such that 35 ©,(A) Q) = I for all X, || < 1 and || Q]| < K (i = 1,..., m),
where K is a constant depending only on m and N.

The proof of this theorem, except the last assertion, is in [6]. By following
the proof there, it can be shown that £2, ,..., £2,, can be chosen in this particular
way.

Recall that a contraction 7" on H is of class Co(N), N = 1, if it is of class C,
and has defect indices V. Such a T can be considered in its functional model
as defined on the space H = H\2 © O.Hy? by T*u = e¢**[u(e’t) — u(0)],
ue H. If H, C H is an invariant subspace for T and @4(1) = 8,(A) @,(A) is the
corresponding regular factorization, then H; = 6,H,2 © O;H*and H O H, =
H2 O 0,H,2

TraeoreM 4.2. Let T be a contraction of class Cy(N) on the space H with
characteristic function Op(\y and minimal function mp(X). For any Borel subset o,
let m, and H,, be defined as in Section 1 and let Op(d) = Oy, (N) ©,,(A) be the
corresponding regular factorization. Assume that there exists an ¢ > O such that

inf ﬁggz {1 OuN*¢ | + | Op(N* €1} = ¢ forall \|A]<1. (I)
= lleli=
Then T is a spectral operator.
The proof follows the same idea as of Theorem 1.1.

Proof. By the assumption and Theorem 4.1, there exist functions £2,,
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0, in Hy® such that 8,,(X) 2,,(A) + 6, (N2 () =L |A| < 1,and || 2,, ],
| £, || <K, where K is independent of w. Hence for u € Hy? we have 6, 2, u 1
O, A2y yu = u. where 0, 2, uc 0, H\2 and 0, 2, uc O, H? this shows
that @, Hy* + 0,,Hy* = Hy? It follows that [0, Hy? © 6,H,% I
[0,wHy* © O:H? = Hy* © O,H2 that is, H, - H, = H; indeed,
H,n H, = {0} follows from the fact that m, and m_ - have no nontrivial com-
mon inner divisor. If E(w) denotes the projection along H, onto the subspace
H,, then E{w)u = P(0,,0, u), uc H, where P denotes the (orthogonal)
projection from Hy? onto Hy? © OrH 2 Hence || E(w)|| < Oy, || || Qa0 || < K.
Then we can proceed as in the proof of Theorem 1.1 to show that T is a spectral
operator.

In this case, condition (1) turns out to be also necessary. In fact, we have
the following:

THeEOREM 4.3. Let T be as in Theorem 4.2. Assume that T is spectral with the
resolution of the identity E(). For any Borel subset w of C, let H, = E(w) H
denote the corresponding spectral subspace and Op(X) = O, (A) ©,,()) the regular
Jfactorization associated with H,, . Then there exists an € > O such that condition (1)
holds.

We list below the definition and some basic properties of the angle between
two subspaces of H, which are needed in the proof of Theorem 4.3 (cf. [9,
Pp- 339-340)).

DeriNiTION 4.4. By the angle between two subspaces H, and H, is meant
the angle o(H,, Hy) (0 < ¢ < 7/2), defined by cos o(H, , Hy) = sup |(x, y)|,
where the supremum is taken over all xe H, , ye Hywith||x|| = | y| = 1.

Prorosition 4.5. If H, - Hy, = H and P is the projection from H onto H,
along the subspace H, , then sin o(H, , H,) =1 P|™.

ProposiTioN 4.6. IfH, + H,=H H'*=H O H, and H,* = HOH,,
then H,* - Hy* ~ H and o(H, , H,) = o(H,*, Hy").

Proof of Theorem 4.3. Since T is spectral, for any Borel subset «w we have
H, + H, = H.By virtue of Proposition 4.6, this implies that H,* + HZ}. = H,
that is, [Hy? © 0, Hy?] + [Hy? © 0, Hy? = Hy* © O:H\2. Using Propo-
sitions 4.5 and 4.6, we have sin o(H, ', H;,) = sing(H, , H,’) = || E(w)||".
Since || E(w)l < K for some constant K, ¢(H,* H,) > K, where K; =
arc sin(1/K).

Now assume that no e > 0 exists for which condition (1) holds. Then there
exist a sequence of Borel subsets {w,}, a sequence of points {A,} in
D=1{A] <1}, and a sequence of unit vectors {£,} in CN satisfying
lim, [| By, (Aa)* &, || = lim,, || Oy, (A)* €, 1l = 0. We show the existence of
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vectors {un} in Hy? © 6, Hy? and vectors {un} in Hy* © Oy, Hy? such that
lim, || u, | = lim, {| u, || = "l and lim,(u,, , u,) = 1, where (, ) denotes the
inner product in H. This implies that <p(H'L ,H*) approaches zero, contra-
dicting p(H: , H-) = K, .

Note that we have the following orthogonal decomposition of H,>2:

[Hy* © 6y, HN*] © 0, Hy* = Hy™ @)
Consider the normalized eigenfunctions of the left shift in Hy? given by

(I — 1A, )2,
/\ = T T
wn(A) T
and decompose them with respect to the decomposition (2), say, w,, = #, + v,
with u, € Hy? © 0, H\* and v, € 6, H)2. A simple computation yields

w) = (1 — A, aypre L o) Gronlda) )

1T — A
and
05,,,(A) B, (A0)*En
— (1 — 1) 2y n n
0) = (1=, e
(cf. [7]). Since @,, §ey is inner, we have || v, || = ©,, (Aa)* £, |l and hence
lim,{| v,l = 0. Thus lim,, || #, || = 1. Similarly, we obtalnu in Hy? © 6, Hy*
and o, in Oy, Hy?® satisfying lim, || v, || = 0 and lim, ||#,|| = 1. We have

1 = (w,, w,) —(u + U, Uy + V) = (Un, Up) + (Un, V) + (Vn, Uy) +
(vn , ¥;,). Since the last three terms of this equation tend to zero, we have
lim,, (#, , #,) = 1 as asserted. This completes the proof.

The latter part of the proof is modified from the one given by Furhmann for
Theorem 3.5 in [8].

By virtue of the next lemma we are able to combine Theorems 4.2 and 4.3.

LemMa 4.7. Let T be a contraction of class Cy on H with minimal function
my . Assume that T is a spectral operator with the resolution of the identity E(-).
For any Borel subset w, let H,, be the subspace as defined in Section 1 and H(w) =
E(w) H. Then H,, — H{w) for any w.

Proof. Let & be the class of those Borel subsets o for which H, = H(w)
holds. Then % contains all closed subsets of C (cf. [4]). Assume that w e &
We want to show that «' € #. We have H = H(w) + H(«') = H,, + H(o')
and H, v H,, = H, H, " H,- = {0}. By virtue of Lemma 2.2, H,, = H(w'),
and hence o’ € & as asserted. It can also be easily seen that .% is closed under
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countable union. This shows that % is a o-algebra. Thus % must contain all
Borel subsets.
Now we have the following main theorem.

THeOREM 4.8. Let T be as in Theorem 4.2. For any Borel subset w, let H,
be defined as in Section 1, and let Or(A) = 0,,(}) ©,,,(A) be the corresponding regular
Jactorization. Then the following are equivalent to each other:

(1) T is a spectral operator;
.(ii) there exists an €, > O such that

i2f S OuEN + 1O VEN =6 Soral &2 <1
ligl=1

(i) there exists an ey, > O such that

i2f K0 O 1O 2y forall A A <1
The equivalence of (i) and (iii) follows from Theorems 4.2, 4.3, and
Lemma 4.7. By considering 7%, instead of 7, in Theorems 4.2 and 4.3, we
obtain the equivalence of (i) and (ii).
If T is of class Cy(1), then Theorem 4.8 is reduced to:

CorOLLARY 4.9. Letm(X) = B(}) S()) be an inner function and let T = S(m)
be the operator on the space H = H* © mH?* defined by (T*u)(A) = (1/A)[u(A) —
u(0)] for ue H, A& D. For any Borel subset w, let m,(A) = B,(A) S(A). Then
the following are equivalent to each other:

(1) T s a spectral operator;

(i) there exists an € > O such that
il’cl{: {i m,(N)| + | m, (A)i} = e forall XAl <1.

This generalizes the following well-known result (cf. [5]).

CororrArY 4.10. If m(}) is a Blaschke product with simple zeros {A;}, then
T = S(m) is a spectral operator if and only if {\;} is uniformly separated. In this
case, T is of scalar type.

Indeed, the assertion follows from Corollary 4.9 by noting that {A;} is uniformly
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separated if and only if there exists an e > 0 such that for any decomposition
{I,, L} of I,

forall A jA| <1

]

iel,

1—5\)\‘

1—M‘+H

tel,

(cf. Corollaries 1.3 and 1.4).
As another application, we can use Corollary 4.9 to show that if

2m git —{—)\

m(A) = exp [——fo Py d,u(t)]

where g is singular and continuous (i.e., u{{t}) = 0 for all 7€ [0, 2m)), then
T = S{m) is never spectral (cf. [5}).
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