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Abstract. The path-integral method is used to calculate the partition function of a particle 
moving in a one-dimensional Frisch-Lloyd disordered system. It is found that the partition 
function is divergent. The fact that the partition function does not exist for this model 
disordered system therefore implies that the famous Frisch-Lloyd model for attractive 
potentials does not represent a stable Boltzmann system. A physical argument for the 
causes of divergence is outlined. 

Frisch and Lloyd (1960) presented a theory for the density of states of a simple model 
of a disordered system. This system consisted of a particle moving in a one-dimensional 
random array of &function potentials. It was shown that the problem of finding the 
integrated density of states could be reduced to that of solving a simple-looking linear 
differential equation. Although the equation could not be solved exactly, it was shown 
that it could be used effectively for numerical work, and that the result is ‘exact in 
principle’. 

Recently, Friedberg and Luttinger (1975) developed a path-integral method to 
study the ‘partition function’ and hence the density of states for disordered systems. 
This method, surprisingly indicates that the partition function diverges when the 
&functions are attractive. This means of course that the Frisch-Lloyd model for attrac- 
tive &functions does not represent a stable model for a Boltzmann system. Let the 
partition function per unit length be z(P) and the density of states per unit length be n(E), 
then 

z(P) = {+  dEn(E) exp( - PE) P = l /kT 
- K  

Since z(P) diverges it means that n(E) exp( - PE) must approach zero more slowly 
than 1/E as E approaches - 00. In fact, if we solve the Frisch-Lloyd equation in the 
limit E -+ - co, it can be proved this is indeed the case (Luttinger 1976). 

Using the path-integral method developed by Luttinger and Friedberg (1975) to 
study the partition function for repulsive potentials introduces no difficulties. However, 
since we intend to use the path-integral method to deal with the attractive potentials, 
we write the random potentials V(x)  as follows: 

0022-3719/79/183687+04 $01.00 0 1979 The Institute of Physics 3687 



3688 c-Y  Lu 

where xi are randomly distributed. According to Luttinger and Friedberg we can write: 

I ( P )  3 (2n,8)1’2Y2(0) exp( - PQ). 
I (P )  is defined as (x~((Rl)),,,lz,”, where z j  is the partition function in the absence of 
impurities. 

Q = (+P’> + 2 p / P  dR(1 - exp(PuOy2(R)) s: 
and the non-linear self-consistent equation of Y ( R )  is given by 

- W’ 2 - p u o  exp(pvoY2(x))Y(x) = E ~ ( x ) .  

Hence, the effective self-consistent potential Cp(x) is an attractive potential and is given by 

4(x) = - PC0 exP(pvo~2(x)). 

We shall determine the ‘best’ Cp which gives the strongest inequality and therefore the 
best value of the partition function. If we assume Y(x) is localised in some region, in 
the limit of large p ,  the effective potential is a deep attractive hole, and in iterative 
procedure, the potential will turn out to be a very narrow and very deep well. Therefore, 
we initially set Cp(x) = - %6(x), and vary the positive parameter A to get 

[ - 3d2/dx2) - A~(x)]Y(x) = - +k2/2Y(x) 
where 

E = - -$k2 < 0. 

This equation is easily solved by matching the boundary condition at the origin: 

Y’(O+) - Y ( o - )  = 23, 

~ ( x )  = J%exp( - 3vjxl) 

Y(O+) = Y(o-). 

The solution is 
E = - LA2 

2 

We can immediately calculate Q with this wavefunction : 

Q = +A2 +-- (1 - exp[pvo exp( - 2AR)]) dR. : sor 
By partial integration, the above integral becomes 

oc to 1 dR{l - exp[,h, exp( - 23,R)I) = - 2v0A2,8 ( Rexp[pv,Aexp( - 2AR) - 21A] dR 
J o  J o  

and evaluating the integral by the saddle-point approximation for a fast-decreasing 
function g(R), we have 

JO7 f ( R )  exp(Pg(R)) dR exp(Ps(0)) p R )  exp(Pg’(O)R) dR 

because the main contribution comes from the neighbourhood of the origin. By setting 

f ( R )  = R exp( - 2AR), g(R) = zj,iexp( - 2AR) 

then the integral is given by 
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I E j: R exp[pllv, exp( - 21R) - 2l.R] dR E exp(pv,ll) 

x R = exp(j?.t.,A)(1/A2) 
where 

A = 2A + 2 P p v o  

Therefore, we can write 

Q E +A2 - [ p  exp(,8vo)]/(p2voA2). 

The self-consistent condition requires Q to be the minimum, so Q must be stationary 
with respect to the variation of 1, 

(aQ/a1) = 0, 
then 

I. - (p/pn2)  exp(pv,lu) + 2p[e~p(pv,n)/(v,,8~n~)] = 0. 

The last term of this equation is smaller than the second by an order of ,6, so by neglecting 
it, A can be determined by the following equation: 

3L3 = ( P / P )  exp(Pv04. 

For large 8, this equation has no solution at all. This means there is no self-consistent 
way to  adjust A to make Q a minimum, except by taking A = CO which makes Q = - 00. 
However, if Q = - CO, then z( j )  = CO. The above simple evaluation has indicated the 
non-existence of single-particle partition function for the Frisch-Lloyd model disordered 
system. 

It is easy to see the physical reason for this: the &functions have no repulsive core 
and easily produce regions where the potential is very negative. The density of levels 
of the Frisch-Lloyd model indeed goes to zero as the energy approaches -00, but 
not rapidly enough for the partition function to exist. If, for example, the Frisch-Lloyd 
model is modified so that the &functions can only occur on a regular lattice like that 
of a random alloy and there never can be more than one on any lattice point (this prevents 
too many of them from getting too close together), it is seen that the partition function 
converges (Lu 1979). 

Here we give a very approximate physical estimate of the density of levels as E 
approaches - CO : the low-lying states of the Frisch-Lloyd model arise from the states 
where an electron is bound to a deep potential well arising from many &functions very 
close to each other. If the binding energy of the particle is - k2/2, then the extent of the 
wavefunction is given by 

b N l /k = 1/(21EI)”’ 

Approximately 1 &function potentials are required within b, where 1 is to be determined 
by the condition that the average magnitude of the potential in the well is of the order 
of magnitude of the binding energy. That is 

1 x v,/b N k2 or 1 N k / v ,  = 
The probability P of finding 1 randomly distributed points out of v on an interval L in 
the range b is given by 
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P = v!/[(v - l)!l!](b/L)L 

P - exp[( - 1 Ig 1)  + (1  Ig(bp))] - exp(2R Ig R )  
Asymptotically, for large v and L, 

by using the Stirling approximation, where p = v/L is the mean density. It is clear that 
the leading term of the density of states at E must be proportional to this factor. Since 

J -  x 

it can easily be seen that the integrand is divergent as E approaches - x; hence the 
partition function per unit length is also divergent. 

It should be noted that the ‘partition function’ in the method described by Luttinger 
and Friedberg is the ‘single-particle partition function’. It is given by the Laplace 
transform of the single-particle density of states. For a ‘Boltzmann’ electron gas system, 
the N-particle partition function Z,(P) is given by (z(P)) , /N!,  so the divergence of z(P) 
just implies the divergence of the free energy of the Boltzmann electron gas moving in 
the Frisch-Lloyd disordered model system. If we treat the electrons as fermions however 
(this is the more realistic case), the divergence of the single-particle partition function 
does not necessarily imply the non-existence of the free energy of the Fermi gas system. 
Hence, if Fermi statistics are used for the electrons moving in the Frisch-Lloyd model 
system, although the single-particle partition function is divergent, we may not conclude 
that the model is unstable. 
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