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Abstract

In this study, we grow GaAs on InGaP by LP-MOCVD. Due to the
material property of GaAs/InGaP material system, the InGaAsP
intermixing layer formed spontaneously:in the interface. This quaternary
intermixing layer reduced:HBT current gain and etching selectivity.
Therefore as GaAs was grown on-InGaP, the thinner the InGaAsP layer
the better the performance of.our devices.

As our experiments were concerned, the after growth of InGaP,
GaAs was grown at a lower temperature than that for InGaP. This made
the P atoms on the InGaP surface hard to desorb and greatly reduce the
thickness of InGaAsP intermixing layer. In addition, the lower desorption
rate of P atoms increases the PH; off time. This reduced the residual PH;
in the reactor chamber dramatically and restrained the formation of
InGaAsP layer. Both the data of LT-PL and TEM confirmed the
experimental results discussed above.

Finally, we used the optimum conditions to grow an InGaP etching

stop layer between GaAs layers. By carrying out the etching process, we
found a 20A InGaP etching stop layer will not be penetrated if the



etching time were less than 45 sec. By using our optimum growth
conditions, the required thickness of InGaP etching stop layer of

GaAs/InGaP material will be greatly reduced.
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Figure Captions

Figure 1-1  The band diagram and advantages of InGaP/GaAs material

system.

Figure 1-2  The schematic diagram of GaAs/InGaP/GaAs

heterostructure interface.

Figure 1.3a The diagram of GaAs/InGaP/GaAs heterostructure with an

inserted InGaAsP layer.

Figure 1.3b  The corresponding band diagram of Fig 1.3a.

Figure 2.1  Typical reciprocal temperature versus growth rate curve for

MOCVD processes,

Figure 2.2 Pyrolysis curyves of TEGa.in different carrier gas.

Figure 2.3 Pyrolysis curves of TMIn in different carrier gas.

Figure 2.4 Percentage decomposition versus temperature for 5%
concentration of AsHs'in various ambient with different
surfaces.

Figure 2.5 Dependence of PH; pyrolysis on different carrier gases
and surface types.

Figure 2.6 The overall MOCVD growth process.

Figure 2.7 The schematic diagram of our MOCVD system.

Figure 2.8 The schematic diagram of our reactor system including the
geometry of reactor and susceptor.

Figure 2.9 The schematic diagram of the bubbler and bath tank.

Figure 3.1a  The CuPt-type structure; A~B:group Il element; C:group

V element.



Figure 3.1b
Figure 3.1c
Figure 3.2

Figure 4.1

Figure 4.2

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6a
Figure 5.6b
Figure 5.6¢
Figure 5.6d
Figure 5.6e

Figure 5.7

Figure 5.8a
Figure 5.8b

The 2-D diagram of ordering InGaP.

The 3-D diagram of ordering InGaP.

The Energy band diagram of the base-collector junction of
InGaP/GaAs HBT.

The schematic diagram of our GaAs/InGaP/GaAs
heterostructure sample.

Our experimental flow chart.

The DCX data of Sample A, the flow rate of TMIn is 54
scecm.

The DCX data of Sample B, the flow rate of TMIn is 51
scecm.

The DCX data'of Sample C;.the flow rate of TMIn is 51
sccm but the Ty of InGaP is 700C.

The DCX of thelattice-matched In,Ga; 4P layer, the flow
rate of TMIn is49.7 scem.

Schematic diagram of GaAs/InGaP/GaAs growth process.

The PL intensity verse wavelength of sample-650.

The PL intensity verse wavelength of sample-625.

The PL intensity verse wavelength of sample-600.

The PL intensity verse wavelength of sample-575.

The PL intensity verse wavelength of four samples with
different GaAs cap growth temperature.

The TEM bright field image of sample-600.

The HRTEM of sample-625.

The depth profile from point Ato B on Fig. 5.8a shows no
obvious step across interface.



Figure 5.9a
Figure 5.9b

Figure 5.10a

Figure 5.10b

Figure 5.10c

Figure 5.10d

Figure 5.10e

Figure 5.11a
Figure 5.11b

Figure 5.12a
Figure 5.12b

Figure 5.13
Figure 5.14

The STEM image of sample-625.

The composition profile across the interface of GaAs and
InGaP.

The PL intensity verse wavelength of sample with 0 sec
PH; off time.

The PL intensity verse wavelength of sample with 1 sec
PH; off time.

The PL intensity verse wavelength of sample with 2 sec
PH; off time.

The PL intensity verse wavelength of sample with 3 sec
PH; off time.

The PL intensity verse wavelength of sample with 10 sec
PH; off time.

The STEM-image of-sample with 0 sec PH; off.

The composition-profile across the interface of GaAs and
InGaP.

The STEM image of sample with 3 sec PH; off.

The composition profile across the interface of GaAs and
InGaP.

The STEM image of sample with 10 sec PH; off.

The etching depth verse etching time of samples with

different thickness of InGaP layer.
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