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Nanofabrication of the alloy-ended CNTs and the structure-property analyses

at each processing step
Graduate student: Kuo-Ming Chiu Professor: Cheng-Tze Kuo

National Chiao Tung University
Department of Material Science & Engineering

Abstract

In order to cap the tip cavities of the open-ended carbon nénotubes (CNTs) with the
phase-change alloy for potential applications as the nano-resolution storage media, the
Co-assisted CNTs were first synthesized by electron cyclotron resonance chemical vapor
deposition (ECR-CVD) with H, and CH, as the gas sources. Then, the as-grown CNTs were
post-treated in H-plasma atmosphere, to remove the carbon layers covered on cataysts, and
subsequently immersed in 0.25 M HNO§90| ut“oQ to: remove the catalysts from the tips. The
open-ended CNTs with a bowl-likesshape /@s were foIIowed by coating with a phase-change
dloy layer of Ge,SbTes (200 nmiin thlckheps) via sputten ng process, and then heat treated in
vacuum (10 Torr) for 30 minutes to. trlm the aIon off from the sidewalls of CNTs to obtain the
alloy-ended CNTs. The main proc ng parameters include catalyst thickness, Ho/CH, ratio, time
of H-plasma post-treatment, chemical etchlng time and heat-treating temperature. The structures
and properties in each processing step were characterized by scanning electron microscopy
(SEM), transmission electron microscopy (TEM), Raman spectroscopy, Auger electron
spectroscopy (AES) and field emission J-E measurements. The following conclusions can be
drawn from these Studi €s.

Regarding effect of catalyst thickness, a thicker catalyst layer can result in an increase in
tube diameter and a decrease in tube number density of CNTs. Asto effect of CH,4 concentration,
agreater carbon concentration is more favor to grow CNTs with carbon sheets on the sidewalls of
CNTsto become the rattan-like CNTs instead of tubule-like CNTs. On the other hand, a higher H,
concentration during CNTs growth can give rise to a lower Raman Ip/lg ratio and more
tubule-like CNTs formation.

Effect of H-plasma post-treatment is essentially to remove the carbon layers from the



as-grown CNTs tips and may cause the rattan-like CNTs to become tubule-like CNTs. The
H-plasma etching time can be varied to merely etch off the carbon layers on the tips of CNTs and
still maintain the structure integrity. In other words, the rattan-like CNTs can be changed to the
tubule-like CNTs without carbon layers on the tips by 7 min post H-plasma treatment. On the
other hand, the carbon layers on the tips of the as-grown tubule-like CNTs can be remNJy 1
min H-plasma post-treatment without too much damage to the stems of CNTs. Futthékfﬁc}e,/\'f IS
found that the preferred etching sites for H-plasma post-treatment are on the/hi ghér%héd aress,
such as regions with the greater curvatures. Effect of chemical etching isbas caIMQ remove the
Co-catalyst off by chemical reaction. Under the present conditions, 3/r>nin chemical etching time
can almost remove al catalysts from the carbon layer-stripped /tipéja\t)ecome the open-ended
CNTswithout significant damage to their stems. A //

The experimental results also show that the alloy-coated opéh—ended CNTs can be heat

/

treated to trim off the aloys from their sidewalls in vacuu 420°C for 30 min to become an

alloy-capped CNTs. Furthermore, the.Auger 4 yses\sl\q&v that /ﬁ/qe sbutteri ng process must be
modified to obtain the required compositi

of phase hange;{ailjfoyafter being capped on the tips
of CNTs, where the compositions of yéézeuchange aJIc}yS may be changed from Te-rich to
Ge-rich due to the faster evaporation fate;s / Sband T%\

Regarding field emission p ties, th(;re'sigl'té indicate that the open-ended CNTs may
behave better properties tﬁa{q wzgﬁwntvubﬁlelike CNTs due to higher local aspect ratio
around the open-ended tips, if ﬁ);eir st/rucﬁ,;re integrity can be maintained. On the other hand, the
field emission prop ii&ﬁkthe carbon Iéyer-stripped CNTs are declined by comparing with the
as-grown CNTs /duae’ftx oxidation of the exposed catalysts without carbon layer protection.
H-plasma post- ment may also cause a decrease in field emission properties by forming more

def and fl at,ten‘ surfaces at the tips.

N/
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