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ANALYSIS OF NUCLEAR REACTOR SYSTEMS BY

USE OF THE INTEGRATION METHOD

M.S. Shieh* K.W. Han**

Summary

The integration method is applied to
the analysis of nuclear reactor systems.
For second order systems this method is
the same and even better than the isocline
method; for third order systems, it offers
some advantages in finding the character-
istics of trajectories in state-space.
Since stability as well as transient res-
ponse characteristics can be realized
directly from trajectories, the integra-
tion method is useful for system analysis.

1. Introduction

In the analysis of control systems,
the phase-plane method is very useful.
It gives the overall phase portrait of a
system, from which the stability and res-
ponse characteristics can be realized
directly.' Unfortunately, however, this
method can only be applied to second order
systems. It becomes very complex for
third order systems.

The state-variable method is very
powerful for finding system trajectories
with given initial conditions. But it
does not give an overall view about the
characteristics of a system unless a
great number of trajectories are calcu-
lated and plotted.

For stability analysis of nonlinear
systems, the most powerful method is, up
to now, the second method of Liapunov,
which gives sufficient conditions for sys-
tem stability and some information about
the time domain response.1'13 From the
topological viewpoint, the second method
of Liapunov can give a region in a phase-
plane or phase-space such that all the
trajectories in this region will approach
the singular point asymptotically or with
a limit cycle. The disadvantage of the
second method of Liapunov is that there
is no definite way of finding a Liapunov
function and that the information obtained
is relatively rough in comparison with a

phase-portrait.
In short, the best method for the

analysis of a second order system is to
plot a phase portrait.4'5 Thus, to ana-

lyze a third order system by finding its
phase-portrait in a three dimensional
space should be of interest to engineers.
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The pioneer work of studying the
trajectories of third order Nuclear reac-
tor control systems was given by H.B. Smets.6
In Smets' work several planes have been used
for studying the characteristics in a cer-
tain region in a three dimensional phase-
space. In addition, some special surfaces
which contain a whole set of trajectories
have been shown.

Another work dealing with trajectories
of third order nonlinear systems was done
by Chu and Han, 7 in which a method termed
the "integration method" has been proposed.
The integration method is similar to the
method proposed by Nagaraja and Chalam.8
The present work may be considered an ex-
tension of the works of references 6 to 8
with emphases on the analysis of nuclear
reactor systems. First, a review of the
integration method is given in the follow-
ing section.

2. The integration method

Assume that a system is represented
by a matrix equation as

[X] = [A] [X] (1)

where [X] and [X] are vectors, and [A] is
a square matrix with state variables and
constants as its elements. Eq. (1) can be
rewritten as

[GI = [X] - [A][X] = 0 (2)

where [G] is the vector with elements
n

g. = x. - Z a.. x. = 0 (3)
j=jl 1' I

Multiplying Eq.(3) by xk (k=1,2,..., n),
yields

Xk gi = 0 (4)

Integrating Eq.(4) with respect to time,
one has

E+ f(-El) dt = 0 (5)

where E1 consists of all the terms integr-
able to the closed forms, and E, is the
time derivative of El. If a square matrix
B is selected with its elements represent-
ing the manipulation of the components of
Eq.(4), then one has

fr[xl [B][G]dt = E2 + f -k2)dt
= 0 (6)

In addition, Eq.(2) can be integrated dir-
ectly to give

n
: f g.i dt = E3 + f(-E3) dt = 0

i=l
(7)
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or to write an equation such as

f g. dt = E4 + f (-E4) dt = 0
X.

(8)

xl plane). By choosing

[ 1 o0
[B]=l

-0 1 J

to generate the required functions E4 and
';4 .

All the above given functions Ei (i=
1,2,3,4,....) and any of the combinations
of Ei are called the integration functions
or simply the E-functions.1 In case an
E-function can meet the requirements that
a Liapunov function does, it is a Liapunov
function.3'7 8 But the main objective of
the integration method is to find the cha-
racteristics of trajectories in a state-
plane or state-space. Once the trajecto-
ries in a state-space are found, the sys-
tem characteristics can be realized direct-
ly. This will be shown in the following
section.

3. Applications of the Integration Method
to Second Order Nuclear Reactor Systems

Consider a nuclear reactor with eff-
ective-life-time model and with constant
power removal.9 The dynamic equations are

n = -() Tn (9)

T = Ko (n-no) (10)

There is one equilibrium point at n=n0 and
T=0. Introducing the new state variables

the E-function and its first time derivative
are

E 1= l2 + 1 21-2 l+ X (18)

and

E = -0.0316 xl x2 (19)

respectively. Note that, for various values
of E1, Eq.(18) represents a family of con-
centric circles as shown in Fig.l, where the
contours for f1=0, i.e., the x1 and x2 axes,
are also shown. This result shows that all
the trajectories of the system, while cro-
ssing the xX and x2 axes, are tangent to the
circles difined by the El-functions. Al-
though the directions of the trajectories in
any place other than the x1 and x2 axes can
not be clearly defined, their relations with
respect to the El-circles can be defined by
the polarities of ft. For example, at point
A in the first guadrant of Fig.1, the tra-
jectory is going into the circle of E1=8
(because t1<0) while at point B in the fourth
guadrant the trajectory is going out from
the circle (because E1>0). In order to know
more about the characteristics of trajecto-
ries, additional E and t-functions should be
used. For

B =
oh1 1

one has

E =1x2 + 1 2 - X

and
n = nox, + nO

and

o n o

Choosing the values of the parameters as

K* = 0.00001 °C/watt-sec, n0 = 10 5 watt,

* = 0.0001 °C and Q = 0.1 sec,

Eqs.(9) and (10) become

x -0.0316 xlx2 - 0.0316

13)
E = 0.0316(xl+xIx2-xlx2-x2) (22)

The contours for various values of E2 and

14) E2=0 are plotted in Fig.2, where the regions
for positive or neqative t are also indica-
ted. Same as before, the trajectories are
parallel to the E-contours while crossing
the contours of t =0. But note that the line
(A) should be exciuded because it represents
the minimum value of E2(i.e. E2=0), and that
the polarity of t2 are different on each
side of line A; therefore, the trajectories
will cross line A instead of staying on it.

In addition, by direct integration of
Eqs. (15) and (16), one has

15)

(23)E3 = Xl + X2
and

X2 = 0.0316 xi (16)

respectively. The new equilibrium point
is the origin of the state-plane (x2 versus

and

E3 = 0.0316(x1-x1x2-x2)

Similarly, one may choose

and

_ (n-no)
I nO

ct
(X2= ( 0

K

(11)

one has

(12)

(20)

(21)

(24)

1079

(17)



(25) respect to time, one has

E5 = X - 3x2

then one has

E4 = 0.0316(3x -x1x2-x2)

and

E5 = 0.0316(-3xl-x1x2-x2)

(26)

(32)

Therefore, the E-function is

E = - ln (x+1) + 1X2 + x1 2 2

(27)

(33)

and the t-function is

E = 0 (34)
(28)

respectively. Finally, all the contours of
the E-functions and the functions of ti=O
(i=l,2,3,4,5) are plotted in one plane as
shown in Fig.3. This can be done easily by
a computer with a plotter. Following the
slope marks in Fig.3, the phase portrait
of the system can be sketched.

Note that, letting E=x1+Nx2 (where N
is a constant), the integration method is
exactly the isocline method. However, the
integration method has at least four advan-
tages as stated in the following:

The first advantage of the integration
method is that it can provide the contours
for E=ax2+bxx2 +cx2 (where a, b, and c are
constants) and for E=0; thus it is more
flexible than the isocline method.

Second, the integration method gives
the direction of the trajectory at any
point in the state-plane by checking with
all the polarities of the t-functions at
that point. For example, the trajectory
passing through the point P in Fig.3 is
from P to Q but not from P to R, since only
the direction from P to Q can meet all the
requirements defined by the polarities of
the t-functions.

Third, for certain phase portraits, the
integration method can give the equation of
the trajectories, which is the E-function
with its first time derivative always equal
to zero. In other words, the trajectory
itself is the contour of E=Q. For example,
for the system considered, by the manipula-
tions,

Since the region for xl<-l has no physical
meaning, Eq.(33) represents all the trajec-
tories in the useful region of the state-
plane. For various values of E, the trajec-
tories are plotted as shown in Fig.3.

Note that the method of finding the E-
function with t=0 is to formulate an E-
function containing all the terms which are
integrable, and then to formulate additional
E-functions to cancel all the terms in E,
i.e., to make t=o.

The fourth advantage of the integration
method is that it can be applied to third
order systems as shown in the next section.

Before the ending of this section, it
is interesting to consider another second
order nonlinear system analyzed in referen-
ces 1 and 9. The system equations are

Xi = - 2x1 + x1X2

X2 = - X2 + XlX2

(35)

There are two equilibrium points at (0,0)
and (1,2), respectively. Using

[B] = (3
i 1

.

and
[ -1

[B] =

t-1 1

The results are

(36)

37)

(38)

(x1+1) x Eq-(15),

X2 X Eq.(16) and 1 x Eq.(15),

the results are

x 1 + 0.0316 x2 = 0
x1+1

x2x2 - 0.0316 x1x2 = 0

xi + 0.0316 X x2 + 0.0316 x2 = 0

El = 2X12 X2 2 2

= - 2X1 - X2 + X + X1X2

E = 1X2+ 'xK + X X2 = 2 1 2 2 1 2

=-2x2 _-x2+3x x2 1 2 1 2

(29)

(30)

(31)

Respectively. Adding Eqs.(29) to (31) to-
gether and taking the integration with

By direct integration, one has

E3 = x1 + x2

E3 = - 2x - x2 + 2x x

The contours for E1, E2, E3 and E1=E2=E3=O
are plotted in Fig.4, where some of the
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- ln(x +1) + 1 X2 + x = 0

(39)

(40)

(41)

(42)

(43)

(44)

E4 =x1 + 3x2

and



system trajectories are also plotted. It
is interesting to note that the trajecto-
ries can be sketched approximately by use
of these three sets of E-contours and the
polarities of E1, E2, and E3. 1

4. Application of the Integration Method to
a Third Order Nuclear Reactor System

In this section, an adbatic model of a
third order nuclear reactor is considered.
Two approaches for applying the integra-
tion method are presented. The first app-
roach is to formulate an E-function with its
first time derivative equal to zero; the
second approach is to set up several E-
functions and to find the directions of
trajectories in state-space.

(1) The first approach
Consider the dynamic equations of the

adbatic model as

n = 9 (k0-r P-6)n + xc

C = 9- n - X c

T = a n

(45)

(46)

(47)

where n is the reactor power, Q is the neu-
tron generation time, k0 is the constant
amount of reactivity necessary to maintain
operating equilibrium at a given flux level,
r is the temperature coefficient of feedback
reactivity. a is total fraction of delayed
neutrons, A is delayed neutron precusor de-
cay constant, C is precusor nuclei/cm3, T
is incremental temperature quantity, and a
is the receiprocal of the reactor heat capa-
city.

The equilibrium points are on the line
of n=0 and C=O. Introducing a new set of
variables, such as xi=n, x2=C, x3=T, Eqs.
(45) and (46) become

1-
xl - - (k -rx3-)x1 -Tx2=0
x2 - t x =0+ x2 °

(48)

(49)

respectively. Taking the manipulation, ak-x Eq.(47), the result is

a_ 3 9,+1o (50)

Similarly, taking the manipulation, rX3 x
Eq.(47), one has

aP. TX3x

a9, X3 - 9, XI - (51)

Adding Eqs.(48) to (51) together, and inte-
grating with respect to time, the result is

XI + x2 + (ko-rx3)2/2raQ = 0

which gives

E = x + x2 + (k -rx3) 2/2raZ = 0

(52)

(53)

and

E = 0 (54)

Eq.(53) shows that the E-function does not
represent a closed surface because it is not
a positive definite function, so it is not a
conventional Liapunov function. However, for
the system considered, it is impossible that
the neutron power (n) and the precusor (C)
are negative. In other words, the useful
subspace is defined by xl>O, x2>0, X3>0.
Therefore, the surface represented by the
E-function and limited by the planes x1=0
and x2=0 will contain all the trajectories
originally started in this surface. This
surface is called the "E-surface" in the la-
tter part of this paper.

For illustration, the parameters are
chosen at

r = 0.00001, k3 = 0.0005, Q - 0.0001,

a = 50, 3 = 0.001, and 0= 0.031.

Letting E=4.9, and choosing several sets of
initial conditions in the E-surface for E=
4.9, such as

(0)= 1. 5, X2(0) 2. 5, x3 (0) = 20;

xl(O) = 3.0, x2(0) = 1.8, x3(0) = 60;

xl(°) = 3.0, x2 (0) 1.0, x3 (0) 80;

and

i(°) = 1.2, X2(0) = 1.2, x3(0) 100,

the E-surface and the trajectories startinq
from the above given initial conditions are
plotted as shown in Fig.5. It can be seen
that every trajectory is staying in the E-
surface and reach the point of equilibrium
on the x3-axis. The same system has been
considered in reference 6. Here, the system-
atic procedure for obtaining the E-function
with F=O, and the construction of the tra-
jectories staying in the E-surface are use-
ful extensions.

From Fig.5, it can be seen that, by plo-
tting the E-surface containing several tra-
jectories, one can have a clear understand-
ing of the characteristics of the considered
system. This approach is better than the
conventional Liapunov method, which can only
offer sufficient conditions of stability
along with some rough idea on transient res-
ponse.

(2) The second approach

From Eqs.(45) to (47), after the substi-
tutions of the state variables and the valu-
es of parameters as defined before, one has

(55)xI = (-5.0-0. lx3)xi + 0. 031x2

X2 = loxI - 0. 031x2

x3 = 50x1

(56)

(57)
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Multiplying Eqs.(55) to (57) by xl, x2, and
x3, respectively, the results are

x1x1 + (5+0.lx3)x I - 0.031lx 2 = 0

2x2x2 - lOx2 + 0.03lx2 = 0

x3 3 - 50xx3 = 0

(58)

(59)

(60)

Then adding Eqs.(58) to (60) together and
integrating with respect to time, one has

2(x2 +x2+x2) + f- [(-5-0.lx3)x+1O.031xlx2
-0. 031x2+50x x3]dt = 0 (61)

which gives

Note also that, although there is no E-
function which is positive definite except
El, and that there is no E-function which
is negative definite, the system trajecto-
ries can be obtained roughly from the sur-
faces of Ei=constant and Ai=O.

5. Consideration of High Order Systems

For 4-th order or higher order systems,
it is impossible to plot the trajectories in
a three dimensional state-space. Neverthe-
less, it is useful to find the E-surface with
E=0 since it can give an overall view of the
characteristics of trajectories. For those
systems, if it is impossible to find the E-
surface with E=0, the E-functions can be
used to generate Liapunov functions.''8

E1 = 1 (x+x2+x2)

and
2

E= (-5-0.lx3)x1 + 10.03lx2
- 0.031x2 + 50x x3

Similarly, integrating Eq.(56)
to time, one has

(62)

(63)

with respect

6. Conclusions

In this paper, the methods of using E-
functions to study the trajectories of nu-
clear reactor systems have been presented.
These methods, which provide a better under-
standing of the trajectories in state-space,
can be considered as an extension of the
phase-plane method to third order systems.

(64)

and

E = lOx - 0. 031x2 (65)

In addition, taking the manipulations such
as Eq.(55)+Eq.(56)+Eq.(57)xO.l; Eq.(55)+Eq.
(56)+Eq.(57)xO.2; and Eq. (55)+Eq. (56); and
then integrating them with respect to time,
one has

E3 = x + X2x+ 0.lx3
E3 = 1OX1 - O*lXlX3

E4 = xl + x2 + 0.2x3

E4 = 15x1 - O-lxlx3
E5 x1 + x2

E5 = 5x - 0.lxIx3

(66)

(67)

(68)

(69)

(70)
(71)

Selecting Ei(i=1,2,..,5) as arbitrary cons-
tants, the surfaces for Ei and Ai=0 can be
plotted as shown in Fig.6. Thus the direc-
tions of all the trajectories while passing
through the planes of Ei=0 must be parallel
to the corresponding E-surface. As shown
in Fig.6, for the sake of simplicity, dashed
lines are used to represent the relation
between the Ei-surfaces and the planes for
ti=O. It can be seen that the trajectories
started in the region x >0, x2>0, x3>0 must
converge to the line of equilibrium; i.e.,
the x3-axis. A typical trajectory with ini-
tial condition (1.5,450,50) is sketched as
shown in Fig.6. This trajectory should be
in the same shape as those shown in Fig.5,
but the scale change of the x2-axis in Fig.6
makes it look different.
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Fig. I THE Es- CONTOURS a THE CONTOURS
FOR E *O.

Fig. 2 THE CONTOURS FOR E3uO a FOR

VARIOUS VALUES OF E2-

1083



FIg. 3 CONTOURS FOR VARIOUS FORMS OF E
a E OO.

Fig. 4 TO SKETCH THE TRAJECTORIES BY USE
OF THE CONTOURS FOR El-O a FOR

VARIOUS VALUSE OF El .

ElmO E2-0

Fig. 5 AN E-SURFACE CONTAINING A FAMILY OF

TRAJECTORIES.
Fig. 6 CONSTRUCTION OF TRAJECTORY BY USE

OF E a E- FUNCTIONS .
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