Figure Captions

Chapter 1	1
-----------	---

Fig.1.1 Fuel cell stack application on several electronic productions
Fig.1.2 The schematic images of fuel cell stack
Fig.1.3 Atomic structure of carbon: (a) fullerence (b) nanotubes (c) graphite,
(d)diamond7
Fig.1.4 Carbon nanotubes (a) SEM image of as-grown MWNTs (b) TEM image of an
individual MWNT8
Fig.1.5 The SEMmicrographs of platinum nanoparticles on GCNFs/graphite electrode
and graphite electrode. (a) GCNFs/graphite electrode (low magnification)
(b) GCNFs/graphite electrode (high magnification)9
Fig.1.6 (a) Carbon nanocoils grown among the carbon microcoils under an applied
magnetic field in the reaction zone. Catalyst: Ni fine powder
(b) Carbon nanocoils. Catalyst: Au sputtered films
Fig.1.7 SEM images of the carbon nanoflake films deposited at the substrate
temperature of (a)400,(b) 500,(c) 600 (d) and 700 °C11
Chapter 2.
Fig.2.1 The schematic of a unit cell of conventional PEMFC14
Fig.2.2 MEA structure
Fig.2.3 The chemical formula and physical structure of the membrane Nafion15
Fig.2.4 Schematic diagram of vapor-solid (VS) growth model23
Fig.2.5 Schematic diagram of VLS growth mechanism for nanotubes23
Fig 2.6 Schematic of SLS growth mechanism 23

Chapter 3.

Fig.3.1 Flow chart of experimental procedures	26
Fig.3.2 Schematic diagram of the bias assisted microwave plasma chemical vapor	
deposition system	.27
Fig.3.3 Experimental detail of chemical solution reaction of Pt/ Ru particle	.29
Fig 3.4 Schematic diagram of a Scanning Electron Microscopy	.30
Fig.3.5 Raman shift of (a) diamond, (b) diamond film, (c) amorphous carbon,	(d)
graphite	.32
Fig.3.6 Schematic diagram of micro-Raman equipment	.32
Fig.3.7 Schematic diagram of BET equipment and analysis data	.33
Fig.3.8 Schematic diagram of four-point-probe working mechanism	.33
Fig.3.9 The basic shape of the current response for a cyclic voltammetry experimen	ıt.
Chapter 4. Fig.4.1 SEM images of changes negative bias voltage for synthesizing carb	
nanotubes on silicon	
Fig.4.2 HRTEM images of an individual CNT	.40
Fig.4.3 Raman spectrum of CNT	.40
Fig.4.4 SEM images of changes from -100V to +100V in the symmetric period ti	me
for synthesizing carbon flakes on silicon	.42
Fig 4.5 HRTEM of individual petal of CNF	.43
Fig.4.6 Raman spectrum of carbon nanoflake under (-100, +100) V for 10mins	.43
Fig.4.7 SEM images of fixed -100V for10mins and switch to +100V in the differ	ent
period time for synthesizing carbon flakes on silicon	.46
Fig.4.8. Enlarged SEM image of Fig 4.7	.46

Fig.4.9 Raman spectrum and components ratio of fixed -100V for 10mins, changed
+100V for 5~20mins
Fig.4.10 SEM images of fixed -100V for10mins and changed positive bias voltage
from +50V~+200V, each for 10mins for synthesizing CNFs on silicon48
Fig.4.11 Enlarged SEM images of Fig.4.1048
Fig.4.12 Raman spectrum and components ratio of fixed -100V for 10mins, changed
+50~200V,each for 10mis
Fig.4.13 SEM images of changed +50~200V, each for 10mins in front of fixed -100V
for 10 mins: (a) +50V (b) +100V (c) +150V (d) +200V51
Fig.4.14 SEM images of compared two orders of positive bias applying:
(a)+100V,-100V (b)-100V,+100, each for 10 mins51
Fig.4.15 SEM images of improvement of CNT to CNF:(a)-(b) two types of CNT,
(c)-(d) CNF grown on CNT separately of (a)-(b), (e)-(f) enlarged image of
(c)-(d)
Fig.4.16 SEM images of CNFs' collection
Fig.4.17 HRTEM of CNF grown on CNT: (a) CNT stem with petals
(b)stem has branch shows graphitic layers54
Fig.4.18 Growth model suspension of CNF55
Fig.4.19 SEM images of plain carbon cloth textured by carbon fiber with different
magnitude57
Fig.4.20 SEM images of plain carbon cloth deposited of CNFs and CNTs:
(a) CNFs (b) CNTs (c)-(d) enlarged image of (a)-(b) separately58
Fig.4.21 TEM images of Pt on CNF and CNT by sputtering60
Fig.4.22. TEM images of Pt on CNF by sputtering and poyol: (a) sputtering
(b)poyol61

Fig.4.23 HRTEM images of deposited Pt particle:(a) Pt on CNF (b) diffraction
pattern of Pt62
Fig.4.24 EDX of Pt on CNF62
Fig.4.25 Electroanalytical measurement setup63
Fig.4.26 The CVs of carbon cloth, Pt/carbon nanoflakes/carbon cloth, and Pt /carbon nanotubes/carbon cloth.
Fig.4.27 CVs of Pt/carbon nanotubes/carbon cloth by different concentatrtion of Pt/Ru
solution65
Fig.4.28 CVs of Pt/carbon nanoflakes/carbon cloth by different concentatrtion of
Pt/Ru solution65
Fig.4.29 CVs of Pt/carbon nanotubes/carbon cloth by different time of sputtering66
Fig.4.30 CVs of Pt/carbon nanotubes/carbon cloth by different applied current of sputtering
1896