

Available online at www.sciencedirect.com

Journal of Magnetism and Magnetic Materials 310 (2007) 813–815

<www.elsevier.com/locate/jmmm>

Orbital polarization and Jahn–Teller distortion of strained $La₀5Sr₀5MnO₃$ thin films

W.B. Wu^{a,b}, D.J. Huang^{a,c,*}, C.-M. Huang^a, C.-H. Hsu^a, C.F. Chang^{a,1}, H.-J. Lin^a, C.T. Chen^a

> ^aNational Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan ^bDepartment of Electrophysics, National Chiao-Tung University, Hsinchu 30010, Taiwan ^cDepartment of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan

> > Available online 15 November 2006

Abstract

We report spectroscopic evidence for orbital-mediated phases in strained $La_{0.5}Sr_{0.5}MnO₃$ thin films by combining soft X-ray spectroscopy and synthesis of manganite thin films. Measurements of polarization-dependent soft X-ray absorption reveal that electronic states responsible for the lowest-energy excitations in C-type antiferromagnetic $La_{0.5}Sr_{0.5}MnO_3$ films have an orbital symmetry of $3z^2 - r^2$, while those in A-type AFM films have an orbital symmetry of $x^2 - y^2$. Such orbital polarizations in strained films of manganite result from a combined effect of the Jahn–Teller distortion and the electron correlations of Mn 3d electrons. \odot 2006 Published by Elsevier B.V.

PACS: 75.70. -i; 75.25.+z; 78.70.Dm; 75.50.Ee

Keywords: Orbital ordering; Perovskite manganites; X-ray absorption

1. Introduction

Manganese oxides $A_{1-x}B_xMnO_3$ (A: the trivalent rareearth ions, B: divalent alkaline earth ions) exhibit numerous exotic physical phenomena [\[1–3\]](#page-2-0) which arise from the strong coupling among spin, charge, orbital, and lattice degrees of freedom in manganites [\[4,5\]](#page-2-0). For example, the Jahn–Teller distortion of Mn^{3+} ions in these compounds plays an important role in the underlying physics of such exotic physical phenomena [\[6\]](#page-2-0). Particularly the strain effect in manganites are closely related to their magnetic and transport properties [\[7–11\]](#page-2-0).

Konishi, et al. demonstrated that magnetic and electronic phases of the epitaxial strained $La_{1-x}Sr_xMnO_3$ films can be controlled via changing the lattice parameters of substrate [\[8\].](#page-2-0) A small tetragonal distortion in strained thin films of $La_{0.5}Sr_{0.5}MnO₃$ grown on $SrTiO₃$ or $LaAlO₃$ can result in ferro-orbital ordering of $d_{x^2-y^2}$ or $d_{3z^2-r^2}$ and different spin structures of C-type or A-type antiferromagnetic (AFM), respectively, depending upon the value of lateral strain c/a less or greater than one. SrTiO₃ and $LaAlO₃$ are denoted as STO and LAO, hereafter. The spinorbital phases can be well explained by band-structure calculations based on the local density approximation (LDA) [\[12\]](#page-2-0). LDA calculations, however, surprisingly predict that the $e_{\rm g}$ band of C-type AFM strained manganite films has a strong $x^2 - y^2$ orbital character at the Fermi level rather than $3z^2 - r^2$, although these films exhibit a ferro-orbital ordering of $d_{3z^2-r^2}$. Such a LDA prediction is inconsistent with the resistivity measurements that the C-type strained manganites is conductive only along the c-axis [\[8\].](#page-2-0)

Polarization-dependent soft X-ray absorption spectroscopy (XAS), particularly its linear dichroism, provides us with a powerful means to identify the spin and orbital occupation of transition-metal oxides [\[13–15\]](#page-2-0). Here we

^{*}Corresponding author. II Physikalisches Institut, Universtät zu Köln, 50937 Köln, Germany.

E-mail address: [djhuang@nsrrc.org.tw \(D.J. Huang\).](mailto:djhuang@nsrrc.org.tw) ¹

¹Present address: II Physikalisches Institut, Universtät zu Köln, 50937 Köln, Germany.

^{0304-8853/\$ -} see front matter \odot 2006 Published by Elsevier B.V. doi:[10.1016/j.jmmm.2006.10.705](dx.doi.org/10.1016/j.jmmm.2006.10.705)

demonstrate experimentally the existence of ferro-orbital ordered states resulting from tetragonal Jahn–Teller distortion by combining techniques of soft X-ray spectroscopy and synthesis of manganite thin films. To identify the orbital character of strained $La_{0.5}Sr_{0.5}MnO₃$ thin films, we measured polarization-dependent soft X-ray absorption on $La_{0.5}Sr_{0.5}MnO₃$ thin films grown epitaxially on STO and LAO with the technique of pulsed laser deposition (PLD) [\[16,17\].](#page-2-0)

2. Growth of epitaxial thin films

We used UV radiation of wavelength 248 nm from a KrF excimer laser to achieve the PLD growth of $La_{0.5}Sr_{0.5}MnO₃$ thin films epitaxially on STO(001) and $LAO(001)$. During the deposition of manganite thin films, substrates were kept at 900 K in a background oxygen pressure of 10 mTorr. The thickness of $La_{0.5}Sr_{0.5}MnO₃$ thin films is 200 A . X-ray diffraction (XRD) measurements were used to characterize the crystalline structure of $La_{0.5}Sr_{0.5}MnO₃$ thin films at the beamline 17A in the National Synchrotron Radiation Research Center (NSRRC), Taiwan with photon energy of 9.3 KeV. Fig. $1(A)$ shows the reciprocal-space mapping of the $(1\ 1\ 3)$ Bragg diffraction. The diffraction spots from the substrate and the thin film have the same momentum transfer Q_{110} along the $[1 1 0]$ direction. The XRD scans along the *c*-axis, i.e., the Q_{001} scan, of the (113) peaks are also plotted in Fig. 1(B). These Q_{001} scans show pronounced fringes resulting from the interference between X-rays reflected from the surface and the interface. We found that thin films exhibit tetragonal Jahn–Teller distortion with elongated

and contracted Mn–O bond length along the c-axis with the values of c/a for films on LAO and STO are 1.055 and 0.982, respectively.

3. Results and discussion

We performed XAS measurements on $La_{0.5}Sr_{0.5}MnO₃$ thin films at the Dragon beamline of NSRRC by collecting the sample drain current at the sample temperature of 300 K and the photon energy resolution was 0.2 eV.

[Fig. 2](#page-2-0) shows the polarization-dependent Mn 2p XAS spectra of $La_{0.5}Sr_{0.5}MnO₃$ films on LAO and STO taken with the E vector of photons perpendicular ($E \perp c$) and parallel ($\mathbf{E} || c$) to the samples c-axis. Linear dichroism (LD) spectrum is defined as the difference of the absorption spectra between incident photons with E vector perpendicular and parallel to sample surface normal (or named caxis). For the LAO case, if $d_{3z^2-r^2}$ is occupied, unoccupied e_g bands have an orbital polarization of $x^2 - y^2$. The multipole interaction [\[13\]](#page-2-0) described by the Gaunt coefficient indicate that the average cross section of Mn L-edge absorption excited by photons with $\mathbf{E} || c$ is smaller than that with $E \perp c$. [Fig. 2\(](#page-2-0)A) illustrates that the integrated intensity of LD measurements of $La_{0.5}Sr_{0.5}MnO₃$ films on LAO taken with $\mathbf{E} \perp c$ is larger than that with $\mathbf{E} || c$, and the LD spectrum is more or less positive throughout the L_3 and L_2 edges, thus revealing that the occupied e_g states of Mn are of $3z^2 - r^2$ symmetry. In contrast, films on STO show a polarization opposite to that of on LAO demonstrating that manganite films on STO are dominated by $d_{x^2-y^2}$ orbitals, as shown in [Fig. 2](#page-2-0)(B).

Fig. 1. (A) Left panel: the reciprocal-space mapping contour of the (113) X-ray Bragg diffraction peaks of $La_{0.5}Sr_{0.5}MnO_3$ epitaxial thin films on STO and LAO substrates. (B) Right panel: Q_{001} scans, i.e., scans with momentum transfer along the c direction of the (113) Bragg diffraction peak. Q_{110} is fixed at 0.3731 and 0.3618 \AA^{-1} , respectively, for Q_{001} scans of thin films deposited on LAO and STO.

Fig. 2. LD and polarization-dependent XAS taken with $\mathbf{E} || c$ (solid line) and $\mathbf{E} \perp c$ (broken line) of La_{0.5}Sr_{0.5}MnO₃ thin films grown on LAO(A) and $STO(B)$.

We therefore show that epitaxial thin films of $La_{0.5}Sr_{0.5}MnO₃$ with laterally compressed strain exhibit an orbital polarization of $3z^2 - r^2$, while those with laterally tensile strain has an orbital polarization of $x^2 - y^2$, consistent with the predictions from previous magnetization and resistivity measurements [8]. Particularly we found that electronic states responsible for the low-energy excitations of C-type AFM $La_{0.5}Sr_{0.5}MnO₃$ films are dominated by $3z^2 - r^2$ symmetry, rather than x^2 – y^2 symmetry.

References

- [1] Y. Tokura (Ed.), Colossal Magnetroresistive Oxides, Gordon and Breach, New York, 2000.
- [2] H. Kawano, et al., Phys. Rev. Lett. 78 (1997) 4253.
- [3] M.v. Zimmermann, et al., Phys. Rev. Lett. 83 (1999) 4872.
- [4] J.B. Goodenough, Phys. Rev. 100 (1955) 564.
- [5] Y. Tokura, N. Nagaosa, Science 288 (2000) 462.
- [6] K.H. Ahn, et al., Nature 428 (2004) 401.
- [7] Y. Suzuki, et al., Appl. Phys. Lett. 71 (1997) 140.
- [8] Y. Konishi, et al., J. Phys. Soc. Japan 68 (1999) 3790.
- [9] Yoichi Okimoto, et al., J. Phys. Soc. Japan 71 (2002) 613.
- [10] Y. Wakabayashi, et al., Phys. Rev. B 69 (2004) 144414.
- [11] Y. Ogimoto, et al., Phys. Rev. B 71 (2005) 060403(R).
- [12] Z. Fang, et al., Phys. Rev. Lett. 84 (2000) 3169.
- [13] H.B. Huang, et al., J. Phys. Soc. Japan 69 (2000) 2399; H.B. Huang, T. Jo, J. Phys. Soc. Japan 71 (2001) 3094.
- [14] D.J. Huang, et al., Phys. Rev. Lett. 92 (2004) 087202.
- [15] F. Iga, et al., Phys. Rev. Lett. 93 (2004) 257207.
- [16] D.B. Chrisey, G.K. Hubler, (Eds.), Pulsed Laser Deposition of Thin Films, Wiley, New York, 1994.
- [17] M. Kawasaki, et al., Mater. Sci. Eng. B 63 (1999) 49.