第五章 含 dibenzothiophene-S,S-dioxide 及 arylamine 之螢 光材料

第一節 前言及研究動機

對於有機發光二極體元件而言,平衡材料內電子與電洞的傳導是 非常重要的課題,它直接影響到激發光子是否在預期的區域進行再結 合,導致一個元件的效率好或差。一個較簡單的概念,是將聚合物中 參雜入電子傳輸材料及電洞傳輸材料製成高分子電激發光元件 (polymer light emitting diodes, PLEDs);而對小分子元件(OLEDs)而 言,將具有不同特性的發光材料(如:電子傳輸、電洞傳輸、電洞阻 擋、電子阻擋...等),調配蒸鍍順序,而形成多層結構元件。典型的 OLED 元件通常具有電子傳輸、電洞傳輸及發光材料之三層結構;元 件中,若電子傳輸或電洞傳輸兼具發光特性,可簡化為雙層結構。當 使用的材料可傳導及平衡電子、電洞,又兼具發光特性時,有機會製 成單層元件。其好處為製程簡易,降低成本。

截至目前,小分子單層元件並不普遍,即使文獻做過相關報導, 此類材料之元件效率並不令人滿意⁵⁴。曾有學者發表過含 benzo[1,2,5]thiadiazole及芳香胺衍生物⁵⁵及 3-cyano-9-diarylamino carbazoles⁵⁶兩系列之小分子單層有機電激發光材料;前者分子結構含

70

拉電子雜環benzo[1,2,5]thiadiazole^{39a,57}與推電子芳香胺類^{47a,58}; 一是傳 電子,另一則傳電洞,其單層元件於 100 mA/cm², 電流效率(current efficiency)只有約 0.60 cd/A。cyano carbazole之後者(因文獻提出cyano 取代基可有效增加PPV (poly(*p*-phenylenevinylene)的電子移動率⁵⁹), 其單層元件之電流效率於 100 mA/cm²時,約有 5.5 cd/A。

我們對於能夠應用在單層元件的小分子有機材料非常感興趣, 其中,含thiophene-*S*,*S*-dioxide⁶⁰及benzothiophene-*S*,*S*-dioxide⁶¹有利於 增加電子親合力(electron affinity)及固態放光效率。因此,具有缺電子 性質的dibenzothiophene-*S*,*S*-dioxide,預期會具有類似的性質⁶²。

第二節 螢光材料物性之探討

光物理性質

此系列具雙極化性質之螢光材料(SO),結構如圖 5.1 所示。化合物之光物理特性已整理於表 5.1 中;圖 5.2 為雙極化材料之吸收及放 光光譜圖,由吸收光譜可知,波長在 250 nm附近主要為共軛分子π-π* 之躍遷,而 300 nm左右則為化合物n-π*吸收,較長波長的吸收峰則來 自芳香胺到二氧化硫(SO₂)的電荷轉移。由表 5.1 中的螢光數據得知, 化合物階具有很強的溶劑效應,在分子中電子予體(胺類)到電子受體 (SO₂)有很強的偶極矩(dipole),隨著溶劑的極性越高,放光光譜也由 藍光紅位移至橘光。化合物SO3具有此系列中最長的放光波長,是因為共軛鏈中的噻吩環有利於π電子的非定域化(delocalized),有助於 電荷轉移的發生。而化合物SO1與SO4溶劑的量子產率較SO2及SO3 低,導因於芳香胺上電子轉移驟熄(quenching)了螢光。

表	5.1	SO	マ	光朱	勿理	資	料
		$\sim \circ$	-			ハ	. I I

Entry	λ_{abs} , nm	$\lambda_{\rm em}, \rm nm(\Phi_f, \%)^a$			
Linu y	CH_2Cl_2	toluene	CH ₂ Cl ₂	CH ₃ CN	film
SO1	290, 357	450 (7)	495 (15)	520 (14)	483
SO2	257, 300, 376	444 (98)	524 (55)	527 (8)	505
SO3	255, 292, 418	477 (48)	543 (19)	583 (4)	554
SO4	288, 332, 352	444 (7)	493 (11)	512 (7)	476

^a Quantum yield was measured relative to coumarin 6 (63 % in CH₃CN). Corrections due to the change in solvent refractive indices were applied.

圖 5.2 SO2 及 SO3 之吸收及放光光譜

熱性質

我們利用DSC及TGA來測量化合物的玻璃態性質及熱穩定,其 詳細的數據如表 5.2 所示。化合物經由重複的加熱及冷卻,皆可觀察 到Tg、Tm及Tc;而SO2及SO4則在第一次加溫即有玻璃態的現象;化 合物SO1升溫後,經快速冷卻,可形成玻璃態,並保持在此狀態。這 些材料的熱裂解溫度則介於 345 至 440 °C之間。

表 5.2 SO 之熱性質資料

	$T_m/(^{\circ}C)^a$	$T_c/(^{\circ}C)^a$	$T_g/(^{\circ}C)^a$	$T_d/(^{\circ}C)^b$
SO1	299	NA	102	345
SO2	NA	NA	123	362
SO3	231	170	112	440
SO4	NA	NA	138	395

^a The heating rate and cooling rate were 10 $^{\circ}$ C/min and 30 $^{\circ}$ C/min, respectively. ^b The heating rate was 10 $^{\circ}$ C/min.

電化學性質

在電化學的測量中,此系列化合物皆有兩個可逆的氧化還原 波,如表5.3,圖5.3為SO2、SO3之循環伏安圖。經由差式脈衝伏安 之測量(DPV),相較於ferrocene/ferrocenium的單電子氧化,正電位兩 個電子的氧化來自於外圍兩個芳香胺上氮原子氧化。而位在負電位 (-1.9 - -2.1 V)的單電子還原,則來自於核心的 dibenzothiophene-S,S-dioxide。SO3具有最低氧化電位則是由於共軛鏈 中多電子的噻吩環較接近芳香胺的氮原子,此現象也與文獻相符⁴⁹; 不過, diphenylthienylamine的氧化電位比起文獻中^{33,35}含此類芳香胺 片斷的分子都要高。SO1或SO4的氧化電位比起SO2要高,導因於拉 電子的dibenzothiophene-S,S-dioxide核心距離二苯胺較近,所以受影響 440000 的程度較大;共軛鏈中增加一個苯環降低了推拉電子片斷的關聯性。 同樣的現象,也可由還原電位上觀察出來。化合物之HOMO、LUMO 與常用的發光材料能階關係如圖5.4所示。

表 5.3 SO 之電化學資料

	$E (\Delta E_p)^a, mV$	HOMO,eV	LUMO,eV	Band gap,eV
SO1	670 (322), -2034 (117)	5.47	2.56	2.91
SO2	553 (123), -1935 (82)	5.35	2.61	2.74
SO3	406 (98), -2065 (116)	5.21	2.74	2.47
SO4	711 (230), -2124 (102)	5.51	2.57	2.94

^a Measured in CH₃CN. All the potentials are reported relative to ferrocene, which was used as the internal standard in each experiment. Ferrocene oxidation potential was located at +332 mV relative to the Ag/AgNO₃ nonaqueous reference electrode.

圖5.4 SO與常用材料之能階圖

第三節 元件製作及性質之探討

由之前所得到化合物之物性,我們將溶劑量子產率較高的SO2及 SO3分別製成三種結構不同的發光元件:電洞傳輸兼發光(I)ITO/SO2 (or SO3) (40 nm)/TPBI (40 nm)/LiF (1 nm)/Al (150 nm);電子傳輸兼發 光; (II) ITO/NPB (40 nm)/ SO2 (or SO3) (40 nm)/ LiF (1 nm)/Al (150 nm); 電子、電洞傳輸兼發光; (III) ITO/ SO2 (or SO3) (80 nm)/LiF (1 nm)/Al (150 nm)。元件的各項性質資料整理於表5.4,元件的亮度-電 流及電激發光光譜則分別如圖5.5與圖5.6。所有元件的起始電壓 (turn-on voltage)皆相當低(2.0-3.5 V),其電激發光皆來自於我們的材料(SO2或SO3)。雖然雙層元件(I)的各種電激發光表現極佳,我們仍 不排除未來若能尋找到製成單層元件(III)的最佳條件,其總體性質有 機會高於元件結構(I)。特別的是,以SO2製成的單層元件,相較於以 往文獻發表小分子單層元件,其效率為最佳(3.1%; 3.9 lm/W; 7.5 cd/A at 100 mA/cm²)。

相較其他含thiophene-S,S-dioxide及benzothiophene-S,S-dioxide片 斷之發光材料,我們的材料於單層元件中具有較佳的電子與電洞傳 導特性,至使電子電洞有效的再結合產生激發光子。我們利用時間 飛逝法(time-of-flight,TOF)瞬間光電流測量技術,量測電子及電洞的 移動率(electron/hole mobility)、(圖5.7)。SO2的電子移動率與電洞移 動率幾乎相同,而速度也非常快,大於10⁻⁴ cm²/(V•s);這個值雖然小 於典型的電洞傳輸層NPB(~10⁻³ cm²/(V•s))一個數量級^{41b},但卻較電子 傳輸層Alq₃ (~10⁻⁵ cm²/(V•s))高一個數量級⁶³。圖5.8及圖5.9分別為SO2 以時間飛逝法測量其電子或電洞光電流-時間圖。由圖中曲線並無明

顯的高原區(plateaus),不論是電子或電洞,都呈現分散的特性 (dispersive), 化合物中可能具載子陷阱(carrier trap)。而將光電流-時間 座標皆取對數後可得插圖,再經由兩條漸進線之交叉點,則是可決定 載子移動率的瞬間載子時間(t_T)。電子移動率對電場的作圖如圖5.10, 符合μ xexp(βE^{1/2})。這樣的關係,被認為是來自於在外加電場之下,載 子在分子間傳遞所需克服的能障降低了的緣故,這樣的效應一般稱之 為Poole-Frenkel Effect⁶⁴, β為定值,被稱之為Poole-Frenkel factor。 經由TOF的測量,讓我們了解單層元件材料的雙載子傳導特性。

AND LEAD ..

表 5.4 SO之元件性質 ^a					
	SO2	SO3			
$V_{\rm on}$ [V]	2.5. 2.3; 2.2	2.2; 2.5; 2.0			
$L_{\rm max} [{\rm cd/m}^2]$	85475 (12.5);	40140 (13.0);			
$(V \text{ at } L_{\max}, V)$	9537 (15.0);	10521 (11.5);			
	37699 (12.5);	25159 (14.5)			
$\lambda_{\rm em} [{\rm nm}]$	492; 492; 496	540; 536; 542			
CIE [x,y]	0.16, 0.40; 0.16, 0.38; 0.16, 0.44	0.37; 0.59; 0.36, 0.59; 0.37, 0.59			
fwhm [nm]	68; 70; 68	82; 92; 82			
$\eta_{ m ext,max}$ [%]	4.9; 1.3; 3.1	1.4; 0.87; 1.3			
$\eta_{ m p,max}$ [lm/W]	9.7; 3.3; 7.2	4.9; 3.3; 5.0			
$\eta_{ m c,max} [m cd/A]$	11; 3.1; 7.7	5.1; 3.1; 4.7			
$L [cd/m^2] (*)$	10778; 2107; 7529	4904; 2272; 4245			
$\eta_{\mathrm{ext}} [\%] (*)$	4.7; 0.94; 3.1	1.4; 0.65; 1.2			
$\eta_{\mathrm{p}} \mathrm{[lm/W]} (*)$	6.5; 1.3; 3.9	2.8; 1.7; 2.1			
$\eta_{\rm c} [{\rm cd/A}] (*)$	10.8; 2.1; 7.5	4.9; 2.3; 4.2			

^a The measured values are given in order of the devices I, II, and III. L_{max} , maximum luminance; L, luminance; V_{on} , turn-on voltage; V, voltage; $\eta_{ext,max}$, maximum external quantum efficiency; $\eta_{p,max}$, maximum power efficiency; $\eta_{c,max}$, maximum current efficiency; η_{ext} , external quantum efficiency; η_{p} , power efficiency; η_c , current efficiency; fwhm, full width at half maximum. *, at a current density of 100 mA/cm². V_{on} was obtained from the x-intercept of log(luminance) vs applied voltage plot. Devices I: ITO/SO (40 nm)/TPBI (40 nm)/LiF/Al, II: ITO/NPB (40 nm)/SO (40 nm)/LiF/Al, and III: ITO/SO (80 nm) /LiF/Al.

圖 5.6 SO 元件之 EL 圖

圖 5.8 SO2 之 TOF 光電流-時間圖(電子)

圖 5.10 SO2 之載子傳輸-電場圖

第四節 結論

我們成功利用簡單的合成,得到一系列含芳香胺類及二氧化二 苯噻吩之衍生物。化合物SO2及SO3皆可製成發光效率不錯的單層元 件,以SO2製成元件(I)有最佳的電激發光特性;我們也以時間飛逝法 技術測量SO2之載子傳導特性。雖然單層元件(III)目前比雙層元件(I) 的各種電激發光表現差,我們不排除之後尋找到製成單層元件的最佳 條件,例如改變陰極種類、載子注入材料、各傳輸層厚度...等。未來, 我們希望以此系列為基礎,並做分子結構上的修飾,期望能得到具非 分散 (nondespersive)的雙載子傳導特性的單層元件材料

