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摘要 

合成單壁碳奈米管(SWNTs)並有效的控制其結構一直是碳管研究上的瓶頸，而製程

溫度更決定了 SWNTs 整合在矽基材元件上的可行性。本研究利用微波電漿化學汽相沉

積系統(MPCVD) 和電子迴旋共振化學氣相沉積法(ECR-CVD)，在甲烷與氫氣的氣氛

中，搭配使用不同的觸媒與緩衝層材料來開發出能在矽基板上成長單壁碳奈米管

(SWNTs)的製程，並探討合成的單壁碳奈米管之結構、特性及成長機制。緩衝層材料包

含了厚度為 5~15 nm的 ZnS-SiO2、Si3N4、TiN 、Al2O3、AlN及 AlON，觸媒材料包含

了厚度為 1~10 nm 的 Co、Fe及新穎的 CoCrPtOx觸媒前驅物。這個製程先以物理氣相

沉積法(PVD)將緩衝層及觸媒材料沉積在附有 2~3 nm SiO2的矽基材上；然後再進行氫氣

前處理以及後續的碳管沉積。實驗樣品在每個製程步驟中的結構與特性，使用原子力顯

微鏡(AFM) 、X-ray 繞射(XRD)、掃描式電子顯微鏡(SEM)、高解析穿透式電子顯微鏡

(HRTEM)、X-ray 光電子頻譜 (XPS) 、歐傑電子頻譜 (AES) 、拉曼光譜儀 (Raman 

spectroscopy) 和場效發射 I-V 量測儀等儀器來分析。實驗結果得到下列結論: 

沉積的碳奈米結構與性質主要由下列製程參數所影響：(i) 緩衝層材料、觸媒材料

及他們的厚度，(ii) 緩衝層的表面粗糙度及其與觸媒材料間的交互作用。對Co觸媒而

言，在不同的緩衝層材料中，促進根莖成長型的網絡狀SWNTs的優先順序為AlON，

Al2O3，AlN，其中AlN幾乎沒有效應。然而，對Fe觸媒而言，更多數量的底部成長型之

蜷曲狀的SWNTs在使用AlN 與Al2O3兩種緩衝層材料下都能生長；而Co和Fe兩種觸媒材

料使用非鋁基或是SiO2的緩衝層都無法生長出碳奈米結構，或是僅能生長多壁碳奈米管

(MWNTs)。 
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對於CoCrPtOx觸媒前趨物而言，使用MPCVD的沈積方法可以在附有SiO2緩衝層的

矽基材上，於600 °C的低溫下成功的長出準直且濃密的底部成長型SWNTs薄膜；有趣的

是在AlON緩衝層的輔助下，可以進一步增加碳管的密度及長度(~60 µm)。此外，鍍有觸

媒與緩衝層的基材在把合成的碳管取下後仍可重複的使用來成長SWNTs。相較於

MPCVD，使用ECR-CVD系統成長出的底部成長型之CNTs則混合著單壁、雙壁與四層管

壁(管徑分別為~2.0 nm，3.6 nm 和7.9 nm)，而這樣的管徑也是目前文獻中利用ECRCVD

所能合成出的最小管徑。換言之，相較於Fe或Co的觸媒薄膜，CoCrPtOx觸媒前趨物是最

有效率的媒介來形成有利於SWNTs成長的小粒徑觸媒粒子，並且在沒有緩衝層的輔助下

也能成長出SWNTs。 

關於緩衝層與觸媒材料厚度的影響，結果指出緩衝層的厚度(5~15 nm)對於成長之

碳奈米結構沒有顯著影響；相較於緩衝層厚度，越薄的觸媒厚度則更容易成長出小尺寸

的碳奈米結構。 

關於製程溫度與CH4/H2流量的影響，結果顯示使用不同觸媒材料來成長SWNTs的

最低製程溫度並無明顯不同(Co, ~620 ℃; Fe, ~610 ℃; CoCrPtOx ~600 ℃)；結果也揭露

了最適合的CH4/H2流量在Co、Fe與CoCrPtOx觸媒前趨物各為5/50、1.5/200與4/50 

(sccm/sccm)，換句話說，相較於底部成長型的CNTs，根莖成長型的CNTs需要最高的碳

源濃度。 

關於觸媒與緩衝層輔助成長SWNT的生長機制，鋁基緩衝層主要提供下列功能：(1)

在表面上提供適當大小的奈米級孔洞以防止奈米粒子的聚集；(2) 能在較厚的觸媒薄膜

上形成奈米突起點以利生長出根莖成長型的SWNTs；(3) 影響觸媒跟緩衝層之間的交互

作用力，包含化學鍵結、潤濕性及表面張力；(4) 控制碳源擴散的路徑。在底部成長型

的Fe和CoCrPtOx觸媒輔助成長的SWNTs中，鋁基緩衝材料提供了防止顆粒聚集的作用。

相對的，鋁基緩衝材料形成奈米突起點的模板作用、與Co觸媒間的高表面張力則促進了

根莖成長型的SWNT的生長。此外，鋁基緩衝層也扮演著抑制碳原子擴散到矽基材內部

的角色，進而加速碳原子在成長CNTs過程中的其他擴散路徑，這也可能是我們可以在

較低的製程溫度下(~600 ℃)合成出SWNT的原因。 

關於使用CoCrPtOx觸媒前趨物輔助成長SWNTs的機制，研究中發現CoCrPtOx觸媒前

趨物能在氫氣前處理後形成非常細小且分佈均勻的觸媒顆粒(1~3 nm)，這是由於在氫氣

前處理時，PtOx在CoCrPtOx的分解反應會產生爆炸效應而讓觸媒材料形成奈米顆粒，而

Cr2O3則扮演著阻止奈米觸媒顆粒聚集的角色。AlON緩衝層的主要作用則是利用表面上

的孔洞進一步的防止觸媒粒子的聚集，這些綜合的效應使得細小且分佈均勻的奈米觸媒
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粒子能夠形成，並隨後長出濃密且準直的SWNTs薄膜。 

關於緩衝層輔助成長的奈米碳管的結構與性質，Co觸媒與AlON緩衝層輔助成長之

網絡狀SWNTs、Fe觸媒與Al2O3和Fe觸媒與AlN輔助成長之蜷曲狀SWNTs的IG/ID比分別

為~15.7、~10.8與~31.5；這些結果與文獻中所揭露的氮原子在緩衝層或觸媒層中能提

高觸媒活性進而得到較高IG/ID比的結果一致。而利用CoCrPtOx觸媒前趨物合成之SWNTs

薄膜的IG/ID比則高達43，其熱重分析結果顯示其在空氣中的抗氧化溫度高達586°C ~ 

691°C，此特性與雷射法成長並經純化過的單壁奈米碳管相似；結果也指出使用CoCrPtOx

觸媒前趨物在ECRCVD成長出碳管的IG/ID比(~0.58)遠不如MPCVD合成的CNTs。關於

場發射性質，網絡狀的Co輔助成長CNTs、CoCrPtOx輔助成長SWNTs及Fe觸媒輔助成長

之CNTs的起始電壓與最大電流密度分別為＞10、4.6 和 3.4~3.6 V/µm (在電流密度0.01 

mA/cm2時)，＜0.01 (在10 V/µm時)、~33 (在6.7 V/µm時) 和 ~34 mA/cm2 (在5.6 V/µm

時)；濃密的CoCrPtOx輔助成長之SWNTs比準直的Fe觸媒輔助成長之CNTs擁有較大的起

始電壓是因為屏蔽效應(screening effect)所導致。 

總結整個結果，利用Co和Fe作為觸媒可以在適當的緩衝層材料的輔助下成長出一

些SWNTs，然而，藉由新穎的CoCrPtOx材料前趨物搭配AlON的緩衝層卻能合成出超過99%

純度的SWNTs；這個研究的結果提供了新的思考方式來設計新的製程，以達到操控奈米

結構的目的。 
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Abstract 

 
Synthesis and effective control of the nanostructures of single-walled carbon nanotubes 

(SWNTs) are the current bottlenecks in CNTs researches in which process temperature further 
determines the feasibility of SWNTs integrated with Si-based devices. In this work, the 
processes to fabricate catalyst and buffer layer-assisted SWNTs on Si wafer were developed 
by both microwave plasma–enhanced chemical vapor deposition (MPCVD) and electron 
cyclotron resonance chemical vapor deposition (ECR-CVD) with different buffer and catalyst 
materials, using CH4 and H2 as source gases. The buffer and catalyst materials include 
ZnS-SiO2, Si3N4, TiN, Al2O3, AlN, and AlON of 5 ~ 15 nm in thickness, and Co, Fe, and 
novel CoCrPtOx precursor films of 1 ~10 nm in thickness, respectively. The processes include 
deposition of the buffer and catalyst material on the native SiO2 of 2 ~ 3 nm of Si wafer by 
physical vapor deposition (PVD). The coated substrates were then followed by H-plasma 
pretreatment before CNTs deposition. The structures and properties after each processing step 
were characterized by atomic force microscopy (AFM), X-ray diffractometry (XRD), field 
emission scanning electron microcopy (FESEM), high resolution transmission electron 
microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy 
(AES), Raman spectroscopy and field emission I-V measurements. From the experimental 
results, the following conclusions can be drawn.  

The results indicate that the main processing parameters to affect the deposited 
nanostructures and their properties are: (i) buffer and catalyst materials and their thicknesses, 
(ii) surface roughness range of buffer layer and its interaction with catalyst materials. For Co 
as catalyst, the favor tendency to form more root-growth SWNTs networks of different buffer 
materials are in order of AlON, Al2O3 and AlN, in which AlN has no detectable effect. In 
contrast, for Fe as catalyst, the more amounts of base-growth spaghetti-like SWNTs can be 
formed with either AlN or Al2O3 as buffer layer. The results also found that the multi-walled 
carbon nanotubes (MWNTs) or amorphous carbon films are merely formed by using 
non-Al-based materials or the native SiO2 as buffer material, no matter what Fe or Co acts as 
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catalyst. 
In the case of using CoCrPtOx catalyst precursor, the vertically aligned base-growth 

SWNTs films can be successfully fabricated on silicon wafer with native SiO2 as buffer layer 
by MPCVD at low temperatures down to ~ 600 oC. It is interesting to note that AlON buffer 
can further increase the tube number densities and their lengths (~ 60 µm). Furthermore, the 
catalyst- and buffer-coated substrates can be repeatedly used for SWNTs deposition by wiping 
out the previously deposited CNTs. In contrast to MPCVD, the deposited CNTs by ECR-CVD 
are the mixing types of base-growth CNTs consisting of SWNTs, double-walled and 
four-walled-CNTs (~ 2.0, 3.6 and 7.9 nm in diameter, respectively), which are the smallest 
reported sizes of CNTs in the literature by ECRCVD. On the other hands, the CoCrPtOx 
catalyst precursor can be the more effective agent to produce the smaller sized catalysts than 
directly coated Fe or Co catalysts to grow SWNTs without additional buffer application.  

Regarding effects of thickness of buffer and catalyst layers, the results indicate that 
buffer layer thickness (5 ~ 15 nm) has no significant effects on the deposited nanostructures. 
In contrast to buffer thickness, it shows that smaller catalyst thickness gives rise to smaller 
tube diameter of the nanostructures.  

Regarding effects of temperature and CH4/H2 ratio conditions, the results demonstrate 
that the lowest temperatures to obtain the SWNTs are about the same (Co, ~620 ℃; Fe, ~610 
℃ ; CoCrPtOx ~600 ℃), indicating no significant differences among different catalyst 
materials. The results appeal that the favorable CH4/H2 ratios to grow the smaller sized CNTs 
or SWNTs for Co, Fe and CoCrPtOx film are around 5/50, 1.5/200 and 4/50 (sccm/sccm), 
respectively. In other words, by comparing with the base-growth CNTs, the Co-assisted 
root-growth SWNTs requires the greatest carbon source concentration.  

On growth mechanisms of the buffer- and catalyst-assisted SWNTs, the Al-based buffer 
layers essentially have the following functions: (1) providing the proper nano-sized dimples 
on their surface to accommodate the nanoparticles from agglomeration between neighbor 
nanoparticles, (2) acting as template for the thicker catalyst film to promote formation of 
nano-sized extrusions for the root growth SWNTs, (3) affecting interactions between catalyst 
and buffer materials, including chemical bonding formation, wetterability and surface tension 
of catalyst with buffer material, and (4) varying the diffusion path of carbon during CNTs 
growth. For accommodating effects, the Al-based buffers can promote the smaller-sized 
base-growth Fe-assisted and CoCrPtOx-assisted SWNTs. For effects of acting as template and 
giving a higher surface tension of Co/buffer interface, the Al-based buffers can enhance the 
root-growth Co-assisted SWNTs, instead of base-growth Fe-assisted SWNTs. For effect of 
changing diffusion path, the Al-based buffers can act as the carbon diffusion inhibitor to 
reduce the possible diffusion path of carbon through Si wafer and to accelerate other carbon 
diffusion paths during CNTs growth, which may reduce the deposition temperature (~600 ℃) 
of SWNTs by combining with smaller particle sizes.  

For the case of CoCrPtOx-assisted SWNTs, formation of very fine catalyst nanoparticles 
(1~3 nm) after H-plasma pretreatment is demonstrated. This is due to the explosive 
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decomposition effect of PtOx in CoCrPtOx precursor during H-plasma pretreatment. The 
Cr2O3 in precursor may also play a role in inhibiting the agglomeration of alloy catalyst 
nanoparticles. Effect of AlON buffer in this case is essentially to act as accommodating pores 
for catalysts to further reduce the agglomeration effect, which causes the denser 
well-distributed smaller nanoparticles and so SWNTs formations.  

With respect to the structures and properties of the as-grown buffer-layer-assisted 
SWNTs, the Co-assisted SWNT networks with AlON buffer, the spaghetti-like Fe-assisted 
SWNTs with Al2O3 and AlN buffers demonstrate IG/ID ratios of ~15.7, ~10.8 and ~31.5, 
respectively. The results are in agreement with the reported results in the literature that a 
higher N concentration in the buffer or catalyst may give rise to a higher IG/ID ratio by 
prolonging catalyst activity. In contrast, for CoCrPtOx–assisted SWNTs with AlON buffer, the 
IG/ID ratio can go up to ~ 43 and its TGA results show oxidation resistance up to 586°C ~ 691°
C, which are comparable with that for the purified SWNTs synthesized by a laser-oven 
method. The results also show that the IG/ID ratio of the CoCrPtOx-assisted CNTs by 
ECRCVD is ~ 0.58, which is much lower than 43 for CNTs by MPCVD. On field emission 
properties, the turn-on voltages are > 10, 4.6 and 3.4 ~ 3.6 V/µm (for current density 0.01 
mA/cm2) and the highest current densities are ＜0.01 (at 10 V/µm), ~33 (at 6.7 V/µm) and 
~34 mA/cm2 (at 5.6 V/µm) for the root-growth Co-assisted CNTs, the CoCrPtOx–assisted 
SWNTs and the base-growth Fe-assisted CNTs, respectively. The turn-on voltage for the 
denser CoCrPtOx–assisted SWNTs is higher than that of the well-aligned Fe-assisted CNTs is 
believed to be due to screening effect.   

In summary, some percentages the Co- and Fe-assisted SWNTs can be synthesized and 
assisted by the application of Al-based buffer layers. However, application of the CoCrPtOx 
precursor with AlON buffer can assisted > 99% formation of SWNTs. The results have 
improved our thinking to design the desired process to obtain the required nanostructures.  
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