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Structures, properties and growth mechanisms of the SWNTs

synthesized by catalyst and buffer layer-assisted MPCVD

Student : Wei-Hsiang Wang Advisor : Cheng-Tzu Kuo
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National Chiao Tung University

Abstract

Synthesis and effective control of the nanostructures of single-walled carbon nanotubes
(SWNTSs) are the current bottlenecks in CNTSs researches in which process temperature further
determines the feasibility of SWNTs integrated with Si-based devices. In this work, the
processes to fabricate catalyst and buffer layér-assisted SWNTs on Si wafer were developed
by both microwave plasma—enhanced chemical vapor deposition (MPCVD) and electron
cyclotron resonance chemical vapor deposition.(ECR-CVD) with different buffer and catalyst
materials, using CH, and H, as source. gases. The-buffer and catalyst materials include
ZnS-Si0y, SizNg4, TiN, Al,O3, AIN, and AION of 5.~ 15 nm in thickness, and Co, Fe, and
novel CoCrPtOy precursor films of 1.~10 nm in-thickness, respectively. The processes include
deposition of the buffer and catalyst material on the native SiO, of 2 ~ 3 nm of Si wafer by
physical vapor deposition (PVD). The coated substrates were then followed by H-plasma
pretreatment before CNTs deposition. The structures and properties after each processing step
were characterized by atomic force microscopy (AFM), X-ray diffractometry (XRD), field
emission scanning electron microcopy (FESEM), high resolution transmission electron
microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy
(AES), Raman spectroscopy and field emission 1-V measurements. From the experimental
results, the following conclusions can be drawn.

The results indicate that the main processing parameters to affect the deposited
nanostructures and their properties are: (i) buffer and catalyst materials and their thicknesses,
(ii) surface roughness range of buffer layer and its interaction with catalyst materials. For Co
as catalyst, the favor tendency to form more root-growth SWNTs networks of different buffer
materials are in order of AION, Al,O; and AIN, in which AIN has no detectable effect. In
contrast, for Fe as catalyst, the more amounts of base-growth spaghetti-like SWNTSs can be
formed with either AIN or Al,Ozas buffer layer. The results also found that the multi-walled
carbon nanotubes (MWNTSs) or amorphous carbon films are merely formed by using
non-Al-based materials or the native SiO, as buffer material, no matter what Fe or Co acts as
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catalyst.

In the case of using CoCrPtOy catalyst precursor, the vertically aligned base-growth
SWNTs films can be successfully fabricated on silicon wafer with native SiO, as buffer layer
by MPCVD at low temperatures down to ~ 600 °C. It is interesting to note that AION buffer
can further increase the tube number densities and their lengths (~ 60 um). Furthermore, the
catalyst- and buffer-coated substrates can be repeatedly used for SWNTs deposition by wiping
out the previously deposited CNTs. In contrast to MPCVD, the deposited CNTs by ECR-CVD
are the mixing types of base-growth CNTs consisting of SWNTs, double-walled and
four-walled-CNTs (~ 2.0, 3.6 and 7.9 nm in diameter, respectively), which are the smallest
reported sizes of CNTs in the literature by ECRCVD. On the other hands, the CoCrPtOy
catalyst precursor can be the more effective agent to produce the smaller sized catalysts than
directly coated Fe or Co catalysts to grow SWNTs without additional buffer application.

Regarding effects of thickness of buffer and catalyst layers, the results indicate that
buffer layer thickness (5 ~ 15 nm) has no significant effects on the deposited nanostructures.
In contrast to buffer thickness, it shows that smaller catalyst thickness gives rise to smaller
tube diameter of the nanostructures.

Regarding effects of temperature and CH4/H, ratio conditions, the results demonstrate
that the lowest temperatures to obtain.the'SWNTs are about the same (Co, ~620 °C; Fe, ~610
C; CoCrPtOx ~600 °C), indicating nowsignificant differences among different catalyst
materials. The results appeal that the favorable.CH./H, ratios to grow the smaller sized CNTs
or SWNTs for Co, Fe and CoCrPtO, film are around 5/50, 1.5/200 and 4/50 (sccm/sccm),
respectively. In other words, by. comparing - with the base-growth CNTs, the Co-assisted
root-growth SWNTSs requires the greatest carbon source concentration.

On growth mechanisms of the buffer- and catalyst-assisted SWNTs, the Al-based buffer
layers essentially have the following functions: (1) providing the proper nano-sized dimples
on their surface to accommodate the nanoparticles from agglomeration between neighbor
nanoparticles, (2) acting as template for the thicker catalyst film to promote formation of
nano-sized extrusions for the root growth SWNTSs, (3) affecting interactions between catalyst
and buffer materials, including chemical bonding formation, wetterability and surface tension
of catalyst with buffer material, and (4) varying the diffusion path of carbon during CNTs
growth. For accommodating effects, the Al-based buffers can promote the smaller-sized
base-growth Fe-assisted and CoCrPtOy-assisted SWNTSs. For effects of acting as template and
giving a higher surface tension of Co/buffer interface, the Al-based buffers can enhance the
root-growth Co-assisted SWNTSs, instead of base-growth Fe-assisted SWNTs. For effect of
changing diffusion path, the Al-based buffers can act as the carbon diffusion inhibitor to
reduce the possible diffusion path of carbon through Si wafer and to accelerate other carbon
diffusion paths during CNTs growth, which may reduce the deposition temperature (~600 °C)
of SWNTs by combining with smaller particle sizes.

For the case of CoCrPtOy-assisted SWNTs, formation of very fine catalyst nanoparticles
(1~3 nm) after H-plasma pretreatment is demonstrated. This is due to the explosive
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decomposition effect of PtOx in CoCrPtOy precursor during H-plasma pretreatment. The
Cr,03 in precursor may also play a role in inhibiting the agglomeration of alloy catalyst
nanoparticles. Effect of AION buffer in this case is essentially to act as accommodating pores
for catalysts to further reduce the agglomeration effect, which causes the denser
well-distributed smaller nanoparticles and so SWNTs formations.

With respect to the structures and properties of the as-grown buffer-layer-assisted
SWNTs, the Co-assisted SWNT networks with AION buffer, the spaghetti-like Fe-assisted
SWNTs with Al,O3 and AIN buffers demonstrate Ig/lp ratios of ~15.7, ~10.8 and ~31.5,
respectively. The results are in agreement with the reported results in the literature that a
higher N concentration in the buffer or catalyst may give rise to a higher Ig/lp ratio by
prolonging catalyst activity. In contrast, for CoCrPtOy—assisted SWNTs with AION buffer, the
Ic/Ip ratio can go up to ~ 43 and its TGA results show oxidation resistance up to 586°C ~ 691°
C, which are comparable with that for the purified SWNTs synthesized by a laser-oven
method. The results also show that the Ig/lp ratio of the CoCrPtOy-assisted CNTs by
ECRCVD is ~ 0.58, which is much lower than 43 for CNTs by MPCVD. On field emission
properties, the turn-on voltages are > 10, 4.6 and 3.4 ~ 3.6 V/um (for current density 0.01
mA/cm?) and the highest current densities are  0.01 (at 10 V/um), ~33 (at 6.7 \V/um) and
~34 mA/cm? (at 5.6 V/um) for the, rootigrowth Co-assisted CNTs, the CoCrPtO—assisted
SWNTs and the base-growth Fe-assisteds€NTs, respectively. The turn-on voltage for the
denser CoCrPtOy—assisted SWNTs is higher than that-of the well-aligned Fe-assisted CNTSs is
believed to be due to screening effect.

In summary, some percentages. the Co--and Fe-assisted SWNTs can be synthesized and
assisted by the application of Al-based.buffer layers. However, application of the CoCrPtOy
precursor with AION buffer can assisted > 99% formation of SWNTs. The results have
improved our thinking to design the desired process to obtain the required nanostructures.
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