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Abstract

We present measurements of Mn L-edge resonant soft X-ray scattering on single-layered manganites with different sizes of cations.

Orbital ordering of Pr0:5Ca1:5MnO4 exhibits a stronger three-dimensional character and a dramatically enhanced transition temperature,

as compared with those of La0:5Sr1:5MnO4. The c-axis correlation length of orbital ordering in Pr0:5Ca1:5MnO4 is about half of the in-

plane correlation length. Our results indicate that reduction in one-electron bandwidth and quenched disorder strongly enhances the

stabilization of charge–orbital ordering.

r 2006 Published by Elsevier B.V.
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1. Introduction

Physical phenomena, such as colossal magnetoresistance
and metal–insulator transition, of correlated electron
compounds typically arise from the interplay among the
spin, charge, orbital, and lattice degrees of freedom [1]. For
example, the colossal magnetoresistance of manganites are
strongly affected by the lattice distortion resulting from the
Jahn–Teller effect or the sizes of the A-site cations; the
latter leads to the change of the effective one-electron
bandwidth and quenched disorder. The smaller the average
radius rA of the A-site cations is, the narrower the
bandwidth is. Such a narrowing of bandwidth tends to
stabilize the charge–orbital ordering [2]. The mismatch
between the ionic radii of divalent and trivalent cations,
- see front matter r 2006 Published by Elsevier B.V.

/j.jmmm.2006.10.707

onding author. National Synchrotron Radiation Research

nchu 30076, Taiwan.

ddress: djhuang@nsrrc.org.tw (D.J. Huang).
i.e., quenched disorder, also affect the stabilization of spin
and charge–orbital ordering [3,4].
To observe orbital ordering directly is a difficult task.

Experimental results of resonant X-ray scattering (RXS)
at the Mn 1s threshold of La0:5Sr1:5MnO4 have been
presented to be direct evidence for orbital ordering [5].
However, RXS detects the 3d charge ordering indirectly via
the 1s! 4p transition and the hybridization between 4p
and 3d electronic states. Calculations based on a local-
density approximation including on-site Coulomb interac-
tions [6,7] and multiple scattering theory [8] indicate that
RXS measurements pertain mainly to Jahn–Teller distor-
tion, instead of directly observing 3d orbital ordering.
In contrast, resonant soft X-ray scattering around the Mn
L-edge (2p! 3d) are dipole-allowed and suitable for
probing the Mn 3d charge–orbital orderings directly and
with high sensitivity.
Here, we present measurements of Mn L-edge resonant

soft X-ray scattering on La0:5Sr1:5MnO4 and Pr0:5Ca1:5MnO4
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to measure the transition temperature and the correlation
length of the orbital ordering with variations of one-electron
bandwidth and quenched disorder.

2. Experimental setup

Single crystals of La0:5Sr1:5MnO4 and Pr0:5Ca1:5MnO4

were grown with the floating zone method, and were
characterized with X-ray diffraction at room temperature.
La0:5Sr1:5MnO4 has a larger rA (�1:28 Å) than that of
Pr0:5Ca1:5MnO4 (�1:18 Å); Pr0:5Ca1:5MnO4 also has a
much smaller variance of ionic radii of the A-site ions [9].

We measured resonant soft X-ray scattering on single
crystals of La0:5Sr1:5MnO4 and Pr0:5Ca1:5MnO4 at 90K
with the elliptically polarized-undulator beamline of Na-
tional Synchrotron Radiation Research Center (NSRRC),
Taiwan. Crystals were cut with [1 1 0] surface normal, and
aligned in a two-circle soft X-ray diffractometer with the
[1 1 0] and [0 0 1] axes defining the scattering plane. The E

vector of photons were perpendicular to the scattering plane,
and the energy resolution was 0:14 eV at 640 eV.

3. Results and discussion

With measurements of soft X-ray scattering, we found
that orbital ordering in both La0:5Sr1:5MnO4 and
Pr0:5Ca1:5MnO4 exhibits a modulation vector ð1

4
1
4
0Þ in

reciprocal lattice units. Fig. 1 shows the photon-energy
dependence of the ð1

4
1
4
0Þ scattering intensities around the

Mn L edges, consistent with previous measurements [10].
The spectra of ð14

1
4 0Þ resonant scattering from these

two half-doped manganites have a similar line shape;
detailed analysis of the measured energy dependence of
soft X-ray scattering from orbital ordering will be
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Fig. 1. Photon-energy dependence of the Mn L-edge ð1
4
1
4
0Þ scattering of

La0:5Sr1:5MnO4 and Pr0:5Ca1:5MnO4, denoted as LSMO and PCMO,

respectively. The inset displays the temperature dependence of the ð1
4
1
4
0Þ

scattering intensities.
discussed elsewhere. The transition temperature TCO of
charge–orbital ordering in La0:5Sr1:5MnO4 is 235K;
whereas Pr0:5Ca1:5MnO4 has a dramatically enhanced
TCO of 326K. In addition, the charge–orbital ordering of
Pr0:5Ca1:5MnO4 has a thermal hysteresis shown in the inset
of Fig. 1, in agreement with measurements of resistivity [9].
We also measured the correlation lengths along the [1 1 0]

and the [0 0 1] directions, denoted as x1 1 0 and x001,
respectively. Fig. 2 displays momentum-transfer dependence
of Mn L-edge resonant ð1

4
1
4
0Þ scattering of La0:5Sr1:5MnO4

and Pr0:5Ca1:5MnO4 with momentum transfer q along these
two directions, i.e., q110 and q001 scans. The correlation
length is defined as the inverse of the half-width at the half-
maxima in the q scan. The measured x110 and x001 are 340
and 75 Å, respectively, for La0:5Sr1:5MnO4, and 668 and
370 Å for Pr0:5Ca1:5MnO4. The results indicate that the in-
plane correlation x110 of Pr0:5Ca1:5MnO4 about twice of that
of La0:5Sr1:5MnO4. In addition, the ratio of x001=x110 in the
orbital ordering of Pr0:5Ca1:5MnO4 is 0.55, significantly
larger than that of La0:5Sr1:5MnO4, 0.22.
Based on the correlation lengths measured at the same

temperature in the two compounds with different ordering
temperatures, we show that the reduction in one-electron
bandwidth and quenched disorder strongly enhances the
stabilization of orbital ordering. Pr0:5Ca1:5MnO4 also
exhibits a more three-dimensional-like orbital ordering
than that of La0:5Sr1:5MnO4.
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Fig. 2. Momentum-transfer dependence of Mn L-edge resonant ð1
4
1
4
0Þ

scattering of La0:5Sr1:5MnO4 and Pr0:5Ca1:5MnO4 along the [1 1 0] and

[0 0 1] directions recorded at 90K.
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