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Abstract—A consecutive-d digraph is a digraph G(d,n,q,r) whose n nodes are labeled by the
residues modulo n and a link from node i to node j exists if and only if j = gi + k (mod n) for some k
with » < k < r +d — 1. Consecutive-d digraphs are used as models for many computer networks
and multiprocessor systems, in which the existence of a Hamiltonian circuit is important. Conditions
for a consecutive-d graph to have a Hamiltonian circuit were known except for ged(n,d) = 1 and
d = 3 or 4. It was conjectured by Du, Hsu, and Hwang that a consecutive-3 digraph is Hamiltonian.
This paper produces several infinite classes of consecutive-3 digraphs which are not (respectively, are)
Hamiltonian, thus suggesting that the conjecture needs modification.
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1. INTRODUCTION

Define G(d,n,q,r), also known as a consecutive-d digraph, to be a digraph whose n nodes are
labeled by the residues modulo n, and a link ¢ — j from node ¢ to node j exists if and only if
jE€{gi+k(modn):r<k<r+d-1} wherel1 <gd<n-1and0<r <n-1 given.
Many computer networks and multiprocessor systems use consecutive-d digraphs as the topology
of their interconnection networks. For example, ¢ = 1 yields the multiloop networks [1], also
known as circulant digraphs (2], with the skip set {r,r+1,...,r+d—1}. ¢ =d and r = 0 yields
the generalized de Bruijn digraphs [3,4], and ¢ = r = n — d yields the Imase-Itoh digraphs [5].
In some applications, it is important to know whether a Hamiltonian circuit (of length n) is
embedded in a consecutive-d digraph. Hwang [6] gave a necessary and sufficient condition for
G(1,n,q,r) to be Hamiltonian. This is also equivalent to the existence of a linear congruential
sequence of full period n in the theory of random number generators (see [7,8]). Du and Hsu [9]
observed that G(2,n, ¢, )} is Hamiltonian if and only if G(1,n,¢q,r) or G(1,n,q,r+1) is. Du, Hsu,
and Hwang [10] proved that a consecutive-d digraph is always Hamiltonian for d > 5. They also
conjectured that consecutive-3 digraphs are Hamiltonian. Some partial support of this conjecture
was given in [9,11]. In this paper, we produce several infinite classes of consecutive-3 digraphs
which are not Hamiltonian, thus suggesting that the conjecture needs modification. We also
construct several infinite classes of consecutive-3 digraph which are Hamiltonian.

After this paper was submitted, we proved that all consecutive-4 digraphs are Hamiltonian,
and thus completely settled the conjecture, see {12].

Supported in part by the National Science Council under Grant NSC86-2115-M009-002.

Typeset by ApS-TEX
83



84 G. J. CHANG et al.

2. SOME PRELIMINARY RESULTS

We first state some results obtained in [6] which will be used in this paper.

THEOREM 1. (See [6-8].) G(1,n,q,r) is Hamiltonian if and only if it satisfies the following three
conditions.
(i) ged(n,q) =1.
(ii) Any prime p dividing n divides ¢ — 1.
(iii) If 4 divides n, then 4 divides ¢ — 1.

A node ¢ in G(1,n,q,r) is called a loop if i — i is a link, or equivalently, ¢ = gi + r (mod n).

THEOREM 2. (See [6].) G(1,n,q,r) contains a loop if and only if ged(n,q — 1) = ged(n,q —1,7).
Furthermore, if G(1,n,q,7) contains a loop, then the number of loops it contains is ged(n,q—1).
The loops have the same residue modulo n/gcd(n,q — 1).

The following result is in [10].

THEOREM 3. (See [10].) Suppose ged(n,q) = 2. Then, G{(d,n,q,r) is Hamiltonian if and only if
d > ged(n, q).

According to Theorem 3, we may assume that ged(n,q) = 1. In this case, for any i €
{0,1,...,n — 1}, there is a unique j such that j — i is a type-r (respectively, type-(r + 2))
link; we use i’ (respectively, i) to denote this j.

Call i — j an odd link if i is odd and an even link if  is even. Let Go(1,n,¢,r) and Gg(1,n,q,7)
denote the set of odd links and even links, respectively, of G(1,n,q,r).

LEMMA 4. Suppose ged(n,q) = 1. If H is a Hamiltonian circuit of G(1,n,q,7)UG(1,n,q,r + 2)
using both type-r links and type-(r + 2) links, then n is even and H is either Go(1,n,q,T)U
Ge(l,n,q,7 +2) or Gg(1,n,q,7)UGo(1,n,q,7 + 2).

PROOF. Suppose H contains a type-r link ¢’ — i. Then, the type-(r + 2) link ¢ — ¢ + 2 is not
in H, which forces the type-r link (i + 2)’ — i + 2 to be in H. Hence, i’ — i in H implies
(i+2) —» i+2in H. If n was odd, then H contained all the n type-r links j' — j, which
contradicts the assumption. Thus, n is even. Also, note that if ¢ and j have the same parity,
then so does i’ and j'. Hence, H contains either all links of G(1,n,q,r) of the same parity or
none. Lemma 4 follows immediately. (]

LEMMA 5. Suppose gcd(n,q — 1) = ged(n,q — 1,7 + 1) = n/k and ¢> = 1 (mod n).
(i) Consider a node u =i+ x(gr +r +2) (mod n) for some z € {0,1,...,n—1}. fu > v in
G(1,n,q,r) and v — w in G(1,n,q,7 + 2), then w = i + (z + 1){gr + v + 2) (mod n).
(i) Consider a node u =i+ z(gr + 2¢ + r) (mod n) for some z € {0,1,...,n —1}. Ifu —» v
in G(1,n,q,7 +2) and v — w in G(1,n,q,7), then w = i+ (z + 1)(gr 4+ 2¢ 4+ r) (mod n).

PROOF.
(i) w=sg(qu+r)+r+2=ut+gr+r+2=i+(z+1)(¢gr +r+2) (mod n).
(i) w=q(gu+r+2)+r=ut+gr+2¢g+r=i+(z+1)(gr +2¢9+r) (mod n). 1

LEMMA 6. Suppose ged(n,q — 1) = ged(n,qg — 1,7 + 1) = n/k and ¢+ 1 = 0 (mod k). Then,
i— j in GQ,n,q,7 + 1) implies j — i in G(1,n,q,7r + 1).

PRrROOF. Note that (¢ + 1)(r + 1) = (¢ + 1){g — 1) =0 (mod n). Thus, in G(1,n,q,7 +1),i — j
implies j=qi+r+1—-¢g(gi+r+1)+r+1=i+(g+1)(r+1) =i (mod n). 1
LEMMA 7. Let H be a Hamiltonian circuit in G(3,n,q,r). If H contains two type-r (respectively,
two type-(r +2)) links i’ — i and (i + 1)’ — i+ 1 (respectively, links i — i and (i +1)" — i+1)
for some i € {0,1,...,n — 1}, then H = G(1,n,q,r) (respectively, G(1,n,q,T + 2)).

PROOF. Consider the node (i — 1)’ such that g(¢ — 1)’ +r =i — 1 (mod n). Then, (i — 1) also
has links to ¢ and i + 1. But ¢ and i + 1 are already reached in H; hence, (i ~ 1)’ — i — 1, which
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is in G(1,n,q,7), must be in H. Iterate this argument, we have H = G(1,n,q,r). The case for
H =G(1,n,q,7 +2) is analogous. ]

3. THE MAIN RESULTS

THEOREM 8. Let I be an independent set of edges of the (undirected) cycle 0,1,...,n—1,0. If
TUG(1,n,q,r + 1) is connected (not necessarily strongly), then G(3,n,q,r) is Hamiltonian.

PROOF. We use a link-interchange method first introduced in [10]. Suppose that G(1,n,q,7+1)
consists of m disjoint cycles C},Cs,...,Cp. If m = 1, then there is nothing to prove. So assume
m > 1. Let e;; = (k,k+ 1) € I be the edge connecting k € C; and k +1 € C;. Let z — k
be in C; and y — k + 1 in C;. Replace the two links ¢ — k and y — k + 1 by the two links
z — k+1 and y — k. Then, C; and C; are connected into one cycle C;;. Note that z — k + 1
is a type-(r + 2) link and y — k is a type-r link. Now do the same for the set of m — 1 cycles
with C;; replacing C; and C;. Since TUC,U---UCy, is connected, e;; as described above always
exists. Furthermore, since I is an independent set, the e;; = (k, k + 1) chosen each time induces
the interchange of two type-(r + 1) links with a type-(r + 2) and a type-r link. ]

For even n, let I denote the independent set {2i —1 — 2i:i=1,2,...,n/2}.

THEOREM 9. Suppose ged(n,q) = 1 and n is even. Then, g(3,n,q,r) is Hamiltonian if either
ged(n,q —1) =2 and r is odd, or ged(n,q + 1) = 2 and r is even.

ProOF. By Theorem 8, it suffices to show that G® = I° U G(1,n,q,7 + 1) is connected. Since
2%—1—2,2i—1— (2i—1)g+7+1, 2 — 2ig+r+1areallin G°, (2i~1)g+r+1and 2ig+r+1
are connected in G°. If we replace all links 2i —1 — (2 —1)g+ 7 + 1 and 2§ — 2ig + r + 1 for
i=12,... n/2 by links (2 — 1)g+7+1 > 2ig+r+1fori=1,2,...,n/2, and call the new
graph G*, then G® must be connected if G* is.

Let group ¢ consist of the two nodes 2¢ — 1 and 2i. Then each group induces a connected graph,
so we only need to concern the inter-group connectivity. Note that ged(n,q) = 1 and n even
implies ¢ is odd. Suppose r is odd. Then, (2i —1)¢+r+1isodd. If (20 —1)g+r + 1 isin
group j, then 2ig + r + 1 must be in group j + (¢ — 1)/2 (mod n/2). This difference of (g — 1)/2
is independent of 7. So group j and group j+ (¢ — 1)/2 are connected for j = 1,2,...,n/2. Since
ged(n,q — 1) = 2 implies ged(n/2, (¢ — 1)/2) = 1, the n/2 groups are connected through these

distance-(q — 1)/2 links. The proof for the even r case is analogous. (]
3” ___________ 0
2o 2=
GO fend 1

Figure 1. I° U G(1,4,3,1) is connected.

Note that Theorem 9 does not imply that if the parity of r is wrong, then G(3,n,q,r) is
not Hamiltonian. It does not even necessarily imply that I® is not the right set to choose.
For example, for G(3,4,3,0), G* is not connected, but G° is (see Figure 1). However, there
are cases that G® is not connected. Consider G(3,12,11,0). G(1,12,11,1) is shown in Fig-
ure 2a (each edge represents a 2-way link), and I* U G(1,12,11,1) in Figures 2b—2d, where
I° = {(1,2),(3,4), (5,6), (7,8), (9, 10), (11, 12)}, I = {(0,1),(2,3), (4,5),(6,7), (8,9), (10, 11)},
I? = {(1,2),(3,4),(5,6),(8,9),(10,11)}. Note that neither I° nor I! works, but I? does.

Next, we give a sufficient condition for G(3,n, ¢,r) to be nonHamiltonian when G(1,n,q,7+1)
contains O(n) loops.

THEOREM 10. Suppose that gcd(n,q) = 1 and ged(n,q — 1) = ged(n,q — 1,r + 1) = n/k. If

g+1=0 (modk) fork > 3 and g+1 = 0 (mod 4) for k = 2, then G(3,n,q,r) is not Hamiltonian
for n > 2k.
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Figure 2. G(1, 12,11,1) and various independent sets.

PRrOOF. First note that ged(n,q — 1,7 4+ 1) = n/k and ¢ + 1 = 0 (mod k) imply ¢*> = 1 (mod n)
and (g + 1)(r + 1) =0 (mod n).

By Lemma 6, if i — 7 is in G(1,n,q,7+ 1), then so is j — i. Let i be a loop in G(1,n,q,7 +1).
Then, i — i—1in G(1,n,q,7) and i — i+1 in G(1,n,q,r+2). Furthermore, i’ — i in G(1,n,q,7)
implies i — i+1in G(1,n,¢,7+1) and i+1 — 7’ is also in G(1,7n,q,7 +1). This in turns implies
i+1— i +1isin G(1,n,q,7 +2). In fact,

+1=qi+1)+r+2=q(gi+r+2)+r+2=i+(g+1)(r+2)=i+g+ 1(modn).

Since ¢+ 1 = 0 (mod k), i’ + 1 has the same residue as i (mod k); hence, i’ + 1 is also a loop in
G(1,n,q,7+1) by Theorem 2. It follows that i’ +1 — i’ is in G(1,n,¢,7) and ' +1 — ¢’ +2isin
G(1,n,q,r +2). Similarly, we have i — 1 — i —1=1i-gq—1, which is a loop, in G(1,n,q,7 +1)
andi —1—i in G(1,n,q,7 + 2). We show these relations in Figure 3, where ——— denotes a
type-r link, —— a type-(r + 1) and == a type-(r + 2). We call the two loops i —¢ —1 and
i+ g + 1 neighbors of loop i. By Lemma 7, there are only two paths through a loop ¢, either a
type-r link followed by a type-(r + 2) link, or a type-(r + 2) link followed by a type-r link. Each
path blocks a path of one if its two neighbor loops which has the same end points. For example,
the path ¢ +q — i — i + 1 blocks the path i + 1 — i + ¢+ 1 — i + ¢ because the union of both
paths creates a 4-cycle. Let L be the graph whose vertices are the loops and whose edges are
pairs of end points of paths. Furthermore, an edge is incident to a vertex only if that loop has a
path with that pair of end points. Then, L is a cycle. Note that each edge can only be assigned

to one of its incident vertices.
M
i —1

/N

A .
i =i—gq

-—

N
i-1
/

N

i 7

Figure 3. Relations between a loop and its neighbor loops.

Let H be a Hamiltonian circuit of G(3,n,q,r). Suppose H contains a type-(r + 1) link, say,
i+ ¢ — i+ 1. Then, this link blocks the path with (i + ¢, + 1) as end points. So there are only
n/k — 1 paths left to cover for the n/k loops; one of the loops has no path passing it. Therefore,
H contains no type-(r + 1) link.



Consecutive-3 Digraph 87

Note that ¢ + 1 = 0 (mod k) implies k does not divide g — 1 for £ > 3, and ¢ + 1 = 0 {mod 4)
implies 4 divides n, but not ¢ — 1. By Theorem 1, neither G(1,n,q,7) nor G(1,n,q,7 + 2) is
Hamiltonian. By Lemma 4, we only need to look into Gg{l,n,¢,7) U Go(l,n,¢,7 + 2) and
Go(l,n,q,r) U Gg(l,n,q,7 + 2) for a Hamiltonian circuit. We show that a (2k)-cycle exists in
either case. Hence, G(3,n,4¢,r) is not Hamiltonian for n > 2k.

For Gg(1,m,q,7)UGo(l,m,q,7 + 2), we have 0 — 7 — gr +r + 2. By Lemma 5 (i), after 2k
moves, we reach the node

k{gr+r+2)=k(g—1)r + 2k(r + 1) = O(mod n).

For Go(1,m,q,r)UGE(1l,m,q,7+2), we have 0 — r+2 — gr+2¢g+r. By Lemma 5 (ii), after 2k
moves, we reach the node

klgr+2¢+7r)=k(g+1){r + 1)+ k{g — 1) = 0(mod n). 8

Note that for each k& > 2, the set NHy(n, g,7) of (n, ¢, r) satisfying the conditions of Theorem 10
is not empty. For example, {(k(tk — 2),tk — 1,tk — 3) : t > 1} C NH(n,q,r) for k > 3 and
{(8t — 4,4t — 1,4t — 3) : t > 1} C NHy(n,q,7).

We now apply Theorem 10 to obtain more specific results for various k.

THEOREM 11. Suppose that ged(n,q) = 1 and ged(n,q — 1) = ged(n, g — 1,7 + 1) = n/2 (hence,
n is even). Then G(3,n,q,r) is not Hamiltonian if and only if n = 8t + 4 for some t > 1.
ProoF. Since ged(n,q —1) = ged(n,q — 1,7+ 1) = n/2, necessarily n =2k, q=k+1,r=k -1
or 2k — 1. ged(n,q) = 1l impliess k =2m and son =4m,g=2m+1,r=2m —1or 4m — 1.

Foroddm =2t +1witht>1,¢+1 =0 (mod 4) and n = 8 +4 > 4. By Theorem 10,
G(3,n,q,7) is not Hamiltonian. Forodd m =2t + 1 with t =0, ged(n,g— 1) =2m =2 and r is
odd. By Theorem 9, G(3,n,¢,7) is Hamiltonian.

For even m = 2t, n = 8t. It is easily verified that ged(n,r) = ged(n,r + 2) = 1. Furthermore,
g —1 = n/2 implies that every p > 2 dividing n divides ¢ — 1 and n = 8t implies 4 divides both
n and g — 1. By Theorem 1, both G(1,n,q,r) and G(1,n,q,r + 2) are Hamiltonian. 1

THEOREM 12. Suppose that ged(n,q) = 1 and ged(n,q — 1) = ged(n, g — 1,7 + 1) = n/3 (hence,
n = 0 (mod 3)). Then, G(3,n,q,r) is not Hamiltonian if and only if n = 9t + 3 or 9t + 6 for some
t>1.

PROOF. There are six classes of (n,q,r) satisfying ged(n,q — 1) = ged(n,q — 1,7 + 1) = n/3:
n=3m,g=m+lor2m+1l,r=m-1,2m~—1or Im—1. Since ged{n,q) =1, ¢g=m+1
implies m # 2 (mod 3) and ¢ = 2m + 1 implies m # 1 (mod 3).

For the case when g =m+ 1 withm =3t +1 or ¢ =2m + 1 with m = 3t + 2, where ¢t > 1,
¢+1 =0 (mod 3) and n > 6. By Theorem 10, G(3,n, ¢, r) is not Hamiltonian. It is easily verified
that G(3,3,2,7) and G(3,6,5,r) with odd r are Hamiltonian.

Furthermore, if m = 3¢, then every prime p or 4 dividing n divides g—1. It is also easily verified
that ged(n,r) = ged(n,r +2) = 1. Hence, both G{1,n,q,r) and G(1,n,q,r + 2) are Hamiltonian
by Theorem 1. 1

THEOREM 13. Suppose that ged(n,q) = 1 and ged(n,q — 1) = ged(n,q — 1,7 + 1) = n/4 (hence,
n =0 (mod 4)). Then, G(3,n,q,r) is not Hamiltonian if and only if n = 16t + 8 for some t > 1.
ProoF. To satisfy the conditions of the theorem, necessarily n = 8m, ¢ =2m + 1 or 6m + 1,
andr=2m-1,4m—-1,6m—1lor8m—1.

Forodd m =2t+1witht>1,¢g+1=0 (mod 4) and n = 16t + 8 > 8. By Theorem 10,
G(3,n,q,r) is not Hamiltonian. For odd m =2t +1 with ¢t =0, ged(n,q— 1) =2m =2 and r is
odd. By Theorem 9, G(3,n,q,r) is Hamiltonian.

For even m = 2¢, every prime p and 4 dividing n divides g—1, and ged(n, ) = 1. By Theorem 1,
G(1,n,q,r) is Hamiltonian. 1
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