The Hamiltonian Property of the Consecutive-3 Digraph

G. J. Chang, F. K. Hwang and Li-Da Tong
Department of Applied Mathematics
National Chiao Tung University
Hsinchu 30050, Taiwan

(Received February 1997; accepted March 1997)

Abstract

A consecutive- d digraph is a digraph $G(d, n, q, r)$ whose n nodes are labeled by the residues modulo n and a link from node i to node j exists if and only if $j \equiv q i+k(\bmod n)$ for some k with $r \leq k \leq r+d-1$. Consecutive- d digraphs are used as models for many computer networks and multiprocessor systems, in which the existence of a Hamiltonian circuit is important. Conditions for a consecutive-d graph to have a Hamiltonian circuit were known except for $\operatorname{gcd}(n, d)=1$ and $d=3$ or 4 . It was conjectured by Du, Hsu, and Hwang that a consecutive-3 digraph is Hamiltonian. This paper produces several infinite classes of consecutive-3 digraphs which are not (respectively, are) Hamiltonian, thus suggesting that the conjecture needs modification.

Keywords-Hamiltonian circuit, Consecutive-d digraph, Network, Loop.

1. INTRODUCTION

Define $G(d, n, q, r)$, also known as a consecutive-d digraph, to be a digraph whose n nodes are labeled by the residues modulo n, and a link $i \rightarrow j$ from node i to node j exists if and only if $j \in\{q i+k(\bmod n): r \leq k \leq r+d-1\}$ where $1 \leq q, d \leq n-1$ and $0 \leq r \leq n-1$ given. Many computer networks and multiprocessor systems use consecutive- d digraphs as the topology of their interconnection networks. For example, $q=1$ yields the multiloop networks [1], also known as circulant digraphs [2], with the skip set $\{r, r+1, \ldots, r+d-1\} . q=d$ and $r=0$ yields the generalized de Bruijn digraphs [3,4], and $q=r=n-d$ yields the Imase-Itoh digraphs [5]. In some applications, it is important to know whether a Hamiltonian circuit (of length n) is embedded in a consecutive-d digraph. Hwang [6] gave a necessary and sufficient condition for $G(1, n, q, r)$ to be Hamiltonian. This is also equivalent to the existence of a linear congruential sequence of full period n in the theory of random number generators (see [7,8]). Du and Hsu [9] observed that $G(2, n, q, r)$ is Hamiltonian if and only if $G(1, n, q, r)$ or $G(1, n, q, r+1)$ is. Du, Hsu, and Hwang [10] proved that a consecutive-d digraph is always Hamiltonian for $d \geq 5$. They also conjectured that consecutive-3 digraphs are Hamiltonian. Some partial support of this conjecture was given in $[9,11]$. In this paper, we produce several infinite classes of consecutive-3 digraphs which are not Hamiltonian, thus suggesting that the conjecture needs modification. We also construct several infinite classes of consecutive-3 digraph which are Hamiltonian.

After this paper was submitted, we proved that all consecutive-4 digraphs are Hamiltonian, and thus completely settled the conjecture, see [12].

[^0]
2. SOME PRELIMINARY RESULTS

We first state some results obtained in [6] which will be used in this paper.
Theorem 1. (See [6-8].) $G(1, n, q, r)$ is Hamiltonian if and only if it satisfies the following three conditions.
(i) $\operatorname{gcd}(n, q)=1$.
(ii) Any prime p dividing n divides $q-1$.
(iii) If 4 divides n, then 4 divides $q-1$.

A node i in $G(1, n, q, r)$ is called a loop if $i \rightarrow i$ is a link, or equivalently, $i \equiv q i+r(\bmod n)$.
THEOREM 2. (See [6].) $G(1, n, q, r)$ contains a loop if and only if $\operatorname{gcd}(n, q-1)=g c d(n, q-1, r)$. Furthermore, if $G(1, n, q, r)$ contains a loop, then the number of loops it contains is $g c d(n, q-1)$. The loops have the same residue modulo $n / \operatorname{gcd}(n, q-1)$.

The following result is in [10].
Theorem 3. (See [10].) Suppose $g c d(n, q) \geq 2$. Then, $G(d, n, q, r)$ is Hamiltonian if and only if $d \geq \operatorname{gcd}(n, q)$.

According to Theorem 3, we may assume that $\operatorname{gcd}(n, q)=1$. In this case, for any $i \in$ $\{0,1, \ldots, n-1\}$, there is a unique j such that $j \rightarrow i$ is a type- r (respectively, type- $(r+2)$) link; we use i^{\prime} (respectively, $i^{\prime \prime}$) to denote this j.

Call $i \rightarrow j$ an odd link if i is odd and an even link if i is even. Let $G_{O}(1, n, q, r)$ and $G_{E}(1, n, q, r)$ denote the set of odd links and even links, respectively, of $G(1, n, q, r)$.
Lemma 4. Suppose $\operatorname{gcd}(n, q)=1$. If H is a Hamiltonian circuit of $G(1, n, q, r) \cup G(1, n, q, r+2)$ using both type-r links and type- $(r+2)$ links, then n is even and H is either $G_{O}(1, n, q, r) \cup$ $G_{E}(1, n, q, r+2)$ or $G_{E}(1, n, q, r) \cup G_{O}(1, n, q, r+2)$.
Proof. Suppose H contains a type- r link $i^{\prime} \rightarrow i$. Then, the type- $(r+2)$ link $i^{\prime} \rightarrow i+2$ is not in H, which forces the type-r link $(i+2)^{\prime} \rightarrow i+2$ to be in H. Hence, $i^{\prime} \rightarrow i$ in H implies $(i+2)^{\prime} \rightarrow i+2$ in H. If n was odd, then H contained all the n type-r links $j^{\prime} \rightarrow j$, which contradicts the assumption. Thus, n is even. Also, note that if i and j have the same parity, then so does i^{\prime} and j^{\prime}. Hence, H contains either all links of $G(1, n, q, r)$ of the same parity or none. Lemma 4 follows immediately.
Lemma 5. Suppose $\operatorname{gcd}(n, q-1)=\operatorname{gcd}(n, q-1, r+1)=n / k$ and $q^{2} \equiv 1(\bmod n)$.
(i) Consider a node $u \equiv i+x(q r+r+2)(\bmod n)$ for some $x \in\{0,1, \ldots, n-1\}$. If $u \rightarrow v$ in $G(1, n, q, r)$ and $v \rightarrow w$ in $G(1, n, q, r+2)$, then $w \equiv i+(x+1)(q r+r+2)(\bmod n)$.
(ii) Consider a node $u \equiv i+x(q r+2 q+r)(\bmod n)$ for some $x \in\{0,1, \ldots, n-1\}$. If $u \rightarrow v$ in $G(1, n, q, r+2)$ and $v \rightarrow w$ in $G(1, n, q, r)$, then $w \equiv i+(x+1)(q r+2 q+r)(\bmod n)$.

Proof.

(i) $w \equiv q(q u+r)+r+2 \equiv u+q r+r+2 \equiv i+(x+1)(q r+r+2)(\bmod n)$.
(ii) $w \equiv q(q u+r+2)+r \equiv u+q r+2 q+r \equiv i+(x+1)(q r+2 q+r)(\bmod n)$.

Lemma 6. Suppose $\operatorname{gcd}(n, q-1)=\operatorname{gcd}(n, q-1, r+1)=n / k$ and $q+1 \equiv 0(\bmod k)$. Then, $i \rightarrow j$ in $G(1, n, q, r+1)$ implies $j \rightarrow i$ in $G(1, n, q, r+1)$.
Proof. Note that $(q+1)(r+1) \equiv(q+1)(q-1) \equiv 0(\bmod n)$. Thus, in $G(1, n, q, r+1), i \rightarrow j$ implies $j \equiv q i+r+1 \rightarrow q(q i+r+1)+r+1 \equiv i+(q+1)(r+1) \equiv i(\bmod n)$.
Lemma 7. Let H be a Hamiltonian circuit in $G(3, n, q, r)$. If H contains two type- r (respectively, two type- $(r+2)$) links $i^{\prime} \rightarrow i$ and $(i+1)^{\prime} \rightarrow i+1$ (respectively, links $i^{\prime \prime} \rightarrow i$ and $(i+1)^{\prime \prime} \rightarrow i+1$) for some $i \in\{0,1, \ldots, n-1\}$, then $H=G(1, n, q, r)$ (respectively, $G(1, n, q, r+2)$).
Proof. Consider the node $(i-1)^{\prime}$ such that $q(i-1)^{\prime}+r \equiv i-1(\bmod n)$. Then, $(i-1)^{\prime}$ also has links to i and $i+1$. But i and $i+1$ are already reached in H; hence, $(i-1)^{\prime} \rightarrow i-1$, which
is in $G(1, n, q, r)$, must be in H. Iterate this argument, we have $H=G(1, n, q, r)$. The case for $H=G(1, n, q, r+2)$ is analogous.

3. THE MAIN RESULTS

Theorem 8. Let I be an independent set of edges of the (undirected) cycle $0,1, \ldots, n-1,0$. If $I \cup G(1, n, q, r+1)$ is connected (not necessarily strongly), then $G(3, n, q, r)$ is Hamiltonian.
Proof. We use a link-interchange method first introduced in [10]. Suppose that $G(1, n, q, r+1)$ consists of m disjoint cycles $C_{1}, C_{2}, \ldots, C_{m}$. If $m=1$, then there is nothing to prove. So assume $m>1$. Let $e_{i j}=(k, k+1) \in I$ be the edge connecting $k \in C_{i}$ and $k+1 \in C_{j}$. Let $x \rightarrow k$ be in C_{i} and $y \rightarrow k+1$ in C_{j}. Replace the two links $x \rightarrow k$ and $y \rightarrow k+1$ by the two links $x \rightarrow k+1$ and $y \rightarrow k$. Then, C_{i} and C_{j} are connected into one cycle $C_{i j}$. Note that $x \rightarrow k+1$ is a type- $(r+2)$ link and $y \rightarrow k$ is a type- r link. Now do the same for the set of $m-1$ cycles with $C_{i j}$ replacing C_{i} and C_{j}. Since $I \cup C_{1} \cup \cdots \cup C_{m}$ is connected, $e_{i j}$ as described above always exists. Furthermore, since I is an independent set, the $e_{i j}=(k, k+1)$ chosen each time induces the interchange of two type- $(r+1)$ links with a type- $(r+2)$ and a type- r link.
For even n, let I^{0} denote the independent set $\{2 i-1 \rightarrow 2 i: i=1,2, \ldots, n / 2\}$.
Theorem 9. Suppose $g c d(n, q)=1$ and n is even. Then, $g(3, n, q, r)$ is Hamiltonian if either $\operatorname{gcd}(n, q-1)=2$ and r is odd, or $\operatorname{gcd}(n, q+1)=2$ and r is even.
Proof. By Theorem 8, it suffices to show that $G^{0} \equiv I^{0} \cup G(1, n, q, r+1)$ is connected. Since $2 i-1 \rightarrow 2 i, 2 i-1 \rightarrow(2 i-1) q+r+1,2 i \rightarrow 2 i q+r+1$ are all in $G^{0},(2 i-1) q+r+1$ and $2 i q+r+1$ are connected in G^{0}. If we replace all links $2 i-1 \rightarrow(2 i-1) q+r+1$ and $2 i \rightarrow 2 i q+r+1$ for $i=1,2, \ldots n / 2$ by links $(2 i-1) q+r+1 \rightarrow 2 i q+r+1$ for $i=1,2, \ldots, n / 2$, and call the new graph G^{*}, then G^{0} must be connected if G^{*} is.

Let group i consist of the two nodes $2 i-1$ and $2 i$. Then each group induces a connected graph, so we only need to concern the inter-group connectivity. Note that $\operatorname{gcd}(n, q)=1$ and n even implies q is odd. Suppose r is odd. Then, $(2 i-1) q+r+1$ is odd. If $(2 i-1) q+r+1$ is in group j, then $2 i q+r+1$ must be in group $j+(q-1) / 2(\bmod n / 2)$. This difference of $(q-1) / 2$ is independent of i. So group j and group $j+(q-1) / 2$ are connected for $j=1,2, \ldots, n / 2$. Since $\operatorname{gcd}(n, q-1)=2$ implies $\operatorname{gcd}(n / 2,(q-1) / 2)=1$, the $n / 2$ groups are connected through these distance- $(q-1) / 2$ links. The proof for the even r case is analogous.

Figure 1. $I^{0} \cup G(1,4,3,1)$ is connected.
Note that Theorem 9 does not imply that if the parity of r is wrong, then $G(3, n, q, r)$ is not Hamiltonian. It does not even necessarily imply that I^{0} is not the right set to choose. For example, for $G(3,4,3,0), G^{*}$ is not connected, but G^{0} is (see Figure 1). However, there are cases that G^{0} is not connected. Consider $G(3,12,11,0) . G(1,12,11,1)$ is shown in Figure 2 a (each edge represents a 2 -way link), and $I^{i} \cup G(1,12,11,1)$ in Figures 2b-2d, where $I^{0}=\{(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)\}, I^{1}=\{(0,1),(2,3),(4,5),(6,7),(8,9),(10,11)\}$, $I^{2}=\{(1,2),(3,4),(5,6),(8,9),(10,11)\}$. Note that neither I^{0} nor I^{1} works, but I^{2} does.

Next, we give a sufficient condition for $G(3, n, q, r)$ to be nonHamiltonian when $G(1, n, q, r+1)$ contains $O(n)$ loops.

Theorem 10. Suppose that $\operatorname{gcd}(n, q)=1$ and $\operatorname{gcd}(n, q-1)=\operatorname{gcd}(n, q-1, r+1)=n / k$. If $q+1 \equiv 0(\bmod k)$ for $k \geq 3$ and $q+1 \equiv 0(\bmod 4)$ for $k=2$, then $G(3, n, q, r)$ is not Hamiltonian for $n>2 k$.

Figure 2. $G(1,12,11,1)$ and various independent sets.
Proof. First note that $g c d(n, q-1, r+1)=n / k$ and $q+1 \equiv 0(\bmod k)$ imply $q^{2} \equiv 1(\bmod n)$ and $(q+1)(r+1) \equiv 0(\bmod n)$.

By Lemma 6 , if $i \rightarrow j$ is in $G(1, n, q, r+1)$, then so is $j \rightarrow i$. Let i be a loop in $G(1, n, q, r+1)$. Then, $i \rightarrow i-1$ in $G(1, n, q, r)$ and $i \rightarrow i+1$ in $G(1, n, q, r+2)$. Furthermore, $i^{\prime} \rightarrow i$ in $G(1, n, q, r)$ implies $i^{\prime} \rightarrow i+1$ in $G(1, n, q, r+1)$ and $i+1 \rightarrow i^{\prime}$ is also in $G(1, n, q, r+1)$. This in turns implies $i+1 \rightarrow i^{\prime}+1$ is in $G(1, n, q, r+2)$. In fact,

$$
i^{\prime}+1 \equiv q(i+1)+r+2 \equiv q(q i+r+2)+r+2 \equiv i+(q+1)(r+2) \equiv i+q+1(\bmod n) .
$$

Since $q+1 \equiv 0(\bmod k), i^{\prime}+1$ has the same residue as $i(\bmod k)$; hence, $i^{\prime}+1$ is also a loop in $G(1, n, q, r+1)$ by Theorem 2. It follows that $i^{\prime}+1 \rightarrow i^{\prime}$ is in $G(1, n, q, r)$ and $i^{\prime}+1 \rightarrow i^{\prime}+2$ is in $G(1, n, q, r+2)$. Similarly, we have $i-1 \rightarrow i^{\prime \prime}-1=i-q-1$, which is a loop, in $G(1, n, q, r+1)$ and $i^{\prime \prime}-1 \rightarrow i^{\prime \prime}$ in $G(1, n, q, r+2)$. We show these relations in Figure 3, where $\rightarrow \rightarrow$ denotes a type- r link \longrightarrow a type- $(r+1)$ and $\Longrightarrow a$ type- $(r+2)$. We call the two loops $i-q-1$ and $i+q+1$ neighbors of loop i. By Lemma 7, there are only two paths through a loop i, either a type- r link followed by a type- $(r+2)$ link, or a type- $(r+2)$ link followed by a type-r link. Each path blocks a path of one if its two neighbor loops which has the same end points. For example, the path $i+q \rightarrow i \rightarrow i+1$ blocks the path $i+1 \rightarrow i+q+1 \rightarrow i+q$ because the union of both paths creates a 4 -cycle. Let L be the graph whose vertices are the loops and whose edges are pairs of end points of paths. Furthermore, an edge is incident to a vertex only if that loop has a path with that pair of end points. Then, L is a cycle. Note that each edge can only be assigned to one of its incident vertices.

Figure 3. Relations between a loop and its neighbor loops.
Let H be a Hamiltonian circuit of $G(3, n, q, r)$. Suppose H contains a type- $(r+1)$ link, say, $i+q \rightarrow i+1$. Then, this link blocks the path with $(i+q, i+1)$ as end points. So there are only $n / k-1$ paths left to cover for the n / k loops; one of the loops has no path passing it. Therefore, H contains no type- $(r+1)$ link.

Note that $q+1 \equiv 0(\bmod k)$ implies k does not divide $q-1$ for $k \geq 3$, and $q+1 \equiv 0(\bmod 4)$ implies 4 divides n, but not $q-1$. By Theorem 1 , neither $G(1, n, q, r)$ nor $G(1, n, q, r+2)$ is Hamiltonian. By Lemma 4, we only need to look into $G_{E}(1, n, q, r) \cup G_{O}(1, n, q, r+2)$ and $G_{O}(1, n, q, r) \cup G_{E}(1, n, q, r+2)$ for a Hamiltonian circuit. We show that a ($2 k$)-cycle exists in either case. Hence, $G(3, n, q, r)$ is not Hamiltonian for $n>2 k$.
For $G_{E}(1, m, q, r) \cup G_{O}(1, m, q, r+2)$, we have $0 \rightarrow r \rightarrow q r+r+2$. By Lemma 5 (i), after $2 k$ moves, we reach the node

$$
k(q r+r+2)=k(q-1) r+2 k(r+1) \equiv 0(\bmod n) .
$$

For $G_{O}(1, m, q, r) \cup G_{E}(1, m, q, r+2)$, we have $0 \rightarrow r+2 \rightarrow q r+2 q+r$. By Lemma 5 (ii), after $2 k$ moves, we reach the node

$$
k(q r+2 q+r)=k(q+1)(r+1)+k(q-1) \equiv 0(\bmod n) .
$$

Note that for each $k \geq 2$, the set $N H_{k}(n, q, r)$ of (n, q, r) satisfying the conditions of Theorem 10 is not empty. For example, $\{(k(t k-2), t k-1, t k-3): t \geq 1\} \subseteq N H_{k}(n, q, r)$ for $k \geq 3$ and $\{(8 t-4,4 t-1,4 t-3): t \geq 1\} \subseteq N H_{2}(n, q, r)$.
We now apply Theorem 10 to obtain more specific results for various k.
Theorem 11. Suppose that $\operatorname{gcd}(n, q)=1$ and $\operatorname{gcd}(n, q-1)=\operatorname{gcd}(n, q-1, r+1)=n / 2$ (hence, n is even). Then $G(3, n, q, r)$ is not Hamiltonian if and only if $n=8 t+4$ for some $t \geq 1$.
Proof. Since $g c d(n, q-1)=g c d(n, q-1, r+1)=n / 2$, necessarily $n=2 k, q=k+1, r=k-1$ or $2 k-1$. $\operatorname{gcd}(n, q)=1$ implies $k=2 m$ and so $n=4 m, q=2 m+1, r=2 m-1$ or $4 m-1$.
For odd $m=2 t+1$ with $t \geq 1, q+1 \equiv 0(\bmod 4)$ and $n=8 t+4>4$. By Theorem 10, $G(3, n, q, r)$ is not Hamiltonian. For odd $m=2 t+1$ with $t=0, g c d(n, q-1)=2 m=2$ and r is odd. By Theorem 9, $G(3, n, q, r)$ is Hamiltonian.
For even $m=2 t, n=8 t$. It is easily verified that $\operatorname{gcd}(n, r)=\operatorname{gcd}(n, r+2)=1$. Furthermore, $q-1=n / 2$ implies that every $p>2$ dividing n divides $q-1$ and $n=8 t$ implies 4 divides both n and $q-1$. By Theorem 1, both $G(1, n, q, r)$ and $G(1, n, q, r+2)$ are Hamiltonian.

Theorem 12. Suppose that $\operatorname{gcd}(n, q)=1$ and $\operatorname{gcd}(n, q-1)=g c d(n, q-1, r+1)=n / 3$ (hence, $n \equiv 0(\bmod 3))$. Then, $G(3, n, q, r)$ is not Hamiltonian if and only if $n=9 t+3$ or $9 t+6$ for some $t \geq 1$.
Proof. There are six classes of (n, q, r) satisfying $\operatorname{gcd}(n, q-1)=\operatorname{gcd}(n, q-1, r+1)=n / 3$: $n=3 m, q=m+1$ or $2 m+1, r=m-1,2 m-1$ or $3 m-1$. Since $\operatorname{gcd}(n, q)=1, q=m+1$ implies $m \not \equiv 2(\bmod 3)$ and $q=2 m+1$ implies $m \not \equiv 1(\bmod 3)$.
For the case when $q=m+1$ with $m=3 t+1$ or $q=2 m+1$ with $m=3 t+2$, where $t \geq 1$, $q+1 \equiv 0(\bmod 3)$ and $n>6$. By Theorem $10, G(3, n, q, r)$ is not Hamiltonian. It is easily verified that $G(3,3,2, r)$ and $G(3,6,5, r)$ with odd r are Hamiltonian.
Furthermore, if $m=3 t$, then every prime p or 4 dividing n divides $q-1$. It is also easily verified that $\operatorname{gcd}(n, r)=\operatorname{gcd}(n, r+2)=1$. Hence, both $G(1, n, q, r)$ and $G(1, n, q, r+2)$ are Hamiltonian by Theorem 1.

Theorem 13. Suppose that $\operatorname{gcd}(n, q)=1$ and $\operatorname{gcd}(n, q-1)=\operatorname{gcd}(n, q-1, r+1)=n / 4$ (hence, $n \equiv 0(\bmod 4)$). Then, $G(3, n, q, r)$ is not Hamiltonian if and only if $n=16 t+8$ for some $t \geq 1$. Proof. To satisfy the conditions of the theorem, necessarily $n=8 m, q=2 m+1$ or $6 m+1$, and $r=2 m-1,4 m-1,6 m-1$ or $8 m-1$.
For odd $m=2 t+1$ with $t \geq 1, q+1 \equiv 0(\bmod 4)$ and $n=16 t+8>8$. By Theorem 10 , $G(3, n, q, r)$ is not Hamiltonian. For odd $m=2 t+1$ with $t=0, g c d(n, q-1)=2 m=2$ and r is odd. By Theorem 9, $G(3, n, q, r)$ is Hamiltonian.
For even $m=2 t$, every prime p and 4 dividing n divides $q-1$, and $\operatorname{gcd}(n, r)=1$. By Theorem 1 , $G(1, n, q, r)$ is Hamiltonian.

REFERENCES

1. C.K. Wong and D. Coppersmith, A combinatorial problem related to multimodule memory organizations, J. Asso. Comput. Mach. 21, 392-402 (1974).
2. E.A. van Doorn, Connectivity of circulant digraphs, J. Graph Theory 10, 9-14 (1986).
3. M. Imase and M. Itoh, Design to minimize a diameter on building block network, IEEE Trans. on Computers C-30, 439-443 (1981).
4. S.M. Reddy, D.K. Pradhan and J.G. Kuhl, Directed graphs with minimal diameter and maximal connectivity, School of Engineering, Oakland University Tech. Rep. (1980).
5. M. Imase and M. Itoh, A design for directed graph with minimum diameter, IEEE Trans. on Computers C-32, 782-784 (1983).
6. F.K. Hwang, The Hamiltonian property of linear functions, Operations Research Letters 6, 125-127 (1987).
7. T.E. Hull and A.R. Dobell, Random number generators, SIAM Review 4, 230-254 (1962).
8. D.E. Knuth, The Art of Computer Programming, Volume 2, p. 15, North-Holland, Amsterdam, (1966).
9. D.-Z. Du and D.F. Hsu, On Hamiltonian consecutive-d digraphs, Banach Center Publications 25, 47-55 (1989).
10. D.-Z. Du, D.F. Hsu and F.K. Hwang, Hamiltonian property of d-consecutive digraphs, Mathl. Comput. Modelling 17 (11), 61-63 (1993).
11. D.-Z. Du, D.F. Hsu, F.K. Hwang and X.M. Zhang, The Hamiltonian property of generalized de Bruijn digraphs, J. Comb. Theory, Series B 52, 1-8 (1991).
12. G.J. Chang, F.K. Hwang and L.-T. Tung, The consecutive-4 digraphs are Hamiltonian, (submitted) (1997).
13. D.-Z. Du, F. Cao and D.F. Hsu, De Bruijn digraphs, Kautz digraphs, and their generalizations, In Combinatorial Network Theory (Edited by D.-Z. Du and D.F. Hsu), Kluwer Academic Publishers, 65-105, (1996).

[^0]: Supported in part by the National Science Council under Grant NSC86-2115-M009-002.

