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Abstract-A consecutive-d digraph is a digraph G(d, n, q, T) whose n nodes are labeled by the 
residues modulo n and a link from node i to node j exists if and only if j I pi + k (mod n) for some k 
with r 5 k 5 r + d - 1. Consecutive-d digraphs are used as models for many computer networks 
and multiprocessor systems, in which the existence of a Hamiltonian circuit is important. Conditions 

for a consecutive-d graph to have a Hamiltonian circuit were known except for gcd(n, d) = 1 and 
d = 3 or 4. It was conjectured by Du, Hsu, and Hwang that a consecutivo3 digraph ls Hamiltonian. 
This paper produces several infinite classes of consecutive-3 digraphs which are not (respectively, are) 
Hamiltonian, thus suggesting that the conjecture needs modification. 
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1. INTRODUCTION 

Define G(d, n, q, r), also known as a consecutive-d digraph, to be a digraph whose n nodes are 
labeled by the residues modulo n, and a link i + j from node i to node j exists if and only if 
j E {@+Ic (mod n) : T 5 k 5 r+d- 1) where 1 I q,d 5 n - 1 and 0 I r I: n - 1 given. 
Many computer networks and multiprocessor systems use consecutive-d digraphs as the topology 
of their interconnection networks. For example, q = 1 yields the multiloop networks [l], also 
known as circulant digraphs [2], with the skip set {r, r + 1,. . . , r + d - 1). q = d and r = 0 yields 
the generalized de Bruijn digraphs [3,4], and q = r = n - d yields the Imase-Itoh digraphs [5]. 
In some applications, it is important to know whether a Hamiltonian circuit (of length n) is 
embedded in a consecutive-d digraph. Hwang [6] gave a necessary and sufficient condition for 
G(l, n, q, r) to be Hamiltonian. This is also equivalent to the existence of a linear congruential 
sequence of full period n in the theory of random number generators (see [7,8]). Du and Hsu [9] 
observed that G(2, n, q, r) is Hamiltonian if and only if G(l, n, q, r) or G(l, n, q, r+ 1) is. Du, Hsu, 
and Hwang [lo] proved that a consecutive-d digraph is always Hamiltonian for d 1 5. They also 
conjectured that consecutive-3 digraphs are Hamiltonian. Some partial support of this conjecture 
was given in [9,11]. In this paper, we produce several infinite classes of consecutive-3 digraphs 
which are not Hamiltonian, thus suggesting that the conjecture needs modification. We also 
construct several infinite classes of consecutive-3 digraph which are Hamiltonian. 

After this paper was submitted, we proved that all consecutive-4 digraphs are Hamiltonian, 
and thus completely settled the conjecture, see (121. 
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2. SOME PRELIMINARY RESULTS 

We first state some results obtained in [6] which will be used in this paper. 

THEOREM 1. (See [6-81.) G( 1, n, q, r) is Hamiltonian if and only if it satisfies the following three 

conditions. 

(i) gcd(n,q) = 1. 
(ii) Any prime p dividing n divides q - 1. 

(iii) If 4 divides n, then 4 divides q - 1. 

A node i in G(l,n, q,r) is called a loop if i + i is a link, or equivalently, i E qi + r (mod n). 

THEOREM 2. (See [61.) G(l,n,q, ) r contains a loop if and only if gcd(n, q - 1) = gcd(n, q - 1, r). 

Furthermore, if G(l, n, q, r) contains a loop, then the number of loops it contains is gcd(n, q - 1). 

The loops have the same residue modulo n/gcd(n, q - 1). 

The following result is in [lo]. 

THEOREM 3. (See [IO].) Suppose gcd(n, q) 1 2. Then, G(d, n, q,r) is Hamiltonian if and only if 

d > gcd(n,q). 

According to Theorem 3, we may assume that gcd(n,q) = 1. In this case, for any i E 

{O,l, * * * 7 n - l}, there is a unique j such that j + i is a type-r (respectively, type-(r + 2)) 

link; we use i’ (respectively, i”) to denote this j. 

Call i + j an odd link if i is odd and an even link if i is even. Let Go( 1, n, q, r) and GE( 1, n, q, r) 

denote the set of odd links and even links, respectively, of G(l,n,q,r). 

LEMMA 4. Suppose gcd(n, q) = 1. If H is a Hamiltonian circuit of G(l, n, q, r) U G(l, n, q, r + 2) 

using both type-r links and type-(r + 2) finks, then n is even and H is either Go(1, n, q, r)U 

Gdl,n,q,r+2) orGE(l,n,q,r)UGo(l,n,q,r+2). 

PROOF. Suppose H contains a type-r link i’ + i. Then, the type-(r + 2) link i’ + i + 2 is not 

in H, which forces the type-r link (i + 2)’ + i + 2 to be in H. Hence, i’ + i in H implies 

(i + 2)’ --f i + 2 in H. If n w&s odd, then H contained ah the n type-r links j’ -+ j, which 

contradicts the assumption. Thus, n is even. Also, note that if i and j have the same parity, 

then so does i’ and j’. Hence, H contains either ail links of G(l, n,q,r) of the same parity or 

none. Lemma 4 follows immediately. I 

LEMMA 5. Suppose gcd(n, q - 1) = gcd(n,q - 1,r + 1) = n/k and q2 E 1 (mod n). 

(i) Consideranodeu=i+z(qr+r+2) (modn)forsomea:E{O,l,...,n-11). Ifzl-+vin 

G(l,n,q,r) and u + w in G(l,n,q,r + 2), then w E i + (z + l)(qr + r + 2) (mod n). 

(ii) Consider a node u E i + z(qr + 2q + r) (mod n) for some x E (0, 1,. . . , n - 1). If u --) o 

in G( 1, n, q, r + 2) and v + w in G(l,n,q,r), then w - i + (x + l)(qr + 2q + r) (mod n). 

PROOF. 

(i) w E q(qu + r) + r + 2 E u + qr + r + 2 E i + (z + l)(qr + r + 2) (mod n). 

(ii) w E q(qu + r + 2) + r E u + qr + 2q + r E i + (z + l)(qr + 2q + r) (mod n). I 

LEMMA 6. Suppose gcd(n,q - 1) = gcd(n,q - 1,r + 1) = n/k and q + 1 = 0 (mod k). Then, 

i + j in G(l,n,q,r + 1) implies j --+ i in G(l,n,q,r + 1). 

PROOF. Note that (q + l)(r + 1) E (q + l)(q - 1) E 0 (mod n). Thus, in G(l, n,q, r + l), i + j 
implies j z qi + r + 1 ---) q(qi + r + 1) + r + 1 E i + (q + l)(r + 1) E i (mod n). I 

LEMMA 7. Let H be a Hamiltonian circuit in G(3, n, q, r). If H contains two type-r (respectively, 

two type-(r + 2)) links i’ + i and (i + 1)’ -+ i + 1 (respectively, finks i” --) i and (i + 1)” -+ i + 1) 

for some i E {O,l,. . . , n - l}, then H = G(l,n,q,r) (respectively, G(l, n,q,r + 2)). 

PROOF. Consider the node (i - 1)’ such that q(i - 1)’ + r = i - 1 (mod n). Then, (i - 1)’ also 

has links to i and i + 1. But i and i + 1 are already reached in H; hence, (i - 1)’ + i - 1, which 
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is in G(l, n, q, r), must be in H. Iterate this argument, we have H = G(l, n, q, T). The case for 
H = G(l, n, q, T + 2) is analogous. I 

3. THE MAIN RESULTS 

THEOREM 8. Let I be an independent set of edges of the (undirected) cycle 0, 1, . . . , n - 1,O. If 
I U G(l, n, q, r + 1) is connected (not necessarily strongly), then G(3, n, q, r) is Hamiltonian. 

PROOF. We use a link-interchange method first introduced in [lo]. Suppose that G(l, n, q, T + 1) 

consists of m disjoint cycles Ci , CZ, . . . , C,,,. If m = 1, then there is nothing to prove. So assume 

m > 1. Let eij = (lc, Ic + 1) E I be the edge connecting k E Ci and k + 1 E Cj. Let z + k 
be in Ci and y + k + 1 in Cj. Replace the two links x + k and y + k + 1 by the two links 

x + k + 1 and y + k. Then, Ci and Cj are connected into one cycle Cij. Note that x + k + 1 

is a type-(r + 2) link and y + k is a type-r link. Now do the same for the set of m - 1 cycles 

with Cij replacing Ci and Cj. Since I U Cl U . . - U C,,, is connected, eij as described above always 

exists. Furthermore, since I is an independent set, the eij = (k, k + 1) chosen each time induces 

the interchange of two type-(r + 1) links with a type-(r + 2) and a type-r link. I 

For even n, let I0 denote the independent set (2i - 1 -+ 2i : i = 1,2,. . . , n/2}. 

THEOREM 9. Suppose gcd(n,q) = 1 and n is even. Then, g(3,n,q,r) is Hamiltonian if either 

gcd(n, q - 1) = 2 and T is odd, or gcd(n, q + 1) = 2 and T is even. 

PROOF. By Theorem 8, it suffices to show that Go E 1’ U G(l, n, q, T + 1) is connected. Since 

2i-1 + 2i, 2i-1 + (2i-l)q+r+l, 2i + 2iq+r+l are ail in Go, (2i-l)q+r+l and 2iq+r+l 

are connected in Go. If we replace all links 2i - 1 + (2i - l)q + r + 1 and 2i + 2iq + T + 1 for 

i = 1,2,... n/2 by links (2i - 1)q + r + 1 ---) 2iq + T + 1 for i = 1,2,. . . , n/2, and call the new 

graph G’, then Go must be connected if G’ is. 

Let group i consist of the two nodes 2i - 1 and 2i. Then each group induces a connected graph, 

so we only need to concern the inter-group connectivity. Note that gcd(n,q) = 1 and n even 

implies q is odd. Suppose r is odd. Then, (2i - 1)q + r + 1 is odd. If (2i - 1)q + r + 1 is in 

group j, then 2iq + T + 1 must be in group j + (q - 1)/2 (mod n/2). This difference of (q - 1)/2 

is independent of i. So group j and group j + (q - 1)/2 are connected for j = 1,2, . . . , n/2. Since 

gcd(n,q - 1) = 2 implies gcd(n/2, (q - 1)/2) = 1, the n/2 groups are connected through these 

distance-(q - 1)/2 links. The proof for the even r case is analogous. I 

3 ----_-- 0 3-------o 

2 II II _--Go-- 1 = 2 1 
G 

Figure 1. I0 U G( 1,4,3,1) is connected. 

Note that Theorem 9 does not imply that if the parity of T is wrong, then G(3, n, q, T) is 

not Hamiltonian. It does not even necessarily imply that I0 is not the right set to choose. 

For example, for G(3,4,3,0), G* is not connected, but Go is (see Figure 1). However, there 

are cases that Ge is not connected. Consider G(3,12,11,0). G(1,12,11,1) is shown in Fig- 

ure 2a (each edge represents a 2-way link), and Ii U G(l, 12,11,1) in Figures 2b-2d, where 

I0 = {(1,2), (3,4), (5,6), (7,8), (9, lo), (11,12)), 1’ = ((0, l), (2,3), (4,5), (6,7), (8,9), (10, ll)}, 
I2 = {(1,2), (3,4), (5,6), (8,9), (10,ll)). Note that neither I0 nor I1 works, but I2 does. 

Next, we give a sufficient condition for G(3, n, q, r) to be nonHamiltonian when G(l, n, q, T + 1) 
contains C(n) loops. 

THEOREM 10. Suppose that gcd(n, q) = 1 and gcd(n,q - 1) = gcd(n,q - 1, r + 1) = n/k. If 
q + 1 = 0 (mod k) for k L 3 and q+ 1 E 0 (mod 4) for k = 2, then G(3, n, q, r) is not Hamiltonian 
for n > 2k. 
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o.-_---- 1 0 ~ 1 O-------l 0 -1 I 
I 

ll- 2 111 I 2 ll- 2 ll- 12 
I 

10 3 lo- 3 10’ --_A 3 101 -3 
I I I 

9- 4 9’ ----_A 4 9_ 4 9 I 4 
I I I 

8 5 8 5 81-15 8’_ 5 

7------ 6 71 ~ 16 7 ------- ~ 6 7 16 
(a) (b) (c) (d) 

Figure 2. G(1,12,11,1) and various independent sets. 

PROOF. First note that gcd(n, q - 1, r + 1) = n/k and q + 1 E 0 (mod k) imply q2 s 1 (mod n) 

and (q + l)(r + 1) ss 0 (mod n). 

By Lemma 6, if i + j is in G(l, n, q, r + l), then so is j +i. LetibealoopinG(l,n,q,r+l). 

Then, i t i-l inG(l,n,q,r) and i --f i+l in G(l,n,q,r+2). Furthermore, i’ + i in G(l,n,q,r) 

implies i’ t i+l in G(l,n,q,r+l) and i+l + i’ is also in G(l, n, q, r + 1). This in turns implies 

i+l+i’+lisinG(l,n,q,r+2). Infact, 

i’ + 1 z q(i + 1) + r + 2 = q(qi + r + 2) + r + 2 E i + (q + l)(r + 2) = i + q + l(modn). 

Since q + 1 = 0 (mod k), i’ + 1 has the same residue as i (mod k); hence, i’ + 1 is also a loop in 

G(l, n, q, r + 1) by Theorem 2. It follows that i’ + 1 + i’ is in G(l, n, q, r) and i’ + 1 + i’ + 2 is in 

G( 1, n, q, r + 2). Similarly, we have i - 1 --f i” - l=i-q-l,whichisaloop,inG(I,n,q,r+l) 

and i” - 1 + i” in G(l,n,q,r + 2). We show these relations in Figure 3, where ---+ denotes a 

type-r link, - a type-(r + 1) and _ a type-(r + 2). We call the two loops i - q - 1 and 

i + q + 1 neighbors of loop i. By Lemma 7, there are only two paths through a loop i, either a 

type-r link followed by a type-(r + 2) link, or a type-(r + 2) link followed by a type-r link. Each 

path blocks a path of one if its two neighbor loops which has the same end points. For example, 

the path i + q + i t i + 1 blocks the path i + 1 + i + q + 1 + i + q because the union of both 

paths creates a Ccycle. Let L be the graph whose vertices are the loops and whose edges are 

pairs of end points of paths. Furthermore, an edge is incident to a vertex only if that loop has a 

path with that pair of end points. Then, L is a cycle. Note that each edge can only be assigned 

to one of its incident vertices. 

.u \ 
2 =i-q - i-1 

b 
/ / 

Yi 
/ 

/ 
/ b 

i’=i+q -. i+l 

\ 
\ 

\ k/ 
i’ + 1 

Figure 3. Relations between a loop and its neighbor loops. 

Let H be a Hamiltonian circuit of G(3, n, q, r). Suppose H contains a type-(r + 1) link, say, 

i + q + i + 1. Then, this link blocks the path with (i + q, i + 1) as end points. So there are only 
n/k - 1 paths left to cover for the n/k loops; one of the loops has no path passing it. Therefore, 

H contains no type-(r + 1) link. 
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Note that q + 1 ZE 0 (mod k) implies k does not divide q - 1 for k 2 3, and q 4 1 E 0 (mod 4) 

implies 4 divides n, but not q - 1. By Theorem 1, neither G(l,~,q,~) nor G(l,n,q,r + ‘2) is 

Hamiltonian. By Lemma 4, we only need to look into G&, n,q,r) U G&n,q,r + 2) and 

Go(1, n,q,r) U G&,n,q, r + 2) for a Hamiltonian circuit. We show that a (2k)-cycle exists in 

either case. Hence, G(3, n, q, T) is not Hamiltonian for n > 2k. 

For G&m,q,r)UGo(l,m,q,rf2), we have0 -+ T + qr + T + 2. By Lemma 5 (i), after 2k 

moves, we reach the node 

k(qr + Y -i- 2) = kfq - l)r + 2k(r + 1) z O(mod n). 

For Go(l,m,q,r)UGE(l,m,q,r+2), we have0 -+ r-1-2 + qr+2q+r. By Lemma 5 (ii), after 2k 

moves, we reach the node 

k(qr + 2q + r) = k(q + l)(r + 1) + k(q - 1) ra O(modn). I 

Note that for each k 2 2, the set NHk(n, q, r) of (n, q, r) satisfying the conditions of Theorem 10 

is not empty. For example, {(k(tk - 2),tk - 1, tk - 3) : t 2 1) Cr NHk(n,q, r) for k 2 3 and 

((8t - 4,4t - 1,4t - 3) : t > 1) C NH2(n,q,r). 
We now apply Theorem 10 to obtain more specific results for various k. 

THEOREM 11. Suppose that gcd(n, q) = 1 and gcdfn, q - 1) = gcd(n, q - 1, T f 1) = n/2 (hence, 

n is even). Then G(3, n, q, T) is not Hamiltonian if and only if n = 8t + 4 for some t > 1. 

PROOF. Since gcd(n,q - 1) = gcd(n, q - 1,r + 1) = n/2, necessarily n = 2k,q = k + 1,r = k - 1 

or 2k - 1. gcd(n,q) = 1impliesk=2mandson=4m,q=2m+1,r=2m-1or4m-1. 

For odd m = 2t f 1 with t 2 1, q + 1 E 0 (mod 4) and n = 8t f 4 > 4. By Theorem 10, 

G(3, n, q, r) is not Hamiltonian. For odd m = 2t + 1 with t = 0, gcd(n, q - 1) = 2m = 2 and T is 

odd. By Theorem 9, G(3, n, q, T) is Hamiltonian. 

For even m = 2t, n = 8t. It is easily verified that gcd(n,r) = gca!(n,r + 2) = 1. Furthermore, 

q - 1 = n/2 implies that every p > 2 dividing n divides q - 1 and n = 8t implies 4 divides both 

n and q - 1. By Theorem 1, both G( 1, n, q, T) and G(l, n, q, r + 2) are Hamiltonian. a 

THEOREM 12. Supple that gcd(n, q) = 1 and gcd(n, q - 1) = gcd(n, q - 1, r + 1) = n/3 (hence, 
n ZE 0 (mod 3)). Then, G(3, n, q, r) is not Hamiltonian if and only if n = 9t + 3 or St -t 6 for some 

t z 1. 

PROOF. There are six classes of (n, q, T) satisfying’ gcd(n, q - 1) = gcd(n, q - 1, T + 1) = n/3: 

n = 3m, q = m + 1 or 2m + 1, r = m - 1, 2m - 1 or 3m - 1. Since g~(n,q~ = 1, q = m + 1 
implies m f 2 (mod 3) and q = 2m + 1 implies m $1 (mod 3). 

For the case when q = m + 1 with m = 3t + 1 or q = 2m + 1 with m = 3t + 2, where t 2 1, 

q + 1 3 0 (mod 3) and n > 6. By Theorem 10, G(3, n, q, T) is not Hamiltonian. It is easily verified 

that G(3,3,2, T) and G(3,6,5, T) with odd r are Hamiltonian. 

Furthermore, if m = 3t, then every prime p or 4 dividing n divides q- 1. It is also easily verified 

that gcd(n, T) = gcd( n, r + 2) = 1. Hence, both G( 1, n, q, r) and G( 1, n, q, f + 2) are H~iltoni~ 

by Theorem 1. I 

THEOREM 13. Suppose that gcd(n, q) = 1 and gcd(n,q - 1) = gc&(n, q - 1, T + 1) = n/4 (hence, 
n z 0 (mod 4)). Then, G(3, n,q,r) is not Hamiltonian if and only if n = 16t + 8 for some t 2 1. 

PROOF. To satisfy the conditions of the theorem, necessarily n = 8m, q = 2m + 1 or 6m + 1, 

andr=2m-1,4m-1,6m-1or8m-1. 

For odd m = 2t + 1 with t 2 1, q + 1 E 0 (mod 4) and n = 16t + 8 > 8. By Theorem 10, 
G(3, n, q, T) is not Hamiltonian. For odd m = 2t -I- 1 with t = 0, gcd(n, q - 1) = 2m = 2 and T is 
odd. By Theorem 9, G(3, n, q, r) is Hamiltonian. 

For even m = 2t, every prime p and 4 dividing n divides q - 1, and gcd(n, T) = 1. By Theorem 1, 
G(1, n, q, P) is Hamiltoni~. a 
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