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The process of coherent creation of particle-hole excitations by an electric field in graphene is quantitatively
described using a dynamic “first-quantized” approach. We calculate the evolution of current density, number of
pairs, and energy in ballistic regime using the tight-binding model. The series in electric field strength E up to
third order in both dc and ac are calculated. We show how the physics far from the two Dirac points enters
various physical quantities in linear response and how it is related to the chiral anomaly. The third harmonic
generation and the imaginary part of conductivity are obtained. It is shown that at certain time scale t,,;
« E-!2 the physical behavior dramatically changes and the perturbation theory breaks down. Beyond the
linear-response physics is explored using an exact solution of the first-quantized equations. While for small
electric fields the I-V curve is linear characterized by the universal minimal resistivity o=/2(e?/h), at
t>1, the conductivity grows fast. The copious pair creation (with rate E*?), analogous to Schwinger’s
electron-positron pair creation from vacuum in QED, leads to creation of the electron-hole plasma at ballistic
times of order #,;. This process is terminated by a relaxational recombination.
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I. INTRODUCTION

It has been demonstrated recently that a graphene sheet,
especially one suspended on leads, is one of the purest elec-
tronic systems. It became increasingly evident that electronic
mobility in graphene is extremely large exceeding that in
best semiconductor two-dimensional (2D) systems.! The
scattering of charge carriers in suspended graphene samples
of submicron length is so negligible that the transport is
ballistic.>* The ballistic flight time can be estimated as
=L/v,, where v, is the graphene velocity characterizing the
“relativistic” spectrum of graphene near Dirac points and L is
the length of the sample. During the ballistic flight conduc-
tivity calculated neglecting interactions with phonons, rip-
plons, disorder, and between electrons, etc., are consistent
with experiments at least near the Dirac point at which no
carriers are present.*

In a simplified model of a single graphene sheet (neglect-
ing scattering processes and electron interactions) the chemi-
cal potential is located right between the valence and con-
ductance bands and the Fermi “surface” consists of two
Dirac points of the Brillouin zone.> A lot of effort has been
devoted theoretically to the question of dc and ac transport in
pure graphene due to the surprising fact that the conductivity
is finite without any dissipation process present. A widely
accepted “standard” value of the “minimal dc conductivity”
at zero temperature,

g = o h (1)
was calculated using a simplified Dirac model>'* by a vari-
ety of methods. Direct application of the Kubo formula at
zero frequency, disorder strength, temperature, and chemical
potential®® utilizes certain “regularizations” such as the i
regulator which is interpreted as an “infinitesimal disorder.”
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The regulator is removed at the end of the calculation. A
more customary application of the Kubo formula starts with
finite frequency. As noted by Ziegler and co-workers® the
order of limits makes a difference and several other values
different from o were provided for the same system. The
standard value o is obtained using a rather unorthodox pro-
cedure when the dc limit w— 0 is made before the zero dis-
order strength limit 7—0 is taken. If the order of limits is
reversed, one obtains®

7T€2

0'2=E;. (2)

When the limit is taken holding w= 7 one can even obtain a

value of o3= 77%2,8 thus solving the “missing 7" problem (the
same value was obtained very recently using yet another
regularization in Ref. 11). Indeed, at least early experiments
on graphene sheets on Si substrates provided values roughly
three times larger than o,.'> Recent experiments on sus-
pended graphene? demonstrated that the dc conductivity is
lower, 1.70, as temperature is reduced to 4 K. Hence while
o3 seems to be inconsistent with experiment, one still faces
the question of what is the proper theoretical value. Since the
conductivity of clean graphene in the infinite sample is a
well-defined physical quantity, there cannot be any ambigu-
ity as to its theoretical value. Another theoretical approach to
the problem was the use of Landauer formalism to the
graphene sheet conductance. The conductivity appears as a
limiting value of infinite width W in this approach®'® and
one obtains o . Also resumming the series in disorder by a
self-consistent Born approximation gives o (Ref. 7) while
other resummations can lead to a different result.'?

In contrast to the controversy with respect to the dc con-
ductivity, both the experimental and the theoretical situation
for the ac conductivity in the high-frequency limit is quite
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different. The theoretically predicted value in the Dirac
model is o, independent of frequency under condition w
> T/#.7'* The Dirac model becomes inapplicable when w is
of order of y/A~4X 10" Hz or larger, where 7 is the hop-
ping energy of graphene. It was shown theoretically using
the tight-binding model and experimentally in Ref. 15 that
the optical conductivity at frequencies higher or of order y/#
becomes slightly larger than o,. Moreover, in light transmit-
tance measurements at frequencies down to 2.5X 105 Hz it
was found equal to o, within 4%. The tight-binding model
does not contain any other time scales capable of changing
the limiting value of the ac conductivity all the way to w
— 0. Therefore one would expect that the dc conductivity is
o, rather than .

As is shown in the present paper, using the dynamical
approach (a brief account of some results was published in
Refs. 4 and 6), this is indeed the case. The basic physical
effect of the electric field is a coherent creation of electron-
hole pairs, mostly but not exclusively, near the two Dirac
points. To effectively describe this process we develop a dy-
namical approach to charge transport in clean graphene using
the “first-quantized” approach to pair-creation physics simi-
lar to that developed in relativistic physics!” to describe
electron-positron pairs creation. To better visualize the phe-
nomenon of resistivity without dissipation directly at zero
temperature, doping, frequency, and disorder we describe an
experimental situation as closely as possible by calculating
directly the time evolution of the electric current after
switching on an electric field. In this way the use of a rather
formal Kubo or Landauer formalism is avoided and as a
result no regularizations are needed. Although we consider
an infinite sample, the dynamical approach allows us to ob-
tain qualitative results for finite samples by introducing time
cutoffs such as ballistic flight time. Various other factors de-
termining transport can be conveniently characterized by
time scales such as the relaxation time for scattering of
phonons or impurities.

We show in detail that some aspects the linear-response
physics are not dominated by the two Dirac points of the
Brillouin zone at which the spectrum is gapless. For ex-
ample, large contributions [infinite, when the size of the Bril-
louin zone 27/a (a=3 A is the lattice spacing), is being
considered infinite] to the conductivity from the vicinity of
the Dirac points are canceled by contributions from the re-
gion between them. This phenomenon is related to the chiral
anomaly in field theory.'"® We analyze the use of massless
Dirac (Weyl) model approximation to the tight-binding
model and propose an effective chirally invariant regulariza-
tion for it.

In addition to the analysis of the linear response, we de-
termin the range of applicability of the linear-response ap-
proximation by both calculation of higher orders in (dc and
ac) electric field and solving the model exactly in the non-
linear electromagnetic response regime. Only the zero
chemical-potential case (no net charge) is considered. In this
respect the work is complimentary to an earlier study by
Mikhailov'® in which ballistic nonlinear electromagnetic re-
sponse to an ac field was calculated at finite chemical poten-
tial using the Boltzmann equation within a semiclassical ap-
proach and major effects we study were omitted. We first
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obtain perturbative corrections up to the third order in the
electric field E. At this order qualitatively distinct phenom-
ena such as the third harmonic generation and the imaginary
part of conductivity appear. The calculation of the correc-
tions allows us to estimate the time scale at which perturba-
tion theory breaks down. At this scale, t,; E~"/2, the physical
behavior is expected to change qualitatively. Therefore one
has to resort to nonperturbative methods. Certain aspects of
nonlinear ac response at zero chemical potential were also
studied recently by Mishchenko.”’ In his work disorder
(taken into account phenomenologically) dominates the
purely ballistic effects by cutting off the ballistic times at
relaxation-time scale before 7, is reached.

Physics of the simplest tight-binding model beyond the
linear response is explored via an exact solution of the first-
quantized equations. It is a peculiar property of the tight-
binding model in the dynamical approach, that the exact so-
lution of the equations for arbitrary momentum k, can be
reduced to that for ky=0; the constant electric field being in
the y direction. Moreover, the remaining equations, using
Floquet theory, can then be reduced to a recursion relation.
We use this property to effectively calculate the long ballistic
flight evolution of various physical quantities such as the
current density and the number of created pairs. While for
small ballistic times, 7<t,;, the conductivity settles at o, at
t>t,, the current grows linearly. This increase can be ex-
plained using Schwinger’s electron-positron pair-creation
mechanism.”! The pair creation is a two-dimensional version
of that in QED with the creation rate proportional to E*22?
This, in absence of relaxation channels (for times below
tha=L/v,), leads to the creation of a neutral electron-hole
plasma at ballistic times of order 7,,. This process cannot
continue forever and is terminated by a relaxational recom-
bination. The applicability of Schwinger’s formula for the
electron-hole pairs creation rate was debated over a long
time and we set the limitation on the applicability of this
exact formula to graphene.

The rest of the paper is organized as follows. The tight-
binding model and the dynamical approach are described in
Sec. II. The perturbation theory in electric field is described
in Sec. III. The minimal conductivity is obtained and the role
of states beyond the neighborhoods of the Dirac points (and
their relation to “axial anomaly” and the Nielsen-Ninomya
theorem) is clarified. The dynamical linear-response ap-
proach to the ac field is considered. In Sec. IV perturbative
corrections beyond linear response (up to third order in E)
are calculated. The third harmonic and inductive contribu-
tions to conductivity are discussed. The exact solution for
arbitrary field is constructed using the Floquet theory in Sec.
V. It is used in Sec. VI to discuss the pair-creation rate,
conductivity, and speculate about the electron-hole plasma.
Finally Sec. VII contains discussion and conclusions.

II. MODEL AND THE DYNAMIC APPROACH
TO ITS PHYSICAL PROPERTIES

A. Tight-binding model in an electric field

Electrons in graphene are described sufficiently accurately
for our purposes by the 2D tight-binding model of nearest-
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neighbor interactions.’ The Hamiltonian in k space is

A
N c
H=2 (¢ )Hk( ';>, (3)
Kk Ck
where
0 7~y )
Hy = ( * ) o=y, e % 4)
h, 0O o

with y=2.7 eV being the hopping energy; & =5(0, V3) and
62y3=§(i%,—§) are the lgcations of nearest neighbors sepa-
rated by distance a=3 A; and the pseudospin index A,B
denotes two triangular sublattices. In most parts of the paper
we keep the function hy arbitrary. Let us first consider the
system in a constant and homogeneous electric field along
the y direction switched on at r=0. It is described by the
minimal substitution,

p:hk+§A, (5)

with vector potential A=(0,—cE?) for >0 (e>0). Later it is
generalized to more general fields including the ac field.

B. Dynamical first-quantized approach

Since the crucial physical effect of the field is mainly a
coherent creation of electron-hole pairs (though not always
near the Dirac points, see below), a convenient formalism to
describe the pair creation is the first-quantized formulation
described in detail in Ref. 17. The spectrum before the elec-
tric field is switched on is divided into positive- and
negative-energy parts describing the valence and conduction
bands

1
Hk(E = O)uk == Eklk, Uk = ( * ) > (6)
- hk/gk
1
Hk(E = O)Uk =&V, U= % s (7)
hk/sk

where g=|h|. A second-quantized state is uniquely charac-
terized by the first-quantized amplitude,

B wli(t))
l//k(t) - (lﬁlz((l‘) B

which is a “spinor” in the sublattice space. It obeys the ma-
trix Schroedinger equation in sublattice space

ihdih = Hyi, )

where p is defined in Eq. (5). The initial condition corre-
sponding to a second-quantized state at 7=0 in which all the
negative-energy states are occupied and all the positive-
energy states are empty is

h(t=0) = uy. (10)

A physical quantity is usually conveniently written in
terms of . We will be interested mostly in the current den-
sity (multiplied by factor 2 due to spin)

(8)
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FIG. 1. (Color online) Constant energy map of the honeycomb-
lattice Brillouin zone. The rectangle outlines two Brillouin zones,
the area of integration in Egs. (11) and (31). The circles show the
vicinity of the two Dirac points with radius A for the integration in
Eq. (34).

L0=-2 3 AOTER0. 01
keBZ Py

as well as the energy and the density of the electron-hole
pairs. The summation is over the honeycomb-lattice Bril-
louin zone, see Fig. 1, in which two Brillouin zones are
outlined. The energy of the electrons is changing due to the
applied electric field (with no dissipation in the ballistic re-
gime, see, however, Sec. VII) and is given by

U(1) =22, (0 Hyia (0). (12)
k

The amplitude of lifting an electron into the conduction band
(defined for the Hamiltonian without the electric field) is
((1)|vy), where the scalar product is defined by (i|)
=P+ 5>, and consequently the density of pairs reads

2

(13)

No(0) =23 [lo0 P =23 | i+ 2

k K €k
Since the Hamiltonian depends on time via the vector poten-
tial that shifts the momentum p, a more useful definition of
the density of pairs taking into account the shift of the mo-
mentum will be given in Sec. III

C. Units and conventions

The units of energy, time, and distance are defined by the
microscopic values vy, t,=%/y(=2.5X 107'® 5) and a, cor-
respondingly. The unit of the electric field will be Ey=2
=10'" V/m so that the dimensionless electric field is &
=E/E, and the unit of conductivity will be e?/#. Effectively
one can set y=fi=a=e=1. In these units the first-quantized
equation reads

id = hyis,
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10 = h:;'r//] > (14)

where the tight-binding Hamiltonian matrix element /4, takes

the form
hy=~— exp(zg—) b exp(
V3

where b=2 cos(%), and p,=k,+A,, Ay==&t for the dc field.
We will use extensively its expansion in powers of A,

dh ] ' b '
—L = =hy=- Lexp( E)-) + l—rexp(— i—p%>,
dA V3 \,3 2V3 2V3

y

. Py
e

d*h 1 b
—2 = h"——exp( 141 )+—exp(—z—pL>. (16)
dA? 3 )12 2\3

For example, the off-diagonal matrix element for the p
component of the current Jy is —hl',, so that the current den-
sity, using the first-quantized approach, is

[0 B
]y=—2§ lﬁp(h;;/ 0 )d’p (17)

The next two sections deal with the perturbative treatment of
the electric field and later (after having shown that it fails at
certain time scale) we will switch to a nonperturbative
method.

III. LINEAR RESPONSE, THE PSEUDODIFFUSIVE
BEHAVIOR, AND THE PARITY ANOMALY

A. Expansion in electric field

Expanding in the dimensionless electric field strength (as-
sumed for simplicity homogeneous and constant after
switching on the field at t=0), ¢=e" (u+E&+-++), one
obtains for the first correction the following equation:

e hy 0 hl;)
0.6 =1\ . -t . 18
id,&x (hk - )fk (h;: 0 Uk (18)

Writing the correction as & = ajuy + By, it takes the form

id,oy = tey,

9, = 2ex Py — ter ]y (19)

with initial conditions ay(r=0)=1 and B, (r=0)=0. We use
the abbreviations

&sk
= 20
€k aky (20)
and
Bl — bl
= e A 21)

2
2ey

The coefficient By denotes the amplitude of accumulation of
electrons in the conduction band whereas ¢y denotes the am-
plitude of remaining in the valence band. Solving the equa-
tions one obtains

PHYSICAL REVIEW B 82, 035406 (2010)

—2igyt _

i
o =— —t’ey, 2iggt).  (22)

il
=—X(-
2 A= e
The expansion for the current, Eq. (11), in the electric
field up to the first order contains the following momentum k

contributions, Jy=2Xjy:

Je= e+ R+ (23)
The zero-order contribution is
0 h
jﬁ=—u£( , k)uk=28kl+, (24)
hk O
where
Ikt + 1Eh
b= k'tk Kk k (25)
28k

The correction gives the “paramagnetic” and “diamagnetic”
contributions to the current densities

0
Jr=- 2514( o
Iy

= E(I) (28t — sin(2&,t)], (26)

!

h
Ok ) fk +cC.C.= 25(a’k - a;i)skli

™
Jx=Eny uy = —2&tey . (27)
h, O

Both corrections for a specific momentum k diverge at large
ballistic times as 7, however, one still has to integrate over
the valence-band momenta.

B. Integration over momenta and physical interpretation
of the “quasi-Ohmic” behavior

To first order in electric field the current density is
Jyz.]()‘l' 0'((:, (28)

where the zero-order contribution can be written as a deriva-
tive with respect to k, of a periodic function

Jo=-22j0=4> ¢/, (29)
k k

It vanishes upon integration, in accordance with the Bloch
theorem since the Brillouin zone can be chosen in such a
way that it exhibits periodicity in the field (y) direction. For
example, we can integrate over the rectangular area shown in
Fig. 1 containing two Brillouin zones

f fzm”z
30
BZ 277)2 2m/3112 G0
2m3l?
It should be noted that f—27r/3'/28kdky=skx,27r/3”2_8kx,—277/3”2
=0 at every k,, and due to the continuity of &, even at the
Dirac points. Therefore one is left with the linear response.
The conductivity can be divided into an apparently lin-

early divergent part and a finite part, o(t)=0p,(t)+0opp().
As will be explained shortly, the contributions to the first

035406-4



BALLISTIC TRANSPORT, CHIRAL ANOMALY, AND...

FIG. 2. (Color online) The integrand of oy, Eq. (31) is plotted
within the integration area shown in Fig. 1. The integrand is nega-
tive along the line connecting two Dirac points along the field di-
rection and positive elsewhere.

term at large 7 stem mostly from the immediate neighbor-
hoods of the two Dirac points while contributions to the
second come from whole Brillouin zone. The part diverging
linearly with time can be written (after some algebra) as a
full derivative with respect to k,

op(1) = 3 k-

€k k
(31)

3 Ui = i = 25 (i + 1) <
k

This too vanishes upon integration over the Brillouin zone
since it is again an integral of a derivative of a periodic
function, albeit this cancellation is nontrivial. In Fig. 2 the
integrand of Eq. (31) is plotted within the integration area
specified above, Eq. (30). The integrand is negative along the
line connecting two Dirac points along the field direction, for
example,

K 2(11) K 2(11) (32)
=T T ) =T\ - T,
- 373 : 373

(recall that a=1 in our units), and positive elsewhere. In Fig.
3 several cross sections for various k, values are shown. One

FIG. 3. (Color online) Several cross sections of the integrand of
opz Eq. (31) are shown for various k, values as indicated in Fig. 2.
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observes, that as k, approaches 27/3 the integrand goes to
—oo at k,=2r/ V3, corresponding to Dirac point K;. Conse-
quently for all k, # 27/3, the integrand is a regular function,
and thus the integral over k, vanishes. At k,=2/3 the inte-
gral over ky is finite, yet does not influence the two-
dimensional integral.

The remaining part

opplt) == 22 () sin(2e,1) (33)
k

gives a finite result. Unlike the divergent part of the conduc-
tivity, the integral for #>1 (in units of #,) is dominated by
contributions from the vicinity of the two Dirac points
[circles in Fig. 2 of radius A=1 (in units of #/a)]. Indeed
the prefactor (I)* is bounded from above by A~ and inte-
gral over the area outside the circles vanishes at 1> 1/A. The
contribution of a single Dirac point is obtained by integrating
to infinity (in polar coordinates centered at the Dirac point),

Opp 1 2o A ,8in(2v,qt)
e sin(g)2 e
2 (277) =0 J g=0 q
1 2UgAf sin(g’
= f i), (34)
4 ¢'=0 q

At long time the upper limit can be replaced by infinity
which results

| 1
UDP:;TSI(OO):Z. (35)

Here one can safely multiply the result by the valley degen-
eracy 2. Returning to physical units, one obtains o=0, Eq.
2).

The dependence on time was calculated numerically. Af-
ter an initial increase on the natural time scale t,=7%/vy the
conductivity approaches o, via oscillations, see Fig. 1 in Ref.
4. The amplitude of oscillations decays as a power fzzl
+%t2—’l (for t>1,).

A physical picture of this resistivity without dissipation is
as follows. The electric field creates electron-hole excitations
in the vicinity of the Dirac points in which electrons behave
as massless relativistic fermions with the graphene velocity
v, playing the role of the light velocity. For such particles the
absolute value of the velocity is v, and cannot be altered by
the electric field and is not related to the wave vector k. On
the other hand, the orientation of the velocity is influenced
by the applied field. The electric current is ev, thus depend-
ing on orientation, so that its projection on the field direction
y is increased by the field. An important observation, made,
for example, in Ref. 23, is that the electric field while creat-
ing charge transport, does not change the overall momentum.
As a consequence the effects of impurities do not affect the
pair creation in the same way they affect “free” carriers.
These two sources of current, namely, creation and reorien-
tation are roughly of the same size in the linear response. As
we will see below, the situation changes at ballistic times
when the linear response breaks down.
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C. Pair-creation rate

In analogy to the linear response in the current, the pair-
creation rate per unit area, as defined in Eq. (13), can be
calculated and to leading order in £ is

d
T No=- 20, [I sin(2e,t) PE2. (36)
k

The result of the numerical integration over the Brillouin
zone was given in Fig. 2 of Ref. 16. It is dominated by the
two Dirac points and at large times (compared to 7,) behaves
as

iNO = %Szt log(7). (37)
dt T

It is, however, well known that a dc electric field in QED
(even with massive relativistic electrons) renders the vacuum
unstable,!”2! with the “renormalized” number of pairs de-
pending on &£2. Therefore nonperturbative effects are ex-
pected and will be studied below.

The notion of renormalized number of pairs is a conse-
quence of the fact that for unstable systems the Fermi level
should be continuously renormalized as a function of time.
In the first-quantized formalism this corresponds to a con-
tinuous modification of the “initial” state vy —vp=vy_g, de-
fining holes. This leads to the following definition of the pair
density:?*

2

N, =2 2 Kglvp) =22

keBZ BZ

(38)

h*
s
p

It is used in the framework of the relativistic Dirac model
and was recently extensively discussed in Ref. 22 in connec-
tion with graphene (using the instanton approximation).

D. ac field

A similar calculation within the dynamic first quantization
formalism for the evolution of the current density can be
performed for an arbitrary time dependence of the homoge-
neous electric field. Let us consider an arbitrary time depen-
dence of the y component of the vector potential A,
=-&a(1), subject to a “switching on” condition, a(r)=0, for
t<0. Fourier transforms are defined by

a(r) = f ea(w), &(0)= f e g (), (39)

and similarly for the current density and other quantities. The
next to leading order in & first-quantized tight-binding equa-
tions are

0 hy ex—w Iy
- ’ % = O
a(w)<h* 0 )Mk+( I sk—w)gk(w)

k
(40)

The switching on condition, &,(#<<0)=0, can be taken into
account by the w+i0* substitution regularizing the way the
Fourier transform is defined for zero frequency. From Eq.
(40) one obtains
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a(w)
\Ew(Zs - )

oh™h'le —h*h' —h*'h
fk(w) =- .

—wh™ +eh” +h*h' /e
(41)
In the same order the ac conductivity is an integral over the

sum of the paramagnetic and the diamagnetic contributions
given by

idw)  (h*h' =k h)? R+ hi"

alw) e+ w)(2e - w) N

(42)

Subtracting a full derivative (independent of frequency), one
can rewrite this as

Jilw) (WR —hh)? W
3

5 (43)

a(w) € 4e’ — w

Real and imaginary parts, taking the w+i0" definition into
account, are

4 < (' = h*'h)?
Re o= 3 U R
110 K &
4e? — w* +5°

1
X lim =-,
—o[Re+ ) +57[2e —w)* +5%] 4

4 < (KR ="' h)?
im o=, PR IR

lw y &

<l 2ws
im
s—0[(2e + 0)? + s7][(2e — w)* + 5]

=0. (44)

Therefore ac and dc conductivity are equal, as was also
shown in recent calculations.” This is consistent with both
the Kubo formula derivations'* and optical experiments.'?
Similar results were obtained in multiple-layered graphene.?

A similar calculation can be performed directly in the ¢
space (similar to the dc case) and shows that after a short
transient one obtains the o, value for the ac conductivity
independent of frequency.

IV. BEYOND LINEAR RESPONSE. WEYL FERMIONS,
PARITY ANOMALY AND THE
NIELSEN-NINOMIYA THEOREM

As will be discussed below, an electric field should not
necessarily be very small in graphene experiments so that
corrections to linear response are of interest. In addition it is
important to determine at what ballistic time-scale perturba-
tion theory breaks down. In this section we present a pertur-
bative calculation of the leading nonlinear effect in both dc
and ac, and discuss the ways to regularize the Weyl model
“correctly” in order to calculate these corrections.

A. Ultrarelativistic fermions near Dirac points

The tight-binding model employed here has two Dirac
points around which the spectrum becomes ultrarelativistic
e=v,|A, gK|, A; gk=K—K; ¢, see Fig. 1. In our units the
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graphene velocity is v gzg. The matrix element of the tight-
binding Hamiltonian can be expanded around K; as

ht=v, exp(— z;—T> (Ak, + iAk,). (45)

The Weyl field describing the “left-handed”'®2¢ fermions ",
namely, a field satisfying the relativistic Dirac equation with
zero fermion mass

i, =v,(9,+i0,) Y,

10,05 =v,(9,—id,) Y, (46)
can be constructed by the unitary transformation
=i =y (47)

The matrix element around the second Dirac point Ky is
different,

hy = v, (Ak, — iAk,) (48)
and the Weyl fermions are “right-handed” particles that obey

i, =v,(3,— id,) ¥4,
i = v (0, +id,)yf (49)

without any unitary transformation required. They belong to
a different representation of the 2+1 dimensional Lorentz
group.?’

This is not just a peculiarity of the model but a rather
general feature® of massless fermions on a lattice.'®8 It is
well known that in order to get a massless spectrum of fer-
mionic excitations with any ultraviolet cutoff (hexagonal lat-
tice is an example), they come in multiple locations on the
Brillouin zone (species “doubling”). In the Hamiltonian for-
mulation the multiplicity is 2P, where D is the dimensional-
ity of space, D=2 in graphene. In addition, the graphene
fermions are “staggered,” meaning the spinor components
“live” on different sublattices of the honeycomb lattice. This
reduces the doubling to 2°~'=2. The doubling is intimately
linked to the parity (discrete chiral symmetry).!'®2?” The two
Dirac points have opposite chirality so that there is no “par-
ity anomaly.”

It is sometimes claimed in condensed-matter literature
that, at least while doing linear response, one can concentrate
on the two neighborhoods of the Dirac points and neglect the
rest of the Brillouin zone. Even more, often the calculation’s
result is just multiplied by the factor 2 (the valley degen-
eracy). Below we show that this is generally not an accurate
description of what happens. This is not an academic ques-
tion since the low-energy Weyl theory is simpler than the
tight-binding model and will be used in the next section to
extend the calculations into higher orders in the electric field.
One therefore needs a proper ultraviolet regularization of the
Weyl model. Similar regularization issues are well known in
field theory whenever chiral anomaly is encountered.
Roughly, a “correct” regularization should respect the chiral
symmetry leading to important constraints on the number
and charges of massless fermions. Otherwise the model is
called “anomalous” and results of perturbative calculations
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become arbitrary. The most famous example is the require-
ment that in each generation of elementary particles (leptons
and quarks) the sum of charges should be zero.?

We therefore discuss in some detail the cancellation of
infrared divergencies and the correct application of the “ul-
trarelativistic” approximation to the tight-binding model.

B. Cancellation of ultraviolet divergencies
and the approximate chiral symmetry

The ultrarelativistic approximation, Eq. (45), fails when
applied to the first term in the expression for conductivity
opy given in Eq. (31). At first glance the integral in Eq. (31)
is dominated by the two Dirac points since the integrand
diverges there, see Fig. 2. For the both (widely separated)
regions of the Brillouin zone, K; and Kj, it has the same
asymptotic form

(hh*' =w'n')* hh +WH"
2&3 e

~(Ak,)?
T

(50)

The integral over the neighborhood of each Dirac point con-
verges in the “infrared” (here meaning k—K; ) due to the
Jacobian |AK| but is linearly divergent in the “ultraviolet”
and both have the same sign, see Fig. 2. Hence the integra-
tion cannot be extended to infinity and the size of the Bril-
louin zone serves as a natural ultraviolet cutoff.

It is important to note that there is no cancellation of the
divergence between the Dirac points since both have the
same sign. The divergencies are. however, canceled by the
contributions from regions of the Brillouin zone between the
Dirac points in which the ultrarelativistic approximation is
not valid. Therefore in the “Ohmic” regime during ballistic
times one is not allowed to neglect states far from the Dirac
points and replacement by the Weyl equation is incorrect.
Due to cancellation of the whole “divergent” term, Eq. (31),
one can devise an appropriate regularization in the UV in
which these contributions are cancelled and even generalize
the procedure to higher orders in the electric field. We pro-
pose and use such a scheme below in Sec. IV C. Simple
recipes such as the momentum cutoff regularization (circles
in Fig. 1) or giving the fermions an infinitesimal mass,® com-
monly used, may lead to unphysical results. As a conse-
quence more sophisticated regularizations such as the
{-function regularization,!" “dimensional regularization”?’
and “Pauli-Villars” were developed for continuous field theo-
ries such as the Weyl model. The tight-binding model is very
similar in this respect to the “lattice Hamiltonian” regulariza-
tions of the field theory (Hamiltonian meant here with time
kept continuous) and also satisfies the chiral invariance
criterion. '8

C. Nonlinear response in dc. Where does the linear response
break down?

Since the current density is an odd function of the electric
field, the leading nonlinear correction to it appears in the
third order in the field. The calculation along the lines of Sec.
IIT A is quite straightforward albeit tedious. One can use the
Weyl model instead of the tight-binding model due to the
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following reason. It is well known in field theory that gener-
ally chiral anomaly effects, including the ultraviolet diver-
gencies discussed in Sec. III D, appear only in one-loop
calculations.”” We checked and found that indeed up to the
third order the expression is finite in the ultraviolet. Within
the dynamical approach it is natural to perform the calcula-
tions without Fourier transforming into the w space.
Up to the third order the current density is

j(t)=§[1 +63_4t452+0(54)} (51)

The correction therefore is growing as a large power of the
ballistic time. It becomes as large as the leading order for ¢
=2¥23-14¢-12t_Hence the perturbation theory breaks down
on the time scale of

tu=E"1,. (52)

As will be seen in Sec. V, this agrees well with the crossover
time obtained from a nonperturbative calculation. Of course
this time should be larger than any other possible relaxation
time (due to impurities, phonons, etc.) present in the system.
A similar expansion was obtained for the number of electron-
hole pairs.'®

The result is the same for the tight binding and the corre-
sponding Weyl model. The only issue would be the first-
order calculation within the Weyl scheme since it is diver-
gent in the ultraviolet. In Weyl model we used the
momentum cutoff that will be described in Sec. IV B.

D. ac response and the third harmonic generation

An analogous calculation for the ac field E=E cos(wr)
switched on at r=0 results in

1
J@0/E=- FEZ + Re o cos(wt) + Im o sin(wt)
w
+ 03, cos(3wr) + O(EY). (53)

The first term is just the reflection of the initial conditions
and is nonuniversal. In the limit w— 0 one recovers the dc
result. The corrected value of the real (dissipative) part of the
ac conductivity is

1 63 9
Reo=—-|1+ i 3
4 128w 64w

t2>52] ) (54)
One observes that the perturbation theory is inapplicable for

<& and 1> wE. (55)
This is less restrictive compared to the dc condition, Eq. (52)
for w> E”zt;l.

The present formulas can be compared with the results of
the dynamical calculation beyond linear response by
Mishchenko?® in which a phenomenological model of relax-
ation was employed. For the inverse relaxation time I, his
nonperturbative result is
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wzrz Uﬁgz 12
Re o= 2v§€2 1+ T -1

1 3
~—|1-—=55+0(E&Y|.
4{ 16012 ( )}
This is consistent with the second correction terms in Eq.
(54).
The inductive part was absent in linear response and now
appears

3

Imo= &% (56)

28(,03

Due to the two conditions, Eq. (55), it is much smaller than
,. The third harmonic is generated with the real part

1 &
030="0 1
30 29 (,')4
while the inductive part is absent at the present order.

V. EXACT SOLUTION OF THE FIRST-QUANTIZED
TIGHT-BINDING EQUATIONS

A. Application of the Floquet theory and reduction
to one dimensional

It is a peculiar property of the tight-binding matrix Eq. (4)
that the solution for arbitrary k, can be reduced to that for
ky=0. Shifting the time variable to ?:t—ky/ &, one can define
an “universal wave function”

(D) = (). (57)

The Schroedinger Eq. (14) is now void of any k, depen-
dence,

ié’;l,_bl —_ (e—2507+ beiQ?) 12'2’

idhy == (¥ + be M)y, (58)
where the dimensionless frequency QEE/(ZV“E) is in units
of t;l. The k, component of the momentum enters the solu-
tion via the initial conditions Eq. (10) only. In terms of the
universal function it takes the form

d(t=0) = Y7T=—kJ/E) = uy. (59)

Taking the Fourier transform of Eq. (58), the equations in
frequency space turn into recursion relations

o (w) = - (o -2Q) - bih(w+Q), (60)

wih(w) == (0 +2Q) - by (0 - Q). (61)

Floquet theory (and the recursion relations) assure that the
frequencies are discrete and form two series both indexed by
an integer m

w,,=v+3Qm. (62)

The “central” frequency v will take generally two incom-
mensurate values. Writing the Fourier amplitude #;(w,,) as
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P> ONE obtains, combining the two equations, Egs. (60) and
(61), the forward and the backward recursions,

_0,-2Q 30 1 b?
Pm= b W, (l)m—SQ wm—ZQ Pm-1

w,, — 20
w,, _Sme—Z’ (63)
p =wm+Q|:w +30 - ! - b2 ]p
" " w,+Q  w+4Q ]
@, + Q)
- , +4me+2 (64)

with normalization py=1. The p; and v have to be deter-
mined by the consistency between the forward and the back-
ward equations.

Generally there are two independent Floquet frequencies,
however, our system is special with the exact relation

i+ =20, (65)

which can be proven rigorously. This greatly simplifies the
solution. To obtain a simple approximation, we expand
around the easily solvable case of k.= corresponding to b
=0. In this case the solution consists of two frequencies

rO=0+1+02, (66)

where the superscript ¥ denotes zeroth order in b. For ex-
perimentally accessible cases () <1, the Floquet frequencies
are close to = 1. We expand the Fourier coefficients in pow-
ers of b

=P+ bp 4 p2p2) (67)

where we do not distinguish for the time being between the
two Floquet branches. Let us look for a solution with the
initial choice

' =p"s, (68)

which in particular means that p;=0 at this order. It can be
shown that the central frequency v* does not have a first-
order correction in b. Using this fact the forward recursion
can be rewritten as

(@, + Q) (@2, - 2Qw,,— 1)p,,
= b[(wm + Q)pm—l + (wm - 2())pm+1:| + bz(wm - 2‘Q')pm

(69)
Inserting the expansions for p,, and v into this relation yields
the expression for v+,
Q) 102-0 10 -50
T2 T 600 - ) (19 - 20) (240 - 50)
-20 (70)

T 6002+ ) (- 0?)

so that the positive Floquet frequency (up to second order) is
v =101 p%@_ Moreover, it turns out that the expansion in
b converges in the whole relevant range, 0<b=2, and
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greatly assists the numerical solution of the recursion rela-
tion.

After the coefficients pi and Floquet frequencies v~ are
found, the solution of Eq. (58) is written in terms of the
Fourier series

D) = EASE phen,

== m=—o0

RO=S S Dt 1)

s=* m=—m% w,,

The second line follows from Eq. (61), w), are defined in
Eqgs. (62) and (70) and we utilized Eq. (65) for simplification.
The two complex coefficients A* are fixed by the initial con-
ditions Eq. (59). This solution is used to calculate the evolu-
tion of the current density, the energy, and the number of
electron-hole pairs.

B. Results. Nonlinear regime and Bloch oscillations

The current density divided by the electric field (in physi-
cal units), o(t)=J,(¢)/E, is shown in Fig. 3 in Ref. 16 for
various values of the dimensionless electric field £=E/E,.
The (microscopic) unit of the electric field is very large E|
=2=10'"" V/m so that at realistic fields £< 1. After an ini-
tial fast increase on the micmscopic2 time scale ¢, o(t) ap-
proaches the universal value o-zzge; and settles there, con-
sistent with the linear response, calculated in Sec. III B.
Beyond the crossover time ¢,; the conductivity rises linearly
above the constant “universal” value o,

M0 _ et (72)
E t)
where A=2%23"4772=(.75. This is consistent with the
Landau-Zener calculation (instantons) within the Weyl
model,!73%32 see below. The crossover time, defined by
J(t,;)/ E= 0, is therefore

ty=N"E1, (73)

and is consistent with the perturbation theory breakdown bal-
listic time, Eq. (52). This linear increase regime can be con-
sidered as a precursor of the Bloch oscillations but is still
universal in the sense that it depends solely on neighborhood
of the Dirac points.

The current on the time scale of order

V3 Y 6‘El)g (74)
exhibits Bloch oscillations, as is seen in Fig. 4 of Ref. 16,
where larger fields in the range £=278-275 are shown. It
turns out that the current vanishes at points given exactly at
multiples of 73/2 with 75 being the period of the Bloch os-
cillations. One observes a peculiar feature that (apart from
the relativistic initial constant segment) the time dependence
of o(r) is similar for different electric fields. Indeed, if one
plots J/\E versus tE, all the curves nearly coincide. More-
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] FIG. 4. (Color online) The
] time evolution of the dc conduc-
tivity in units of o,. The time is
scaled with £2 The simulations
were performed in the field range
£=2"12_2"9 with UV cutoff equal
to 1/a. The straight line is the
1 asymptotic linear behavior given
1 by Eq. (72).

t in units of £, E/ Ey

over, one obtains the following excellent fit for the current:

M = 30,612 sm(—é’) (75)
E ar,

The Bloch time is approximately the time required for the
electric field to shift the momentum across the Brillouin zone
Apy=eEtg~f/a. This time scale is very long for experimen-
tally achieved fields, much longer than the ballistic flight
time. For example, in a sample of submicron length, L
=0.5 pm, t,,;=2.3X 1()3t7. If one assumes that the electric
current can reach I, =1 mA so for a typical width W
=1.5 wm one has an electric field Emax:;‘%’: 107 V/m cor-
responding to £=1073 (the voltage in such case would be
quite large Vo =FEmul=5 V). The first maximum of the
Bloch oscillation will be seen at flight time of #3/4=3.6
X 103ty, which is of the same order as ;. If one uses a value
of the current typical to transport measurements /=50 uA,
the electric field is just E=5X10° V/m corresponding &
=5X1077 (voltage V=250 mV), 15/4=7.2X 10%,> 1,,; and
is therefore out of reach. See, however, a recent proposal 3

C. Crossover at t,; in the Weyl model

It is expected that the transition to the nonlinear regime is
dominated by the neighborhoods of the Dirac points. There-
fore it can be obtained also within the Weyl model provided
it is properly regularized in the ultraviolet region consistent
with chiral symmetry, as was discussed in Sec. IV. For the
calculation of the current density it suffices to renormalize
the electric current by subtracting the UV divergent term Eq.
(50)

2

k;
‘,y: (277_ fk|<A |: ('JJ2¢I + l/ll '//2) + |k|’;tg - (76)

The results are practically indistinguishable compared to the
tight-binding model for times larger than a microscopic time
scale 7, and much smaller than the Bloch time. Some ex-
amples of the tight-binding model were presented in Fig. 3 of

Ref. 16. In Fig. 4 the conductivity in units of o, is given as
a function of time scaled with £&~"/2. The function is the same
for all electric fields as can be seen from scaling properties of
the Weyl equations. The simulations were performed in the
field range £=2712-27 with UV cutoff equal to 1/a. The
straight line is the asymptotic linear behavior given by Eq.
(72). The asymptotic form is attained soon after t,; so it looks
like quite a sharp crossover.

Therefore this model can be effectively used to study the
transition to the rapid creation of the electron-hole pairs and
the creation of the electron-hole plasma but naturally cannot
be used to see the transition to the Bloch oscillation regime.

Below we discuss the nature of the crossover to the non-
linear behavior and possible unique physics of the electron-
hole plasma which might emerge.

VI. PHYSICAL PICTURE OF THE CROSSOVER
TO THE NONLINEAR RESPONSE

A. Where does the energy go?

Beyond linear response one does not expect the current
density to hold up to its linear-response value indefinitely.
The situation differs from that in diffusive systems in which
energy dissipates into heat due to inelastic scattering off im-
purities and phonons. In this case the system is not an iso-
lated one but becomes part of a larger system including a
“background.” In an isolated ballistic system in a constant
electric field the energy initially increases, as follows from
the following argument. The total energy, Eq. (12), of elec-
trons can be written in the first-quantized formalism as

U() = 2((0)|H| (1)) (77)

It can be shown using Eq. (9), that the power in this driven
system is proportional to the current density

L oy
5 U= 2 HIY) == 2eE(Y] 0p}v|¢>—EJy(t) (78)

such as in dissipative systems. Consistently, as was shown
above, the ballistic system has a finite conductivity such as a
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FIG. 5. (Color online) The
electron-hole pair-creation rate as
a function of time in units of
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ent curves represent different val-
ues for the infrared cutoff L/a.
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dissipative system. We will refer to this as to quasi-Ohmic
behavior.

Since the model does not provide a channel of dissipation,
where does this “Joule-type” heat oE> go? The dynamical
approach allows us to calculate the evolution of energy going
beyond linear response. The energy of the system (calculated
in a way similar to the current) is increasing continuously if
no channel for dissipation is included. Therefore the conduc-
tivity originates in creation of pairs near the Dirac points
with an additional contribution due to the turning of particles
toward the field’s direction. To gain more insight into the
nature of the crossover to nonlinear response we also calcu-
lated the evolution of number of the electron-hole pairs dur-
ing the ballistic flight.

B. Schwinger’s pair-creation formula and graphene

The electron-hole creation rate by the dc electric field,
%Nl,, with renormalized N, defined in Eq. (38), is shown in
Fig. 5 as a function of time for field £=2"10. Such a field
E=2"""E,=107 V/m is quite realistic.>*** The rate is scaled
with £¥* while the time is given in units of &7, The
ultraviolet cutoff is always 1/a, while different curves rep-
resent the infrared cutoff L/a. The length to width aspect
ratio, L/ W, is taken to be 1. The results do not depend sig-
nificantly on it for all values presented, as long as 1/4
<L/W<4.

The time dependence of the rate exhibits the same time
scales as the current density. At times smaller than 7,; the
perturbative formula, Eq. (36) is valid. Immediately after
switching on the electric field (times of order 7,) the rate
behaves as 3. For 1,<t<t, the pair-creation rate per unit
area rises linearly (with logarithmic corrections) according to
Eq. (37). However, it is clear from Fig. 5 that the expansion
breaks down at 7,; when the rate stabilizes, approaching the
value (in our units of a‘2t;1)

dy_ 8
a2l

&2, (79)

The power dependence of the rate on electric field, E*? is
the same as the rate of the vacuum breakdown due to the pair
production calculated beyond perturbation theory by
Schwinger in the context of particle physics (when general-
ized to the 2+1 dimensions and zero fermion mass®'22). It is
not surprising since the power 3/2 is dictated by the dimen-
sionality, assuming the ultrarelativistic approximation is
valid. However, the physical meaning is somewhat different.

Note that the definition of the (renormalized) particle
number, see Eq. (38), is different from the classical Schwing-
er’s path-integral definition (which actually determines the
“vacuum decay” rate rater than the pair-creation rate). The
two are not the same within the Weyl model, as was shown
asymptotically in the limit of large times in Ref. 24 and we
obtain their value. The calculation of the number of pairs can
be approximately performed using the instanton approach
initiated by Nussinov in the context of particle physics?* and
extended in Refs. 17, 22, and 31. In condensed-matter phys-
ics the method is known as the Landau-Zener probability.3%-36
It provides an intuitive picture of Schwinger’s pair-creation
rate. Unfortunately this picture cannot be extended to ballis-
tic times smaller than f,; in which one cannot use the
asymptotic large time expressions.

Note that in the Boltzmann equation approach to ballistic
transport developed in Ref. 23 the renormalized pair number
was utilized. This is connected to a simple relation within the
Weyl model between the rate and the current density, as was
shown recently.?®

VII. DISCUSSION, CONCLUSIONS,
AND GENERALIZATIONS

To summarize, we studied the dynamics of the electron-
hole pair creation by an electric field in a single graphene
sheet where the chemical potential is located right between
the valence and the conduction bands. We assumed that the
transport is purely ballistic, thus neglecting impurities, inter-
action with phonons, ripplons, as well as the screened inter-
action between electrons. The dynamical approach which
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originated in particle physics!” was adapted to the tight-
binding model of graphene and allowed us to calculate the
evolution of the current-density, energy and number of pairs
beyond linear response. We clarified several delicate issues
within linear response such as the correct dc conductivity
value and a proper use of the ultrarelativistic Weyl model
approximation to the tight-binding model. The question of
proper regularization within the Weyl approximation was
linked to the chiral (parity) symmetry and the anomaly can-
cellation in the tight-binding model. Using proper regulariza-
tion the leading correction to the linear response in both dc
and ac fields was calculated. The ac response which is purely
pseudodissipative (no inductive part) and frequency indepen-
dent in linear response shows strong frequency dependence,
third harmonic generation and the inductive behavior.

It should be emphasized that beyond linear response new
scales appear. Generally the tight-binding model in electric
field has a time scale ¢,=7i/y and a dimensionless parameter
E=E/E, and Ey="7/(ea). In linear response the dimension-
less parameter £ does not appear in conductivity. This ex-
plains why the ac conductivity is independent of frequency
all the way from optical frequencies 1/¢,, down to dc. There-
fore it is not surprising that the dc conductivity is o, rather
than o, which was obtained in numerous calculations over
the years.%”>10 Some papers, in which both values are ob-
tained in different limits,® even raise the question, what
quantity is actually measured in experiments in “bulk”
graphene such as those in Refs. 2 and 3? Within the dynami-
cal approach there is no room for ambiguity since no regu-
larizations, limits or uncontrollable approximations were
used. We considered also finite-size effects for periodic
boundary conditions and found that the conductivity con-
verges to o, for sizes of order W,L~50a. We claim there-
fore that dc conductivity in graphene is a well defined physi-
cally measurable bulk quantity for a sufficiently large
sample, W,L>a, and cannot have two different values
within the same model. In particular, there is no dependence
on the aspect ratio W/L for large samples contrary to the
result of the Landauer approach. Therefore it is important to
ask what could go wrong in other approaches to the same
quantity in the same model.

The various approaches leading to this incorrect value o
can be broadly divided into two classes. One type of calcu-
lations involves as the first step the introduction of disorder
as a way to regularize the problem. At a later stage the dis-
order strength is taken to zero.”!'> The calculation generally
involves an uncontrollable resummation of diagrams. In ad-
dition to the Lindhart diagram, other diagrams (infinite se-
ries) involving disorder are summed. For a “regular” system
this leads to the Drude formula with the correct limit (infinite
conductivity) when the limit of vanishing disorder is taken.
In graphene the nature of conductivity is different. There are
no charge carriers and the electric field first has to create the
carriers (electron-hole pairs) and only then to accelerate
them. The acceleration is also quite specific: the absolute
value of velocity is fixed while only the angle can change.
The diagrams omitted in this process might not be small.
There is no small parameter such as the Ioffe-Regel #/&p,
where 7 is the relaxation time, as in the regular case. One
argues that due to “large” e the other diagrams involving
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crossings are small. At the Dirac point £;=0 and this argu-
ment should be questioned. Therefore the use of the simplest
resummation might be the origin of the error.

The second independent approach giving the same value
o originates in mesoscopic physics. Disorder does not ap-
pear here and the only input is the description of “leads” and
the boundary effects of the sample. Within the Landauer
approach'® one counts the “evanescent” modes in a ribbon of
finite width W and length L leading to a result (for the arm-
chair boundary conditions)

2

L
o= 4e——2 cosh 2 (mnW/L) — o. (80)
h Wn:O WiL—e

It was claimed that the predictions including the finite
sample conductivity and the Fano factor were confirmed by
experiments®’ for very short samples on substrate. Note that
the expression, Eq. (80), depends on the aspect ratio only,
even when both W and L are large. We have performed cal-
culations for finite samples with periodic boundary condi-
tions (limited to 1/4<W/L<4) and the results have a con-
sistent large size limit of o, irrespective of the aspect ratio.
Thus there is a discrepancy between the two methods which
should be further clarified.

Beyond the linear response the dimensionless parameter
&, in principle, can give rise to “macroscopic” time scales
t:é'”‘ty. A rather unexpected result is that at a scale,

t h
Ly == 1] 81
nl \”/Z. eEv ( )

the physical behavior qualitatively changes. This time scale
becomes the same as the ballistic time #,,/=L/v,=2X 103t7
for length L=0.5 um for relatively weak fields £=107° cor-
responding to E=10* V/m. It is important to note that this is
the only time scale that enters the Weyl model approximation
to the tight binding. Within this model the microscopic scale
t, does not appear and 7, is the only combination of the
available parameters v, and E. One could anticipate that the
same scale appears in Weyl model as well.>® Larger scales,
however, can be formed in the tight-binding model. For ex-
ample, at a scale tg=t,/ £ Bloch oscillations set in. This is
already beyond the Weyl approximation.

We therefore summarize the behavior of the conductivity
and the number of electron-hole pairs in the various regimes
at finite electric field E in turn.

Ballistic times t<t,;. Pseudodissipative behavior. After a
brief transient period (of order of several t,=h/ v) the current
density of the tight-binding model approaches a finite value
and stabilizes there. Therefore the minimal dc electric con-

)
ductivity at zero temperature is 0,=75 . The pairs are cre-

ated with various orientations of velocity (the value of which
is fixed at v,) and part of the current (the polarization or
“zitterbewegung” part) is due to reorientation of the charge
carriers. In this regime the pair-creation rate given by Eq.
(37) is small enough so that pairs can be considered indepen-
dent, provided the number density of created pairs %Ytz is
not too large. If it is very large the inverse process of pair
annihilation (via various channels) cannot be neglected. Ap-
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proaching t,, the perturbation theory breaks down. At this
time the density of pairs is % It becomes on the order of
10'" em™ for E=10° V/m. Let us assume that this does not
happen and proceed to the longer ballistic times.

Ballistic times t,;<t<tg. Schwinger’s pair creation and
formation of the electron-hole plasma. On the larger time
scale nonperturbative methods should be used. The pair cre-
ation is more intensive and the pair density asymptotically
follows an analog of the Schwinger’s formula for massless
fermions in 2+ 1 dimensions, Eq. (14). The current above f,;
increases linearly with time

VE 3/2 v 172
— 2= —_—_8
o 28 (2)% e

In this regime most of the electrons are oriented along the
field direction so that J=2ev,N(t). For example, in order to
reach the density of N=10'" c¢cm™ in a sample with ballistic
time #,=L/v,=2000¢,(L=0.5 um) the field should reach E
=10* V/m. If the sample is short enough the transport still
can be ballistic but due to its nonlinear nature a more likely
scenario is that a dissipation channel opens up.

One can only speculate what kind of dissipation process
truncates the pair creation and stabilizes the electron-hole
plasma created by the electric field. Of course, the standard
candidates are collisions with impurities, phonons, ripplons,
and the electron-electron interactions. Here we point out that
the system is “open” and one should consider the “radiation
friction” scenario: pairs annihilate emitting photons which
take energy out of the graphene sheet. The effects of radia-
tion of energy into space might in principle be observable at
elevated fields and should be investigated.

Ballistic times t>tg. Bloch oscillations. If the system is
still ballistic at yet longer times, Bloch oscillations set in
with a period of thﬁzty/é’. This time scale becomes the
same as the ballistic time #,,=2 X 103t7 for relatively weak
fields £=1073 corresponding to E=107 V/m, see Fig. 2 in
Ref. 16. While the Bloch oscillations are difficult to observe
(see, however, a recent proposal®?), the transition to a non-
linear regime is within reach of current experimental tech-
niques.

The dynamic approach was generalized to bilayer
graphene® in which similar questions exist for a long time.
The correct dc conductivity for the N layered graphene is
equal to the dynamical one o=Na,, consistent with the van-
ishing frequency limit of the ac conductivity.”> The creation
of the electron-hole plasma is even more likely in these sys-
tems.

In this paper only ballistic transport was considered. In
principle, disorder and electron-electron interactions could
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be incorporated within the dynamical approach in the way
the Boltzmann equation approach?>* can be extended be-
yond the linear response. In fact, using a phenomenological
methodology, disorder has recently been incorporated for the
ac field in Ref. 20. Similarly Coulomb interactions and the
pair annihilations into photons, phonons, etc., can be taken
into account. Generally though, when the system has a large
number of electron-hole pairs, the screening by the neutral
plasma is more effective and the influence of impurities and
interactions diminishes. Understanding these effects is cru-
cial for investigating the (nonlinear) plasma waves and their
damping.*0

Let us note the relation between the dynamics on the time
scale f,; and quantum adiabatic transport near the quantum
critical point.3®*! The calculation of the number of pairs can
be approximately performed using the instanton approach
initiated in the context of particle physics’* and extended in
Refs. 17, 22, and 31. In condensed-matter physics the
method is known as the Landau-Zener probability.3*3¢ It pro-
vides an intuitive picture of the Schwinger’s pair-creation
rate. The ballistic evolution in graphene therefore can be
considered as an example of the adiabatic quantum evolution
which attracted much attention recently in connection to the
Kibble-Zurel mechanism of phase-transition dynamics and
others. Graphene dynamics at large ballistic times offers an
accessible system in which these processes can be observed.

Finally let us remark on the application of the dynamical
approach to calculating the response to very short strong-
field pulses such as the femtosecond (and an order of mag-
nitude longer) laser pulses. A possibility of measuring the
response to such fields was advocated by Rusin and
Zawadzki.** For this purpose the dynamical linear-response
formulas, as presented in the Sec. III, can be directly applied
for arbitrary time dependence of the pulse while the nonlin-
ear calculation of Sec. V describes the steplike pulse of finite
duration only. Other shapes of the pulse can be calculated by
breaking the pulse into several segments of different constant
field.
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