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定水頭部分貫穿井混合邊界值問題之研究 

 

學生：張雅琪                               指導教授：葉弘德 

 

國立交通大學  環境工程研究所 博士班 

 

 

中文摘要 

含水層試驗通常為用來瞭解水層水文地質參數的重要工作。與水層試驗有關常用到

的解析解，絕大多數是考慮井內的濾管(井篩)為全開的情況，即濾管貫穿整個水層的厚

度。在濾管是全開的假設下，水層內的流況可視為水平流，在這種情況下，描述水層內

水流的數學方程式不含垂直方向的分量，故較容易求得解析解。若考慮水層為部份貫

穿，則數學上，定水頭試驗井會形成混合邊界，即在井緣同時存在兩種邊界，在井篩上

為定水頭邊界，井篩外為不透水邊界。此混合邊界值問題，無法使用傳統的積分轉換方

法求解，因而變得非常難解。在過去文獻中，對於此類混合邊界問題，皆將井緣的邊界

條件作簡化以推求半解析解或解析解，然而這樣的解，計算得井緣附近的水位與流速場

值，都會有數值誤差。 
本研究利用 Laplace 及 finite Fourier cosine transform 將偏微分方程轉換成常微分方

程式，接著代入井緣的邊界條件裡，形成一組 dual 或 triple series equations，最後解得方

程式裡的未知係數，即可計算在侷限含水層中的洩降值。 
 
關鍵字：地下水, 含水層試驗, dual/triple series equations, 侷限含水層, 混合邊界值

問題。 



 

 II

 Solutions for Mixed Boundary Value Problem Involving a Partially 

Penetrating Well in Constant Head Tests Aquifer  

 

Student: Ya-Chi Chang                Advisor: Dr. Hund-Der Yeh 

 

Institute of Environmental Engineering 

National Chiao Tung University 

 

ABSTRACT 

The mathematical model describing the aquifer response to a constant head test 

performed at a fully penetrating well can be easily solved by the conventional integral 

transform technique.  The Dirichlet-type condition should be chosen as the boundary 

condition along the screen for such a test well.  However, the boundary condition for a test 

well with partial penetration must be considered as a mixed-type condition.  Generally, the 

Dirichlet condition is prescribed along the well screen and the Neumann type no-flow 

condition is specified over the unscreened part of the test well.  The model for such a mixed 

boundary problem in a confined aquifer system of infinite radial extent and finite vertical 

extent is solved by the method of dual or triple series equations.  This approach provides 

analytical results for the drawdown in the partially penetrating well and the well discharge 



 

 III

along the screen.  The semi-analytical solutions are particularly useful for the practical 

applications from the computational point of view. 

 

Key Words: groundwater, aquifer test, triple series equations, confined aquifer, mixed 

boundary value problem. 
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NOMENCLATURE 

b  : thickness of aquifer (L) 

1d  : depth to bottom of the well screen (L) 

2d  : depth to top of the well screen (L) 

H(n,p) : )(/)( 01 nn KK λλ  

rK  : radial hydraulic conductivity (LT-1) 

zK  : vertical hydraulic conductivity (LT-1) 

)(0 ⋅K  : modified Bessel function of the second kind of zero order 

)(1 ⋅K  : modified Bessel function of the second kind of first order 

Kr : horizontal hydraulic conductivity of unconfined aquifer 

Kz : vertical hydraulic conductivity of unconfined aquifer 

l  : length of screen (L) 

n  : finite Fourier cosine transform parameter of ξ  

p  : Laplace transform parameter of τ  

)(cosuPn  : associated Legendre function 

),,1(* pq ξ  : dimensionless well bore flux in Laplace domain 

)(* pQ  : dimensionless well discharge in Laplace domain 

r  : radial distance (L) 

wr  : well bore radius (L) 

ws  : constant drawdown prescribed at the well (L) 

),,( tzrs  : transient drawdown (L) 

),,(* τξρs  : dimensionless drawdown  

),,(* τξρs  : dimensionless drawdown in Laplace domain 

),,(ˆ* τξρs  : dimensionless drawdown in Laplace and Fourier domain 
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sS  : specific storage coefficient (L-1) 

t  : time (T) 
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2α  : zr KK / , anisotropy ratio 
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2μ  : )/1( 2 βξπ −  

ξ  : wrz / , dimensionless vertical distance 
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2ξ  : wrd /2  

ρ  : wrr / , dimensionless radial distance 

τ  : 2/ wsr rStK , dimensionless time 

ω  : bl / , partial penetration ratio 

0ψ  : )(/)( 00 pKpK ρ  
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Hydraulic parameters, e.g., hydraulic conductivity, specific storage and leakage factor, 

are important for characterizing the aquifer and quantifying groundwater resources. Two 

typical pumping tests (i.e. constant-head and constant-rate pumping tests) are widely 

conducted by the hydrogeologists to determine the hydraulic parameters of the aquifer.  In a 

constant-rate test, the well is pumped for a significant length of time at a constant rate and at 

least one observation is used to obtain the drawdown data.  However, the pumped well may 

be overdrawn if the aquifer has low permeability.  Therefore, the constant-head test is 

generally employed in this circumstance.  During the test, the hydraulic head at the well is 

kept constant throughout the test period and the transient flow rate across the wellbore is 

measured at the same time.  Rice [1998] mentioned that there are some merits in 

constant-head tests.  In recent years, owing to the numerous important issues in the 

low-permeability aquifers, there has been an increasing interest in the study of constant-head 

tests.  Jones et al. [1992] and Jones [1993] discussed the practicality of constant-head tests 

on wells completed in low-conductivity glacial till deposits.  Mishra and Guyonnet [1992] 

indicated that the operational benefit of constant-head tests in situations where the total 

available drawdown is limited by well construction and aquifer characteristics.  They 
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developed a method for analyzing observation-well response to constant-head test.  For other 

environmental applications, light nonaqueous phase liquids (LNAPL) are typically recovered 

by wells held at constant drawdown [Murdoch and Franco, 1994].  The strategy for the 

contaminated site is to hold a slight drawdown and remove LNAPL as it accumulates in the 

well.   

The wellbore storage plays an important role for estimating aquifer parameters in 

constant-rate tests.  However, the effect of wellbore storage can be neglected for 

constant-head tests if the aquifer has low-conductivity and the radius of well is small.   

Some aquifers are so thick that it is not justified to install a fully penetrating well.  The 

pumping test has to be performed in a partially penetrating well instead of fully penetrating 

well.  For example, the suggested length of screen is 6 m and the screen should be 1 m and 5 

m below the water table at least for flood and dry seasons, respectively, for unconfined 

aquifers in Taiwan.  For confined aquifer, the location of the screen is adapted for the 

purpose of the well.  In addition, the partially penetrating well could be used in a pumping 

test to evaluate the hydrologic parameter in heterogeneous aquifers.  Therefore, the issues 

involving partially penetrating well are studied in literatures [e.g., Cassiani and Kabala, 1998; 

Cassiani et al., 1999; Yang and Yeh, 2005].  

 The drawdown data may be influenced by the well skin effect produced by well 

construction.  If the well skin effect is considered in the model, a more appropriate 
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description for such an aquifer system should treat the skin zone as a different formation zone 

instead of using a skin factor.  Thus, the aquifer system naturally becomes a two-zone 

formation [see, e.g., Yang and Yeh, 2002; Yeh et al., 2003; Yang and Yeh, 2005; Yeh and Yang, 

2006].  If the well skin effect is negligible in the model, the well loss can be ignored.  The 

fully penetrating well can be simulated as a Dirichlet (also called the first type) boundary 

condition, and the relative models can be solved by the conventional integral transform 

techniques [Hantush, 1964].  For partially penetrating well, the Dirichlet boundary condition 

is suited to describe the drawdown along the well screen and the Neuman (second type) 

boundary condition is specified along the casing.  Thus, the boundary condition along the 

well face in the partially penetrating well is a mixed type condition.  The term “mixed-type” 

boundary condition is used to distinguish this boundary condition from the “uniform” 

Dirichlet and Neuman boundary condition or a combination of Dirichlet and Neuman 

boundary conditions.   

 

1.2 Objectives 

The purpose of this study is to develop a new solution to a constant head test performed in a 

partially penetrating well for arbitrary location of the well screen in an aquifer of finite 

thickness in depth.  The study is based on the following assumptions: (1) The aquifer is 

homogeneous, infinite extent, and with a constant thickness; (2) the well has a finite radius; (3) 
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the initial head is constant and uniform throughout the whole aquifer; (4) the well loss is not 

considered in the system.  Under these assumptions, this study will further compare the new 

solution to the existing solutions. 
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CHAPTER 2 LITERATURE REVIEW 

Mixed boundary conditions are widely used to describe many boundary value problems 

of mathematical physics.  Such problems arise in potential theory and its numerous 

applications to engineering, fracture mechanics, heat conduction, and many others.  Only 

limited analytical solutions to mixed boundary problems (MBPs) in the field of well 

hydraulics have been found so far by special solution techniques including the dual 

integral/series equation [Sneddon, 1966], Weiner-Hopf technique [Noble, 1958], and Green’s 

function [Huang and Chang, 1984].  Most of the solutions to MBPs have been obtained 

numerically or by approximate methods such as asymptotic analysis or perturbation 

techniques.  Yedder et al. [1994] studied the steady heat conduction in a square plate with 

mixed boundary condition on a straight boundary using finite difference and control volume 

methods.  They overcame the difficulties encountered in singular cases and discussed the 

convergence criteria used in the numerical treatment of these problems.  Bassain et al. [1987] 

indicated that under certain circumstances, the mixed condition gives rise to singular behavior 

which cannot be adequately treated by numerical means alone.  They discussed the 

implications of the singular behavior due to the mixed boundary condition of the 

adiabatic-isothermal type in the mathematical modeling heat transfer phenomena.  Wilkinson 

and Hammond [1990] described a perturbation method to solve the MBPs in pressure 
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transient testing and obtained good results in a variety of well test problems of this type.  

For the mathematical model under the mixed boundary condition in a confined aquifer of 

semi-infinite thickness, Cassiani and Kabala [1998] used the dual integral equation method to 

develop a Laplace domain solution that account for the effect of wellbore storage, 

infinitesimal skin, aquifer anisotropy and infinite aquifer thickness under constant-rate tests. 

Cassiani et al. [1999] further used the same method to develop the solutions in Laplace 

domain suited for constant head pumping tests and double packer tests that treated as the 

MBPs.  Selim and Kirkham [1974] used the Gram-Schmidt orthonormalization method to 

develop a steady state solution in a confined aquifer of finite horizontal extent.  Similar 

problems under the mixed boundary conditions also arise in the field of heat conduction.  

Among others, Huang [1985] used the Weiner-Hopf technique to develop a solution in a 

semi-infinite slab and Huang and Chang [1984] combined the Green’s function with 

conformal mapping to develop the solution in an elliptic disk.  The literatures listed above 

are under the assumption that the domain which the mixed boundary condition occurs is 

infinite.  In reality, the thickness of aquifer is generally finite.  Since the solutions in 

Cassiani and Kabala [1998] and Cassiani et al. [1999] are based on the infinite aquifer 

thickness assumption, they are only appropriate for the early time condition when the pressure 

change caused by the constant-head pumping has not reached the bottom of the aquifer or for 

the special condition where the screen length is significantly shorter than the aquifer thickness.  
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Chang and Chen [2002] removed such constraints by assuming finite aquifer thickness and 

treated the well skin effect as a skin factor.  They also treated the boundary along the well 

screen as a Cauchy (third type) boundary condition and replaced the mixed boundary by 

homogeneous Neumann boundary.  They considered the wellbore flux entering through the 

well screen as unknown and discretized the screen length into M segments.  Thus, the 

discretization approach to deal with mixed boundary is numerical and their solution may be 

inaccurate if an improper choice of M is made.  In other words, only when M approaches 

infinity, the solution can exactly represent the drawdown distribution in the problem domain. 
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CHAPTER 3 METHODOLOGY 

3.1 Partially penetrating: screen extends from the top of the aquifer 

The water level is held as a constant at a preselected depth while precisely measuring 

flow rate changes when conducting a constant-head test.  Figure 1 shows a partially 

penetrating well in a confined aquifer of finite extent with a thickness of b under a 

constant-head test.  The drawdown at the distance r from the well and the distance z from the 

bottom of the aquifer at time t is denoted as s(r, z, t).  The well screen extends form the top 

of the aquifer (z = b) to z = d1 with a length of l.  The hydraulic parameters of the aquifer are 

horizontal hydraulic conductivity Kr, vertical hydraulic conductivity Kz, and specific storage 

Ss.  Since the flow velocities are so low and the pressure exerted by the atmosphere is more 

or less constant at a site in groundwater situations the velocity energy and the pressure are not 

taken into consideration in this study.  Therefore, the governing equation for the drawdown 

can be written as [Yang et al., 2006] 

t
sS

z
sK

r
s

rr
sK szr ∂

∂
=

∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

)1(                                               (1) 

Assuming that there is no flow toward to the bottom of the well, consequently a Dirichlet 

boundary condition for a fixed drawdown specified along the well screen is: 

ww stzrs =),,(    bzd ≤≤1                                                  (2a) 

A Neumann boundary condition of zero flux is specified as: 
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0=
∂
∂

= wrrr
s       10 dz ≤≤                                                  (2b) 

Moreover, the initial condition and other boundary conditions are: 

0)0,,( =zrs                                                                (3) 

0),,( =∞ tzs                                                               (4) 

and 

,0=
∂
∂
z
s   bzz == ,0                                                        (5) 

Equation (1) may be expressed in dimensionless terms as: 

τξ
α

ρρρ ∂
∂

=
∂
∂

+
∂
∂

+
∂
∂ *

2

*2
2

*

2

*2 1 ssss                                                 (6) 

subject to the boundary and initial conditions written in dimensionless terms as 

0)0,,(* ==τξρs                                                           (7) 

0),,(* =∞= τξρs                                                           (8) 

1),,1(* == τξρs ,    βξξ ≤≤1                                              (9a) 

0
1

*

=
∂
∂

=ρρ
s ,     10 ξξ ≤≤                                                  (9b) 

,0
*

=
∂
∂
ξ
s   βξξ == ,0                                                      (10)  

where wsss /* =  is the dimensionless drawdown, )( 2
wsr rStK=τ  is the dimensionless time, 

rz KK=2α  is the anisotropy ratio of the aquifer, wrb /=β  is the dimensionless aquifer 

thickness, wrr /=ρ  and wrz /=ξ  are dimensionless spatial coordinates, wrd /11 =ξ  is the 

dimensionless depth at the bottom of the well screen.  Note that Eqs. (6) - (10) constitute a 
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mixed-type boundary value problem.   

The detailed development for the solution of Eq. (6) with Eqs. (7) – (10) using dual 

series equation and perturbation method is given in Appendix A.  The solution for the 

drawdown in Laplace domain can be written as: 

)cos(),(),0(
2
1),,(

1
0

* ηξψψξρ n
n

pnBpBps ∑
∞

=

+=                                  (11) 

with βπη /)(n= , )(/)( 000 pKpK ρψ =  and )(/)( 00 nnn KK λρλψ = .  The coefficients 

in Eq. (11) can be calculated by the following equations  

( )

⎥
⎦

⎤
⎢
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Ω+=
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∞

=

−

),(2)1(2)(4

)(1

12
1

113

1

1100
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HpB

k
kk μμμ

π

μ
                                 (12) 

and 

π
πμ

μμ
π

μμ

μμ

μ

μ

μ

pn
n

dy
dy

yndfynf
p

nfdy
dy

yndfyBHp

dy
dy

yndfkynfkBI
k

B
k

kkn

)sin(2

),()(),()(2

),()(),()(
2
1

),(),(),(),(1

1

0
2

31213
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2
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0
2

21212
1

1

1

1

−

⎥
⎦

⎤
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⎣

⎡
⋅Ω−⋅Ω+

⎥
⎦

⎤
⎢
⎣

⎡
⋅Ω−⋅Ω+

⎥
⎦

⎤
⎢
⎣

⎡
⋅Ω−⋅Ω=

∫

∫

∫∑
∞

=

                       (13) 

with 

βπξμ /11 =                                                               (14) 

∫=Ω
x

uduxufx
0 11 ),()(                                                       (15) 

∫=Ω
x

dukuxufkx
0 12 )sin(),(),(                                                (16) 

∫=Ω
x

duxufxufx
0 313 ),(),()(                                                 (17) 
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pn
n +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

2

β
παλ                                                         (18) 

)(/)(),( 01 nnn KKHpnH λλ==                                               (19) 

)cos()2/cos(
)2/sin(2),(1 ax

xaxf
−

=
π

                                              (20) 

[ ])(cos)(cos),( 12 aPaPanf nn −+=                                              (21) 

( )))cos(1ln())cos(1ln(
4
1),(3 xaxaaxf −−−+−=                                 (22) 

),(),( pnHnIpnI nn λ−==                                                   (23) 

and 

pn
n +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

2

β
παλ                                                         (24) 

where K0 and K1 are the modified Bessel functions of the second kind with order zero and one, 

respectively, and the Pn(cosa) is the associated Legendre function [Abramowitz and Stegun, 

1970, p.335].   

The flux entering the well screen and the total well discharge obtained using Eq. (11) are 

respectively given as: 

)cos(),(),0(
2
1),,1(),,1(

1
0

*
* ηξλ

ρ
ξξ nn

n

HpnBHppBpspq ∑
∞

=

+=
∂

∂
−=                 (25) 

and 

)sin(),(),0(
2
1/),,1()( 1

1
0

*

1

μλ
πλ
βλξξ

β

ξ

nHpnB
n

HppBdpqpQ nn
n
∑∫
∞

=

−==             (26) 

where wrl /=λ  is the dimensionless length of screen.    
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3.2 Partially penetrating: arbitrary location of the well screen 

Figure 2 shows a schematic representation of a partially penetrating well in a confined 

aquifer of finite extent with a finite thickness of b.  The well screen which extends from 

arbitrary location d1 to d2 is of length l under a prescribed constant drawdown hw.  In other 

words, the well screen can be set at any location along the well. 

The boundary along the well screen is different from that in section 3.1, which can be written 

as: 

ww stzrs =),,(    21 dzd ≤≤                                                 (27) 

and 

0=
∂
∂

= wrrr
s   10 dz ≤≤ , bzd ≤≤2                                            (28) 

The detail derivation for the solution with Eqs. (27) and (28) using Laplace transform, 

finite Fourier cosine transform, and triple series equations method is given in Appendix B.  

The solution for drawdown in an aquifer involving a partially penetrating well with arbitrary 

location of well screen has the same expression as Eq. (11) and the coefficients B(0, p) and 

B(n, p) are written as 

00

),0(),0(),0(
DC

pDpCpB
+=

+=
                                                 (29) 

and 

nn DC
pnDpnCpnB

+=
+= ),(),(),(

                                                  (30) 

The coefficients in (29) and (30) can be calculated by the following equations  
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)/1( 22 βξπμ −=                                                           (35) 

    The flux entering the well screen and the total well discharge are respectively given as: 

)cos(
2
1),,(),,1(

1
00

1

*
* ηξλ

ρ
ξρξ

ρ
nn

n
n HBHpBpspq ∑

∞

==

+=
∂

∂
−=                      (36) 

and 

[ ])sin()1()sin()(
2
1),,1(1)( 21

1

1
00

*
2

1

μμλληξξ
λ

ξ

ξ

nnHBHpBdpqpQ n
nn

n
n −+−== ∑∫

∞

=

−       (37) 

 

 

 



 

 14

CHAPTER 4 RESULTS AND DISCUSSION 

4.1 Simplified solution 

When the well fully penetrates the entire thickness of the formation, i.e., 1ξ  is zero and 

2ξ  equals β , the drawdown and the well discharge can be obtained using Eqs. (11) and (37), 

respectively, with coefficients in Eqs. (31) – (34) as 

0
* 1),,( ψξρ

p
ps =                                                        (38) 

and  

p
HpQ 0)( =                                                             (39) 

Equations (38) and (39) are identical to the solutions of drawdown and flow rate in Laplace 

domain given in Yang and Yeh [2006].  

 

4.2 Numerical evaluations 

Equation (11) contains single and double infinite series which consist of the summations 

of multiplication of integrals, trigonometric functions, and the modified Bessel functions of 

second kind.  The integrals are in terms of trigonometric functions multiplying associated 

Legendre functions.  This solution involves numerous complicated mathematical functions.  

Therefore, numerical approaches including the Gaussian quadrature [Gerald and Wheatley, 

1989], Shanks’ transform and Stehfest method are proposed to evaluate the solution.  The 

Gaussian quadrature with 6 terms [Yang and Yeh, 2007] is first utilized to evaluate the 
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integrals in Eq. (11).  Since the oscillation and slow convergence of the multiplication terms, 

the summations are difficult to evaluate accurately and efficiently.  Therefore, the Shanks’ 

transform method [Shanks, 1955], a nonlinear iterative algorithm based on the sequence of 

partial sums, is used to compute the summations in Eq. (11).  This method has been 

successfully devoted to efficiently computing the solutions arisen in the groundwater area [see, 

e.g., Peng et al. 2002; Yeh et al. 2003].  In addition, the Stehfest algorithm [Stehfest, 1970] 

with eight weighting factors is further employed to inverse the Laplace domain solution into 

time domain solution.  The proposed numerical approaches can accurately evaluate the 

drawdown solution to the mixed-type boundary value problem for a flowing partially 

penetrating well and the results are demonstrated in the following section. 

 

4.3 Drawdown and well bore flux distribution 

Figure 3 shows the dimensionless drawdown for 100=β , 501 =ξ , 1002 =ξ  and 

various ρ  at 1=τ , 100, 410  and 610 .  As indicated in the figure, the dimensionless 

drawdown is constant along the well screen and decreases with increasing dimensionless 

radial distance at 1=τ .  In addition, the dimensionless drawdown increases with 

dimensionless time along the unscreened part of the well.  Figure 4 shows the plots of the 

flux along the well screen for 100=β , 501 =ξ  and 1002 =ξ  at 1=τ , 100, 410  and 610 .  

The dimensionless flux is non-uniformly distributed and large at the screen edge.  The 
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vertical flow is induced by the presence of well partial penetration and the maximum flux at 

the screen edge occurs when the vertical flows enter the bottom of the well.  The spatial 

dimensionless drawdown contours at 100=τ , 310  and 410  are plotted in Figure 5.  The 

dimensionless drawdown increases with dimensionless time at a fixed radial distance and 

flow is horizontal when the dimensionless radial distance is large than 80 and the 

dimensionless time is 410 .  Figures 6(a) and 6(b) show the spatial dimensionless drawdown 

contours for various 2α  with 2001 =ξ  and 2502 =ξ  at 510=τ  and demonstrates the 

influence of anisotropy on the dimensionless drawdown.  The flow is almost horizontal at 

lower part of the aquifer when the dimensionless radial distance is large than 400 for 2α =1 

and the vertical flow appears at lower part of the aquifer for 2α =0.5.  Figures 7(a) and 7(b) 

show the spatial dimensionless drawdown contours with same length of 50 but different 

locations of well screen.  In Figure 7(a), the screen is symmetric with 5.121 =ξ  and 

5.372 =ξ  and in Figure 7(b) the screen extends from the top of the aquifer with 251 =ξ  

and 502 =ξ  at 510=τ .  Since the screen is symmetric about the middle line of the aquifer, 

the drawdown contours are symmetric as demonstrated in Figure 7(a).  Figure 8 illustrates 

the spatial dimensionless drawdown contours for  1001 =ξ  and 1502 =ξ  at 710=τ in an 

infinite aquifer.  On the upper part of the aquifer, the direction of flow is downward when the 

radial distance is far from the test well and it is upward when the radial distance is close to the 

well screen.  Since the aquifer is infinite, the drawdown at the upper screen ledge flows 
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upward and then flows toward the bottom of the aquifer and the drawdown at the lower screen 

ledge flows down toward the bottom of the aquifer. 

   

4.4 Effect of penetration ratio 

  In order to explore the effect of partial penetration on the well discharge, Figure 9 

illustrates the behavior of well discharge in response to four different penetration ratios 

βλω /=  with 50=λ .  The well discharges responding to those four cases behave the 

same at the small time; however, it decreases with increasing penetration ratio at large time.  

If the penetration ratio is smaller than 0.01, the well discharge of this study agrees with that of 

constant head pumping test in Cassiani et al.[1999] in an aquifer of semi-infinite thickness.  

In other words, if the aquifer thickness is greater than 100 times of the screen length, the 

aquifer can be considered as a semi-infinite aquifer.  As the penetration ratio is equal to 1, 

the well discharge of this study is identical to that of Yang and Yeh [2006] for a fully 

penetrating well.  In addition, well discharges of this study agree with those of Chang and 

Chen [2003] for 01.0=ω  and 001.0=ω  when 50=λ .  As indicated in Figure 9, there 

are no obvious differences in the well discharges in response to different penetration ratios 

until 410=τ .  For the cases of 1.0=ω  and 01.0=ω , the flow caused by the partial 

penetration did not reach to the bottom of the aquifer before 410=τ .  The aquifer thickness 

has influence on groundwater flow after τ  is greater than 410 .  The well discharge for 
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01.0=ω  is stabilized as τ  increases to 610  and the well discharge for 5.0=ω  continues 

to decrease.   
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CHAPTER 5 CONCLUSIONS 

This paper developed new semi-analytical solutions for the aquifer system in response 

to the constant head test at a partially penetrating well in a confined aquifer of infinite radial 

extent and finite vertical extent.  The Laplace and finite cosine Fourier transforms is first 

used to reduce the original partial differential equation with mixed-type boundary and initial 

conditions for a partially penetrating well in an aquifer of finite thickness to the dual or triple 

series equations.   

  The present solutions for a fully penetrating well in an aquifer of finite thickness are 

identical to the solutions of the drawdown and well discharge given in Chen and Stone [1993].  

It is found that the solution of Cassiani et al. [1999] for well response to a constant head 

pumping test in a semi-infinite aquifer approximates the solution for the case where the 

aquifer thickness of a finite aquifer is 100 times greater than the length of well screen.  In 

addition, the flux is non-uniformly distributed along the screen and with a local peak at the 

edge, due to the vertical flow induced by well partial penetration. 

  The new semi-analytical solutions provide accurate description of the response of the 

aquifer system to a constant head pumping test performed at a partially penetrating well in a 

confined aquifer of infinite radial extent and finite vertical extent.  Those solutions are 

particularly attractive for practical applications since they can be used to evaluate the 
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sensitivities of the input parameters in a mathematical model.  In addition, the solution can 

be used to calculate the flow rates during the constant-head test and plots specific drawdown 

(drawdown divided by the flow rate) versus time to identify the hydraulic parameters if 

coupling with an optimization approach in the analysis of aquifer data, and to verify a 

numerical solution.  
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APPENDIX A 

The Laplace and finite cosine Fourier transforms are first used to solve the mixed-type 

boundary value problem.  The definition of Laplace transform is [Sneddon, 1972]： 

[ ] ∫
∞

−=→=
0

*** ),,();,,(),,( ττξρττξρξρ τ despsLps p
p                           (A1) 

where ),,(* ps ξρ  is the dimensionless drawdown in Laplace domain.  Taking the Laplace 

transform of Eqs. (6) and (8) – (10) and using the initial condition in Eq. (7), the problem 

reads: 

01 *
2

*2
2

*

2

*2

=−
∂
∂

+
∂
∂

+
∂
∂ spsss

ξ
α

ρρρ
                                           (A2) 

0),,(* =∞= ps ξρ                                                         (A3) 

p
ps 1),,1(* == ξρ , βξξ ≤≤1                                             (A4a) 

0
1

*

=
∂
∂

=ρρ
s , 10 ξξ ≤≤                                                    (A4b) 

,0
*

=
∂
∂
ξ
s  βξξ == ,0                                                      (A5)  

In order to eliminate the ξ  coordinate, the finite cosine Fourier transform is used as 

follows [Sneddon, 1972]: 

[ ] ∫=→=
β

ξηξξρξξρρ
0

*** )cos(),,();,,(),,(ˆ dpsnpsFpns c                        (A6) 

where ),,(ˆ* pns ρ is the dimensionless drawdown after finite cosine Fourier transform.  

Substituting Eq. (A6) into Eqs. (A2), (A3) and (A5) results in the Bessel differential equation 
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as  

0ˆˆ1ˆ
*2

*

2

*2

=−
∂
∂

+
∂
∂ sss

nλρρρ
                                                  (A7) 

with the boundary condition 

0),,(ˆ* =∞= pns ρ                                                         (A8) 

where nλ  is defined in Eq. (24). 

The general solution of Eq. (A7) with the boundary condition Eq. (A8) is [Carslaw and 

Jaeger, 1959, p. 193]  

)(),(),,(ˆ
0

* ρλρ nKpnApns =                                                (A9) 

where A(n,p) can be found from using the mixed-type boundary condition Eq. (A4).  The 

inverse of the finite cosine Fourier transform is [Sneddon, 1972, p.425] 

)cos(),,(ˆ2),0,(ˆ1),,(
1

*** ∑
∞

=

+=
n

pnspsps ηξρ
β

ρ
β

ξρ                              (A10) 

Thus, the solution in ξ  domain obtained by inserting Eq. (A9) into Eq. (A10) is 

)cos()(),(2)(),0(1),,(
1

00
* ∑

∞

=

+=
n

nKpnApKpAps ηξρλ
β

ρ
β

ξρ                    (A11)  

with its derivative with respect to ρ  given by 

)cos()(),(2)(),0(1),,(
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−−=
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n
nnKpnApKppAps ηξρλλ

β
ρ
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ξρ

ρ
            (A12) 

Substituting Eq. (A11) into Eq. (A4a) and Eq. (A12) into Eq. (A4b) results in a system of the 

dual series equations (DSE)  

p
KpnApKpA

n
n

1)cos()(),(2)(),0(1
1

00 =+ ∑
∞

=

ηξλ
ββ

, βξξ ≤≤1                  (A13a) 

0)cos()(),(2)(),0(1
1

11 =+ ∑
∞

=n
nnKpnApKppA ηξλλ

ββ
, 10 ξξ ≤≤                (A13b) 
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We define that 

βλ /)(),(2),( 0 nKpnApnB =                                               (A14) 

The DSE of (A13) can be arranged as [Sneddon, 1966, p.161]: 

p
nxpnBpB

n

1)cos(),(),0(
2
1

1

=+∑
∞

=

,             πμ ≤< x1                    (A15a) 

∑∑
∞

=

∞

=

=+
11

)cos(),(),()cos(),(),0(),0(
2
1

kn

kxpkBpkInxpnnBpHppB ,  10 μ≤≤ x    (A15b)  

with βξπ /=x . 

Our goal is to determine the coefficients B(0, p) and B(n, p) appearing in Eq. (A15). The 

pair of dual series equations (DSE) can be solved by following the procedure given in Sneddon 

[1966].  Assume that when 10 μ≤≤ x  

∫∑
−

=+
∞

=

1

coscos
)()

2
cos()cos(

2
1 1

1
0

μ

x
n

n yx
dyyhxnxBB                                 (A16) 

where βπξμ /11 = , ),0(0 pBB =  and ),( pnBBn = . 

The coefficient B0 and Bn in Eq. (A15) are respectively given by the equations [Sneddon, 1966, 

p. 161, Eqs. (5.4.56) and (5.4.57)] 
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Integrating (A15b), one can obtain 
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Substituting Eqs. (A17) and (A18) into (A19), one can find that )(1 yh satisfies the following 

equation: [Sneddon, 1966, p. 161, Eq. (5.4.58)] 
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The summation term on the left-hand side of Eq. (A20) can be expressed as [Sneddon, 1966, p. 

59, Eq. (2.6.31)]  
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where )(XHeav is the Heaviside unit step function which is of different value for different 

range of X such as 
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Substituting (A21) into (A20), it yields 
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Using the property of Heaviside unit step function in Eq. (A22), an equivalent integral 

equation of (A23) can be obtained  
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Then, the function )(1 yh  can be found based on Sneddon [1966, p. 41, Eq. (2.3.5)] as 
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By integrating Eq. (A25) and substituting it into Eqs. (A17) and (A18), the coefficients B0 

and Bn can be expressed as Eqs. (12) and (13), respectively. 

For computational convenience, the coefficients can be written in the matrix form as 
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where i and j goes from 1 to n. 
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APPENDIX B 

    Similar to the procedure in Appendix A, the problem with the boundary in Eqs. (27) and 

(28) results in a set of triple series equations as 
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We split Eq. (B1) into the following equations 

0)cos()(),0()(
2
1

1
00 =+++ ∑

∞

=n
nnnn nxHDCpHpDC λ ,     10 μ≤≤ x             (B2a) 

p
nxCC

n
n

1)cos(
2
1

1
0 =+∑

∞

=

,                             πμ ≤< x1             (B2b) 

0)cos(
2
1

1
0 =+∑

∞

=n
n nxDD ,                              20 μπ −≤< x         (B3a) 

0)cos()(),0()(
2
1

1
00 =+++ ∑

∞

=n
nnnn nxHDCpHpDC λ ,      πμπ ≤≤− x2         (B3b) 

Equations (B2) and (B3) can be regarded as dual series relations by means of which the 

coefficients C0, D0, Cn and Dn can be determined.   

The pair of dual series equations (DSE), i.e., Eq. (B2), can be solved by the procedure 

given in Appendix A and the coefficients can be written in the matrix form as 
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where i and j goes from 1 to n. 
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Figure 1 Schematic representation of a partially penetrating well with the screen extends from 

the top of the aquifer in a confined aquifer 
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Figure 2 Schematic representation of a partially penetrating well with arbitrary location of 

well screen in a confined aquifer 
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Figure 3a The drawdown distribution at dimensionless time for various ρ  

 
 
 

 
Figure 3b The drawdown distribution at dimensionless time =τ 100 for various ρ  
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Figure 3c The drawdown distribution at dimensionless time =τ 410  for various ρ  

 

 
Figure 3d The drawdown distribution at dimensionless time 610=τ  for various ρ  
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Figure 4 The distribution of flux along the well screen at different dimensionless time 
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Figure 5(a) The spatial drawdown contours at dimensionless time 100=τ  

 

 
Figure 5(b) The spatial drawdown contours at dimensionless time =τ 310  

 

 
Figure 5(c) The spatial drawdown contours at dimensionless time 410=τ  
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Figure 6(a) The spatial drawdown contours at dimensionless time 510=τ  for 0.12 =α  
 

 
Figure 6(b) The spatial drawdown contours at dimensionless time 510=τ  for 5.02 =α  
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Figure 7(a) The spatial drawdown contours at dimensionless time 610=τ  for 5.121 =ξ  and 

5.372 =ξ  with 50=β  

 

Figure 7(b) The spatial drawdown contours at dimensionless time 610=τ  for 251 =ξ and 
502 =ξ  with 50=β  
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Figure 8 The spatial drawdown contours as at dimensionless time 710=τ  for 1001 =ξ  and 
1502 =ξ  
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Figure 9 The influence of the penetration ratio on the flux 
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