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Penetrating Well in Constant Head Tests Aquifer
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National Chiao Tung University

ABSTRACT

The mathematical model -describing” the. aquifer response to a constant head test
performed at a fully penetrating well can be ‘easily solved by the conventional integral
transform technique. The Dirichlet-type condition should be chosen as the boundary
condition along the screen for such a test well. However, the boundary condition for a test
well with partial penetration must be considered as a mixed-type condition. Generally, the
Dirichlet condition is prescribed along the well screen and the Neumann type no-flow
condition is specified over the unscreened part of the test well. The model for such a mixed
boundary problem in a confined aquifer system of infinite radial extent and finite vertical
extent is solved by the method of dual or triple series equations. This approach provides

analytical results for the drawdown in the partially penetrating well and the well discharge

II



along the screen. The semi-analytical solutions are particularly useful for the practical

applications from the computational point of view.

Key Words: groundwater, aquifer test, triple series equations, confined aquifer, mixed

boundary value problem.
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NOMENCLATURE

b : thickness of aquifer (L)
d, : depth to bottom of the well screen (L)
d, : depth to top of the well screen (L)

Hinp) 1 Ki(4)/Ko(4)

K, : radial hydraulic conductivity (LT™)
K, : vertical hydraulic conductivity (LT™)

Ko () : modified Bessel function of the second kind of zero order
K, () : modified Bessel function of the second kind of first order
Kr : horizontal hydraulic conductivity of unconfined aquifer
K : vertical hydraulic €onduetivity of unconfined aquifer

| : length of screen (L)
n : finite Fourier cosine transform-parameter of &
P : Laplace transform parameter'of =

P.(cosu) :associated Legendre function

0 (1&,p) : dimensionless well bore flux in Laplace domain

Q' (p) : dimensionless well discharge in Laplace domain
r : radial distance (L)
r, : well bore radius (L)
Sw : constant drawdown prescribed at the well (L)

s(r,z,t) :transient drawdown (L)
s’ (p,&,7) : dimensionless drawdown
§'(p,&,7) :dimensionless drawdown in Laplace domain

$"(p,&,7) : dimensionless drawdown in Laplace and Fourier domain
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CHAPTER 1 INTRODUCTION

1.1 Background

Hydraulic parameters, e.g., hydraulic conductivity, specific storage and leakage factor,

are important for characterizing the aquifer and quantifying groundwater resources. Two

typical pumping tests (i.e. constant-head and constant-rate pumping tests) are widely

conducted by the hydrogeologists to determine the hydraulic parameters of the aquifer. Ina

constant-rate test, the well is pumped for a significant length of time at a constant rate and at

least one observation is used to obtain the drawdown data. However, the pumped well may

be overdrawn if the aquifer has low permeability.« Therefore, the constant-head test is

generally employed in this circumstance. —During the test, the hydraulic head at the well is

kept constant throughout the test period and the transient flow rate across the wellbore is

measured at the same time. Rice [1998] mentioned that there are some merits in

constant-head tests. In recent years, owing to the numerous important issues in the

low-permeability aquifers, there has been an increasing interest in the study of constant-head

tests. Jones et al. [1992] and Jones [1993] discussed the practicality of constant-head tests

on wells completed in low-conductivity glacial till deposits. Mishra and Guyonnet [1992]

indicated that the operational benefit of constant-head tests in situations where the total

available drawdown is limited by well construction and aquifer characteristics. They



developed a method for analyzing observation-well response to constant-head test. For other

environmental applications, light nonaqueous phase liquids (LNAPL) are typically recovered

by wells held at constant drawdown [Murdoch and Franco, 1994]. The strategy for the

contaminated site is to hold a slight drawdown and remove LNAPL as it accumulates in the

well.

The wellbore storage plays an important role for estimating aquifer parameters in

constant-rate tests. = However, the effect of wellbore storage can be neglected for

constant-head tests if the aquifer has low-conductivity and the radius of well is small.

Some aquifers are so thick that it 1s not justified to install a fully penetrating well. The

pumping test has to be performéd in a partially penetrating well instead of fully penetrating

well. For example, the suggested length of scteen is 6 m and the screen should be 1 m and 5

m below the water table at least for flood and dry seasons, respectively, for unconfined

aquifers in Taiwan. For confined aquifer, the location of the screen is adapted for the

purpose of the well. In addition, the partially penetrating well could be used in a pumping

test to evaluate the hydrologic parameter in heterogeneous aquifers. Therefore, the issues

involving partially penetrating well are studied in literatures [e.g., Cassiani and Kabala, 1998;

Cassiani et al., 1999; Yang and Yeh, 2005].

The drawdown data may be influenced by the well skin effect produced by well

construction. If the well skin effect is considered in the model, a more appropriate



description for such an aquifer system should treat the skin zone as a different formation zone

instead of using a skin factor. Thus, the aquifer system naturally becomes a two-zone

formation [see, e.g., Yang and Yeh, 2002; Yeh et al., 2003; Yang and Yeh, 2005; Yeh and Yang,

2006]. If the well skin effect is negligible in the model, the well loss can be ignored. The

fully penetrating well can be simulated as a Dirichlet (also called the first type) boundary

condition, and the relative models can be solved by the conventional integral transform

techniques [Hantush, 1964]. For partially penetrating well, the Dirichlet boundary condition

is suited to describe the drawdown along the well screen and the Neuman (second type)

boundary condition is specified along the casing:. Thus, the boundary condition along the

well face in the partially penetrating well is a mixed type condition. The term “mixed-type”

(3

boundary condition is used to ‘distinguish this.boundary condition from the “uniform”

Dirichlet and Neuman boundary condition or a combination of Dirichlet and Neuman

boundary conditions.

1.2 Objectives

The purpose of this study is to develop a new solution to a constant head test performed in a

partially penetrating well for arbitrary location of the well screen in an aquifer of finite

thickness in depth. The study is based on the following assumptions: (1) The aquifer is

homogeneous, infinite extent, and with a constant thickness; (2) the well has a finite radius; (3)



the initial head is constant and uniform throughout the whole aquifer; (4) the well loss is not

considered in the system. Under these assumptions, this study will further compare the new

solution to the existing solutions.



CHAPTER 2 LITERATURE REVIEW

Mixed boundary conditions are widely used to describe many boundary value problems

of mathematical physics. Such problems arise in potential theory and its numerous

applications to engineering, fracture mechanics, heat conduction, and many others. Only

limited analytical solutions to mixed boundary problems (MBPs) in the field of well

hydraulics have been found so far by special solution techniques including the dual

integral/series equation [Sneddon, 1966], Weiner-Hopf technique [Noble, 1958], and Green’s

function [Huang and Chang, 1984]s" Most of the solutions to MBPs have been obtained

numerically or by approximate methods such ras- asymptotic analysis or perturbation

techniques. Yedder et al. [1994].studied the steady heat conduction in a square plate with

mixed boundary condition on a straight boundary using finite difference and control volume

methods. They overcame the difficulties encountered in singular cases and discussed the

convergence criteria used in the numerical treatment of these problems. Bassain et al. [1987]

indicated that under certain circumstances, the mixed condition gives rise to singular behavior

which cannot be adequately treated by numerical means alone. They discussed the

implications of the singular behavior due to the mixed boundary condition of the

adiabatic-isothermal type in the mathematical modeling heat transfer phenomena. Wilkinson

and Hammond [1990] described a perturbation method to solve the MBPs in pressure



transient testing and obtained good results in a variety of well test problems of this type.

For the mathematical model under the mixed boundary condition in a confined aquifer of

semi-infinite thickness, Cassiani and Kabala [1998] used the dual integral equation method to

develop a Laplace domain solution that account for the effect of wellbore storage,

infinitesimal skin, aquifer anisotropy and infinite aquifer thickness under constant-rate tests.

Cassiani et al. [1999] further used the same method to develop the solutions in Laplace

domain suited for constant head pumping tests and double packer tests that treated as the

MBPs. Selim and Kirkham [1974] used the Gram-Schmidt orthonormalization method to

develop a steady state solution in_ a‘confined aquifer of finite horizontal extent. Similar

problems under the mixed boufidary conditions also- arise in the field of heat conduction.

Among others, Huang [1985] used the Weiner-Hopf technique to develop a solution in a

semi-infinite slab and Huang and Chang [1984] combined the Green’s function with

conformal mapping to develop the solution in an elliptic disk. The literatures listed above

are under the assumption that the domain which the mixed boundary condition occurs is

infinite. In reality, the thickness of aquifer is generally finite. Since the solutions in

Cassiani and Kabala [1998] and Cassiani et al. [1999] are based on the infinite aquifer

thickness assumption, they are only appropriate for the early time condition when the pressure

change caused by the constant-head pumping has not reached the bottom of the aquifer or for

the special condition where the screen length is significantly shorter than the aquifer thickness.



Chang and Chen [2002] removed such constraints by assuming finite aquifer thickness and

treated the well skin effect as a skin factor. They also treated the boundary along the well

screen as a Cauchy (third type) boundary condition and replaced the mixed boundary by

homogeneous Neumann boundary. They considered the wellbore flux entering through the

well screen as unknown and discretized the screen length into M segments. Thus, the

discretization approach to deal with mixed boundary is numerical and their solution may be

inaccurate if an improper choice of M is made. In other words, only when M approaches

infinity, the solution can exactly represent the drawdown distribution in the problem domain.



CHAPTER 3 METHODOLOGY

3.1 Partially penetrating: screen extends from the top of the aquifer
The water level is held as a constant at a preselected depth while precisely measuring
flow rate changes when conducting a constant-head test. Figure 1 shows a partially
penetrating well in a confined aquifer of finite extent with a thickness of b under a
constant-head test. The drawdown at the distance r from the well and the distance z from the
bottom of the aquifer at time t is denoted as s(I, z, t). The well screen extends form the top
of the aquifer (z = b) to z = d; with aslength of }. s The hydraulic parameters of the aquifer are
horizontal hydraulic conductivity K vertical-hydraulic conductivity K, and specific storage
Ss.  Since the flow velocities are”so low and the pressure exerted by the atmosphere is more
or less constant at a site in groundwater situations the velocity energy and the pressure are not
taken into consideration in this study. Therefore, the governing equation for the drawdown
can be written as [ Yang et al., 2006]
K (218 D5 g 1)
or- ror 0z ot
Assuming that there is no flow toward to the bottom of the well, consequently a Dirichlet
boundary condition for a fixed drawdown specified along the well screen is:

s(r,,z,t)=s, d,<z<b (2a)

A Neumann boundary condition of zero flux is specified as:



0S

P =0 0<z<d, (2b)

Moreover, the initial condition and other boundary conditions are:

s(r,z,0)=0 (3)
S(0,2,t)=0 4
and

ﬁzo, z=0,z=b (5)
0z

Equation (1) may be expressed in dimensionless terms as:

o’s” . a_s*+a2 0’s” _os

- = 6
op> pop 08 Ot ©
subject to the boundary and initial:conditions written in dimensionless terms as
s (p,&,7=0)=0 (7
s (p=00,8,7)=0 (8)
S*(pzl,é:,T):lj glségﬂ (93)
Sl Lo, o0s<es<e (9b)
op -
os”
— =0, =0,& = 10
oc ¢=0,c=p (10)

where s” =s/s, is the dimensionless drawdown, 7 =tK, / (S.r.) is the dimensionless time,
a’ =K, /K, is the anisotropy ratio of the aquifer, #=b/r, is the dimensionless aquifer

thickness, p=r/r, and &=1z/r, are dimensionless spatial coordinates, & =d,/r, is the

dimensionless depth at the bottom of the well screen. Note that Egs. (6) - (10) constitute a



mixed-type boundary value problem.

The detailed development for the solution of Eq. (6) with Egs. (7) — (10) using dual
series equation and perturbation method is given in Appendix A. The solution for the
drawdown in Laplace domain can be written as:

S (p.£.9)= 3 BO0. D)y + 2B P, cos(n) (1)
with 7=7z)/ B, v, =K,(pp)/K,(Jp) and v, =K,(4,p)/K,(4,). The coefficients

in Eq. (11) can be calculated by the following equations

B, = (1 + \/BH o2, (44, ))71

4 2 =2 (12)
'|:EQ3(/J])+B(1_IUI)+;IIkaQ2(1u1’k):|
and
N1 ' L .dfz(n,y)
B, _kzz:‘k IkBk|:QZ(lu13k) f,(n, 1) .[0 Q,(y,k) dy y:|
1 " df,(n,y)
+_\/EHOBO|:L Ql(y)’gdy_gl(/%)' fz(naﬂl)}
2 dy (13)
+i|:Q3(/U1)' fz (n,ﬂl)—IMQ3(y)- de(n’ y) dy}
pz 0 dy
_ 2sin(ny )
pnz
with
=&l p (14)
Q,(X) = J'OX f,(u,x)udu (15)
Q,(x,k) = jox f,(u, x)sin(ku)du (16)
Q,(x) = J'OX f,(u,x) f,(u,x)du (17)

10



A = (”L“j +p (18)

B

H(no p):Hn :Kl(ﬂ’n)/KO(ﬁ“n) (19)

_ 2sin(x/2)
filx.a)= ﬁ\/cos(X/Z) —cos(a) (20)
f,(n,a) = [P,(cosa) + P,_ (cosa)] (21)
f.(x,a)= %(ln(l —cos(a + X)) — In(1 - cos(a — x))) (22)
I(n,p)=1,=n-4,H(n,p) (23)
and

Nro ?
A= == 24

. T -

where Ky and K; are the modified Bessel functions of the second kind with order zero and one,

respectively, and the P,(cosa) is the associated Legendre function [Abramowitz and Stegun,

1970, p.335].

The flux entering the well screen and the total well discharge obtained using Eq. (11) are

respectively given as:

T0.6p) =~ 2P = B0, p)RH, + 2B PV H, cos(rd) 25)
and
B ©
Q(p) = [q°(1¢ p)dé/ 2 =%B<o, P}V PH, - Z% B(n, p)4,H, sin(n) (26)
& n=1

where A =1/r, isthe dimensionless length of screen.

11



3.2 Partially penetrating: arbitrary location of the well screen

Figure 2 shows a schematic representation of a partially penetrating well in a confined

aquifer of finite extent with a finite thickness of b. The well screen which extends from

arbitrary location d; to dzis of length | under a prescribed constant drawdown hy. In other

words, the well screen can be set at any location along the well.

The boundary along the well screen is different from that in section 3.1, which can be written

as:

s(r,,z,t)=s, d <z<d, (27)

and

? =0 0<z<d,, d,<z=b (28)
r

r=ry

The detail derivation for the solution-with Egs. (27) and (28) using Laplace transform,

finite Fourier cosine transform, and triple series equations method is given in Appendix B.

The solution for drawdown in an aquifer involving a partially penetrating well with arbitrary

location of well screen has the same expression as Eq. (11) and the coefficients B(0, p) and

B(n, p) are written as

B(0,p) =C(0,p)+ D(0, p)

2
=C,+D, (29)
and
B(n, p)=C(n, p)+ D(n, p)
=C,+D, (30)

The coefticients in (29) and (30) can be calculated by the following equations

12



Cy = (14+/PH (1))

4 2 2 (31)
'{EQMH;(I—MHZEIk(Ck - Dk)Qz(M,m—2DOJFHOQI(M>}
= 3 l — . — # ,dfz(n’ y)
C, = £ k(Ika ﬂka){Qz(ﬂl,k) f,(n, 1) Io Q,(y,k) &y y}
+l\/BHO(CO ’ D0)|:-[0#] Ql(y).wdy_gl(,ul)' fz(n:/ul):|
2 Y (32)
+L{Q3(ﬂ1)' fz(nnul)—rll Q3(Y)'Mdy:|
pr 0 dy
_ 2sin(hy )
pnz
e (1+\/EH0Q1(lu2))l{iég%(ﬂz’k)(lk ~(-D*4H)D, _2Do\/6HoQ1(ﬂzak)} (33)
k=1
and
© . f
D, = (-1 Y. (- 1-(1,D, —ﬂkaCo'{quZ,k)- ) - @,y 0D y}
k=1 K 0 dy 34
+%\/BHO(DO _C0)|:J.O#ZQI(y)'df%r;y)dy_gl(ﬂz)' fz(n»ﬂz)}
:uzzﬂ(l_éz/ﬂ) (35)

The flux entering the well screen and the total well discharge are respectively given as:

T0.69) =R =78 pH, + 3 B4 H, cosrd) (36)
and
$ @
QPY = [ (1&PIAE =B,/ PH, — X () B Ay H bsin(na) + (1) sinna)]  37)
& n=1

13



CHAPTER 4 RESULTS AND DISCUSSION
4.1 Simplified solution
When the well fully penetrates the entire thickness of the formation, i.e., & is zero and
&, equals S, the drawdown and the well discharge can be obtained using Egs. (11) and (37),

respectively, with coefficients in Egs. (31) — (34) as

5" (9., ) = %wo (38)

and

HO

Q =9
(P) /o

Equations (38) and (39) are identical to the solutions of drawdown and flow rate in Laplace

(39)

domain given in Yang and Yeh [2006].

4.2 Numerical evaluations

Equation (11) contains single and double infinite series which consist of the summations

of multiplication of integrals, trigonometric functions, and the modified Bessel functions of

second kind. The integrals are in terms of trigonometric functions multiplying associated

Legendre functions. This solution involves numerous complicated mathematical functions.

Therefore, numerical approaches including the Gaussian quadrature [Gerald and Wheatley,

1989], Shanks’ transform and Stehfest method are proposed to evaluate the solution. The

Gaussian quadrature with 6 terms [Yang and Yeh, 2007] is first utilized to evaluate the

14



integrals in Eq. (11). Since the oscillation and slow convergence of the multiplication terms,
the summations are difficult to evaluate accurately and efficiently. Therefore, the Shanks’
transform method [Shanks, 1955], a nonlinear iterative algorithm based on the sequence of
partial sums, is used to compute the summations in Eq. (11). This method has been
successfully devoted to efficiently computing the solutions arisen in the groundwater area [see,
e.g., Peng et al. 2002; Yeh et al. 2003]. In addition, the Stehfest algorithm [Stehfest, 1970]
with eight weighting factors is further employed to inverse the Laplace domain solution into
time domain solution. The proposed numerical approaches can accurately evaluate the
drawdown solution to the mixed-type bounddry value problem for a flowing partially

penetrating well and the results are demonstratéd in'thé following section.

4.3 Drawdown and well bore flux distribution

Figure 3 shows the dimensionless drawdown for =100, & =50, & =100 and
various p at r=1, 100, 10* and 10°. As indicated in the figure, the dimensionless
drawdown is constant along the well screen and decreases with increasing dimensionless
radial distance at =1 . In addition, the dimensionless drawdown increases with
dimensionless time along the unscreened part of the well. Figure 4 shows the plots of the
flux along the well screen for =100, & =50 and & =100 at r=1,100, 10* and 10°.

The dimensionless flux is non-uniformly distributed and large at the screen edge. The

15



vertical flow is induced by the presence of well partial penetration and the maximum flux at
the screen edge occurs when the vertical flows enter the bottom of the well. The spatial
dimensionless drawdown contours at =100, 10° and 10* are plotted in Figure 5. The
dimensionless drawdown increases with dimensionless time at a fixed radial distance and
flow is horizontal when the dimensionless radial distance is large than 80 and the
dimensionless time is 10*. Figures 6(a) and 6(b) show the spatial dimensionless drawdown
contours for various «’ with & =200 and & =250 at =10 and demonstrates the
influence of anisotropy on the dimensionless drawdown. The flow is almost horizontal at
lower part of the aquifer when the difnensionlessrradial distance is large than 400 for a’=1
and the vertical flow appears at lower part of the aquifer for «>=0.5. Figures 7(a) and 7(b)
show the spatial dimensionless drawdown contours with same length of 50 but different
locations of well screen. In Figure 7(a), the screen is symmetric with & =12.5 and
&, =37.5 and in Figure 7(b) the screen extends from the top of the aquifer with & =25
and & =50 at 7=10. Since the screen is symmetric about the middle line of the aquifer,
the drawdown contours are symmetric as demonstrated in Figure 7(a). Figure 8 illustrates
the spatial dimensionless drawdown contours for & =100 and & =150 at 7=10"in an
infinite aquifer. On the upper part of the aquifer, the direction of flow is downward when the
radial distance is far from the test well and it is upward when the radial distance is close to the

well screen. Since the aquifer is infinite, the drawdown at the upper screen ledge flows

16



upward and then flows toward the bottom of the aquifer and the drawdown at the lower screen

ledge flows down toward the bottom of the aquifer.

4.4 Effect of penetration ratio

In order to explore the effect of partial penetration on the well discharge, Figure 9
illustrates the behavior of well discharge in response to four different penetration ratios
w=A/p with 4 =50. The well discharges responding to those four cases behave the
same at the small time; however, it decreases with increasing penetration ratio at large time.
If the penetration ratio is smaller than0.01, the well discharge of this study agrees with that of
constant head pumping test in Cassiani et al.{1999] in an aquifer of semi-infinite thickness.
In other words, if the aquifer thickness is greater than 100 times of the screen length, the
aquifer can be considered as a semi-infinite aquifer. As the penetration ratio is equal to 1,
the well discharge of this study is identical to that of Yang and Yeh [2006] for a fully
penetrating well. In addition, well discharges of this study agree with those of Chang and
Chen [2003] for ®=0.01 and @ =0.001 when A =50. As indicated in Figure 9, there
are no obvious differences in the well discharges in response to different penetration ratios
until 7=10". For the cases of @=0.1 and w=0.01, the flow caused by the partial
penetration did not reach to the bottom of the aquifer before 7 =10". The aquifer thickness

has influence on groundwater flow after 7 is greater than 10°. The well discharge for

17



@ =0.01 is stabilized as 7 increases to 10° and the well discharge for @ =0.5 continues

to decrease.

18



CHAPTER 5 CONCLUSIONS

This paper developed new semi-analytical solutions for the aquifer system in response

to the constant head test at a partially penetrating well in a confined aquifer of infinite radial

extent and finite vertical extent. The Laplace and finite cosine Fourier transforms is first

used to reduce the original partial differential equation with mixed-type boundary and initial

conditions for a partially penetrating well in an aquifer of finite thickness to the dual or triple

series equations.

The present solutions for a fully penetrating, well in an aquifer of finite thickness are

identical to the solutions of the dtawdown and-welldischarge given in Chen and Stone [1993].

It is found that the solution of Cassiani et al."[1999] for well response to a constant head

pumping test in a semi-infinite aquifer approximates the solution for the case where the

aquifer thickness of a finite aquifer is 100 times greater than the length of well screen. In

addition, the flux is non-uniformly distributed along the screen and with a local peak at the

edge, due to the vertical flow induced by well partial penetration.

The new semi-analytical solutions provide accurate description of the response of the

aquifer system to a constant head pumping test performed at a partially penetrating well in a

confined aquifer of infinite radial extent and finite vertical extent. Those solutions are

particularly attractive for practical applications since they can be used to evaluate the
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sensitivities of the input parameters in a mathematical model. In addition, the solution can

be used to calculate the flow rates during the constant-head test and plots specific drawdown

(drawdown divided by the flow rate) versus time to identify the hydraulic parameters if

coupling with an optimization approach in the analysis of aquifer data, and to verify a

numerical solution.
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APPENDIX A

The Laplace and finite cosine Fourier transforms are first used to solve the mixed-type

boundary value problem. The definition of Laplace transform is [Sneddon, 1972] :
S'(p.£.P) = L[S (0.6 07 = pl=[S"(p.&, 0)e P de (A1)
0

where S'(p,&, p) is the dimensionless drawdown in Laplace domain. Taking the Laplace
transform of Egs. (6) and (8) — (10) and using the initial condition in Eq. (7), the problem

reads:

0’5" 1 5T L0 .

0 "o +a o8 -pS = (A2)
S (p=0,5,p)=0 (A3)
§*<p=l,§,p>=ip, E<E<p (Ada)
o5

Sl 20, 0<exg (Adb)
op -

o5 L

GE0 6=0E=s (A3)

In order to eliminate the & coordinate, the finite cosine Fourier transform is used as

follows [Sneddon, 1972]:
A * “ *
§'(p.n.p) = R[5 (0.£.p):& = =[5 (p.&. peos(né)ds (A6)

where S§"(p,n, p)is the dimensionless drawdown after finite cosine Fourier transform.

Substituting Eq. (A6) into Egs. (A2), (A3) and (A5) results in the Bessel differential equation
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as

2Lk Eak
0 32 +lai—ln2§* =0 (A7)
op- pop

with the boundary condition
§'(p=0,n,p)=0 (A8)
where A, is defined in Eq. (24).

The general solution of Eq. (A7) with the boundary condition Eq. (A8) is [Carslaw and
Jaeger, 1959, p. 193]
$' (00, P) = A, DK, (4,) (A9)
where A(n,p) can be found from using'the mixed<type boundary condition Eq. (A4). The
inverse of the finite cosine Fourier transform is'{Sneddon, 1972, p.425]

S (p.E.p) = %é*(p,o, D)+ %ié*(p,n, p)cos(ne) (A10)

Thus, the solution in & domain obtained by inserting Eq. (A9) into Eq. (A10) is

S (0.69) = A0, PIK,(PR) + 3 A DK, ()05t (A1)
with its derivative with respect to p given by

gi;(p, &9 == APV PK,(Pp) — -3 A DI K (hp)eoste) (A12)
Substituting Eq. (A11) into Eq. (A4a) and Eq. (A12) into Eq. (A4b) results in a system of the

dual series equations (DSE)

%A(o, p)Ko(ﬁH%iA(n, D)K, (4, )cos(7E) =%,§1 <£<p (Al3a)
%A(o, VK, (/P) +%iA(n, D)AK, (4 cos(71£) =0,0 < £ < &, (A13b)
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We define that
B(n, p) =2A(n, PK,(4,)/ S (Al4)
The DSE of (A13) can be arranged as [Sneddon, 1966, p.161]:

%B(O, p)+iB(n, p)cos(nx):%, <X (A15a)
n=1

%B(o, P)WPH (0, p)+ > nB(n, p)eos(nx) = Y I(k, p)B(k, p)cos(kx), 0<x<z  (AlSb)
n=1 k=1
with X=&x/p.
Our goal is to determine the coefficients B(0, p) and B(n, p) appearing in Eq. (A15). The

pair of dual series equations (DSE) can be solved by following the procedure given in Sneddon

[1966]. Assume that when 0 < X <qly

1 - X, e heGy)dy
—B, + > B_cos(nx) =cos(=)| =—=—t22 = Al6
2B Z (nx) = cos(-) ] s (A16)

where u, =&7/ [, B, =B(0,p) and B, =B(n,p).

The coefticient Bpand By in Eq. (A15) are respectively given by the equations [Sneddon, 1966,

p. 161, Eqgs. (5.4.56) and (5.4.57)]

2 T [
B,==|—=| h(y)d Al
0 72[\/5'[0 (y) Y} (A17)
and
2 T H
B, —;{mjo h,()[P,(cos y) + P, ,(cos y)]dy} (A18)

Integrating (A15b), one can obtain
% Bo+/PH (0, p)x + > B, sin(nx)
n=1

= J:(i B, I, cos(nu)jdu = _[OX F(u)du

(A19)
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Substituting Egs. (A17) and (A18) into (A19), one can find that h,(y) satisfies the following
equation: [Sneddon, 1966, p. 161, Eq. (5.4.58)]

I h,(y )\/_ Z[P (cosy)+ P, (cos y)]sm nxdy

(A20)
= j F(u)du ——f H (0, p)B,x — j —cos(nu)du sin(nx)
The summation term on the left-hand side of Eq. (A20) can be expressed as [Sneddon, 1966, p.

59, Eq. (2.6.31)]

cos(g)Heav(x ~y)

\Jcosy —cos X

\/_ Z[P (cosy)+ P, (cosy)]sinnx = (A21)

where

H.,, (X)is the Heaviside unit step function which is of different value for different

range of X such as

0 X <0
H.,, (X)=41/2 X=0 (A22)
1 X>0

Substituting (A21) into (A20), it yields

jhii’s)_;'(tosi)dy_sec {j F(u)du——J—H(O P)By X~ gT%COS(mJ)OluSin(nx)} (A23)

n=l 7 p
Using the property of Heaviside unit step function in Eq. (A22), an equivalent integral

equation of (A23) can be obtained

E%dy—sec {j F(u)du——\/_H(O P)B, X — ET%cos(nu)dUSin(nx)}

n=1 77,

0< X<y (A24)

Then, the function h (Y) can be found based on Sneddon [1966, p. 41, Eq. (2.3.5)] as
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sin(X/2)

.(y)— IW{I F(u)du——\/_H(O P)B,X — iET%COS(nU)dUSin(nX)}dX (A25)

n=1 % 4
By integrating Eq. (A25) and substituting it into Egs. (A17) and (A18), the coefticients By
and B, can be expressed as Egs. (12) and (13), respectively.

For computational convenience, the coefficients can be written in the matrix form as

BO 0 X12 X13 Xl,n+1 BO
B] 0 X 22 X 23 e X 2,n+1 B]
Bz =10 X32 X33 X3,n+1 Bz
_Bn_ 0 Xn+12 Xn+1,3 Xn+1,n+1__Bn_ (A26)
- 7 _
Z2
+| £,
_Zn+1
with
. df, (i — .
—~pH, U‘Q( )= ( ) Q(m)-t(n—hm} (A27)
1 . . : df,(i—1
X, =.—|,-1{Qz(ul,|_1)- fz(l—l,ul)—r 0, (y,i-1)- L0V, }
(i-1 0 dy (A28)
1 f, (i
+5\/6H [] Q,( )%dy Q, () f,(1- l,ﬂl)}
4 2
793(/’1)"'*(1_/11)
z, =P~ P (A29)
1+/pH,Q, (1)
2 . " df,(i—1,y) 2sin((i—1)g,)
Z - “l0 'f _1’ _ (@) 2 d _ 1 A30
| pn[ () -1 = [, dy y} (i-Dzp Y

where i and j goes from 1 to n.
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APPENDIX B

Similar to the procedure in Appendix A, the problem with the boundary in Egs. (27) and

(28) results in a set of triple series equations as

B0 )+ X B(N, p)cos(n) =%, < X< 7= (Bla)
n=1
%B(O, p)\/EH (0, p)+ZB(n, p)A,H, cos(nX)=0, 0<X<yu, m—u, <X<7m (B1b)

n=1

We split Eq. (B1) into the following equations

l((: + D\ PH (0, p)+ > (C. +D_)A H. cos(nx) =0, 0<X<pu (B2a)
2 0 0 n n n n 1
n=1

1 2 1

ECO +Y_C, cos(nx) = r <X (B2b)
n=1

1 o0

ED0+ZDncos(nX)=0, O0<X<7m—u, (B3a)
n=1

%(CO+D0)\/6H(O, p)+ > (C, D, )4 Hyeostnx) =0, T—p, SX<7 (B3b)

n=1

Equations (B2) and (B3) can be regarded as dual series relations by means of which the
coefficients Cy, Do, C,, and D, can be determined.
The pair of dual series equations (DSE), i.e., Eq. (B2), can be solved by the procedure

given in Appendix A and the coefficients can be written in the matrix form as
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C, Xy X Xl,n+1 G,
C, X X xz,n+1 C,
Cz =10 X32 X33 X3,n+1 Cz
_Cn_ 0 Xn+12 Xn+1,3 Xn+1,n+l__Cn_
Yu le Y13 Yl,n+1 __Do_
Y21 Yzz Y23 e Y2,n+1 D1
+| Yy Y, Yo o Yia || D,
_Yn+11 Yn+1,2 Yn+1,3 Yn+l,n+1__Dn_
- z, _
Z,
+| Z,
[ 20 (B4)
with
| df, (i — "
\/_H |:JWQ( ) ————= ( 5 y—Q, (1) fZ(I—lalul)i| (BS)
1 . . : . f(i—1
Xij :-—Ij—l Q,(uy,1-1)- fz("la,ul)__rl Q,(y,i=1)- Md }
(J-D 0 dy (B6)
1 f, (i
+5PH, {j 0, (y)- 0y -, ) 16~ l,ﬂl)}
- —JPHQ, (1) &7
1+\/6H091(,u1)
-2 .
j 1Hj—192(ﬂ131_1)
_ (-1 (BS)
Yy =
14/ pPHQ, (1)
| df,(i— .
\/_H |:JwQ( ) ( ) Ql(ﬂl)' fz(l_luul)j| (B9)
R 1 f, (i . .
Yy = e ,{I"Q( -1 %d sz,J—l)-fz(n—l,m} (B10)
4 2
793(/’1)"'*(1_/11)
z, =P~ P (B11)
1+\/6H091(/11)
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df,(i—1, y)dy} _ 2sin((i—Dg) (B12)
d

2 . Hy
Z. = — Q . f2 —1, 1) — Q3 * -
.p43m>o w)= [ () -0

where i and j goes from 1 to n.
Similarly, Eq. (B3) can be solved by setting x'=7z—-x and D,'=(-1)"D,. Equation

(B3) is rewritten as

%D0'+z D, 'cos(nX') =0, i < X< (B13a)
n=1
%(DO'+CO)\/BHO+Z(Dn'+(—l)”Cn)/1ancos(nx'):O, 0<X'< (B13b)
n=1

and the coefficients D, and D, are

Do 0 XX 12 XX 13 t XX 1,n+1 Do
D1 0 XX 2 XX 23 XX 2,n+1 D1
D2 =10 XX 32 XX 33 o XX 30+l D2
_Dn_ 0 XX n+1,2 Xxn+1,3 XXn+1,n+1__Dn_ (Bl4)
i YY11 YY12 YY13 YYl,n+1 TCo_
YY21 YY22 YY23 3 YY2,n+1 Cl
+ YY31 YY32 YY33 t YY3,n+1 Cz
_YYn+1,1 YYn+l,2 YYn+1,3 YYn+1,n+l__cn_

with the elements

2(-1)! .
| Q, (1, j—1
o (=D " (4,1 =1)

v 1+\/BHOQ1(,U2)
XX zﬁwlj—l{ﬂz(ﬂpj_l)' fz(i_laﬂz)_J.:zﬂz(yaj_l) Md i| (B16)

(B15)

o (-D dy
v, =~ PHi ) B17)
14/ pHQ, (1)
GOt 1D
YY,. = B18
! 1+\/BHOQ1(N2) (B9
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— i-1 Ly df2(| _1’ y) —Q ) f2(| _l,ﬂz)i| (B
YY;, = ( 12) v pH0|:J-0 Q,(y)-— dy dy - Q, (1)

ey “0,(y, j-1)- 0=LY) —szpj—l)-fz(i—l,u»} (B20)
YY;; Z(_lzjjf(l)l)lj—lHH[J‘O Q,(y,j-1) Tdy
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Figure 1 Schematic representation of a partially penetrating well with the screen extends from

the top of the aquifer in a confined aquifer
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Figure 2 Schematic representation of a partially penetrating well with arbitrary location of

well screen in a confined aquifer
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Figure 3b The drawdown distribution at dimensionless time 7 = 100 for various p
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Figure 3¢ The drawdown distribution at dimensionless time z = 10* for various p
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Figure 3d The drawdown distribution at dimensionless time z = 10° for various p
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Figure 4 The distribution of flux along the well screen at different dimensionless time
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Figure 7(a) The spatial drawdown contours at dimensionless time 7 =10° for & =12.5 and
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