
Multiplicative, Congruential Random-
Number Generators with Multiplier 6 2k1

6 2k2 and Modulus 2p 2 1
PEI-CHI WU
National Chiao Tung University

The demand for random numbers in scientific applications is increasing. However, the most
widely used multiplicative, congruential random-number generators with modulus 231 2 1
have a cycle length of about 2.1 3 109. Moreover, developing portable and efficient generators
with a larger modulus such as 261 2 1 is more difficult than those with modulus 231 2 1. This
article presents the development of multiplicative, congruential generators with modulus
m 5 2p 2 1 and four forms of multipliers: 2k1 2 2k2, 2k1 1 2k2, m 2 2k1 1 2k2, and m
2 2k1 2 2k2, k1 . k2. The multipliers for modulus 231 2 1 and 261 2 1 are measured by
spectral tests, and the best ones are presented. The generators with these multipliers are
portable and very fast. They have also passed several empirical tests, including the frequency
test, the run test, and the maximum-of-t test.

Categories and Subject Descriptors: G.3 [Mathematics of Computing]: Probability and
Statistics—random number generation

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Cycle length, efficiency, multiplicative congruential
random-number generators, portability, spectral test

1. INTRODUCTION

The demand for random numbers in many scientific applications is increas-
ing due to the use of high-performance computer systems for large-scale
scientific problems. Even a low-end workstation can consume 107 random
numbers in a few minutes. However, the most widely used multiplicative,
congruential random-number generators with modulus 231 2 1 have a
cycle length of about 2.1 3 109. Kirkpatrick and Stoll [1981] presented a
lagged-Fibonacci generator (cf. Anderson [1990]), called R250, which is

Author’s address: Computer Science and Information Engineering, National Chiao Tung
University, 1001 Ta-Hsueh Road, Hsinchu, Taiwan, Republic of China; email: pcwu@csie.
nctu.edu.tw.
Permission to make digital /hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1997 ACM 0098-3500/97/0600–0255 $3.50

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997, Pages 255–265.

very fast and has a cycle length of 2250 2 1. Although R250 passed a
number of statistical tests, a recent experience [Selke 1993] showed that
R250 gives wrong results for a clustered Monte Carlo simulation, while the
multiplicative congruential generator

xi516807 z xi21 mod ~231 2 1!,

the minimal standard generator suggested by Park and Miller [1988],
worked very well.
Multiplicative congruential generators have been widely used and tested.

It would be better if this kind of generator provides a longer cycle length to
meet the current needs of large-scale simulations. Payne et al. [1969]
predicted that, due to increases in computer speed and the next Mersenne
prime of 231 2 1 being 261 2 1, multiplicative congruential generators
with modulus 261 2 1 would be needed. The time has now arrived. The
cycle length of these generators, up to 261 2 2 ' 2.3 3 1018, is long
enough for most current scientific applications. In the future, generators
with modulus 2127 2 1 may be required to provide a longer cycle length of
up to 1.7 3 1038. However, developing portable and efficient multiplicative
congruential generators is not straightforward [Park and Miller 1988;
Schrage 1979]. Moreover, developing generators with larger moduli such as
261 2 1 is more difficult than developing those with modulus 231 2 1.
This article presents the development of multiplicative congruential

generators with prime modulus m 5 2p 2 1 and four forms of multipliers:
2k1 2 2k2, 2k1 1 2k2, m 2 2k1 1 2k2, and m 2 2k1 2 2k2, k1 . k2. The
multipliers for modulus 231 2 1 and 261 2 1 are measured by spectral
tests, and the best ones are presented. The generators with these multipli-
ers are portable and very fast. The performance results compared with
other implementation techniques are also presented. These generators
have also passed several empirical tests, including the frequency test, the
run test, and the maximum-of-t test [Knuth 1981].

2. RELATED WORK

A linear congruential generator can be defined by the following equation:

xi 5 a z xi21 1 c mod m. (1)

Computing the above equation requires one integer addition, one multipli-
cation, and one division. Usually m 5 2e is chosen to avoid the division
operation and the portability problem in getting product a z xi21 in high-
level languages. Knuth [1981, pp. 22–24] analyzed multiplier a 5 2k 1 1
for generators with modulus 2e, k , e, and c 5 1. The equation is shown
below:

xi 5 ~~2k11! z xi21! 1 1 mod 2e (2)

256 • Pei-Chi Wu

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

The above equation can be computed by merely shifting and adding, and it
avoids the multiplication and division operation. However, Knuth [1981, p.
22] showed that this kind of multiplier should be avoided based on the
concept of potency. Knuth [1981, p. 24] suggested that (for multiplier a
5 2k 1 1) multiplicative congruential generators with a prime modulus
should be used instead.
A multiplicative congruential generator is a special case of Eq. (1) taking

c 5 0:

xi 5 a z xi21 mod m. (3)

To get a period of maximal length m 2 1, m must be a prime; a is a
primitive root of m; and x0 e@1, m 2 1# (cf. Knuth [1981, p.19]). Develop-
ing portable and efficient multiplicative congruential generators is not
straightforward, because simply taking m 5 2e does not get an “almost
correct” implementation. Park and Miller [1988] gave a sampling of simple
but “bad” multiplicative congruential generators, many of which use modu-
lus 2e, e.g., e 5 16, e 5 31, and e 5 32.
Some research has been devoted to portable implementations of multipli-

cative congruential generators with m 5 231 2 1. Schrage [1979] pre-
sented a Fortran program that uses two integer multiplication operations
and several bit operations to get the product 16807 z x. This technique is
more costly to apply for generators with a larger modulus. Park and Miller
[1988] presented a portable program based on simple integer arithmetic.
The technique also works for generators with modulus 261 2 1, if the
compiler used supports 64-bit integer arithmetic. All these portable imple-
mentations allow only small multipliers and are slower than those using
assembly codes directly.

3. THE 6 2k1 6 2k2 MULTIPLIERS

The division operation (mod m) in multiplicative congruential generators
with (prime) modulus m 5 2p 2 1 can be performed by shifting and
addition [Payne et al. 1969]. To further replace multiplication with shifting
and addition, multiplier a must be in the form of simple expressions of 2k.
To guarantee that the resulting generators are good, we need to meet the
following criteria: A multiplier a is adequate if

(1) The number a is a primitive root of m (or primitive element modulo
m): a is a primitive root of m if an mod mÞ1 for n 5 1, 2, ..., m 2 2
[Knuth 1981, p. 10]. Knuth [1981, p. 20] presented a method to test
whether a number is a primitive root of m:

The number a is a primitive root of m if and only if

aÞ0~ mod m!, and a~m21/q! Þ 1~mod m!,

for any prime divisor q of m 2 1.

Multiplicative, Congruential Random-Number Generators • 257

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

(2) The generator with multiplier a and modulus m should pass a number
of statistical tests. Knuth [1981, p. 89] and Fishman and Moore [1986]
all suggested the spectral test.

The multipliers with the simplest form are 6 2k mod m, i.e., multipliers
2k and m 2 2k, 0 # k # lgm, where lgm denotes log

2
m. Arithmetic

modulo 2p 2 1, for any p . 1, is well known as “one’s complement”
arithmetic. For this arithmetic, multiplication by 2k results in a k-place left
cyclic shift of the binary digits. That is, if integer x has binary digits

bp21 . . . b0

then the integer 2k z x mod ~2p 2 1! has digits

bp2k21 . . . b0 bp21 . . . bp2k.

Also, –x mod ~2p 2 1! 5 2p 2 1 2 x results in bitwise negation. Thus,
with m 5 2p 2 1, a multiplier of form a 5 2k must cause the sequence to
cycle after p steps, as p cyclic k-place shift restores the original digits. If
a 5 22k, each step is a k-place cyclic shift followed by negation, and the
sequence will cycle after p steps if p is even, or 2p steps otherwise. Hence,
no such multiplier can be a primitive root.
Now, we pay attention to multipliers with the form of 6 2k1 6 2k2 mod m,

k1 . k2, i.e., four kinds of multipliers: 2k1 2 2k2, 2k1 1 2k2, m 2 2k1

1 2k2, and m 2 2k1 2 2k2. There is an efficient algorithm for generators
with these multipliers.

Let a 5 62k1 6 2k2, m 5 2p 2 1.
xi 5 a z xi21 mod m.

5 xi21~ 6 2k1 6 2k2! mod m.
5 ~ 6 2k1 z xi21 6 2k2 z xi21! mod m.
5 ~ 6 ~2k1 z xi21 mod m! 6 ~2k2 z xi21 mod m!! mod m.

Multiplication by 2k is a k-place left cyclic shift and can be rewritten as
follows:

Let x be a p-bit number, k , p.
2k z x mod (2p21) 5 x (high-order k bits) 1 x (low-order p2k bits) z 2k.

Thus, the multiplication and division can be reduced to shifting and
addition (Figure 1).
Let w1 5 2k1 z xi21 mod m, w2 5 2k2 z xi21 mod m. Table I lists the

equations for all these multipliers. Because 0 , w1, w2 , m, the range of
x9 is 2 m , x9 , m. When x9 . 0, xi 5 x9; otherwise, xi 5 m 1 x9.
Algorithm RAND shows the code.

Algorithm RAND
Input: multiplier a (p bits) and seed xi21 (p bits), a is one of the forms

258 • Pei-Chi Wu

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

of Table I.
Output: a random number xi 5 a z xi21 mod 2p 2 1.
Method:
Compute x9 using the corresponding equation in Table I.
IF ~x9 , 0!

THEN Output x9 1 m;
ELSE Output x9;

End of algorithm.

4. SPECTRAL TEST AND EMPIRICAL TEST RESULTS

This section first presents spectral test results for generators with multi-
pliers of 6 2k1 6 2k2 and modulus 231 2 1 and 261 2 1. The notation used
here follows that of Anderson [1990]. The relative quality measure is

qk 5 nk/~gk z m1/k!,

where nk is the spectral test result on k-dimensional space, and m is the
prime modulus. The constants gk, 2 # k # 8 were shown in Knuth
[1981, p. 105] and Anderson [1990, Table 4.1]. The measure qk is a real
number in [0, 1]. Large values of qk are best. We applied spectral test to all
multipliers 6 2k1 6 2k2 for m 5 231 2 1 and m 5 261 2 1. These
multipliers are rated by the minimum of qk, 2 # k # 8. Based on this
measurement, the best multipliers for m 5 231 2 1 are m 2 216 2 211 and
215 2 210 (see Table II), and the best multipliers for 261 2 1 are 242

2 231 and 230 2 219 (see Table III). The measure bk 5 lgvk is interpreted

Fig. 1. Exchanging the low-order and high-order bits of x.

Table I. Equations of Four Forms of Multipliers and Their Equations

Form Equation

2k1 2 2k2 x95 w12w2

2k1 1 2k2 x95 w11w22m
m 2 2k1 1 2k2 x952w11w2

m 2 2k1 2 2k2 x95 m2w12w2

Multiplicative, Congruential Random-Number Generators • 259

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

as the number of bits that are “random” when k-tuples are considered
[Anderson 1990].
How good are these generators? Fishman and Moore [1986] presented an

exhaustive spectral test of multipliers for modulus 231 2 1 (see Table IV).
The 410 multipliers selected as best (as corrected by Park and Miller
[1988]) all meet the quality measure qk $ 0.8, for 2 # k # 6. By extending
k to 8 in spectral tests on all these multipliers, we find that the largest min

Table III. Two Generators with Multipliers 242 2 231 and 230 2 219 for Modulus 261 2 1

a 5 4395899027456 5 242 2 231.
min qk 5 0.3780

a 5 1073217536 5 230 2 219.
min qk 5 0.3653.

k qk bk vk k qk bk vk

2 0.6580 30 1073741824 2 0.6577 29 1073217536
3 0.4442 19 658761 3 0.3653 19 541656
4 0.3780 14 17519 4 0.7533 15 34910
5 0.3789 11 2195 5 0.5003 11 2898
6 0.6128 9 909 6 0.5737 9 851
7 0.4440 7 251 7 0.6315 8 357
8 0.6161 7 172 8 0.5803 7 162

Table IV. Two of the Best Multipliers from Fishman and Moore [1986] for Modulus 231 2 1

a 5 1754050460.
min qk 5 0.7229

a 5 742938285.
min qk 5 0.6211

k qk bk vk k qk bk vk

2 0.9257 15 46095 2 0.8672 15 43186
3 0.8266 10 1197 3 0.8604 10 1246
4 0.8125 7 208 4 0.8594 7 220
5 0.8176 6 74 5 0.8286 6 75
6 0.8414 5 39 6 0.8198 5 38
7 0.7591 4 22 7 0.6211 4 18
8 0.7229 3 15 8 0.6747 3 14

Table II. Two Generators with Multipliers m 2 216 2 211 and
215 2 210 for Modulus m 5 231 2 1

a 5 2147416063 5 m 2 216 2 211.
min qk 5 0.6211

a 5 31744 5 215 2 210.
min qk 5 0.5703

k qk bk vk k qk bk vk

2 0.6394 14 31840 2 0.6375 14 31744
3 0.8307 10 1203 3 0.7720 10 1118
4 0.7734 7 198 4 0.5703 7 146
5 0.6740 5 61 5 0.6740 5 61
6 0.6904 5 32 6 0.7335 5 34
7 0.6211 4 18 7 0.7246 4 21
8 0.6265 3 13 8 0.5783 3 12

260 • Pei-Chi Wu

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

qk 5 0.7229 when a 5 1754050460. The multiplier 742938285, which
was considered the best, has min qk 5 0.6211. On the other hand, in Table
II, the multiplier m 2 216 2 211 also has min qk 5 0.6211. Table V
summarizes the quality measure of these multipliers. Based on the spectral
test results, multipliers m 2 216 2 211 and 215 2 210 are better than the
three widely used multipliers 16807, 397204094, and 630360016.
Because there are no well-known multipliers for modulus m 5 261 2 1,

we compare the multipliers 242 2 231 and 230 2 219 with two multipliers
found by the following methods:

(1) Search for the best multiplier a 5 37b mod m, where b is relatively
prime to m 2 1. Because 37 is the minimal primitive root of m, all
these multipliers are primitive roots of m [Fishman and Moore 1986].
This search is done in the range be @1,106#.

(2) Search for the best multiplier a 5 2k 6 1. The number a must also be
a primitive root.

Method (1) performs a time-consuming search to find a rather good
multiplier. Method (2) searches for multipliers of a more restricted form,
which is easier to compute than those of the general form 6 2k1 6 2k2 mod
m. The results of these searches are shown in Table VI. The best multiplier
in method (1), a 5 37458191 mod m, has min qk 5 0.7129, and the best
multiplier in method (2), a 5 238 2 1, has min qk 5 0.0073. This result
shows that 242 2 231 and 230 2 219 are far better than 238 2 1, and using
the form a 5 2k 6 1 is not likely to yield a good multiplier.
Table VII summarizes spectral test results on multipliers for 261 2 1.

Although the min qk values of 242 2 231 and 230 2 219 are not very high,
they are still higher than that of 16807, a commonly used multiplier.
Moreover, because qk is not an absolute measure, multipliers with different
m cannot be compared using qk. A large modulus m is better based on the
measure bk. Generators with multipliers 242 2 231 and 230 2 219 and
modulus 261 2 1 are better than any generators with modulus 231 2 1.
We apply three empirical tests on the 61-bit generators with multipliers

230 2 219 and 242 2 231 and the 31-bit generators with m 2 216 2 211,

Table V. Summary of Spectral Tests on Various Multipliers for Modulus 231 2 1

Multiplier min qk, 2 # k # 8

1754050460 0.7229
742938285 0.6211
m 2 216 2 211 0.6211
215 2 210 0.5703
397204094 0.5520
630360016 0.4316
16807 0.3375

Multiplicative, Congruential Random-Number Generators • 261

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

215 2 210. The frequency test takes x mod 12. The run test examines the
length of “run up” sequences, categorized into [1, 6] and . 6. The maxi-
mum-of-t test takes the maximum of 5 consecutive numbers and examines
whether max ~x! , 7/8m. The degrees of freedom of these tests are 11, 6,
and 1, respectively. To analyze the test results, we use the chi-square test
[Knuth 1981, p. 44] in 6 rounds. Each test consumes 2 million random
numbers. In total, our experiment consumes 36 million consecutive random
numbers generated by seed 1. The chi-square result V is rejected if V is
outside [1%, 99%]. The result is “suspect” if V is in [1%, 5%] or [95%, 99%].
The result is “almost suspect” if V is in [5%, 10%] or [90%, 95%]. The
following are the results for the 61-bit generators with 230 2 219 and
242 2 231 and the 31-bit generators with m 2 216 2 211, 242 2 231, 16807,
and 1754050460. The latter two are included merely for comparison. All
these generators are satisfactory.

5. PORTABILITY AND PERFORMANCE RESULTS

Figure 2 shows the C program for the generator xi 5 ~230 2 219! xi21 mod
~261 2 1!. This program can easily be adapted for any generator of the form
6 2k1 6 2k2 mod m. LOG_Wdenotes the number of bits in integer types, and
LOG_Mdenotes lgm, i.e., LOG_M5 p, letting m 5 2p 2 1. K1 and K2
represent k1 and k2. The equation from Table I should be plugged into the
code. The “unsigned” variable x0 makes the right shift operator (..) fill
zeros on the left. The program assumes that the size of “long long int” type
in C is 64 bits wide. For C compilers not supporting such an integer type,

Table VI. Two Sample Generators with Modulus m 5 261 2 1

a 5 37458191 mod m
5 2137866620694229420.

min qk 5 0.7129.

a 5 238 2 1
5 274877906943.
min qk 5 0.0073.

k qk bk vk k qk bk vk

2 0.9122 30 1488478930 2 0.0073 23 11863282
3 0.8258 20 1224562 3 0.0221 14 32767
4 0.7745 15 35889 4 0.0247 10 1144
5 0.7316 12 4238 5 0.1387 9 809
6 0.7322 10 1086 6 0.0856 6 127
7 0.7129 8 403 7 0.2247 6 127
8 0.7451 7 208 8 0.4549 6 127

Table VII. Summary of Spectral Tests on Multiplers for Modulus m 5 261 2 1

Multiplier min qk,2 # k # 8

37458191 mod m 0.7129
242 2 231 0.3780
230 2 219 0.3653
238 2 1 0.0073

262 • Pei-Chi Wu

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

the programmer needs to handle double-word integers by hand. Because
the program contains only shifting and addition operations, coding these
operations by hand is not difficult.
The code in Figure 2 is general for any k1 and k2. For a specific

generator, the code can be simplified. For example, the recurrence for a
5 230 2 219 can be rewritten in the C fragment:

#define M 0x1fffffffffffffffll
long long int x;
x 5 (x .. 31) 1 ((x ,, 30) & M)

— (x .. 42) — ((x ,, 19) & M);
if (x , 0)

X 1 5 M;

Table VIII. Empirical Tests on Two 61-Bit Generators and Four 31-Bit Generators

Frequency Test Run Test Maximum-of-t

12.8195 5.5465 0.9152
8.7124 9.5065 0.0992

a 5 1754050460 17.3912 AS 7.2807 1.1192
m 5 231 2 1 12.2226 3.5790 3.0317 AS

7.8808 3.5037 0.2941
11.5636 9.6334 0.0298
17.9788 AS 5.9388 0.0296
7.2673 5.4556 0.7934

a 5 16807 11.8550 4.6125 1.6692
m 5 231 2 1 6.4879 4.0551 0.0821

25.8024 R 2.7103 2.5059
9.9464 4.5692 4.8415 S
5.3201 AS 10.0971 0.0430

a 5 230 2 219 4.0330 S 3.2456 0.0115 AS
m 5 261 2 1 13.2601 9.8225 4.0567 S

16.5406 8.4553 0.4291
7.4707 2.1997 AS 1.1740
6.7406 4.3256 0.0263
9.0355 4.3436 0.2831
4.7160 AS 4.0678 0.6844

a 5 242 2 231 16.3919 14.2237 S 1.5277
m 5 261 2 1 6.0833 6.8317 1.5925

15.4968 12.5323 AS 0.0949
7.5346 4.6535 0.0273
8.0367 7.4715 1.0156
11.6435 1.9442 AS 2.5679
8.8121 4.0140 0.9714

a 5 215 2 210 10.2040 8.7158 0.6899
m 5 231 2 1 12.6949 2.4861 0.7757

12.4820 5.7903 0.2673
22.7399 S 1.7901 AS 0.2356
6.4100 2.9220 0.0246

a 5 m 2 216 2 211 8.5287 10.5368 0.0021 S
m 5 231 2 1 16.1273 8.3786 1.7448

18.7574 AS 5.7459 0.0513
8.5351 5.3021 0.0181

AS 5 Almost Suspect; S 5 Suspect; R 5 Reject

Multiplicative, Congruential Random-Number Generators • 263

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

The bitwise-and operator (&) is used to get the high-order bits. This gets
simpler code; however, compilers may generate the code that loads constant
M from memory, which is usually less efficient than bit shift.
We compared the performance of our generators with other development

techniques. A test was conducted that generated 2 million random integers
for all following programs. Program m61-port is the generator by Park and
Miller [1988] with modulus 261 2 1. The codes on Sun SPARC and HP
PA-RISC were compiled by GNU CC (gcc -O); the codes in Alpha and
RS/6000 were compiled by the vendor’s C compiler (cc -O). Program
m61-asm denotes generators with modulus 261 2 1 developed using
assembly languages. We had two implementations: one on the Sun SPARC
and one on the DEC Alpha. The SPARC assembly code allows only 32-bit
multipliers, while the Alpha assembly code allows any 61-bit multipliers.
Program m61-p3019 denotes the 61-bit generator with a 5 230 2 219. All
these 61-bit generators generated the same sequence of random numbers.
Program m31-asm is an assembly version of a 31-bit generator with any
multiplier a and modulus m 5 231 2 1. The time was measured with a
5 16,807. Program m31-p1611 denotes a 31-bit generator with a 5 m
2 216 2 211. Program m31-p1510 denotes a 31-bit generator with a
5 215 2 210. Finally, the test on the generator with modulus 232 was also
performed. The results show that our generators (m61-p3019, m31-p1611,
and m31-p1510) are very fast.

Fig. 2. The C program for the generator xi 5 ~230 2 219!xi21 mod ~261 2 1!.

264 • Pei-Chi Wu

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

6. CONCLUSION AND FUTURE WORK

This article has presented the development of multiplicative congruential
generators with prime modulus 2p 2 1 and four forms of multipliers:
2k1 2 2k2, 2k1 1 2k2, m 2 2k1 1 2k2, and m 2 2k1 2 2k2, k1 . k2. The
multipliers for modulus 231 2 1 and 261 2 1 have been measured by
spectral tests. The generators with these multipliers are portable and very
fast. They have also passed several empirical tests, including the frequency
test, the run test, and the maximum-of-t test. In the future, more tests and
more experience with these generators are needed.
ACKNOWLEDGMENTS

The author would like to thank the referees and the editor, whose com-
ments helped to improve the overall presentation.

REFERENCES

ANDERSON, S. L. 1990. Random number generations generators on Vector supercomputers
and other advanced architectures. SIAM Rev. 32, 2 (June), 221–251.

FISHMAN, G. A. AND MOORE, L. R. 1986. An exhaustive analysis of multiplicative congruen-
tial random number generators with modulus 231-1. SIAM J. Sci. Stat. Comput. 7, 1, 24–45.

KIRKPATRICK, S. AND STOLL, E. 1981. A very fast shift-register sequence random number
generator. J. Comput. Phys. 40, 517–526.

KNUTH, D. E. 1981. The Art of Computer Programming. Vol. 2, Seminumerical Algorithms.
Addison-Wesley, Reading, Mass.

PARK, S. K. AND MILLER, K. W. 1988. Random number generators: Good ones are hard to
find. Commun. ACM 31, 10 (Oct.), 1192–1201.

PAYNE, W. H., RABUNG, J. R., AND BOGYO, T. P. 1969. Coding the Lehmer pseudo-random
number generator. Commun. ACM 12, 2, 85–86.

SCHRAGE, L. 1979. A more portable Fortran random number generator. ACM Trans. Math.
Softw. 5, 2, 132–138.

SELKE, W. 1993. Cluster-flipping Monte Carlo algorithm and correlations in “good” random
number generators. JETP Lett. 58, 8, 665–668.

Received March 1995; revised September 1996; accepted November 1996

Table IX. Performance Results on Various Machines

Program SPARC-IPC SPARC-2 PA-RISC RS/6000 Alpha

m61-port 53.18s. 31.72s. 57.96s. 10.99s. 1.00s.
m61-asm 13.63s. 8.00s. n.a. n.a. 0.92s.
m61-p3019 4.57s. 2.63s. 2.88s. 0.95s. 0.38s.
m31-asm 6.93s. 4.25s. 2.13s. 0.69s. 0.70s.
m31-p1611 2.53s. 1.58s. 1.22s. 0.65s. 0.50s.
m31-p1510 2.28s. 1.43s. 1.23s. 0.66s. 0.42s.
a z x mod 232 5.02s. 2.93s. 0.79s. 0.36s. 0.48s.

n.a 5 data not available; the computing time for 2 million random integers is given in seconds

Multiplicative, Congruential Random-Number Generators • 265

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

